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Abstract

This paper describes the approaches used in
HUMIR system for the WASSA-2018 shared
task on the implicit emotion recognition. The
objective of this task is to predict the emotion
expressed by the target word that has been ex-
cluded from the given tweet. We suppose this
task as a word sense disambiguation in which
the target word is considered as a synthetic
word that can express 6 emotions depending
on the context. To predict the correct emo-
tion, we propose a deep neural network model
that uses two BiLSTM networks to represent
the contexts in the left and right sides of the
target word. The BiLSTM outputs achieved
from the left and right contexts are consid-
ered as context-sensitive features. These fea-
tures are used in a feed-forward neural net-
work to predict the target word emotion. Be-
sides this approach, we also combine the BiL-
STM model with lexicon-based and emotion-
based features. Finally, we employ all mod-
els in the final system using Bagging ensemble
method. We achieved macro F-measure value
of 68.8 on the official test set and ranked sixth
out of 30 participants.

1 Introduction

Textual emotion recognition has received increas-
ing attention in the natural language processing
and computational linguistics in the recent decade.
It aims to identify the emotion expressed by the
given text based on two emotion models: cat-
egorical model and dimensional model (Russell
2003). While the categorical one uses discrete
emotional categories such as Ekman’s six basic
emotions (Ekman, 1992), the dimensional one de-
fines emotions in a k-dimensional space; each di-
mension represents an attribute of the emotion
such as valence, arousal and dominance. How-
ever, the objective of the Implicit Emotion Shared
Task (IEST) is to predict the emotion expressed

by the target word excluded from the given tweet
instead of the emotion expressed by the tweet
(Klinger et al., 2018). This task is organized based
on the categorical model over 6 emotion categories
as anger, disgust, fear, joy, sadness, and surprise.

Many approaches have been proposed for tex-
tual emotion recognition task. In general, these
approaches can be grouped into 3 main cate-
gories: rule-based approaches, machine learning
approaches and deep learning approaches. Rule
based approaches exploit linguistic lexical re-
sources like WordNet-Affect (Strapparava et al.,
2004) as well as unsupervised techniques such
as Latent Semantic Analysis (LSA) in rule-based
classifiers (Kim et al., 2010; Lee et al., 2010). The
second group of the approaches employs machine
learning algorithms –such as support vector ma-
chines, naive Bayes, random forest, logistic re-
gression, etc– to classify a text into emotion cat-
egories (Liew and Turtle, 2016). This group of
approaches needs an extensive feature engineering
as well as domain knowledge. Furthermore, in this
group, many of emotion lexicons which are gener-
ated manually or automatically play an important
role in extracting emotion-specific features. For
instance, (Mohammad et al., 2013) proposes an
SVM classifier based on a variety of feature sets
extracted from manually and automatically gener-
ated sentiment lexicons and (Köper et al., 2017)
exploits several lexicon-based features and em-
ploys them in the random forest classifier.

Unlike the previous approach, deep learning
methods do not require any extensive feature en-
gineering and can automatically extract features
from raw text. Long Short-Term Memory (LSTM)
and Convolutional Neural Network (CNN) are the
basis of many approaches in deep learning for
emotion recognition (Abdul-Mageed and Ungar,
2017; Kalchbrenner et al., 2014). The key ob-
jective of the both LSTM and CNN methods is
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to handle the semantic compositionality and to
model the compositional changes on the text se-
mantic according to its syntactic and semantic
structure. However, some methods train CNN and
LSTM models jointly (Stojanovski et al., 2016)
or use a CNN followed by a LSTM (Wang et al.,
2016; Köper et al., 2017).

In this paper, we suppose the target word as a
synthetic ambiguous word that can express 6 emo-
tions depending on the context. To predict the cor-
rect emotion, we propose 7 deep neural network
models that use three context-sensitive, lexicon-
based and emotion-weight features. The influence
of these features is investigated over the proposed
deep neural network models where they are em-
ployed to identify the context-dependent emotion
of the target word.

