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Abstract

We propose structured encoding as a novel ap-
proach to learning representations for relations
and events in neural structured prediction. Our
approach explicitly leverages the structure of
available relation and event metadata to gener-
ate these representations, which are parameter-
ized by both the attribute structure of the meta-
data as well as the learned representation of
the arguments of the relations and events. We
consider affine, biaffine, and recurrent oper-
ators for building hierarchical representations
and modelling underlying features.
Without task-specific knowledge sources or
domain engineering, we significantly improve
over systems and baselines that neglect the
available metadata or its hierarchical struc-
ture. We observe across-the-board improve-
ments on the BeSt 2016/2017 sentiment anal-
ysis task of at least 2.3 (absolute) and 10.6%
(relative) F-measure over the previous state-
of-the-art.

1 Introduction

Information extraction has long been an active
subarea of natural language processing (NLP)
(Onyshkevych et al., 1993; Freitag, 2000). A
particularly important class of extraction tasks is
ERE detection in which an object, typically an el-
ement in a knowledge base, is created for each
ENTITY, RELATION, and EVENT identified in a
given text (Song et al., 2015). In some variants
of ERE detection, metadata descriptions and spe-
cific mentions of the ERE objects also need to be
recorded as shown graphically in Figure 1. Sub-
sequent second-order extraction tasks can further
build upon first-order ERE information.

In this work, in particular, we consider the
second-order structured prediction task studied in
the 2016/2017 Belief and Sentiment analysis eval-
uations (BeSt) (Rambow et al., 2016a): given a

Figure 1: ERE graph for “China, a growing world
power, is developing its army.” Entities are denoted in
blue, entity mentions in green, and relations in red.

document and its EREs (including metadata and
mentions) determine the sentiment of each EN-
TITY towards every RELATION and EVENT in the
document.1

Until quite recently, existing approaches to this
type of second-order extraction task have relied
heavily on domain knowledge and feature engi-
neering (Rambow et al., 2016b; Niculae et al.,
2016; Dalton et al., 2016; Gutirrez et al., 2016).
And while end-to-end neural network methods
that bypass feature engineering have been devel-
oped for information extraction problems, they
have largely been applied to first-order extrac-
tion tasks (Katiyar and Cardie, 2016; Miwa and
Bansal, 2016; Katiyar and Cardie, 2017; Orr et al.,
2018). Possibly more importantly, these tech-
niques ignore, or have no access to, the internal
structure of relations and events.

We hypothesize that utilizing the metadata-

1The BeSt evaluation also requires the identification of
sentiment towards entities. For reasons that will become clear
later, we do not consider entity-to-entity sentiment here.
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induced structure of relations and events will
improve performance on the second-order sen-
timent analysis task. To this end, we propose
structured encoding as an approach towards learn-
ing representations for relations and events in end-
to-end neural structured prediction. In particular,
our approach not only models available metadata
but also its hierarchical nature.

We evaluate the structured encoding approach
on the BeSt 2016/2017 dataset. Without
sentiment-specific resources, we are able to see
significant improvements over baselines that do
not take into account the available structure. We
achieve state-of-the-art F1 scores of 22.9 for dis-
cussion forum documents and 14.0 for newswire
documents. We also openly release our implemen-
tation to promote further experimentation and re-
producible research.

2 Task Formulation

In the BeSt sentiment analysis setting, we are
given a corpus D where every document di ∈ D
is annotated with the set of entities Ei, relation
mentions Ri, and event mentions2 EV i present in
di. For each entity ej ∈ Ei, we are additionally
given the span, or variable-length n-gram, associ-
ated with (each of) its mention(s). Similarly, for
each relation and event, we are given metadata
specifications of its type and subtype as well as the
arguments that constitute it. Our task is then the
following: for each potential source-target pair,
(src, trg) ∈ (Ei × Ri) ∪ (Ei × EV i), predict the
sentiment (one of POSITIVE, NEGATIVE or NONE)
of the src entity towards the trg relation/event.

3 Model

Our structured encoding model is depicted in Fig-
ure 2. Its goal is to compute representations for
the src, trg, and context c; we then pass the con-
catenated triple into a FFNN for sentiment classi-
fication. We describe the model components in the
paragraphs below.

Word and Entity Mention Representation
Given a span s = w1, . . . , w|s| of the input doc-
ument, a noncontextual embedding mapping f ,
and a contextual mapping g, we create the ini-
tial word representation wt for each word wt in s
by concatenating its noncontextual and contextual

2In this work, the distinction between relations/events and
relation/event mentions is not considered, so we use ‘relation’
and ‘event’ as a shorthand.

