
Making sense of conflicting (defeasible) rules in the controlled
natural language ACE: design of a system with support for

existential quantification using skolemization∗

Martin Diller
TU Wien, Austria

mdiller@kr.tuwien.ac.at

Adam Wyner
Swansea University, Wales

a.z.wyner@swansea.ac.uk

Hannes Strass
Leipzig University, Germany

strass@informatik.uni-leipzig.de

Abstract

We present the design of a system for making sense of conflicting rules expressed in a fragment
of the prominent controlled natural language ACE, yet extended with means of expressing defeasi-
ble rules in the form of normality assumptions. The approach we describe is ultimately based on
answer-set-programming (ASP); simulating existential quantification by using skolemization in a
manner resembling a translation for ASP recently formalized in the context of ∃-ASP. We discuss the
advantages of this approach to building on the existing ACE interface to rule-systems, ACERules.

1 Introduction

Attempto Controlled English (ACE) (Fuchs et al., 2008) is a prominent controlled natural language
(CNL) for knowledge representation (KR). Apart of its appropriateness for basic KR, ACE’s attraction
comes, first of all, from its ties with formal logic: ACE texts have an unambiguous translation to first
order logic (FOL). Secondly, there are several open-source tools for ACE; the main one being the parser
APE, which translates ACE texts to FOL via discourse representation structures (DRSs) (Blackburn and
Bos, 2005) and also verbalises DRSs.

Our interest is in the adaptation of ACE for handling conflicting information expressed in the form of
strict and defeasible rules. In (Diller et al., 2017) we outlined a methodology for this task, which we more
recently dubbed the EMIL (“Extracting Meaning out of Inconsistent Language”) pipeline. The pipeline
starts out with rules expressed in ACE (ACE rules), yet extended with means of expressing defeasible
rules; currently, in the form of normality assumptions (“it is usual that”). We transform ACE rules to
defeasible theories that can be evaluated via the direct stable semantics as defined in (Strass and Wyner,
2017). We verbalise possible manners of making sense of the rules (the “stable sets”), again, by making
use of ACE.

In (Diller et al., 2017) we report on an adaptation of the main existing open-source interface to rule
systems for ACE, ACERules (Kuhn, 2007), for our purposes1. At the back-end we used the ASP en-
codings for the direct stable semantics reported on in (Strass and Wyner, 2017). Here we motivate and

∗This work has been funded by the Austrian Science Fund (FWF) projects I2854 and W1255-N23; also by the German
Research Foundation (DFG) project 389792660 - TRR 248.

1This line of study has been continued via the PENGASP system (Guy and Schwitter, 2017), which as far as we are able to
tell, inherits many of the features (while also improving on several others; e.g. in one of the more recent iterations, using a
bi-directional grammar for specifying and verbalising ASP-programs (Schwitter, 2018)) of ACERules (in particular, that it
does not offer explicit support of existential quantification) yet is not open-source nor publicly available for experimentation.



sketch the design of an alternative implementation of the EMIL pipeline. We, first of all, target short-
comings we found in the transformations that ACERules carries out for making APE parses ammenable
to handling by rule systems. We refer to these in Section 2 and our alternative approach in Section 3. The
main difference between the approach we present here and that based on ACERules is that ACERules
attempts to remove existential variables whenever possible and filters-out ACE texts composed of rules
it cannot handle. We here, on the other hand, simulate rules with existential quantification using skolem-
ization in a manner resembling the procedure formalised in the context of ∃-ASP (Garreau et al., 2015)
(see Section 3.1). A second difference is that we use dynamic encodings of the direct-stable-semantics to
ASP, optimised for defeasible theories with function symbols (Section 3.2). For an extended presentation
we refer to Chapter 4 of (Diller, 2019).

2 ACERules and its transformations

AceRules builds on APE to provide an ACE interface to formal rule systems. The system works by
first checking the parses from APE , filtering those that amount to what we, following Garreau et al.2,
will call ∃-rules3. In their most general form, these have the form

b1, . . . , bm,4(n1
1, . . . , n

1
u1

), . . . ,4(ns
1, . . . , n

s
us

) . H

where . is→ (“strict implication”) and H is of the form h1, . . . , ht or ¬(h1, . . . , ht). Also, h1, . . . , ht,
b1, . . . , bm, n1

1, . . . , n
1
u1
, . . . , ns

1, . . . , n
s
us

are atoms with constants and variables as usual in logic pro-
grams (Brewka et al., 2011), m, s ≥ 0, and t, u1, . . . , us ≥ 1. Moreover, 4 ∈ {not,not¬,¬} with
¬ standing for strong negation and not standing for negation-as-failure. Variables in n1

1, . . . , n
1
u1

to
ns
1, . . . , n

s
us

but not in b1, . . . , bm are interpreted as existentially quantified. The same for variables in the
head H but not in b1, . . . , bm. In the implementation from (Diller et al., 2017), dACERules, we modi-
fied APE to recognise “it is usual that” as a form of subordination on the par with modal constructs. We
thus also allow . to be⇒ (“defeasible implication”). On the other hand, we disallow negation-as-failure.

