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Abstract

Developing conventional natural language
generation systems requires extensive at-
tention from human experts in order to
craft complex sets of sentence planning
rules. We propose a Bayesian nonparamet-
ric approach to learn sentence planning
rules by inducing synchronous tree sub-
stitution grammars for pairs of text plans
and morphosyntactically-specified depen-
dency trees. Our system is able to learn
rules which can be used to generate novel
texts after training on small datasets.

1 Introduction

Developing and adapting natural language gener-
ation (NLG) systems for new domains requires
substantial human effort and attention, even when
using off-the-shelf systems for surface realiza-
tion. This observation has spurred recent in-
terest in automatically learning end-to-end gen-
eration systems (Mairesse et al., 2010; Konstas
and Lapata, 2012; Wen et al., 2015; Dušek and
Jurčı́ček, 2016); however, these approaches tend
to use shallow meaning representations (Howcroft
et al., 2017) and do not make effective use of prior
work on surface realization to constrain the learn-
ing problem or to ensure grammaticality in the re-
sulting texts.

Based on these observations, we propose a
Bayesian nonparametric approach to learning sen-
tence planning rules for a conventional NLG sys-
tem. Making use of existing systems for surface
realization along with more sophisticated meaning
representations allows us to cast the problem as a
grammar induction task. Our system induces syn-
chronous tree substitution grammars for pairs of
text plans and morphosyntactically-specified de-
pendency trees. Manual inspection of the rules and

texts currently produced by our system indicates
that they are generally of good quality, encourag-
ing further evaluation.

2 Overview

Whether using hand-crafted or end-to-end gener-
ation systems, the common starting point is col-
lecting a corpus with semantic annotations in the
target domain. Such a corpus should exhibit the
range of linguistic variation that developers hope
to achieve in their NLG system, while the seman-
tic annotations should be aligned with the target
input for the system, be that database records, flat
‘dialogue act’ meaning representations, or hierar-
chical discourse structures.

For our system (outlined in Figure 1) we fo-
cus on generating short paragraphs of text contain-
ing one or more discourse relations in addition to
propositional content. To this end we use as input
a text plan representation based on that used in the
SPaRKy Restaurant Corpus (Walker et al., 2007).
These text plans connect individual propositions
under nodes representing relations drawn from
Rhetorical Structure Theory (Mann and Thomp-
son, 1988).

Rather than using a fully end-to-end approach
to learn a tree-to-string mapping from our text
plans to paragraphs of text, we constrain the learn-
ing problem by situating our work in the context
of a conventional NLG pipeline (Reiter and Dale,
2000). In the pipeline approach, NLG is decom-
posed into three stages: document planning, sen-
tence planning, and surface realization. Our ap-
proach assumes that the text plans we are working
with are the product of document planning, and we
use an existing parser-realizer for surface realiza-
tion. This allows us to constrain the learning prob-
lem by limiting our search to the set of tree-to-tree
mappings which produce valid input for the sur-
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Figure 1: Overview of our pipeline. Square boxes
represent data; rounded boxes represent programs.
Blue boxes represent our system and the outputs
dependent on it, while boxes with white back-
ground represent existing resources used by our
system.

face realizer, leveraging the linguistic knowledge
encoded in this system. Restricting the problem
to sentence planning also means that our system
needs to learn lexicalization, aggregation, and re-
ferring expression generation rules but not rules
for content selection, linearization, or morphosyn-
tactic agreement.

The input to our statistical model and sam-
pling algorithm consists of pairs of text plans
(TPs) and surface realizer input trees, here called
logical forms (LFs). At a high level, our sys-
tem uses heuristic alignments between individual
nodes of these trees to initialize the model and
then iteratively samples possible alternative and
novel alignments to determine the best set of syn-
chronous derivations for TP and LF trees. The
synchronous tree substitution grammar rules in-
duced in this way are then used for sentence plan-
ning as part of our NLG pipeline.

3 Synchronous TSGs

Synchronous tree substitution grammars (TSGs)
are a subset of synchronous tree adjoining gram-
mars, both of which represent the relationships be-
tween pairs of trees (Shieber and Schabes, 1990;
Eisner, 2003). A tree substitution grammar con-
sists of a set of elementary trees which can be used
to expand non-terminal nodes into a complete tree.