Figure 2: Model for representing the source (blue), tar-
get (red), and context (yellow) for the directed senti-
ment analysis task.

embedding. We then pass the initial word repre-
sentations through a bidirectional RNN to obtain
a domain-specific contextual word representation
ht.3

wt = [f(wt); g(wt|s)]

ht = [
−−−→
RNN(wt);

←−−−
RNN(wt)]

(1)

For each entity mention s, we compute a represen-
tation of s as the mean-pooling of h1, . . . ,h|s|.

Source Encoding For each source entity ej we
are given its grounded entity mentions e1j , . . . , e

n
j .

Similar to the representation methodology for
entity-mentions, we represent each source as the
average of its entity mention representations.

ej =
1

n

n∑
i=1

1∣∣[eij ]∣∣
|[eij ]|∑
t=1

ht (2)

The dataset is also annotated with entities corre-
sponding to the authors of articles. To more appro-
priately handle these entities, we learn two author
embeddings. The post author embedding repre-
sents the source entity if the target occurs in a post
written by the source. If this is not the case, we
use the other author embedding.

Target Encoding To encode targets, we lever-
age the hierarchical structure provided in the rela-
tion and event metadata. Initially, we construct a
fixed-length representation for each of the target’s
arguments, which are (role, entity mention) pairs,
(r, ekj ), via concatenation (flat) or an affine map
(affine) as follows (where Ur and vr are learned):

argr
j,k = Ure

k
j (affine)

argr
j,k = [vr; e

k
j ] (flat)

(3)

For relations, given that the dataset enforces the
constraint of two arguments per relation, we pool

3This process is not shown in Figure 2.
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the relation vectors by concatenating them. On the
other hand, for events, as the number of arguments
is variable, we propose to pool them with a GRU
encoder (Cho et al., 2014). This allows for us to
deal with the variable number of arguments and
learn compositional relationships between differ-
ent arguments (arguments are ordered by their se-
mantic roles in the overarching event).

Both relations and events are annotated with
their types and subtypes. Based on our hypothe-
sis that hierarchical modeling of structure is im-
portant in encoding targets, we consider encoding
the subtype and type using flat concatenation or
learned affine maps applied successively in a sim-
ilar fashion to role encoding for arguments.

Context Representation We encode the source
and target independently, capturing the inductive
bias that these two components of the input have
stand-alone meanings. We find that this is compu-
tationally efficient as opposed to approaches that
model the source and target on a pair-specific ba-
sis. We introduce source-target interaction into
the architecture by modeling the textual context
in which they appear: first select a source-target
specific context span; then construct a fixed-length
encoding of the context using an attention mech-
anism conditional on the source-target pair. To
identify the context span, we identify the closest
mention of the source that precedes the target. We
begin the context span starting at the first word be-
yond the end of this mention (wi). Similarly, we
conclude the span at the last word preceding the
target (wj). Denoting the context span as [wi, wj ],
we compute the context vector c as (where the U
maps are learned):
usrc = Usrc src; utrg = Utrg trg; ut = Uc ht

αt = uT
t (usrc � utrg)

α = softmax([αi, . . . , αj ]
T )

c = [hi, . . . ,hj ]α

(4)
We truncate long spans (length greater than 20) to
be the 20 words preceding the start of the target
(i = j − 20).

4 Results and Analysis

Dataset and Evaluation We use the LDCE114
dataset that was used in the BeSt 2016/2017 En-
glish competition. The dataset contains 165 doc-
uments, 84 of which are multi-post discussion fo-
rums (DF) and 81 are single-post newswire arti-

DF NW
Length (in num. tokens) 750.36 538.96
Relation Pairs 775.34 1474.51
Relation Positive Examples 1.32 1.02
Event Pairs 810.36 1334.53
Event Positive Examples 2.60 3.98

Table 1: Average document statistics

cles (NW), and is summarized in Table 1. We ob-
serve that the data is extremely sparse with respect
to positive examples: only 0.203% of all source-
target pairs are positive examples with 431 pos-
itive examples in 211310 candidate pairs in the
training set.

Consistent with the BeSt evaluation framework,
we report the microaverage adjusted F1 score4 and
treat NONE as the negative class and both POSI-
TIVE and NEGATIVE as the positive classes. The
BeSt metric introduces a notion of partial credit
to reward predictions that are incorrect but share
global properties with the correct predictions. We
find that this metric is well-suited for structured
prediction treatments of the task that also consider
global structure.