ACERules (and thus dACERules) filters DRSs corresponding to ∃-rules rather than normal rules
(i.e. ui = 1 for 0 ≤ i ≤ s, t = 1, and there are no existentially quantified variables) because most
meaningful examples of ACE rules require the additional resources provided by ∃-rules. The reason is
not only that ∃-rules are natural, but also due to the flat form of logical atoms used by APE (Fuchs et al.,
2013). I.e. a sentence such as “Mary gladly gives John a present” is represented as

∃A,B
(
object(A, present, countable, na, eq, 1) ∧modifier adv(B, gladly, pos)∧
predicate(B, give, named(Mary), A, named(John))

)
where e.g. nouns, verbs, and adverbs are “wrapped” into the special atoms “object”, “predicate”, “mod-
ifier adv”. These have additional arguments encoding semantic information. Critical for our purposes is
that only noun phrases and verb phrases introduce referents (quantified variables); the remaining pred-
icates make use of the referents introduced by noun and verb phrases. In particular, verb phrases have
a Neo-Davidsonian event-theoretic semantics (Parsons, 1990), allowing to attach modifiers stemming
from adverbs and prepositional phrases to the referents introduced by verb phrases (in the example “B”).

In order to make ACE texts parsed as ∃-rules ammenable to processing by rule systems , ACERules
implements a series of transformations of the ∃-rules; the main ones being predicate condensation and
grouping (only the latter is discussed in (Kuhn, 2007)). Predicate condensation merges atoms for verb
phrases and their modifiers, grouping them in a single atom pred mod ; the referent for the verb is
removed. E.g. for the example above the result of predicate condensation is:

pred mod(give, named(Mary), A, named(John), [modifier adv(gladly, pos)])

The problem with this transformation is that it modifies the semantics of the parse given by APE: the “di-
amond inference pattern” holding between a verb phrase plus modifiers and its components (see Parsons
(1990)) is broken. So e.g. the output given by ACERules for the text (adapted from Parsons (1990))

2Although they do not consider strong negation.
3ACERules also transforms rules with double implication to equivalent ∃-rules.



Brutus unhesitatingly stabs Caeser in the back with a knife.
If Brutus stabs Caeser then Brutus is a traitor.

does not include the assertion that Brutus is a traitor4 since ACERules is unable to relate “Brutus stabs
Caeser” with “Brutus unhesitatingly stabs Caeser in the back with a knife”.

After postprocessing condensed atoms for the copula “be” and the preposition “of” (see (Diller,
2019)), the main transformation carried out by ACERules is “grouping”, which amounts to aggregating
atoms appearing in the heads of ∃-rules or negated (via¬, not¬, or not) in the bodies of rules when pos-
sible. Atoms appearing in other parts of the parse of APE, yet which match some of the grouped atoms,
are likewise grouped together (“matching phase”). Existentially quantified variables in the grouped atoms
are removed subject to the to the restriction that the variable is not used elsewhere in the parse, outside
of the group of atoms. An example of rules that can be treated by grouping are (from (Kuhn, 2007)):
John owns a car.
Bill does not own a car.
If someone does not own a car then he/she owns a house.

Here atoms for “owns a car” and “owns a house” are merged in a single atom (denoting “owns-a-car” and
“owns-a-house”) and the variables referring to the car and house respectively are removed. If after “John
owns a car” one adds the sentence “Mary sees the car” grouping fails as reference to a car independent
of someone owning it is needed. See (Kuhn, 2007) and (Diller, 2019) for further details.

Apart from groups of atoms being treated as lists rather than sets in ACERules5, we found the
checks for grouping to succeed to be too liberal. As an example, the matching phase only considers
groups of atoms that match exactly, while often also sub-groups need to be considered. E.g., consider:
John owns a car.
Every car is an automobile.
John does not own an automobile.