Consider the example in Figure 2, which shows
the text plan and logical form trees for the sen-
tence, Sonia Rose has very good food quality, but
Bienvenue has excellent food quality.

The logical form in this figure could be derived
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Figure 2: Text plan (top) & logical form (bottom)
for the text Sonia Rose has very good food quality
but Bienvenue has excellent food quality.
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Figure 3: Possible elementary trees for the TP (top
row) and LF (bottom row) in Figure 2, omitting
some detail for simplicity.

in one of three ways. First, we could simply have
this entire tree memorized in our grammar as an
elementary tree. This would make the derivation
trivial but would also result in a totally ungeneral-
izable rule. On the other hand, we could have the
equivalent of a CFG derivation for the tree consist-
ing of rules like but → First Next, First → have,
have → Arg0 Arg1, and so on. These rules would
be very general, but the derivation then requires
many more steps. The third option, illustrating the
appeal of using a tree substitution grammar, in-
volves elementary trees of intermediate size, like
those in Figure 3.

The rules in Figure 3 represent a combination
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of small, CFG-like rules (e.g. the elementary tree
rooted at but), larger trees representing memorized
chunks (i.e. the rule involving Bienvenue), and in-
termediate trees, like the one including have →
quality → food. In these elementary trees, the
empty node sites at the end of an arc represent
substitution sites, where another elementary tree
must be expanded for a complete derivation. In
typical applications of TSGs over phrase struc-
ture grammars, these substitution sites would be
labeled with non-terminal categories which then
correspond to the root node of the elementary tree
to be expanded. In our (synchronous) TSGs over
trees with labeled arcs, we consider the ‘nonter-
minal label’ at each substitution site to be the tree
location, which we define as the label of the parent
node paired with the label of the incoming arc.

A synchronous tree substitution grammar, then,
consists of pairs of elementary trees along with an
alignment between their substitution sites. For ex-
ample, we can combine the TP elementary tree
rooted at contrast with the LF elementary tree
rooted at but, aligning each (contrast,Arg) sub-
stitution site in the TP to the (but, F irst) and
(but,Next) sites in the LF.

4 Dirichlet Processes

The Dirichlet process (DP) provides a natural way
to trade off between prior expectations and obser-
vations. For our purposes, this allows us to define
prior distributions over the infinite, discrete space
of all possible pairs of TP and LF elementary trees
and to balance these priors against the full trees we
observe in the corpus.

We follow the Chinese Restaurant Process for-
mulation of DPs, with concentration parameter
α = 1.1 Here, the probability of a particular el-
ementary tree e being observed is given by:

P (e) =
freq(e)

#obs + α
+

α

#obs+ α
Pprior(e), (1)

where freq(e) is the number of times we have ob-
served the elementary tree e, #obs is the total
number of observations, and Pprior is our prior.

It is clear that when we have no observations,
we estimate the probability of e entirely based on
our prior expectations. As we observe more data,
however, we rely less on our priors in general.

1Other concentration parameters are possible, but α =
1 is the standard default value, and we do not perform any
search for a more optimal value at this time.

5 Statistical Model

Our model uses Dirichlet processes with other DPs
as priors (i.e. Hierarchical Dirichlet Processes, or
HDPs). This allows us to learn more informa-
tive prior distributions (the lower-level DPs) to im-
prove the quality of our predictions for higher-
level DPs. Section 5.1 describes the HDPs used
to model elementary trees for text plans and log-
ical forms, which rely on prior distributions over
possible node and arc labels. This model in turn
serves as the prior for the synchronous TSG’s pairs
of elementary trees, as described in Section 5.2
along with the HDP over possible alignments be-
tween the frontier nodes of these pairs of elemen-
tary trees. A plate diagram of the model is pre-
sented in Figure 4.

5.1 HDP for TSG Derivations

We begin by defining TSG base distributions for
text plans and logical forms independently. Our
generative story begins with sampling an elemen-
tary tree for the root of the tree and then repeating
this sampling procedure for each frontier node in
the expanded tree.

