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Abstract

This paper describes the University of Tartu’s
submission to the unsupervised machine trans-
lation track of WMT18 news translation
shared task. We build several baseline trans-
lation systems for both directions of the
English-Estonian language pair using mono-
lingual data only; the systems belong to the
phrase-based unsupervised machine transla-
tion paradigm where we experimented with
phrase lengths of up to 3. As a main contri-
bution, we performed a set of standalone ex-
periments with compositional phrase embed-
dings as a substitute for phrases as individ-
ual vocabulary entries. Results show that rea-
sonable n-gram vectors can be obtained by
simply summing up individual word vectors
which retains or improves the performance of
phrase-based unsupervised machine tranlation
systems while avoiding limitations of atomic
phrase vectors.

1 Introduction

Most successful approaches to machine translation
(Wu et al., 2016; Bahdanau et al., 2014; Vaswani
et al., 2018; Gehring et al., 2017) rely on the
availability of parallel corpora. Supervised neural
machine translation (NMT) employs the encoder-
decoder architecture, where the encoder reads the
source sentence and produces its representation
which is then fed to the decoder that tries to gen-
erate the target sentence word by word. Cross-
entropy loss is usually used as a training objective
and beam search algorithm is used for inference.
These neural models show state-of-the art perfor-
mance but rely on vast amounts of parallel data.

On the other hand, there is a Statistical Machine
Translation paradigm that is based on phrase ta-
bles that are learned from parallel corpus. These
methods are currently replaced by neural coun-
terparts for high-resource languages, but perform

better in low-resource settings (Bentivogli et al.,
2016).

For some language pairs the size of paral-
lel corpus ranges from extremely low to almost
zero. These extremely low-resource language
pairs were a motivation for the Unsupervised Ma-
chine Translation (Lample et al., 2017; Artetxe
et al., 2017b) that aims to translate language with-
out usage of the parallel corpora for training.

The first step of the unsupervised approach to
translation is the same for all methods: learn-
ing word level embedding spaces for source and
target languages and then aligning these spaces.
Next, one of the unsupervised vector space map-
ping methods (Artetxe et al., 2017a; Conneau
et al., 2017) is applied to align spaces together
and perform word by word translation. This map-
ping is only possible because of the linear prop-
erties of the word embedding method that is used
to get word vector representations. Lastly, to im-
prove system’s performance, iterative refining us-
ing either neural network models or parts of SMT
pipeline is done (Mikolov et al., 2013b; Lample
et al., 2018). In this work we implement a system
that is similar to the latter approach.

Statistical Machine Translation systems that
are based on the phrase representations require
smaller amounts of data to achieve reasonable per-
formance. Phrase-based Unsupervised Machine
Translation is motivated by the assumption that
methods working without parallel data can benefit
from the usage of phrases as the basic units. In or-
der for phrases to be used for Unsupervised Trans-
lation they have to be represented in a suitable
way. Current approach is to learn phrase embed-
dings as atomic vocabulary units (Lample et al.,
2018).

In this work, we implement systems for the
English-Estonian language pair following the
guidlines presented in (Lample et al., 2018) and
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show that simply using sum of individual word
embeddings can produce reasonable phrase em-
beddings. This eliminates the need of having huge
n-gram vocabulary that might be hard to learn and
use in unsupervised bilingual mapping. It also al-
lows to obtain embeddings for arbitrary phrases as
opposite to using predefined limited set of phrases.

This paper is organized as follows: In Sec-
tion 2 we describe our unsupervised translation
system baseline. Section 3 describes our ap-
proach to computing phrase embeddings for arbi-
trary phrases for UMT. In Section 4 we describe
our experiments for compositional phrase embed-
dings standalone and in context of UMT. Section
5 concludes the work.

2 Baseline UMT System

Our baseline systems relies on the recently pro-
posed Phrase-based UMT framework (Lample
et al., 2018). Firstly, we learn monolingual embed-
dings for words and then use unsupervised map-
ping for bilingual lexicon extraction. The lex-
icon is used to compute semantic distances be-
tween phrases which results in the phrase table as
used in Statistical Machine Translation. Lastly, we
use standard SMT pipeline 1 with ngram language
models in order to generate translations. We do
not perform iterative back translation for simplic-
ity and due to time and compute limits.