ACERules groups atoms for “John owns an automobile” and then is unable to relate “owning a car”
with “owning an automobile” concluding that John owns a car but not an automobile.

The matching phase in ACERules also does not consider groups matching in terms of the atoms but
differing in generality. An example of a text where this is necessary is:
Bill does not own a vehicle.
If Bill does not own a vehicle then he does not own a car.
If someone does not own a car then he/she owns a motorcycle.
If someone owns a motorcycle then he/she owns a vehicle.

ACERules is unable to relate the group of atoms for “Bill owns a vehicle” and the more general (because
of the use of an indefinite pronoun) “he/she owns a vehicle” concluding that it is both true and false that
John owns a vehicle.

More minor issues we found in our study of ACERules are that transformations introduced for
indefinite pronouns blur the distinction between inanimate objects and persons6 and post-processing of
condensed atoms for the copula “be” favours an intersective reading of adjectives7.

3 A system with support for existential quantification using skolemization

We have shown in Section 2 that several of the transformations implemented in ACERules, particularly
predicate-condensation and grouping, introduce significant deviations from the semantics of ACE rules
induced by APE. Moreover, even in the current rather liberal implementation of grouping, the texts
ACERules can handle are limited; especially, often existential quantification is unavoidable.

4While, for instance, the first order reasoner for ACE, RACE (Fuchs, 2010), finds a proof of “Brutus is a traitor” from the
same text. Another issue with predicate condensation, which is more likely a bug than an intended feature of ACERules, is
that modifiers in the pred mod predicates are aggregated into ordered lists, while their semantics (at least as given by the parse
by APE) would require them to be aggregated into sets.

5This bug is documented in the source-code of ACERules.
6Thus, e.g., from “there is a table” and “everybody likes Mary” ACERules concludes that “the table [X1] likes Mary”.
7For instance (example adapted from https://www3.nd.edu/˜jspeaks/courses/2012-13/43916/

handouts/13-modifiers.pdf; accessed on 28.11.2018) ACERules reads the subsective adjective “tall” intersectively
in the discourse composed of the sentences “Bob is a tall midget”, “Bob is a basketball-player”, and “if Bob is a tall
basketball-player then he plays for the NBA”; concluding that Bob plays for the NBA.



3.1 From strict and defeasible ∃-rules to normal rules

The most obvious manner of supporting existential quantification in rules is by using skolemization in
normal-rules to simulate the latter; for ASP this approach has recently been formalised in the context of
∃-ASP (Garreau et al., 2015). Although the original definitions for defeasible theories from (Strass and
Wyner, 2017) do not allow function symbols these can be incorporated without further ado; in fact, the
ASP-encodings reported on in (Strass and Wyner, 2017) support them. Having function symbols, we
can thus compile strict and defeasible ∃-rules (without not) to normal defeasible theories in a manner
similar to that proposed in (Garreau et al., 2015) for transforming ∃-rules into normal ASP programs.
Differences are due to the fact that we have strong negation rather than negation-as-failure (in (Garreau
et al., 2015) strong negation is not considered) and defeasible implication in addition to strict implication.

The translation of strict ∃-rules with positive elements in the body and head is exactly as in (Garreau
et al., 2015); defeasible rules introduce the issue of deciding the scope of “⇒”. Consider, for instance:
It is usual that a ferry that starts in Vienna services Bratislava.

In our translation the rule gets replaced by the unary assumption with an auxilliary atom:
⇒ x auxPH1()

accompanied by auxilliary rules introducing skolem constants (e.g. x sk1) for the objects and verbs8:

x auxPH1() .1 object(x sk1(), ferry)

x auxPH1() .2 predicate(x sk2(), start, x sk1())

x auxPH1() .3 modifier pp(x sk2(), in, vienna)

x auxPH1() .4 predicate(x sk3(), service, x sk1(), bratislava)

Having .i being→ for each i (1 ≤ i ≤ 4) amounts to interpreting the scope of⇒ to be over the entire
phrase “a ferry that starts in Vienna services Bratislava”. We currently implement this option, but a more
satisfactory reading may be that there usually is a ferry that either starts in Vienna or services Bratislava
(and, typically, both). This option can be encoded using further auxilliary atoms (see (Diller, 2019)).

