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Abstract

In this paper, we describe our participation in
WASSA 2018 Implicit Emotion Shared Task
(IEST 2018). We claim that the use of emo-
tional external knowledge may enhance the
performance and the capacity of generaliza-
tion of an emotion classification system based
on neural networks. Accordingly, we submit-
ted four deep learning systems grounded in a
sequence encoding layer. They mainly differ
in the feature vector space and the recurrent
neural network used in the sequence encoding
layer. The official results show that the sys-
tems that used emotional external knowledge
have a higher capacity of generalization, hence
our claim holds.

1 Introduction

Emotions play an important role in human beings
due to what we notice and remember is not the
mundane but events that evoke feelings like joy,
sadness, surprise, and disgust. Emotions relate us
to others as a form of interpersonal communica-
tion, they introduce us to the world as well as the
motivational force for what is best and worst in
human behavior.

Emotion mining is part of the Sentiment Anal-
ysis (SA) and consists of recognizing emotions
mainly from text. According to Ekman (1992), the
basic emotions expressed by humans are: joy, sad-
ness, surprise, fear, disgust and anger. Emotion
recognition is still in its infancy and still has a ling
way to proceed (Yadollahi et al., 2017). The high
rate at which users share their opinions on news
articles, blogs, microblogs and social networking
sites, make this king of media even more attrac-
tive to measure specific emotions towards current
affairs. Recognizing emotion is extremely im-
portant for some text-based communication tools
(Wu et al., 2006), e.g., the dialog system is a
kind of human machine communication system

that uses only text input and output. Recognizing
the users emotional states enables the dialog sys-
tem to change the response and answer types (Lee
et al., 2002). Text is still the main communica-
tion tool on the Internet. In online chat, the users
emotional states can be used to control the dialog
strategy.

In this paper, we describe the four systems sub-
mitted to the IEST shared-task of the WASSA
Workshop (Klinger et al., 2018). The shared task
consists of predicting the implicit emotion ex-
pressed in a tweet, and the labels of emotion are:
sadness, joy, disgust, surprise, anger, or fear. We
tackled the challenge as a multi-classification task,
and we claim that the use of emotional external
knowledge may enhance the performance and the
capacity of generalization of the classification sys-
tems. We submitted four systems based on deep
learning. Two of them do not use emotional exter-
nal knowledge, and the other two do. The official
results show that those systems with emotional ex-
ternal knowledge have a higher capacity of gener-
alization as we hypothesized.

The rest of the paper is organized as follows.
Section 2 describes the dataset used by our sys-
tems. Section 3 presents the details of the pro-
posed systems. Section 4 displays the results and
analyses them. We conclude in Section 5 with re-
marks and future work.

2 Dataset

The evaluation dataset (Klinger et al., 2018) is an-
notated on a scale of six emotions, namely: sad-
ness, joy, disgust, surprise, anger, or fear. To run
our experiments, we used this dataset as follows.
During pre-evaluation period, we trained our mod-
els on the train set, and evaluated our different ap-
proaches on the dev set. During evaluation period,
we trained our models on the train and dev sets,
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Dataset Tweets

Train 153383
Dev 9591
Test 28757

Table 1: Number of tweets for each dataset.

and tested the model on the test set. The size of
the datasets is in Table 1.

3 System description

The aim of the shared task is the classification of
the implicit emotion of an input tweet. However,
the word that explicitly expresses the emotion was
remove from the input tweets. Accordingly, two
specific features may be incorporated in the clas-
sification system: (1) the position of the removed
word with emotion meaning; and (2) emotional
external knowledge. Since our claim is that the
use of emotional external knowledge can enhance
the classification of emotions, we only considered
the second specific feature, namely the incorpora-
tion of emotional external knowledge.

We designed a neural architecture built upon
a sequence encoding approach, which is able to
perform the classification with or without emo-
tional external knowledge. We submitted four sys-
tems, which share a common structure composed
of three modules: (1) language representation or
features lookup module; (2) sequence encoding
module; and (3) non linear classification module.
The four systems differ in the first and second
modules. The details of the modules and the dif-
ferencies of the four systems are described in the
following subsections.

3.1 Features lookup module

Regarding our claim, we defined a feature vec-
tor space for the training and the evaluation that
is composed of: (1) unsupervised vectors of word
embeddings; and (2) one-hot vector representation
of emotional features.