In the simplest case the phrase table consists
solely of the unigram entries, but following Lam-
ple et al. we also consider bigram and trigram ex-
permients. However, we use a different procedure
for making decisions on which ngrams to consider
for adding to the phrase table.

Extraction of n-grams is done by probabilis-
tically joining words into phrases. We use fre-
quency filtering with sampling, so n-grams are
sometimes joined and sometimes not. We down-
sample the most frequent words, with probability
function p = 1

fβ , where p is the sampling proba-
bility, f is the n-gram frequency and B is a small
weight (we used β = 1

8 ). Frequency filtering is
used for very rare words, so they must appear more
than the set threshold. For example a n-gram that
appears 25 times is joined with probability 0.668,
but n-gram that appears 1000 times is joined with
probability 0.422.

The point of using phrases is that they should
be less ambiguous than words, and the fact that

1http://www.statmt.org/moses/

one word in one language can be a phrase in an-
other language, like Estonian word ”laualt”, which
means ”from the table”. The extraction of n-grams
is done as in Blue2vec algorithm (Tättar and
Fishel, 2017). To compute embeddings (S. Har-
ris, 1954; Mikolov et al., 2013b) we use FastText2

(Bojanowski et al., 2017) embeddings instead of
word2vec (Mikolov et al., 2013a). We prefer Fast-
Text because it produces embeddings that incorpo-
rate subword level information which is proven to
be helpful.

After finding vectors for words and phrases,
we need to project the source and target language
embeddings into the same space (Artetxe et al.,
2017a; Conneau et al., 2017; Artetxe et al., 2018).
Projecting is done using the MUSE 3 library. We
use cross lingual similarity scores to score N-
grams.

3 Approach to Phrase Embeddings

State of the art Phrase Based UMT systems ( Lam-
ple et al.) learn phrase embeddings as individ-
ual vocabulary entries (to form the entry, we just
concatenate words together with underscore). Al-
though this approach provides good embeddings
for phrases, it has serious limitations. Firstly, it is
very memory intensive because it is infeasible to
learn and store vocabulary of all phrases that can
occur in the corpus. The size of the vocabulary
grows almost exponentially over the length of the
phrase, and thus vocabularies of that order of mag-
nitude do not fit into the computer memory in most
cases. Secondly, there is a data sparsity problem
since some (even two-word) phrases occur rarely
even in the very large corpus (it makes learning
embedding vectors hard for some phrases).

The idea to combine embeddings to get a phrase
embedding (Mikolov et al., 2013b) was success-
fully used in context of tasks such phrase similar-
ity (Muraoka et al., 2014) and non-compositional
phrase detection (Yazdani et al., 2015). We fol-
low similar idea and show why it is highly suitable
specifically for unsupervised translation.

In summary, we first learn vectors for reason-
able amount of phrases as single-token vocabulary
entries (e.g. ”research paper”). At the same time
(as a part of the same training procedure), we learn
embeddings for individual words (”research” and
”paper” separately). Finally, we train a regression

2https://github.com/facebookresearch/fastText
3https://github.com/facebookresearch/MUSE
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model to predict phrase vectors from their word
vectors. We assume that the model will learn the
function that captures the pattern of combining
word vectors in order to generate phrase vectors.
Since we can obtain vectors for arbitrary words,
we thus can estimate vectors for arbitrary phrases
by combining word vectors with the learned func-
tion. Remaining text of the subsection defines the
pipeline in step by step fashion.

Step 1: obtain training data for non-
compositional modeling. In order to compute
vectors for words and subset of phrases (we treat
phrases as single-unit vocabulary entries at this
point) we first need to get a monolingual corpus
and do some preprocessing like lowercasing / true-
casing and tokenization.

Step 2: extract phrase candidates. Since we
can not learn vectors for all phrases in the corpus,
we have to decide which phrases to use to learn
vectors for. One option is to randomly glue desired
number of phrases together while other options in-
clude only gluing phrases that belong to some spe-
cific set of desired phrases. The set can be formed
by scoring all phrases from the corpus by some
criterion and then taking top N phrases based on
their scores. Here we provide non-comprehensive
list of criterion that can serve to the purpose of
gluing two-word phrases: Likelihood ratio, Raw
frequency, Poisson Stirling criterion, Chi square
score, Dice score, Jaccard measure etc. We refer
author to external literature for additional informa-
tion on this topic (e.g. (Manning et al., 2008)).
Concrete metric should be task specific or empiri-
cally chosen.