2 System Description

In this section, we describe our proposed system to
predict the emotion expressed by the target word
which has been excluded from the tweet. In this
system, we employ 6 deep neural network mod-
els along with a multi-layer perceptron (MLP) and
combine them into a single predictive model us-
ing an ensemble method. All the models are ob-
tained from 4 different approaches namely BiL-
STM, Lexicon-BiLSTM, Left-Right BilSTM and
Lexicon-MLP. In these models, three kinds of fea-
tures are extracted from a tweet and feed into a
feed forward neural network: (1) context-sensitive
features that are extracted from hidden state vec-
tors of the BiLSTM network, (2) lexicon-based
features that are obtained from AffectiveTweets
Weka package (Mohammad and Bravo-Marquez,
2017) and (3) emotion-weight features that are
computed by a feature evaluation metric proposed
in (Naderalvojoud et al., 2015). In the following
sections, we will describe our models and explain
how they use these features to predict the emotion
of the target word.

2.1 Feature Sets

The first feature set is obtained from the output of
the Bidirectional Long Short-Term Memory (BiL-
STM) network. BiLSTM is a variant of Recurrent
Neural Network that uses LSTM cells to model a
sequence. It encodes a tweet once from the be-
ginning to end (left-to-right) and once from end
to beginning (right-to-left). As a result, it maps
a tweet to a pair of hidden state vectors. These

vectors are used as context-sensitive features in
our system to learn the semantic composition ef-
fects. The second kind of features are extracted
from different sentiment and emotion lexicons.
We have used 45 lexicon-based features extracted
from the AffactiveTweet of Weka package. The
details of these features can be found in (Moham-
mad and Bravo-Marquez, 2017). We also pro-
pose 6 emotion-weight features (corresponding to
6 emotion classes) as the third feature set. This
feature set indicates the emotional weights of a
certain tweet with respect to emotion classes. We
first calculate the relatedness degree of words to
each emotion class using PNF metric proposed in
(Naderalvojoud et al., 2015) as Eq. 1:

PNF (t, c) = 1 +
P (t|c)− P (t|c̄)
P (t|c) + P (t|c̄)

(1)

In Eq. 1, P (t|c) and P (t|c̄) denotes the oc-
currence probability of term t given and not
given emotion class c, respectively. Thus, each
word in the vocabulary set is represented by a 6-
dimensional emotion-vector. Finally, to calculate
the emotion-weight features for a tweet, we sum
up the emotion vectors of individual words within
the tweet.

2.2 Emotion-Specific Word Embedding

In our system, we have employed 200-
dimensional pre-trained word embeddings which
have been trained on 2B tweets using GloVe
embedding model1 (called as TwitterGloVe). The
distributed representation of words (also called
as word embedding) is the basis of deep learning
methods in NLP applications. Word embeddings
represent words in the compact real value vectors
in which the semantic and syntactic information
of words are embedded into the vector space.
This kind of representation provide us an inherent
notion of relationships between words and we can
detect words that are semantically similar to each
other. However, the words that express opposite
sentiment/emotion may have similar vectors in
this space (Tang et al., 2014; Yu et al., 2017). At
the same time, the lexical variations in the social
media data make a challenge for dealing with
out-of-vocabulary (OOV) words. For example,
almost 3.5K out of 25K words in our vocabulary
set were not matched to any word embedding.

1http://nlp.stanford.edu/data/glove.twitter.27B.zip
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To deal with these two problems, we gener-
ate a simple BiLSTM model (which will be fur-
ther presented in Section 2.4) to predict the emo-
tion of the target word. In this model, we ini-
tialize the weight-matrix of the embedding layer
with pre-trained word embeddings and assign to
all OOV words random vectors created from a
uniform distribution over [-0.25, 0.25]. We tune
the embedding matrix during training. Finally,
we employ the embedding matrix of the models
achieved from epochs 1, 2 and 5 as our emotion-
specific embeddings. We then repeat the same ex-
periment using our emotion-specific embeddings
with 50 epochs, however they are not tuned dur-
ing training. Table 1 shows the results obtained
from 3 emotion-specific embeddings as well as
the TwitterGloVe. From this table, the embed-
dings achieved from the first epoch is the best. As
the embeddings have been trained over the train-
ing data, well-tuned embeddings cause model to
be overfit. Thus, we consider the embeddings
achieved from the first epoch as the final system
embeddings.