Implementation Details We use frozen word
representations that concatenate noncontextual
300-dimensional GloVe embeddings (Pennington
et al., 2014) and contextual 3072-dimensional
ELMo embeddings (Peters et al., 2018). We use
a 2-layer bidirectional LSTM encoder (Hochreiter
and Schmidhuber, 1997) and consistently use both
a hidden dimensionality of 128 and tanh nonlin-
earities throughout the work. Based on results
on the development set, we use an attention di-
mensionality of 32, a dropout (Srivastava et al.,
2014) probability in all hidden layers of 0.2, and
a batch size of 10 documents. We also find that a
single-layer GRU worked best for event argument
pooling and interestingly find that a unidirectional
GRU is preferable to a bidirectional GRU. The fi-
nal classifier is a single-layer FFNN. The model
is trained with respect to the class-weighted cross
entropy loss where weights are the `1-normalized
vector corresponding to inverse class frequences
and optimized using ADAM (Kingma and Ba,
2014) with the default parameters in PyTorch
(Paszke et al., 2017). All models are trained for
50 epochs.

4Complete results can be found in Appendix A.
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DF NW
Baseline 14.53 7.24
Columbia/GWU 20.69 10.10
Cornell-Pitt-Michigan 19.48 0.70
Target Arg (Sub)Type
Relation Flat Flat 15.2 8.5
Event Flat Flat 15.5 8.5
Both Affine Affine 22.9 14.0

Table 2: Experimental results on the BeSt dataset.
The specified target types are encoded using struc-
tured encoding with the specified argument and sub-
type/type encoding methods. The other target type is
encoded with affine maps for the arguments, subtypes,
and types.

Overall Results In Table 2, the upper half of
the table describes the official BeSt baseline sys-
tem as well as the top systems on the task. The
baseline employs a rule-based heuristic that con-
siders pairs for which the source is the article
author as potential positive examples and clas-
sifies positive examples as NEGATIVE (the more
frequent positive class) (Rambow et al., 2016a).
The Columbia/GWU system treats second-order
sentiment classification as first-order relation ex-
traction and extends a relation extraction system
that uses phrase structure trees, dependency trees,
and semantic parses with an SVM using tree ker-
nels (Rambow et al., 2016b). The Cornell-Pitt-
Michigan system employs a rule-based heuristic
to prune candidate pairs in the sense of link pre-
diction and then performs sentiment classification
via multinomial logistic regression (Niculae et al.,
2016). They find that the link prediction system
sometimes predicts spurious links and permit the
classifier to overrule the link prediction judgment
by predicting NONE.

Note these results include entities as targets and
we argue that this makes the task comparatively
easier. In particular, sparsity and dataset size are
less of a concern for entity targets as positive ex-
amples are equally frequent (0.196%) and there
are significantly more entity pairs (438165 pairs)
than relation and event targets combined (211310
pairs).5

In the lower half of Table 2, we report results
for different structured encoding approaches. As
we simultaneously predict sentiment towards re-
lation targets and event targets, we find that the

5Additionally, entities are unstructured targets and there-
fore are not well-suited for the contributions of this work.

Embeddings Encoder DF NW
GloVe + ELMo Bidi-LSTM 22.9 14.0

GloVe + ELMo* Bidi-LSTM 8.5 2.4
GloVe Bidi-LSTM 12.6 8.3
ELMo Bidi-LSTM 15.0 9.9

GloVe + ELMo Uni-LSTM 20.9 13.6
GloVe + ELMo none 22.1 13.6

Table 3: Experimental results on the effects of word
representations. * indicates embeddings are not frozen.

encoding method for one target category tends to
improve performance on the other due to shared
representations (refer to Appendix A). We find that
using affine encoders, which is consistent with the
inductive bias of hierarchical encoding, performs
best in all settings.

Word Representations To understand the effect
of pretraining given its pervasive success through-
out NLP as well as the extent to which domain-
specific LSTM encoders are beneficial, we per-
form experiments on the development set. When
the LSTM encoder is omitted, we introduce an
affine projection that yields output vectors of the
same dimension as the original LSTM (128). This
ensures that the capacity of subsequent model
components is unchanged but means there is no
domain-specific context modelling. As shown
in Table 3, the combination of contextual and
noncontextual embeddings leads to an improve-
ment but the contextual embeddings perform bet-
ter stand-alone. In doing this comparison, we con-
sider pretrained embeddings of differing dimen-
sionalities however since in most settings the em-
beddings are frozen, we do not find that this sig-
nificantly effects the run time or model capacity.
When embeddings are learned, we observe a sub-
stantial decline in performance which we posit is
due to catastrophic forgetting due to noisy and er-
ratic signal from the loss. The results further indi-
cate that a bidirectional task oriented encoder im-
proves performance.

5 Conclusion

In this paper, we propose structured encoding to
model structured targets in semantic link predic-
tion. We demonstrate that this framework along
with pretrained word embeddings can be an ef-
fective combination as we achieve state-of-the-
art performance on several metrics in the BeSt
2016/2017 Task in English.
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