Step 3: glue phrases. At this step we simply
go through the corpus from Step 1 and glue some
words together based on the phrases set from the
Step 2.

Step 4: train word embedding model. At this
step we train (say) the Skip-gram model on words
and phrases corpus from Step 3. This way we get
semantic vectors for words and some phrases.

Step 4: obtain training data for composi-
tional modeling. At this step we extract phrase
vectors for phrases that we glued at the Step 3.
Then we extract word vectors for words that are
used to compose these phrases. The dataset then
consists of following pairs of entities: sequence of
the word vectors as an input, and phrase vector as
the target.

Step 5: train compositional model on the

data from the Step 4. At this point we use the
dataset from previous step to teach the model to
compose word vectors in a way that phrase vector
is produced

One critical property of this framework is that
it produces vectors for phrases as if they were
learned as the single-token units as a part of the
vocabulary. That is, result phrase embeddings
will not differ (in terms of their properties) from
word embeddings. Word embeddings are learned
as individual vocabulary units and satisfy to all as-
sumptions of bilingual mapping methods (Artetxe
et al., 2018); therefore, phrase embeddings learned
this way would also do. Since billingual embed-
ding mapping is the key necessury step of all cur-
rent approaches to UMT, our phrase embeddings
might become strong alternative for any existing
UMT system.

We make our implementation of the pipeline
available as an open source project 4.

4 Experiments

4.1 Compositional Phrase Embeddings

In this subsection we describe our experiments on
compositional phrase embeddings standalone.

4.1.1 Setup
We explored on the predictive ability of the differ-
ent variants of the compositional models that we
train as a part of the Step 5 of the framework. Fol-
lowing steps describe concrete decisions we made
as a part of our implementation of the general
pipeline we defined in previous subsection.

Step 1: obtain training data for non-
compositional modeling. We used first 1 billion
bytes of English Wikipedia as our training data.
The data contains 124,301,826 lowercased tokens.

Step 2: extract phrase candidates. We only
glued phrases that belong to some specific set of
desired phrases. The set was formed by scoring
all phrases from the corpus by likelihood ratio cri-
terion and then taking top 600,000 phrases based
on their scores.

Step 3: glue phrases. At this step we simply
went through the corpus from Step 1 and glued
some words together based on the phrases set from
the Step 2.

Step 4: apply skip-gram model. At this step
we trained Skip-gram model on words and phrases

4https://github.com/maxdel/bigram_
embedder
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corpus from Step 3. This way we got semantic real
valued vectors for words and some phrases. We
trained the system using fasttext framework ( (Bo-
janowski et al., 2017)) for 6 epochs with default
parameters expect for the embedding size which
we set to 100.

Step 4: obtain training data for composi-
tional modeling. The result dataset size was about
600,000 training examples.

Step 5: train compositional model on the
data from the Step 4. At this point we used the
dataset from previous step to teach different mod-
els to compose word vectors in a way that phrase
vector is produced.

We also left some examples apart for validation
and testing. The test set size was 2400 examples,
development test size was 2000 examples. Devel-
opment set was used to tune models hyperparame-
ters, and test set was used to perform final models
comparison.

4.1.2 Candidate Models
Let w1 be the vector of the first word and w2 the
vector of the second. Let also p be the result vec-
tor of the phrase and D be the dimension of the
w1, w2, and p. The types of the models that we
implemented and trained5 are following.

• Simple addition (AddSimple):

p = w1 + w2

• Addition with attention weights (AddAtt):

p = a1 ∗ w1 + a2 ∗ w2

where a1 and a2 are scalars that are learned
by first concatenating the word vectors, and
then projecting result into two dimensions.

• Dimwise addition with attention weights (Ad-
dAttDimwise):

p = a1 ∗ w1 + a2 ∗ w2

where a1 and a2 are vectors of the size D that
are learned by first concatenating the word
vectors, and then projecting result into the D
dimensions. Therefore, we add two vectors
with weight assigned to each dimension.