Vectors of word embeddings A set of vectors of
word embeddings is the representation of the ideal
semantic space of words in a real-valued continu-
ous vector space, hence the relationships between
vectors of words mirror the linguistic relationships
of the words. Vectors of word embeddings are a
dense representation of the meaning of a word,

thus each word is linked to a real-valued contin-
uous vector of dimension demb.

There are freely available several pre-trained sets
of vectors of word embeddings grounded in differ-
ent approaches to represent the context of a word,
such as C&W (Collobert et al., 2011), word2vect
(Mikolov et al., 2013) and Glove (Pennington
et al., 2014). Since the genre of the input docu-
ments is social media, Twitter, the use of a set of
embeddings trained on tweets is advisable. There-
fore, we specifically used the set of pre-trained
vectors of word embeddings of Glove1 that is
trained on tweets. The most relevant characteris-
tics of that set are: (1) the size of the vocabulary is
1.2 million of words; (2) all the words are lower-
case.

Emotional external knowledge Two of the sub-
mitted systems used emotional external knowl-
edge. We encoded the external emotional knowl-
edge with a one-hot encoding approach, hence the
emotional categories considered were represented
as a one-hot vector. Accordingly, the feature vec-
tor space is enlarged with the size of the additional
components or dimensions corresponding to the
emotional categories (d=demb+demo).

To obtain the emotional external knowledge we
use the following emotional lexicons:

NRC Word-Emotion Association Lexicon
(EmoLex) (Mohammad and Turney, 2010). This
lexicon has a list of English words associated to
one or more of the following emotions: anger,
fear, anticipation, trust, surprise, sadness, disgust,
joy. Since the emotional external knowledge is
encoded as one-hot vector, the corresponding
emotion is set to 1 of those words that are in the
lexicon. The results is a vector of eight emotion
values. In case the word belongs to one or more
emotions, all the emotions to which it belongs are
taken into account.
Emoji lexicon We use this lexicon to identify the
emojis present in text using some faces of an emoji
lexicon.2 This lexicon contains a list of emojis but
it is not labeled with emotion. Thus, we manually
annotated some emojis to one of the Ekman emo-
tions: joy, anger, fear, disgust, surprise, sadness
(Ekman, 1992). After this process, we obtained

1https://nlp.stanford.edu/projects/
glove/

2https://github.com/erunion/
emoji-lexicon

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/erunion/emoji-lexicon
https://github.com/erunion/emoji-lexicon
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a lexicon with 72 emojis labelled by the Ekman
emotions. The distribution of emojis by Ekman
emotions is shown in Table 2.

Emotion Number of Emojis

Joy 39
Sad 15
Anger 8
Fear 6
Surprise 3
Disgust 1

Table 2: Number of emojis for each Ekman emotion.

We tokenized the input tweets with the Twitter-
aware tokenizer of NLTK3 in order to project them
in the feature vector space defined by the vector of
word embeddings and emotional features. Con-
sequently, each tweet (t) is transformed in a se-
quence of n words (w1:n = {w1, . . . , wn}). The
size of the input sequence (n) was defined by the
mode of the lengths of the inputs in the training
data, hence sequences shorter than n were trun-
cated. After the tokenization, the first layer of
our architecture model is an feature lookup layer,
which makes the projection of the sequence of
tokens into the feature vector space. Therefore,
the output of the features lookup layer is the ma-
trix WE ∈ IRd×n, WET

1:n = (we1, . . . ,wen),
where wei ∈ IRd. The parameters of the embed-
ding lookup layer are not updated during the train-
ing.

3.2 Sequence encoding module

The aim of the sequence encoding layer is the gen-
eration of high level features, which condense the
semantic meaning of the entire sentence. We used
an RNN layer because RNNs can represent se-
quential input in a fixed-size vector and paying
attention to the structured properties of the input
(Goldberg, 2017). RNN is defined as a recursive
R function applied to a input sequence. The input
of the function R is an state vector si−1 and an el-
ement of the input sequence, in our case a word
vector (wei). The output of R is a new state vector
(si), which is transformed to the output vector yi

by a deterministic function O. Equation 1 summa-

3https://www.nltk.org/api/nltk.
tokenize.html#nltk.tokenize.casual.
TweetTokenizer

rizes the former definition.

