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Abstract

In this paper, we present a machine learning
approach for the German Dialect Identifica-
tion (GDI) Closed Shared Task of the DSL
2019 Challenge. The proposed approach com-
bines deep and shallow models, by applying
a voting scheme on the outputs resulted from
a Character-level Convolutional Neural Net-
works (Char-CNN), a Long Short-Term Mem-
ory (LSTM) network, and a model based on
String Kernels. The first model used is the
Char-CNN model that merges multiple con-
volutions computed with kernels of different
sizes. The second model is the LSTM net-
work which applies a global max pooling over
the returned sequences over time. Both mod-
els pass the activation maps to two fully-
connected layers. The final model is based
on String Kernels, computed on character p-
grams extracted from speech transcripts. The
model combines two blended kernel functions,
one is the presence bits kernel, and the other
is the intersection kernel. The empirical re-
sults obtained in the shared task prove that the
approach can achieve good results. The sys-
tem proposed in this paper obtained the fourth
place with a macro-F1 score of 62.55%.

1 Introduction

Being at its third edition, the 2019 VarDial Evalu-
ation Campaign (Zampieri et al., 2019) includes
two shared tasks on dialect identification which
proves that researchers are still interested in this
challenging NLP task. For example, in the 2018
GDI Shared Task (Zampieri et al., 2018), a sys-
tem (Jauhiainen et al., 2018) that uses a series
of language models based on character n-grams
achieves state-of-the-art with a macro-F1 score
near 69%, in a 4-way classification setting. For
the 2019 GDI Shared Task, the organizers have in-
cluded audio features together with speech tran-
scripts, and also provided a word-level normal-

ization for each transcript. For solving this task,
we propose a combination of deep and shallow
models, by applying a voting scheme on the out-
puts resulted from a Character-level Convolutional
Neural Networks (Char-CNN), a Long Short-Term
Memory (LSTM) network, and a model based on
String Kernels. In the 2019 GDI Shared Task, the
participants had to discriminate between four Ger-
man dialects, in a 4-way classification setting. A
number of 6 participants have submitted their re-
sults, and the model proposed in this paper ob-
tained 4th place with an accuracy of 62.95%, and
macro-F1 score of 62.55%.

The best scoring system that we submitted for
the GDI Shared Task is an ensemble that com-
bines both deep and shallow models. The sys-
tem uses features from two deep models, Char-
CNNs and LSTMs, and also from a shallow model
that combines several kernels using multiple ker-
nel learning. The Char-CNN model merges convo-
lutions computed with kernels of different sizes to
learn a first group of features. The LSTM network
learns the second group of features by applying a
global max pooling over the returned sequences
over time. For the String Kernel model, we com-
bined two kernel functions. The first kernel used
is the p-grams presence bits kernel1 which takes
into account only the presence of p-grams instead
of their frequencies. The second kernel is the his-
togram intersection kernel2, which was first used
in a text mining task by (Ionescu et al., 2014). This
kernel functions proved useful in previous dialect
identification shared tasks (Ionescu and Popescu,
2016; Ionescu and Butnaru, 2017; Butnaru and
Ionescu, 2018).

There are two steps in the learning process. In

1The p-grams presence bits kernel was computed using
the code available at http://string-kernels.herokuapp.com.

2The intersection string kernel was computed using the
code available at http://string-kernels.herokuapp.com.
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the first step, the deep models are trained indi-
vidually using the Adam optimization algorithm
(Kingma and Ba, 2015). In the second step, the
string kernel model is learned by applying Kernel
Ridge Regression (KRR) (Shawe-Taylor and Cris-
tianini, 2004). Finally, a voting schema is applied
to obtain the final class for a test sample. Before
deciding the final system, we tuned each model for
the task. First of all, we tuned the string kernels
model by trying out p-grams of various lengths, in-
cluding blended variants of string kernels as well.
Besides blended variants, we evaluated individ-
ual kernels, and also various kernel combinations.
Second of all, we tuned the Char-CNN model, by
trying out various convolution lengths, number of
filters and depths. Finally, we tuned the LSTM
model by seeking the best number of output units.