Since the tree locations l corresponding to fron-
tier nodes are completely determined by the cur-
rent expansion of the tree, we only need to define
a distribution over possible elementary trees con-
ditioned on the tree location:

T |l ∼DP(1.0, P (e|l)) (2)

P (e|l) =N(n(root(e))|l) (3)

Πa∈a(root(e))A(a|n(root(e)))

Πchild∈children(root(e))P (child|l(child)),

whereN andA are Dirichlet processes over possi-
ble node labels and arc labels, we use N(n|l) for
the probability of node label n at tree location l ac-
cording to DP N , and similarly for A. We further
overload our notation to use n(node) to indicate
the node label for a given node, a(node) to indi-
cate the outward-going arc labels from node, and
l(e) or l(node) to indicate the location of a given
subtree or node within the tree as an (n, l) pair.
root(e) is a function selecting the root node of an
elementary tree e and children(node) indicates the
child subtrees of a given node.

The distributions over node labels given tree lo-
cationsN |l and arc labels given source node labels
A|n are DPs over simple uniform priors:
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Figure 4: Dependencies in our statistical model,
omitting parameters for clarity. Each node rep-
resents a Dirichlet process over base distributions
(see Sec. 5) with α = 1. n here indexes node
labels for TPs or LFs as appropriate, while l simi-
larly represents tree locations.

N |l ∼DP(1.0,Uniform({n ∈ corpus})) (4)

A|n ∼DP(1.0,Uniform({a ∈ corpus})) (5)

5.2 HDP for sTSG Derivations

Our synchronous TSG model has two additional
distributions: (1) a distribution over pairs of TP
and LF elementary trees; and (2) a distribution
over pairs of tree locations representing the prob-
ability of those locations being aligned to each
other.

Similarly to the generative story for a single
TSG, we begin by sampling a pair of TP & LF
elementary trees, a TreePair, for the root of the
derivation. We then sample alignments for the
frontier nodes of the TP to the frontier nodes of
the LF. For each of these alignments, we then sam-
ple the next TreePair in the derivation and repeat
this sampling procedure until no unfilled frontier
nodes remain.

The distribution over TreePairs for a given pair
of tree locations is given by a Dirichlet process
with a simple prior which multiplies the probabil-
ity of a given TP elementary tree by the probability
of a given LF elementary tree:

pair|lTP, lLF ∼
DP(1.0, P (eTP, eLF|lTP, lLF)) (6)

P (eTP, eLF|lTP, lLF) =

TTP(eTP|lTP)TLF(eLF|lLF) (7)

The distribution over possible alignments is
given by an DP whose prior is the product of the
probabilities of pair of (TP and LF) tree locations
in question. These probabilities are each modeled
as a DP with a uniform prior over possible tree lo-
cations.

Al ∼DP(1.0, P (lTP, lLF)) (8)

P (lTP, lLF) =P (lTP)P (lLF) (9)

P (l·) ∼DP(1.0,Uniform({l·})) (10)

5.3 Sampling
Our Gibbs sampler adapts the blocked sampling
approach of (Cohn et al., 2010) to synchronous
grammars. For each text in the corpus, we resam-
ple a synchronous derivation for the entire text be-
fore updating the associated model parameters.

6 Generation

While our pipeline can in principle work with
any reversible parser-realizer, our current imple-
mentation uses OpenCCG2 (White, 2006; White
and Rajkumar, 2012). We use the broad-coverage
grammar for English based on CCGbank (Hock-
enmaier, 2006). The ‘logical forms’ associated
with this grammar are more or less syntactic in
nature, encoding the lemmas to be used, the de-
pendencies among them, and morphosyntactic an-
notations in a dependency semantics. Parsing the
corpus with OpenCCG provides the LFs we use
for training.

After training the model, we have a collection
of synchronous TSG rules which can be applied
to (unseen) text plans to produce new LFs. For
this rule application we use Alto3 (Koller and
Kuhlmann, 2012) because of its efficient imple-
mentation of parsing for synchronous grammars.
The final stage in the generation pipeline is to re-
alize these LFs using OpenCCG, optionally per-
forming reranking on the resulting texts. Some
examples of the resulting texts are provided in the
next section.