Model-WordEmbedding Acc %
BiLSTM-Emotion-Specific-WE-1 66.53
BiLSTM-Emotion-Specific-WE-2 66.30
BiLSTM-Emotion-Specific-WE-5 62.62
BiLSTM-TwitterGloVe 66.35

Table 1: The accuracy of BiLSTM model using 4 word
embeddings on the development set

2.3 Lexicon-based Multi-Layer Perceptron

To evaluate the importance of lexicon-based fea-
tures as well as emotion-weight features, we use a
simple multi-layer perceptron (MLP) model with
3 input, hidden and output layers. Two different
models are trained by using two sets of features.
While a tweet is represented using 45 lexicon-
based features in the first model, they are rep-
resented by adding emotion-weight features into
our prior feature set in the second one. Thus,
the inputs of the first and the second models are
45 and 51-dimensional vectors. We set the num-
ber of hidden units as twice the input and assign
them ReLU activation function. Finally, we ap-
ply dropout with a rate of 0.5 to the output of the
hidden layer and pass them to the output. The
output layer consists of 6 units with sigmoid ac-
tivation function. Table 2 shows the best accuracy

achieved from each of two models on the develop-
ment set. From this table, we observe that adding 6
emotion-weight features to our lexicon-based fea-
tures increases the accuracy from 37.54 to 49.81.
Hence, we select the second model for the final
system and also consider both feature sets in the
other models. In order to make a comparison with
linear models, we also used libSVM with linear
kernel function in this experiment. As seen, MLP
outperforms SVM when using 45 lexicon-based
features.

Model Acc %
libSVM with 45 features 34.71
MLP with 45 features 37.54
MLP with 51 features 49.81

Table 2: The accuracy of SVM and MLP on the devel-
opment set

2.4 Lexicon-Sensitive BiLSTM
In this section, we describe 2 types of deep neural
network models using BiLSTM to predict the tar-
get word emotion. First, we create a simple 4-layer
neural network namely input, embedding, BiLSTM
and output layers. Each tweet is represented se-
quentially using 25K most frequent words. Those
words out of vocabulary are treated as unknown
word (UNK). However, the target word is not con-
sidered as UNK. In all tweets, the target word is
supposed as a single particular word that can ex-
press all of the 6 emotions. In this model, pre-
trained emotion-specific word vectors (described
in Section 2.2) are used in the embedding layer.
Here, a tweet which is represented as a sequence
of word vectors is given to the BiLSTM layer
in which the dimension of the hidden vectors in
LSTM is 256. In order to avoid overfitting, we
apply dropout (Srivastava et al., 2014) with a rate
of 0.5 to the input of the BiLSTM layer. Finally,
the output layer with 6 softmax units predicts the
emotion of the target word.

In the second model, the lexicon-based and
emotion-weight features are fed into the prior BiL-
STM model. The output of the BiLSTM layer
is concatenated with 51-dimensional feature vec-
tor described in Section 2.3. Here, we actually
employ all the three kinds of feature sets stated
in Section 2.1 and predict the emotion of the tar-
get word by using these features through a feed
forward neural network. We again apply dropout
with a rate of 0.4 to the input of the feed forward



185

Seq. Input (79)

Embedding Layer     
(79-200)

BLSTM Layer (512)

Output (Softmax Layer) (6)

Lexicon+emotion-weight
Input Features (51)

Concat. layer (563) with dropout 0.4

Figure 1: The architecture of Lexicon-BiLSTM ap-
proach

neural network. Figure 1 depicts the overall archi-
tecture of the proposed model. This approach is
called as Lexicon-BiLSTM in our experiments.

2.5 Left-Right Context-Sensitive BiLSTM

In the three previous approaches, we actually clas-
sified each tweet according to the emotion of the
target word. However, in the fourth approach, we
suppose the target word as a synthetic ambiguous
word that can express 6 emotions depending on the
context. Thus, our objective is to disambiguate the
emotion expressed by this synthetic word in the
given context (tweet). To this end, we consider
the left and the right sides of the target word sep-
arately. We extract two semantic vectors from the
context of the target word by applying BiLSTM
model to its left and right sides. Hence, we call
this approach as Left-Right context-sensitive BiL-
STM (LR-BiLSTM). This exactly corresponds to
the output of the BiLSTM layer in the two pre-
vious models when only left or right context of
the target word is considered as input. These two
vectors together represent the semantic signature
of the context in which target word has been oc-
curred. By relying on these two vectors, we create
a feed forward neural network to predict the emo-
tion of the target word. In this network, the con-
catenation of two semantic vectors are considered
as input. The input is given to a hidden layer in
which the number of units is the half of the input
length. ReLU activation function is used in the
hidden layer as well as two dropouts over its in-
put and output with rates of 0.5, 0.3 respectively.
Finally, the output layer using 6 softmax units pre-
dicts the emotion of the target word given its left
and right contexts. Figure 2 summarizes this ap-
proach and shows the architecture of this model.