The paper is organized as follows. Work related
to German dialect identification, models based on
Character-Level Convolutional Neural Networks,
Long Short-Term Memory Networks, and meth-
ods based on string kernels is presented in Section
2. Section 3 presents Char-CNNs, LSTMs and the
string kernel models used in this approach. In this
section, we also present the ensemble model. De-
tails about the German dialect identification exper-
iments are provided in Section 4. Finally, we draw
the conclusion in Section 5.

2 Related Work

2.1 German Dialect Identificaion

German dialect identification is not a widely re-
searched task, but we can observe an increased
interest in it within recent years. In 2010, a sys-
tem for written dialect identification was proposed
(Scherrer and Rambow, 2010) , and it was based
on an automatically generated Swiss German lex-
icon that maps word forms with their geographi-
cal extensions. During test time, they split a sen-
tence into words and look up their geographical
extension in the lexicon. Another method (Hol-
lenstein and Aepli, 2015) was proposed for solv-
ing the Swiss German dialect identification task
based on trigrams. For each dialect, a language
model was trained, and each test sentence was
scored against every model. The predicted dialect
is chosen based on the lowest perplexity. In 2016,
a corpus (Samardžić et al., 2016) that can be used
for GDI was presented, which was later used to
evaluate the participants in the GDI Shared Task
of the DSL 2017 Challenge. One of the partici-

pants in the previously mentioned shared task, de-
fined a system (Ionescu and Butnaru, 2017) that is
based on multiple string kernels. The team used
a Kernel Ridge Regression classifier trained on a
kernel combination of a blended presence bits ker-
nel based on 3 − 6-grams, a blended intersection
kernel based on 3−6-grams, and a kernel based on
LRD with 3 − 5-grams. The winning team of the
GDI Shared Task of the VarDial 2018 Workshop
defined a system (Jauhiainen et al., 2018) that is
based on language models defined on character 4-
grams, and having on top the HeLI method.

2.2 String Kernels
In the past years, we can find that techniques that
approach text at the character level proved re-
markable performance levels in various text anal-
ysis tasks (Lodhi et al., 2002; Sanderson and
Guenter, 2006; Kate and Mooney, 2006; Es-
calante et al., 2011; Popescu and Grozea, 2012;
Popescu and Ionescu, 2013; Ionescu et al., 2014,
2016; Giménez-Pérez et al., 2017; Popescu et al.,
2017; Cozma et al., 2018; Ionescu and But-
naru, 2018a). String kernels are a natural way
of using character level information to gener-
ate features that are helpful in solving various
areas of tasks. They are a particular case of
the more general convolution kernels (Haussler,
1999). Since the beginning of the 21st century, re-
searchers applied string kernels on document cat-
egorization (Lodhi et al., 2002), obtaining excel-
lent results. String kernels were also success-
fully used in authorship identification (Sanderson
and Guenter, 2006; Popescu and Grozea, 2012).
For example, the first ranked team of the PAN
2012 Traditional Authorship Attribution task, used
a system (Popescu and Grozea, 2012) based on
string kernels. In recent years, various blended
string kernels reached state-of-the-art accuracy
rates for native language identification (Ionescu
et al., 2016; Ionescu and Popescu, 2017), Ara-
bic dialect identification (Ionescu and Popescu,
2016; Ionescu and Butnaru, 2017; Butnaru and
Ionescu, 2018), polarity classification (Giménez-
Pérez et al., 2017; Popescu et al., 2017), automatic
essay scoring (Cozma et al., 2018), and cross-
domain text classification (Ionescu and Butnaru,
2018a,b).

2.3 Character-Level CNN Networks
Convolutional networks (LeCun et al., 1998) have
proven to be very efficient in solving various
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computer vision tasks (Krizhevsky et al., 2012;
Szegedy et al., 2015; Ren et al., 2015). Therefore,
many researchers decided to apply CNNs in their
primary area of interest. For example, in the NLP
domain, Convolutional Neural Networks (LeCun
et al., 1998; Krizhevsky et al., 2012) were success-
fully applied on several NLP tasks such as part-
of-speech tagging (Santos and Zadrozny, 2014),
text categorization (Kim, 2014; Zhang et al., 2015;
Johnson and Zhang, 2015), dialect identification
(Belinkov and Glass, 2016; Ali, 2018), machine
translation (Gehring et al., 2017) and language
modeling (Kim et al., 2016; Dauphin et al., 2017).
Word embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014) had a significant impact on NLP
due to their ability to learn semantic and syntactic
latent features. Because of this, researchers devel-
oped many CNN-based methods that rely on word
embeddings. Trying to eliminate the pre-trained
word embeddings from the pipeline, some re-
searchers have tried to build end-to-end models us-
ing characters as input, in order to solve text clas-
sification (Zhang et al., 2015; Belinkov and Glass,
2016), language modeling (Kim et al., 2016) or
dialect identification (Butnaru and Ionescu, 2019)
tasks. Using characters as features can help the
model learn unusual character sequences such as
misspellings or take advantage of unseen words
during test time. Working at the character-level
can prove useful in solving the dialect identifica-
tion task, since some state-of-the-art dialect identi-
fication methods (Ionescu and Butnaru, 2017; But-
naru and Ionescu, 2018) use character n-grams as
features.