Turning to ∃-rules with negated atoms in the head, consider the sentence “if someone owns a car then
he/she does not own a house”. In our translation we once more replace the head of the ∃-rule obtained
from the APE parse with an auxilliary atom:

object(A, somebody),object(B, car), predicate(C, own,A,B) → x auxNH1(A,B,C)

and add rules encoding the meaning of the auxilliary atom:

object(D,house), x auxNH1(A,B,C), pName(E) → ¬predicate(E, own,A,D)

predicate(E, own,A,D), x auxNH1(A,B,C) → ¬object(D,house)

Here the use of the special atom pName (which collects all variables standing for verbs) is optional, but
used for the first rule to be safe (i.e. all variables occurring in the head occur in the body). If there are
more than two atoms appearing negated in the head of a rule we need to apply the illustrated translation
recursively. Note also that the treatment of defeasible rules with negative heads is exactly analogous to
that of strict rules. The reason is that⇒ inherits the scope from ¬ in this case.

A conceptually more intricate case is when negation occurs in atypical manner in the bodies of rules,
e.g. for the sentence “if someone does not own a car then he/she owns a house”. Here there are several
options. The most straightforward, following more or less (Garreau et al., 2015), is to put the burden of
proof on the existential assertion; i.e. by default no one owns a car. This option, which is the one we
currently implement, can be encoded as follows (omitting the auxilliary rules for x auxPH1) :

object(A, somebody),¬x auxPB1(A) → x auxPH1(A)

object(B, car), predicate(C, own,A,B) → x auxPB1(A)

object(A, somebody) ⇒ ¬x auxPB1(A)

One can also put the burden of proof on the negation of the existential assertion (see (Diller, 2019)),
but arguably more in line with the framework of (Strass and Wyner, 2017) is to reason by cases; i.e.

8For readability we use a simpler representation of the atoms to that of APE.



consider for everyone both the possibility that the he/she owns a car and that he/she does not. One
simple encoding of this option is as follows:

object(A, somebody),¬x auxPB1(A) → x auxPH1(A)

object(A, somebody) ⇒ ¬x auxPB1(A)

object(A, somebody) ⇒ x auxPB1(A)

x auxPB1(A) → object(x sk1(A), house)

x auxPB1(A) → predicate(x sk2(A), own,A, x sk1(A))

¬x auxPB1(A), predicate(C, own,A,B) → ¬object(B, house)

¬x auxPB1(A), object(B, house), pName(C) → ¬predicate(C, own,A,B)

3.2 Dynamic ASP encoding for defeasible theories with variables

The ASP encoding for evaluating (normal) defeasible theories9 via the direct stable semantics we used
in the implementation of the EMIL pipeline reported on in (Diller et al., 2017) is static: only the part
specifying the defeasible theory changes with the input. The module for the semantic evaluation uses
ASP-disjunction and remains fixed. The encoding is thus complexity-sensitive for propositional defeasi-
ble theories (the complexity of the latter and the data complexity of disjunctive ASP is ΣP

2 -complete).
For theories with variables the encoding nevertheless has the disadvantage that defeasible theories

need to be specified essentially as facts and hence the grounding (transformation of defeasible theories
with variables to theories without variables; see (Strass and Wyner, 2017)) needs to be generated explic-
itly (in most cases) while this is usually not the case for ASP programs with variables (Kaufmann et al.,
2016). This is even more a problem when using function symbols, which introduce the possibility of
infinite groundings. For instance, the defeasible theory {→ o(a), o(X) → p(f(X)), p(X) → q(f(X))} has the
unique stable set {a, p(f(a)), q(f(a))}, which as an ASP program is computed in under one second10 by e.g.
the ASP-solver clingo (5.3.0) (Gebser et al., 2018). When evaluating the theory in the context of the
encodings from (Strass and Wyner, 2017) via clingo there are memory errors (”std::bad alloc”) after
48.566 seconds.

For the mentioned reason, we developed alternative dynamic (both the data and program change with
the input), yet structure-preserving ASP encodings for evaluating defeasible theories with variables via
the direct-stable-semantics for our new implementation of the EMIL pipeline. Such encodings allow us
to piggyback on the grounding developments for any ASP grounder (+ solver) we wish to experiment
with. Moreover, the encodings are to non-disjunctive ASP. We refer to (Diller, 2019) for details.

4 Discussion and future work

We have outlined an alternative design for a system for making sense of conflicting rules in the CNL
ACE. The main component is a translation from (defeasible) ∃-rules to normal rules which can be seen
as a form of meaning-preserving grouping, subsuming a form of predicate-condensation. In particular,
the latter does not break the relation between verbs and their modifiers (via the use of auxilliary rules and
skolemization) (see the examples in Section 3.1). The second component is the dynamic ASP encoding
optimised for evaluating defeasible theories with variables.