RNN(we1:n, s0) = y1:n

yi = O(si)

si = R(wei, si−1);

(1)

wei ∈ IRdin , si ∈ IRf(dout),yi ∈ IRdout

From a linguistic point of view, each vector (yi)
of the output sequence of an RNN condenses the
semantic information of the word wi and the previ-
ous words ({w1, . . . , wi−1}). However, according
to the distributional hypothesis of language (Har-
ris, 1954), semantically similar words tend to have
similar contextual distributions, roughly speaking,
the meaning of a word is defined by its contexts.
An RNN can only encode the previous context of
a word when the input of the RNN is the sequence
we1:n. However, the input of the RNN can be also
the reverse of the previous sequence (wen:1). Con-
sequently, we can elaborate a composition of two
RNNs, the first one encode the sequence from the
beginning to the end (forward, f ), and a second
one from the end to the beginning (backward, b),
therefore the previous and the following context of
a word is encoded. This elaboration is known as
bidirectional RNN (biRNN), whose definition is
in Equation 2.

biRNN(we1:n) = [RNNf (we1:n, s
f
0);

RNNb(wean : 1, sb0)] (2)

The four systems submitted are based on the use
of a specific gated-architecture of RNN, namely
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997). Figure 1 shows the ar-
chitecture of these models. The specific details
of the sequence encoding layer of each submitted
system are described as what follows.

NoEMoLSTM The sequence encoding layer is
composed of one LSTM RNN. The input is the
feature space only defined by the matrix of vectors
of word embeddings (WE ∈ IRdemb). The out-
put is all the output vectors of all the words of the
sequence, hence the output is the sequence y1:n,
yi ∈ IRdout .

EmoLSTM This sequence encoding layer is sim-
ilar to the previous one, however the input is a
feature space composed of vectors of word em-
beddings and emtotional features, mathematically

https://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.casual.TweetTokenizer
https://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.casual.TweetTokenizer
https://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.casual.TweetTokenizer
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Figure 1: Neural model, where Emo represents the
EmoLSTM and EmoBiLSTM models.

WE ∈ IRdemb+demo . As NoEMoLSTM, the out-
put is all the output vectors of all the words of the
sequence, hence the output is the sequence y1:n,
yi ∈ IRdout .

NoEMoBiLSTM It only differs from NoEMoL-
STM in the RNN layer. In this case the RNN layer
is an BiLSTM layer. Since an BiLSTM is the com-
position of two LSTMs, the output units returned
of NoEMoBiLSTM is larger than the one of NoE-
MOLSTM, specifically y1:n, yi ∈ IRdout·2.

EmoBiLSTM As EmoLSTM, it incor-
porates emotional external knowledge
(WE ∈ IRdemb+demo), and as NoEMoBiLSTM,
the encoding layer is an BiLSTM RNN, therefore
the output is the sequence y1:n, yi ∈ IRdout·2.

3.3 Non linear classification module

The sequence representation of the tweets is then
classified by two fully connected layers with
ReLU as activation function, and additional layer
activated by the softmax function. The layers acti-
vated by ReLU have different hidden units or out-
put neurons (dense1 and dense2, see Table 3).
With the aim of selecting the most relevant fea-
tures, the output of the first full connected layer
is processed by a max pooling layer. The size
of the pooling layer was 2, and it was applied to
every step, i.e. the strides size is 1. Since the
four sequence encoding layers return an output se-

Hyper NoEMo-
LSTM

EMo-
LSTM

NoEMo-
BiLSTM

EMo-
BiLSTM

n 27 27 27 27
demb+demo 200 214 200 214
dout 128 128×2 128 128×2
dense1 128 128 128 128
dense2 64 64 64 64
dr1 0.5 0.5 0.5 0.5
dr2 0.5 0.5 0.5 0.5
L2 r 0.0001 0.0001 0.0001 0.0001

Table 3: Hyperparater values of the systems submitted.

quence y1:n ∈ IRn×dout , after the max pooling
layer, the sequence is flattened to a single vector
y ∈ IRn·dout . The number of hidden units of the
softmax layer matches the number of emotion cat-
egories of the task.

In order to avoid overfitting, we add a dropout
layer (Hinton et al., 2012) after each fully con-
nected layer with a dropout rate value dr. Be-
sides, we applied an L2 regularization function to
the loss function with a regularization value (r).
Moreover, the training is stopped in case the loss
value does not improve in 3 epochs.