2.4 Long-Short Term Memory Networks

Recurrent Neural Networks (RNNs) (Elman,
1990) have the ability to process fixed length se-
quences and learn short-term dependencies be-
tween items from the sequence (Lin et al., 1996).
A limitation of the RNN model is that it can-
not learn long-distance correlations between items
within a sequence (Hochreiter and Schmidhuber,
1997; Hochreiter et al., 2001). Long Short-Term
Memory (LSTMs) (Hochreiter and Schmidhuber,
1997) have been proposed as a solution for the
RNNs issue, introducing a memory cell inside the
network. LSTMs have become more popular after
being successfully applied in statistical machine
translation (Sutskever et al., 2014). Besides this,
researchers employed LSTMs in various areas,

from speech recognition (Graves et al., 2013a,b;
Amodei et al., 2016), to language modelling (Kim
et al., 2016), and text classification (Zhang et al.,
2015).

2.5 Ensemble Learning

Ensemble learning combines a number of pre-
viously trained classifiers to classify new data
samples by applying a voting schema on their
predictions. Ensemble methods have been suc-
cessfully employed in various machine learning
tasks, including feature selection (Saeys et al.,
2008), sentiment analysis (Xia et al., 2011; Wang
et al., 2014), complex word identification (Mal-
masi et al., 2016), and dialect identification (Mal-
masi and Dras, 2015; Malmasi and Zampieri,
2017).

3 Method

The model presented in this paper combines the
results obtained from three different learning algo-
rithms: Kernel Ridge Regression over String Ker-
nels, Character-level Convolutional Neural Net-
works, and a Long Short-Term Memory Network.
The intuition to use three different learning al-
gorithms comes from the idea that each trained
model can discover from the same input differ-
ent discriminant features, thus combining them
will increase the accuracy of each and any model.
String Kernels uses a function to compute a sim-
ilarity matrix that carries the correlation between
all pairs of samples. Based on the similarity be-
tween the samples ( that is held in the similarity
matrix ) the KRR can learn a function that dis-
criminates between them. Character-level Con-
volutional Neural Networks can learn to discrim-
inate between samples by discovering patterns at
character-level. The intuition in using this method
comes from the idea that the same words in differ-
ent dialects can have small character differences.
Besides small character differences, there can be
connections between words within a text. Having
this in mind we propose to employ an LSTM ne-
towrk to learn patterns between words within texts
from the same dialect.

3.1 String Kernels

Kernel functions (Shawe-Taylor and Cristianini,
2004) have the ability to capture the concept of
similarity between objects within a specific do-
main. The kernel function gives kernel methods



131

the power to naturally handle input data that is
not in the form of numerical vectors, for example
strings. There are many kernel functions that can
be applied on strings, with significant impact in
domains such as computational biology and com-
putational linguistics. String kernels embed the
texts in a very large feature space, given by all
the substrings of length p, and leave the job of
selecting important (discriminative) features for
the specific classification task to the learning al-
gorithm, which assigns higher weights to the im-
portant features (character p-grams). Perhaps one
of the most natural ways to measure the similar-
ity of two strings is to count how many substrings
of length p the two strings have in common. This
gives rise to the p-spectrum kernel. Formally, for
two strings over an alphabet Σ, s, t ∈ Σ∗, the p-
spectrum kernel is defined as:

kp(s, t) =
∑
v∈Σp

numv(s) · numv(t),

where numv(s) is the number of occurrences of
string v as a substring in s. The feature map de-
fined by this kernel associates to each string a vec-
tor of dimension |Σ|p containing the histogram of
frequencies of all its substrings of length p (p-
grams). A variant of this kernel can be obtained
if the embedding feature map is modified to as-
sociate to each string a vector of dimension |Σ|p
containing the presence bits (instead of frequen-
cies) of all its substrings of length p. Thus, the
character p-grams presence bits kernel is obtained:

k0/1
p (s, t) =

∑
v∈Σp

inv(s) · inv(t),

where inv(s) is 1 if string v occurs as a substring
in s, and 0 otherwise.

