@inproceedings{basu-etal-2018-keep,
title = "Keep It or Not: Word Level Quality Estimation for Post-Editing",
author = "Basu, Prasenjit and
Pal, Santanu and
Naskar, Sudip Kumar",
editor = "Bojar, Ond{\v{r}}ej and
Chatterjee, Rajen and
Federmann, Christian and
Fishel, Mark and
Graham, Yvette and
Haddow, Barry and
Huck, Matthias and
Yepes, Antonio Jimeno and
Koehn, Philipp and
Monz, Christof and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Post, Matt and
Specia, Lucia and
Turchi, Marco and
Verspoor, Karin",
booktitle = "Proceedings of the Third Conference on Machine Translation: Shared Task Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/W18-6457/",
doi = "10.18653/v1/W18-6457",
pages = "759--764",
abstract = "The paper presents our participation in the WMT 2018 shared task on word level quality estimation (QE) of machine translated (MT) text, i.e., to predict whether a word in MT output for a given source context is correctly translated and hence should be retained in the post-edited translation (PE), or not. To perform the QE task, we measure the similarity of the source context of the target MT word with the context for which the word is retained in PE in the training data. This is achieved in two different ways, using \textit{Bag-of-Words} (\textit{BoW}) model and \textit{Document-to-Vector} (\textit{Doc2Vec}) model. In the \textit{BoW} model, we compute the cosine similarity while in the \textit{Doc2Vec} model we consider the Doc2Vec similarity. By applying the Kneedle algorithm on the F1mult vs. similarity score plot, we derive the threshold based on which OK/BAD decisions are taken for the MT words. Experimental results revealed that the Doc2Vec model performs better than the BoW model on the word level QE task."
}
Markdown (Informal)
[Keep It or Not: Word Level Quality Estimation for Post-Editing](https://preview.aclanthology.org/jlcl-multiple-ingestion/W18-6457/) (Basu et al., WMT 2018)
ACL