We have an implementation working11. Immediate future work is to add support for generating argu-
ments from defeasible theories and experimenting with ASP grounders and solvers. More future plans are
incorporation of means of restricting existential variables whenever possible (in the spirit of ACERules)
and/or restrictions to ensure finite groundability. Further long term goals are investigation of alternative
means of supporting existential quantification, support of different forms of adding defeasibility to ACE,
and enhancing the natural language understanding capabilities of our system.

9https://github.com/hstrass/defeasible-rules
10On a 4 GB openSUSE (42.3) machine with 4 Intel Core processors (3.30 GHz).
11We have been able to successfully run (in under one minute) most test-cases (with some modifications in case of there

being negation-as-failure as well as priorities over rules) available for AceRules (around 40 of them). The implementation
is available at https://www.dbai.tuwien.ac.at/proj/grappa/emil/. An upcoming version will include treat-
ment of the copula “be” and the preposition “of”; in the first case modifying and in the second case incorporating the treatment
of ACERules (see (Diller, 2019)).



References

Blackburn, P. and J. Bos (2005). Representation and Inference for Natural Language: A First Course in
Computational Semantics. CSLI Publications.

Brewka, G., T. Eiter, and M. Truszczynski (2011). Answer set programming at a glance. Commun.
ACM 54(12), 92–103.

Diller, M. (2019). Realising argumentation using answer set programming and quantified boolean for-
mulas. Ph. D. thesis, Vienna University of Technology. Submitted.

Diller, M., A. Wyner, and H. Strass (2017, September). Defeasible AceRules: A prototype. In C. Gardent
and C. Retoré (Eds.), Proceedings of the 12th International Conference on Computational Semantics
(IWCS 2017).

Fuchs, N. E. (2010). First-Order Reasoning for Attempto Controlled English. In M. Rosner and N. E.
Fuchs (Eds.), Proceedings of the 2nd International Workshop on Controlled Natural Language (CNL
2010), Volume 7175 of Lecture Notes in Computer Science, pp. 73–94. Springer.

Fuchs, N. E., K. Kaljurand, and T. Kuhn (2008). Attempto Controlled English for knowledge represen-
tation. In Tutorial lectures of the 4th International Summer School on the Reasoning Web (Reasoning
Web 2008), pp. 104–124.

Fuchs, N. E., K. Kaljurand, and T. Kuhn (2013). Discourse Representation Structures for ACE
6.7. Technical report. Available at http://attempto.ifi.uzh.ch/site/pubs/papers/
drs_report_67.pdf.

Garreau, F., L. Garcia, C. Lefèvre, and I. Stéphan (2015). ∃-ASP. In Proceedings of the Joint Ontology
Workshops 2015 Episode 1: The Argentine Winter of Ontology co-located with the 24th International
Joint Conference on Artificial Intelligence (IJCAI 2015), Volume 1517 of CEUR Workshop Proceed-
ings. CEUR-WS.org.

Gebser, M., R. Kaminski, B. Kaufmann, P. Lühne, P. Obermeier, M. Ostrowski, J. Romero, T. Schaub,
S. Schellhorn, and P. Wanko (2018). The Potsdam Answer Set Solving Collection 5.0. KI 32(2-3),
181–182.

Guy, S. and R. Schwitter (2017). The PENG ASP system: architecture, language and authoring tool.
Language Resources and Evaluation 51(1), 67–92.

Kaufmann, B., N. Leone, S. Perri, and T. Schaub (2016). Grounding and solving in answer set program-
ming. AI Magazine 37(3), 25–32.

Kuhn, T. (2007). AceRules: Executing Rules in Controlled Natural Language. In Proceedings of the 1rst
International Conference on Web Reasoning and Rule Systems (RR 2007), Volume 4524 of Lecture
Notes in Computer Science, pp. 299–308. Springer.

Parsons, T. (1990). Events in the Semantics of English: A Study of Subatomic Semantics (1s ed.). Cam-
bridge, MA, USA: MIT Press.

Schwitter, R. (2018). Specifying and Verbalising Answer Set Programs in Controlled Natural Language.
TPLP 18(3-4), 691–705.

Strass, H. and A. Wyner (2017, February). On Automated Defeasible Reasoning with Controlled Natural
Language and Argumentation. In R. Barták, T. L. McCluskey, and E. Pontelli (Eds.), Proceedings of
the 2nd International Workshop on Knowledge-based Techniques for Problem Solving and Reasoning
(KnowProS 2017).