In computer vision, the (histogram) intersec-
tion kernel has successfully been used for object
class recognition from images (Maji et al., 2008;
Vedaldi and Zisserman, 2010). Ionescu et al.
(2014) have used the intersection kernel as a ker-
nel for strings, in the context of native language
identification. The intersection string kernel is de-
fined as follows:

k∩p (s, t) =
∑
v∈Σp

min{numv(s), numv(t)}.

For the p-spectrum kernel, the frequency of a p-
gram has a very significant contribution to the ker-
nel, since it considers the product of such frequen-
cies. On the other hand, the frequency of a p-gram

is completely disregarded in the p-grams presence
bits kernel. The intersection kernel lies some-
where in the middle between the p-grams presence
bits kernel and the p-spectrum kernel, in the sense
that the frequency of a p-gram has a moderate con-
tribution to the intersection kernel. In other words,
the intersection kernel assigns a high score to a p-
gram only if it has a high frequency in both strings,
since it considers the minimum of the two frequen-
cies. The p-spectrum kernel assigns a high score
even when the p-gram has a high frequency in only
one of the two strings. Thus, the intersection ker-
nel captures something more about the correlation
between the p-gram frequencies in the two strings.
Based on these comments, in the experiments we
use only the p-grams presence bits kernel and the
intersection string kernel.

Data normalization helps to improve machine
learning performance for various applications.
Since the value range of raw data can have large
variations, classifier objective functions will not
work properly without normalization. After nor-
malization, each feature has an approximately
equal contribution to the similarity between two
samples. To obtain a normalized kernel matrix of
pairwise similarities between samples, each com-
ponent is divided by the square root of the product
of the two corresponding diagonal components:

K̂ij =
Kij√

Kii ·Kjj

.

To ensure a fair comparison among strings of dif-
ferent lengths, normalized versions of the p-grams
presence bits kernel and the intersection kernel
were used in the experiments. Taking into ac-
count p-grams of different lengths and summing
up the corresponding kernels, new kernels, termed
blended spectrum kernels, can be obtained. Vari-
ous blended spectrum kernels were used in the ex-
periments in order to find the best combination.

3.2 Character-Level CNN

Convolutional Neural Networks can discover pat-
terns within the data. These patterns are then later
used to classify new data samples. Character-level
CNNs learn such patterns in texts by searching
through sequences of characters. The inspiration
for this model is drawn from Kim (2014), but in-
stead of using word embeddings as inputs, we use
character encodings. This means that every char-
acter from an alphabet of size t is mapped to a
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Figure 1: The architecture of the Character-level CNN
model.

one-hot vector. For example, having the alpha-
bet Σ = {a, b, c}, the encoding for character a is
[1, 0, 0], for b is [0, 1, 0], and for c is [0, 0, 1]. Each
character from the input text is encoded, and only a
fixed size l of the input is kept. In the experiments
presented in this paper, l was set to 270 charac-
ters. The documents that are under the length were
zero-padded. The alphabet was extracted from the
dataset and it contains a total of 32 characters from
which 26 are the lower case letters of the English
alphabet, plus 6 Swiss-German diacritics (such as
ã, ä, õ, ö, ü, ẽ). Characters that do not appear in
the alphabet are encoded as a blank character.

As illustrated in Figure 1, the architecture is 5
layers deep. The first layer is composed of three
different convolutional layers, each followed by a
global max-pooling layer. The third layer concate-
nates the features extracted from the global max-
pooling layers, then passes the concatenation to

two fully-connected layers. The convolutional lay-
ers are based on one-dimensional filters, one with
filter size 3, another one with filter size 4, and the
last one with filter size 5. After the concatena-
tion step, the activation maps pass through a fully-
connected layer having ReLU activation and af-
ter that, through an alpha dropout layer with the
drop probability of 0.1. The last fully-connected
layer has a softmax activation, which provides the
final output. All convolutional layers have 1024
filters, and the first fully-connected layer has 256
neurons. The network is trained with the Adam
optimizer using categorical cross-entropy as loss
function, and a learning rate of 0.001.