2https://github.com/OpenCCG/openccg
3https://bitbucket.org/tclup/alto

https://github.com/OpenCCG/openccg
https://bitbucket.org/tclup/alto
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7 Example output

As a testbed during development we used the
SPaRKy Restaurant Corpus (2007), a corpus
of restaurant recommendations and comparisons
generated by a hand-crafted NLG system. While
the controlled nature of this corpus is ideal for
testing during development, our future evalua-
tions will also use the more varied Extended SRC
(Howcroft et al., 2017).4

After training on about 700 TP-LF pairs for 5k
epochs, our system produces texts such as:

1. Chanpen Thai has the best overall quality among the se-
lected restaurants. Its price is 24 dollars and it has good
service. This Thai restaurant has good food quality,
with decent decor.

2. Since Komodo’s price is 29 dollars and it has good
decor, it has the best overall quality among the selected
restaurants.

3. Azuri Cafe, which is a Vegetarian restaurant has very
good food quality. Its price is 14 dollars. It has the best
overall quality among the selected restaurants.

4. Komodo has very good service. It has food food qual-
ity, with very good food quality, it has very good
food quality and its price is 29 dollars.

Here we see examples of pronominalization
throughout, as well as the deictic referring expres-
sion this Thai restaurant (in 1), which avoids re-
peating either the pronoun ‘it’ or the name of the
restaurant again. The system also makes good
use of discourse connectives (like ‘since’ in 2)
as well as non-restrictive relative clauses (as in
3). However, the system does not always han-
dle punctuation correctly (as in 3) and sometimes
learns poor semantic alignments, aligning but om-
mitting part of the meaning in saying ‘Vegetarian’
for ‘Kosher, Vegetarian’ in 3 and completely mis-
aligning ‘good’ to ‘food’ in (4) due to the frequent
co-occurrence of these words in the corpus. More-
over, example 4 also demonstrates that some com-
binations of rules based on poor alignments can
lead to repetition.

While there is clearly still room for improve-
ment, the quality of the texts overall is encourag-
ing, and we are currently preparing a systematic
human evaluation of the system.

8 Related Work

While the present work aims to learn sentence
planning rules in general, White and Howcroft
(2015) focused on learning clause-combining

4For details about differences between these two corpora,
we refer the interested reader to Howcroft et al. (2017).

rules, using a set of templates of possible rule
types to extract a set of clause-combining oper-
ations based on pattern matching. The resulting
rules were, like ours, tree-to-tree mappings; how-
ever, our rules proceed directly from text plans to
final logical forms, while their approach assumed
lexicalized text plans (i.e. logical forms without
any aggregation operations applied) paired with
logical forms as training input. In learning a syn-
chronous TSG, the model presented here aims to
avoid using hand-crafted rule templates, which
are more dependent on the specific representation
chosen for surface realizer input.

As mentioned in the introduction, there have
been a number of attempts in recent years to learn
end-to-end generation systems which produce text
directly from database records (Konstas and La-
pata, 2012), dialogue acts with slot-value pairs
(Mairesse et al., 2010; Wen et al., 2015; Dušek
and Jurčı́ček, 2016), or semantic triples like those
used in the recent WebNLG challenge (Gardent
et al., 2017). In contrast, we assume that content
selection and discourse structuring are handled be-
fore sentence planning. In principle, however, our
methods can be applied to any generation subtask
involving tree-to-tree mappings.

9 Discussion and Conclusion

We have presented a Bayesian nonparametric ap-
proach to learning synchronous tree substitution
grammars for sentence planning. This approach
is designed to address specific weaknesses of end-
to-end approaches with respect to discourse struc-
ture as well as grammaticality. Our preliminary
analysis suggests that our approach can learn use-
ful sentence planning rules from smaller datasets
than those typically used for training neural mod-
els. We are currently preparing to launch an exten-
sive human evaluation of our model compared to
current neural approaches to text generation.
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