@inproceedings{shin-lee-2018-multi,
title = "Multi-encoder Transformer Network for Automatic Post-Editing",
author = "Shin, Jaehun and
Lee, Jong-Hyeok",
editor = "Bojar, Ond{\v{r}}ej and
Chatterjee, Rajen and
Federmann, Christian and
Fishel, Mark and
Graham, Yvette and
Haddow, Barry and
Huck, Matthias and
Yepes, Antonio Jimeno and
Koehn, Philipp and
Monz, Christof and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Post, Matt and
Specia, Lucia and
Turchi, Marco and
Verspoor, Karin",
booktitle = "Proceedings of the Third Conference on Machine Translation: Shared Task Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/W18-6470/",
doi = "10.18653/v1/W18-6470",
pages = "840--845",
abstract = "This paper describes the POSTECH`s submission to the WMT 2018 shared task on Automatic Post-Editing (APE). We propose a new neural end-to-end post-editing model based on the transformer network. We modified the encoder-decoder attention to reflect the relation between the machine translation output, the source and the post-edited translation in APE problem. Experiments on WMT17 English-German APE data set show an improvement in both TER and BLEU score over the best result of WMT17 APE shared task. Our primary submission achieves -4.52 TER and +6.81 BLEU score on PBSMT task and -0.13 TER and +0.40 BLEU score for NMT task compare to the baseline."
}
Markdown (Informal)
[Multi-encoder Transformer Network for Automatic Post-Editing](https://preview.aclanthology.org/jlcl-multiple-ingestion/W18-6470/) (Shin & Lee, WMT 2018)
ACL