3.3 Long Short-Term Memory Network
Long Short-Term Memory networks (LSTMs)
have the capacity to learn long-term dependencies
from a sequence. When applied on text, LSTMs
can discover connections between words within a
sentence or a text. Those connections can help the
learning algorithm to find patterns that can later be
used to solve a specific task. For example, discov-
ering such connections can be useful to say if a
text belongs to one class or another. Based on this
idea, this paper proposes an LSTM model that can
learn to discriminate between different dialects.

The input for this model is the same as the input
used for the Char-CNN model. Characters were
chosen as input because of the idea that between
dialects, there are subtle character differences that
makes a word belong to one dialect or another.
The other reason is that there might be connec-
tions between substrings within the whole text of a
specific dialect. The LSTM model defined for the
GDI task is illustrated in Figure 2. The architec-
ture consists of an LSTM layer, with the number
of cells equal to 256, followed by a global max-
pooling layer over the hidden state of each input
character. The activation maps then pass through
a fully-connected layer with 128 neurons, having
ReLU activation. Finally, the predictions are com-
puted by another fully-connected layer. The net-
work is trained with the Adam optimizer using
categorical cross-entropy as loss function, and a
learning rate of 0.01.

3.4 Ensemble Model
Ensemble methods combine multiple learning al-
gorithms to obtain a new model that has better
performance than any individual model used in
the ensemble. In this paper, a simple ensemble
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Figure 2: The architecture of the LSTM model.

method is employed. A voting schema is applied
over the predictions from the Char-CNN, LSTM
and String Kernel model. The vote from each
model has equal weight. The class voted by the
majority of the models is the final class for a sam-
ple data. If there is a tie, the class is chosen be-
tween the prediction of the Char-CNN model or
the LSTM model, whichever prediction has the
highest confidence among the outputs of the two
models.

4 Experiments

4.1 Data Set

The 2019 GDI Shared Task data set (Zampieri
et al., 2019) contains manually annotated tran-
scripts of Swiss German speech, acoustic features
for each transcript, and word-level normalization
for each text. The task is to discriminate be-
tween Swiss German dialects from four differ-
ent areas: Basel (BS), Bern (BE), Lucerne (LU),
Zurich (ZH). As the samples are almost evenly dis-
tributed, an accuracy of 27.10% can be obtained
with a majority class baseline on the test set. In
our experiments, we used only the text transcripts
to generate features.

4.2 Parameter and System Choices

The approach presented in this paper treats tran-
scripts as strings. Because the approach works
at the character level, there is no need to split
the texts into words or to do any NLP-specific
processing before computing the string kernels or
feed the data to the deep networks. One thing
to mention here is that for the deep networks the
characters were mapped to one-hot encodings.

In order to tune the parameters and find the best
system choices, the development set was used.
Each model used in the ensemble was tuned. For
tuning the parameters of the String Kernel method,
we carried out a set of preliminary experiments to
determine the optimal range of p-grams for each
string kernel. We fix the learning method to KRR
and evaluated all p-grams in the range 2 − 7. The
best accuracy (63.99%) is obtained with 4-grams.
Having set the optimal number of p-grams, we ex-
perimented with different blended kernels to find
out if combining p-grams of different lengths will
improve the accuracy. For both kernels, presence
and intersection, the best accuracy was obtained
by combining p-grams with the length in range
3− 5.

After determining the optimal range of p-grams
for each kernel function, we conducted further ex-
periments by combining the presence bits kernel
with the intersection kernel. When multiple ker-
nels are combined, the features are actually em-
bedded in a higher-dimensional space. As a conse-
quence, the search space of linear patterns grows,
which helps the classifier to select a better discrim-
inant function. The most natural way of combin-
ing two or more kernels is to sum them up. The
process of summing up kernels or kernel matrices
is equivalent to feature vector concatenation. The
results obtained by the individual kernels and also
with the combined version are reported in Table
1. We can notice that even the individual kernels
yield similar accuracy, when combined, the accu-
racy increases by a small amount.