The training of the network was performed by
the minimization of the cross entropy function,
and the learning process was optimized with the
Adam algorithm (Kingma and Ba, 2015) with its
default learning rate. The training was performed
following the minibatches approach with a batch
size of 64, and the number of epochs was 30.

For the sake of the replicability of the experi-
ments, Table 3 shows the values of the hyperpara-
ments of the network, and the source code of our
experiments is publicly available.4

3.4 Internal baseline

We also developed an internal baseline for evalu-
ating the performance of the neural networks mod-
els. Our internal baseline was a linear classifi-
cation system, namely Support Vector Machines
(SVM). The feature space is composed of the uni-
grams of the training set weighted by the TF-IDF
metric, and the number of unigrams of each emo-
tional category considered. The results reached by
our internal baseline are in Table 4 with the name
EmoSVM.

4https://github.com/fmplaza/WASSA-2018

https://github.com/fmplaza/WASSA-2018


199

Development Test

System M. Prec M. Recall M. F1 M. Prec M. Recall M. F1

Amobee1 - - - - - 71.4%
EmoSVM 49.99% 50.1% 50.02% 49.77% 49.84% 49.69%
EmoLSTM21 56.11% 56.13% 55.96% 58.41% 58.3% 58.30%
NoEMoLSTM21 56.60% 56.46% 56.43% 58.25% 58.17% 58.11%
EmoBiLSTM22 56.42% 56.3% 56.17% 57.92% 57.97% 57.94%
NoEMoBiLSTM26 55.17% 55.24% 55.12% 56.41% 54.7% 54.68%

Table 4: Dev. and Test results reached by our systems and by the best system in the competition. The superscripts
specify the rank of the systems in the competition.

4 Analysis of results

We performed our experiments in the pre-
evaluation phase and evaluation phase, and
we used the official competition metric macro-
averaged F1-score as evaluation measure. More-
over, we computed the Macro Precision, Macro
Recall and Macro F1. This results are shown in
Table 4.

First, we assessed our internal baseline
(EmoSVM), which set a lower bound during
the development or pre-evaluation phase. Since
the number of classes is 6, the performance
of our internal baseline is acceptable, and we
also conclude the its generalization capacity is
acceptable.

The submitted systems, which are based on
deep learning, outperformed EmoSVM with the
development and test data. Regarding the results
reached with the development subset, the mod-
els that did not use emotional external knowledge
reached higher results that those ones that used ex-
ternal knowledge. However, those systems that
used emotional external knowledge (EmoLSTM
and EmoBiLSTM) outperformed the ones that did
not use external knowledge on the evaluation data,
which means that the emotional external knowl-
edge enhance the capacity of generalization of the
classification models, as we expected.

Regarding the performance of LSTM and BiL-
STM, the use of LSTM as sequence encoding
module resulted in a higher capacity of generaliza-
tion, because BiLSMT reached higher results with
the development data, but LSTM reached higher
results with the evaluation data. Therefore, we
conclude that the use of LSTM as sequence en-
coding module and emotional external knowledge
allow to reach good results in the task of emo-

tion classification, which allow us to confirm our
claim.

Finally, the best system of the task (Amobee)
has reached 71.4% of F1-score in the evaluation
phase, since we do not know the evaluation mea-
sures corresponding to the pre-evaluation phase,
in Table 4 they appear as “-”. Our best system
(EmoLSTM) hold the 22 position in the ranking
with 58.3% in F1-score.

5 Conclusions

We described the participation of the SINAI lab
in the IEST shared task of the WASSA Workshop.
We submitted four systems based on deep learn-
ing. The systems mainly differ in the sequence en-
coding module, and the feature vector space. We
compare the performance of LSTM and BiLSTM
as sequence encoding module, and the use of emo-
tional external knowledge. The results show that
the use of LSTM and emotional external knowl-
edge give a higher capacity of generalization to the
classification model.

As future work, we will study how to improve
the use of external knowledge in the task of emo-
tion classification, as well as, how to automatically
select the most relevant features. Hence, we will
study the development of an Attention module in
our models. Furthermore, we will research how to
add relevant linguistic information to our models,
as the influence of negation in the classification of
emotions.
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