5AddSimple model does not require training while atten-
tion weights for AddAtt and AddAttDimwise are learned from
data

• Neural Network with one linear layer (Lin-
ear):

W1 ∗ ([w1, w2])
where W1 is parameters matrix and [w1, w2]
means concatenation

• Neural Network with dense ReLU layer and
linear layer (NonLinear):

W2 ∗ReLU(W1 ∗ [w1, w2])

• Multilayer Neural Network (MultilNonLin-
ear): the same as the previous one, but with
two more nonlinear layers. The sizes of hid-
den layers are 170, 130, and 100.

• Long Short Term Memory network (LSTM):
last timestep is used as phrase representation
( (Hochreiter and Schmidhuber, 1997)).

Smooth l1 loss was used in order to train all the
models:

loss(x, y) =
1

n

∑

i

zi,

where

zi =

{
0.5(xi − yi)2, if|xi − yi| < 1
|xi − yi| − 0.5, otherwise

}

We choose this loss because it is more tol-
erant to outliers, which may occur due to non-
compositionality of some phrases.

4.1.3 Experiments Results and Analysis
In order to get interpretable accuracy scores for
models comparison we first run our trained re-
gression models in the inference mode to predict
phrase vectors for the test set. Then we retrieve
the top N (N is one of {1,3,5,10}) closest points
in the embedding space, and check if the ground
truth phrase belongs to this set. If the phrase is
not in the topN, we count it as an error. Lastly we
divide number of non-error examples by the size
of the training set to obtain accuracy score. Ta-
ble 1 shows accuracy scores across various models
across various topN values.

As we can see from the Table 1, simple summa-
tion baseline shows decent performance in com-
positional phrase vector modeling. This interest-
ing result was explained by the authors of the
Skip-gram model ( (Mikolov et al., 2013b)). They
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Table 1: Accuracy results of explicit evaluation of com-
positional models. Top 3 results among columns are in
bold.

Model top1 top3 top5 top10
AddSimple 0.35 0.81 0.88 0.94
AddAtt 0.37 0.65 0.74 0.84
AddAttDimwise 0.38 0.66 0.75 0.84
Linear 0.71 0.85 0.88 0.92
NonLinear 0.62 0.75 0.80 0.85
MultiNonLinear 0.69 0.83 0.87 0.91
LSTM 0.73 0.88 0.92 0.95

show that addition of two token vectors approxi-
mately equivalent to the AND operation between
their distributions over context words (we predict
context / surrounding words with the Skip-gram
model). This means that the result token vector
will be equivalent to the token (phrase or word)
that shares the same context with the input token
vectors. Despite the good performance of the sim-
ple addition function, we observe drop in perfor-
mance for attentional analogues. This might be
due to the fact that it is sometimes hard to pre-
dict these attention weights from the words them-
selves, since the Skip-gram embeddings does not
really contain much of Part of Speech (POS) in-
formation (e.g. words like ”go”, ”goes”, ”going”,
”went” are grouped together despite having differ-
ent POS tags) while this information is what was
needed to achieve good results in (Muraoka et al.,
2014). Among neural architectures, the LSTM
network was able to outperform simple sum oper-
ation. It might be due to the separate gates it uses
for memorizing the important (in context of the fu-
ture phrase) semantic part of the word, forgetting
redundant dimensions, and updating the first word
with some information from the second word. We
conducted experiments on phrases with length up
to two words for simplicity.

This experiments show that LSTM network is a
powerful tool for predicting compositional phrases
while linear layer remains a strong option. How-
ever, we also strongly consider summation as a
valid option due to its simplicity, comparable per-
formance, and theoretical motivation. In fact, we
use summation powered phrase embeddings in our
ongoing experiments with phrase-based UMT sys-
tem described here.

Note that sum shows low performance at top1
sampling (Table 1). It is explainable since there is

no information about the order in which individ-
ual words were summed so model just outputs the
vector for a phrase with reverse word order. How-
ever, it is still acceptable vector as it is shown by
a huge jump at top3, where usually both word or-
dering options are included.

4.2 Unsupervised Machine Translation

In this subsection we describe our experiments
with compositional phrase embeddings as a part
of the phrase based UMT system.

4.2.1 Setup
In this subsection, we describe the the setuppa-
rameters we used in our system. The Unsuper-
visedMT framework 6 was used to train baselines.

Data. In our experiments we use datasets from
the WMT’18 unsupervised translation task (Bo-
jar et al., 2018) for Engish-Estonian language pair.
15M monolingual sentences for Estonian and the
same amount for English is considered.