After tuning the String Kernel method, we
tuned the Character-level CNN. With the informa-
tion discovered while tuning the String Kernels,
we fixed the kernel size for the convolutional lay-
ers within the same range. Having the kernel size
fixed, one convolution layer with kernel size 3, one
with kernel size 4 and one with kernel size 5, we
carried out further experiments in order to find the
optimal number of filters and fully-connected lay-
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Figure 3: Accuracy rates of the KRR based on the presence bits kernel with p-grams in the range 2− 7.

Model Accuracy
k̂
0/1
3−5 66.05%

k̂∩3−5 66.00%

k̂
0/1
3−5 + k̂∩3−5 66.09%

Char − CNN 66.09%
LSTM 65.39%

k̂
0/1
3−5 + k̂∩3−5 + Char − CNN + LSTM 67.95%

Table 1: Accuracy rates of various models used in ex-
periments. The results are obtained over the develop-
ment set.

ers. From those experiments, we discovered that
having 1024 filters on each convolutional layer,
and one fully-connected layer having 256 neurons
employs the best result (66.09%). In the exper-
iments, the model was trained using Adam op-
timizer having the learning rate set at 0.001 and
with mini-batches of 64 samples. The network
was trained for 25 epochs.

The last defined model was the LSTM model.
For this model, we fixed the length of the hidden
cell to be a number that is a power of two and
close to the maximum length of a sample. Because
the maximum length of a sample was set to 270
characters, we fixed the hidden cell number to be
256. The fully-connected layer was also fixed to
128 neurons from the beginning. For this model,
we tuned the learning rate and the mini-batch size
used for training. Through experiments, we fixed
the learning rate to 0.01 and the mini-batch size to
32. This model was also trained using Adam opti-
mizer. The best accuracy obtained with this model
was 65.39% and it was obtained after training the
model for 25 iterations.

Applying a voting schema over the three mod-

System Accuracy Macro-F1

Run 1 62.66% 62.19%
Run 2 62.83% 62.38%
Run 3 62.96% 62.55%

Table 2: Results on the test set of the 2019 GDI Shared
Task (closed training) of the method described in this
paper.

els, we observe an increase of almost 2% over the
best individual model.

4.3 Results

Table 2 presents our results for the German Di-
alect Identification Closed Shared Task for the
2019 VarDial Evaluation Campaign. The only dif-
ference between the three runs is the regulariza-
tion parameter used in training the string kernel
method. On the first run, the regularization pa-
rameter was set to 10−3, on the second one it
was set to 10−4, and on the last run it was set
to 10−5. Among the submitted systems, the best
performance is obtained when the KRR regular-
ization parameter, for the String Kernel model, is
set to 10−5. The String Kernel model used in the
three runs was trained on both training and devel-
opment set. The submitted systems were ranked
by their macro-F1 scores and among the 6 partic-
ipants, the best model that we submitted obtained
the fourth place with a macro-F1 score of 62.55%.
The confusion matrix for the model is presented
in Figure 4. The confusion matrix reveals that the
system wrongly predicted over 400 samples of the
Lucerne dialect as part of the Bern dialect. Fur-
thermore, it has some difficulties in distinguish-
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Figure 4: The confusion matrix of our best submission
(run 3).

ing the Zurich dialect from the Basel dialect on
one hand, and the Bern dialect from the Basel di-
alect on the other hand. Overall, the results look
good, as the main diagonal scores dominate the
other matrix components.

5 Conclusion

In this paper, we presented an approach for the
GDI Shared Task of the DSL 2019 Challenge
(Zampieri et al., 2019). The approach is based
on an ensemble model that combines using a
voting scheme results from three different mod-
els: Character-level Convolutional Neuronal Net-
works, Long Short-Term Memory network, and a
String Kernel model. The approach obtained the
fourth place.
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Montes-y-Gómez. 2011. Local Histograms of Char-
acter N-grams for Authorship Attribution. In Pro-
ceedings of ACL: HLT, volume 1, pages 288–298.

Jonas Gehring, Michael Auli, David Grangier, and
Yann Dauphin. 2017. A Convolutional Encoder
Model for Neural Machine Translation. In Proceed-
ings of ACL, pages 123–135.
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