Left Seq.Input (61)

Shared Embedding Layer (79-200)

Left BLSTM (512)

Output (Softmax Layer) (6)

Right Seq.Input (69)

Right BLSTM (512)

Hidden Layer (ReLU) (512) with dropout 0.3

Concat. layer (1024) with dropout 0.5

Figure 2: The architecture of LR-BiLSTM approach

2.6 Ensemble Approach-Final System

We proposed 4 different approaches in three pre-
vious subsections. While 2 approaches leverage
lexicon-based and emotion-weight features, two
others only use hidden state vectors of the BiL-
STM model. In order to use the advantages of all
proposed models in the final system, we combine
them using Bagging ensemble method (Breiman,
1996) to obtain an aggregated predictor. In this
method, we take an average of the outputs of the
proposed models and make a vote when predicting
the emotion of the target word. Here, the output of
each model is a 6-dimensional vector (one output
per class). Thus, N models generate a matrix M
with the shape of N × 6. The output of the en-
semble method is a 6-dimensional vector which is
obtained by taking average of each column of ma-
trix M. The class voting is done according to the
maximum value of the result vector.

For the final system, we create 7 models based
on 4 approaches proposed in Sections 2.3, 2.4
and 2.5: Four models are generated from LR-
BiLSTM approach using different settings and
three models are generated from each of Lexicon-
MLP, BiLSTM and Lexicon-BiLSTM approaches.
The four models of the LR-BiLSTM approach is
generated by the 4 following settings: (1) with-
out hidden layer, with GloVeTwitter embedding
(called as LR-BiLSTM-1); (2) without hidden
layer, with emotion-specific embedding (called
as LR-BiLSTM-2); (3) hidden layer with 300
units and emotion-specific embedding (called as
LR-BiLSTM-3); (4) hidden layer with 512 units
and emotion-specific embedding (called as LR-
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BiLSTM-4). The architecture of LR-BiLSTM-4
is exactly the same as Figure 2. We use all these
models in our final system since all of them in-
creases the overall accuracy. For example, the
system accuracy decreases to 67.4 without using
Lexicon-MLP model.

3 Implementation Details

We used Keras library2 with TensorFlow back-
end to implement all the proposed models. Be-
fore training, we removed all urls, usernames
and newlines inside a tweet and employed NLTK
toolkit3 to tokenize tweets. All hyperparameters
were tuned based on the development set with 50
epochs. We trained all models over training data
provided by the shared task organizer (Klinger
et al., 2018) and selected the best model based on
the accuracy achieved from the development set.
Table 3 shows the best results obtained by each of
the proposed models.

Model Dev-Macro F1 Dev-Acc
Lex-BiLSTM 66.5 66.68
LR-BiLSTM-1 65.4 65.49
LR-BiLSTM-2 65.7 65.81
LR-BiLSTM-3 66.8 66.94
LR-BiLSTM-4 67.3 67.38
BiLSTM 66.4 66.53
Lex-MLP 49.7 49.81
Final-system 67.9 68.02

Table 3: The best results on the development set

4 Empirical Evaluation and Discussion

We evaluate the proposed models on the shared
task official test set. Table 4 shows the results ac-
cording to the shared task evaluation measures –
micro and macro averaged F-measure– over all 6
emotion classes. According to the results, the pro-
posed Left-Right context-sensitive BiLSTM ap-
proach (i.e. LR-BiLSTM-3 and LR-BiLSTM-4)
achieves the best official score of 67.8 among
other individual models. The macro F1-score in-
creases to 68.6 when using all models in our en-
semble system.

According to the macro-F1 score achieved
from BiLSTM and Lexicon-BiLSTM models, we
can observe that two sets of lexicon-based and

2https://keras.io/
3https://www.nltk.org/

emotion-weight features improve the performance
of BiLSTM model. However, this growth is not
seen in all classes. For example, in two joy
and sad classes, BiLSTM model performs better
than Lexicon-BiLSTM. In addition, the macro and
micro averaged F-measure values obtained from
the Lexicon-MLP (see Table 4) indicate that the
lexicon-based and emotion-weight features are ef-
fective on less than 50% of test instances. This can
raise two facts about the test set (1) a small number
of affective clue words are used in the tweets (2)
the syntactic structure of the context changes the
emotions expressed by the affective clue words in
the tweets. This issue will be further discussed in
Section 4.1.