Preprocessing. We use tokenization and true-
casing to preprocess our data for both embeddings
learning and language models training.

Unigram system. This system contains uni-
gram cross-lingual word embeddings and does not
include the n-grams.

Bigram-atomic/trigram-atomic system. This
systems use phrase table that consist of bi-
gram/trigram entries. Embedding vectors for bi-
grams/trigrams were obtained as a result of treat-
ing ngrams as atomic vocabulary units.

Bigram/trigram-sum. This system uses phrase
table that consist also of bigram/trigram entries,
embedding vectors for which were obtained as a
result of summing individual word vectors that
form the bigram. The proportion of unigram / bi-
gram / trigram types is about 0.5 / 0.25 / 0.25 for
English and 0.89 / 0.9 / 0.2 for Estonian.

N-gram extraction. Frequency filter settings
are the following: 20, 120 and 90 (frequency
counts for filtering out infrequent n-grams, uni-
grams, bigrams and trigrams respectively). The
beta parameter is set to 0.125. This procedure is
used to extract ngrams for both the atomic and sum
systems. As a result, for bigram experiments, 38%
of English vocabulary and 9% of estonian vocab-
ularty consisted of bigrams.

FastText Embeddings. We use CBOW with
character n-grams of size 3 to 6 as a core algo-

6https://github.com/facebookresearch/UnsupervisedMT
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rithm for embeddings learning. The number of di-
mensions is set to 300. Other parameters are kept
as default.

Bilingual MUSE embeddings. Default param-
eters are kept and MUSE is used on CUDA GPUs.
Embeddings dimensions are set to 300.

Language model. We train Moses style ngram
langage models with the order of 5.

Moses and beam search. We keep all Moses
and beam search hyperparameters default.

4.2.2 Experiments Results and Analysis
Final BLEU scores for the experiments
with Unigram, Bigram/Trigram-atomic, and
Bigram/Trigram-sum systems are presented in
Table 2.

Table 2: BLEU scores for our baselines and systems
powered with compositional phrase embeddings for
Estonian-English and English-Estonian language di-
rections.

System et-en en-et
Unigram 4.42 4.14
Bigram-atomic 7.92 4.73
Trigram-atomic 7.63 4.96
Bigram-sum 6.25 3.88
Trigram-sum 6.28 4.05

Regarding Ngram-atomic series of experiments,
Table 2 shows that there is an advantage of using
bigrams for both language directions. However,
for Estonian-English the advantage is much bigger
(+3.5 against +0.59 BLEU). That might be due to
the fact the the number of ngrams in English vo-
cabulary is more then 3 times as big as the cor-
responding number for Estonian vocabulary. Tri-
gram experiment provides no significant increase
or decrease over the bigram experiment.

The benefit of using bigrams and the trigram
trend are consistent with the findings of Lample
et al.. However, while Lample et al. reports the
increase of about 1 BLEU point when using bi-
grams, we observe the increase of 3.5 for et-en.
Note that we also use custom ngram extraction
procedure as opposite to taking top N most fre-
quent bigrams (Lample et al., 2018).

In case of Ngram-sum experiment for et-en, the
system outperforms unigram experiment suggest-
ing that the compositional embeddings do have se-
mantic power. However, it is below the Bigram-
atomic and Trigram-atomic baselines which is ex-
pected since the predictivness of the compositional

model is not perfect. For en-et however, neither
Bigram-sum nor Trigram-sum system outperforms
atomic baseline suggesting that the topic needs ad-
ditional dedicated research efforts.

5 Conclusions and Future Work

In this work, we present our results for the
WMT18 shared task on unsupervised translation.
Our baseline systems follow principles of the
Phrase-based Unsupervised MT where we study
unigram, bigram, and trigram systems. The vec-
tors for ngrams are learned as individual vocab-
ulary entries which has its limitations. Thus we
study compositional phrase embeddings as a sub-
stitute, and show that simply summing up individ-
ual phrase words results in phrase embeddings that
allow UMT systems to improve over baselines.

We showed that atomic phrase embeddings can
be accurately estimated with compostional pre-
dictive models. Still, the effect of compositional
phrase embeddings on PBUMT is still to be stud-
ied. More language pairs should be considered
and more exhausive targeted experiments with
stronger baselines should be done. We leave this
research direction for future work.
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