Another important finding is that all models
give a weak performance on the anger and sur-
prise emotions. The confusion matrix shown in
Table 5 indicates that our final system predicts
tweets as anger instead of surprise in 402 cases
and vice versa in 519 cases. These are the highest
False Negative (FN) errors with respect to anger
and surprise emotion classes and show that these
two emotions occur in similar contexts. It means
that the senses expressed by these two emotion
classes are much similar to each other in some
tweets in which our system cannot distinguish
them from each other. Moreover, from Table 5,
anger and surprise emotions constitute the high-
est portion of the FN errors in the other emotion
classes. They are bold in Table 5.

4.1 Error Analysis
We analyze the errors of the final system from two
different aspects. In the first one, none of the mod-
els predict the correct emotion, whereas in the sec-
ond one at least one model predict correctly. Here,
we give two examples for each case, respectively:

• Ex.1 “I don’t understand why everyone’s
[#TRIGGERWORD#] when Miley shows
her body she’s comfortable so why should it
matter to you?”

• Ex.2 “it is quite [#TRIGGERWORD#] that
you think that is awesome.”

• Ex.3 “Cold coffee is really only [#TRIG-
GERWORD#] when you expect it to be hot.
Otherwise, it’s just as good.”

• Ex.4 “@USERNAME making me [#TRIG-
GERWORD#] because she’s better than me
at everything”
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Models F1-score over emotion classes Mic-avg Mac-avg
surp. disg. sad fear anger joy (official)

Lex-BiLSTM 63.7 67.5 64.9 70.3 60.5 76.2 67.4 67.2
LR-BiLSTM-1 61.8 65.5 63.6 68.2 58.6 75.1 65.6 65.5
LR-BiLSTM-2 61.7 66.3 62.8 68.9 59.1 74.9 65.8 65.6
LR-BiLSTM-3 63.8 68.1 66.3 71.0 60.2 77.3 68.0 67.8
LR-BiLSTM-4 64.2 68.3 65.6 70.8 60.9 76.9 67.9 67.8
BiLSTM 63.6 67.0 65.2 69.5 59.5 76.3 67.0 66.9
Lex-MLP 42.7 53.5 45.4 50.8 43.2 61.1 49.6 49.4
Final-system 64.9 69.0 66.4 71.6 62.3 77.6 68.8 68.6

Table 4: The performance of all models on the official test set

Predict
Real surp. disg. sad fear anger joy
surp. 3310 367 183 303 402 227
disg. 554 3246 312 158 380 144
sad 236 384 2762 207 430 321
fear 494 177 192 3337 368 223
anger 519 336 297 326 3033 283
joy 289 103 228 203 336 4087

Table 5: Confusion matrix for final system

Table 6 indicates the predictions of the pro-
posed models for the four above examples along
with their true emotion labels. From the confu-
sion matrix (Table 5) the biggest number of er-
rors occurs when our system predict a tweet as
surprise, whereas the true emotion is disgust (554
cases). Hence, the three of above examples were
selected from the disgust class and last one was
selected from sad. In Ex.1, it is observed that
most of the models predict the emotion of the tar-
get word as surprise. However, Lexicon-MLP and
LR-BiLSTM-2 predict it as joy and anger, respec-
tively. Since Lexicon-MLP only use the lexicon-
based and emotion-weight features, it cannot pre-
dict correctly when the emotion of the target word
depends on the syntactic and semantic structures
of the tweet. Thus, it predicts an opposite emotion
(i.e. joy) for Ex.1. Moreover, you can see an am-
biguity among surprise, anger and disgust in this
example. In Ex.2, there is an irony that makes dif-
ficult the recognition of the target word emotion.
Although the Ex.3 is similar to Ex.1, our context-
sensitive BiLSTM approach (LR-BiLSTM-4) pre-
dicts the correct emotion. In Ex.4, you can see a
challenge between anger and sad emotions. All
the proposed models predict the emotion of the
target word as anger except for LR-BiLSTM-3

which correctly predicts the target word emotion
as sad. Here, we believe that a mixed emotion is
inferred from the given context in Ex.4. However,
the length of tweets is limited, thus it makes diffi-
cult the disambiguation task for the implicit emo-
tion recognition.

Predictor Ex.1 Ex.2 Ex.3 Ex.4
Lex-BiLSM surp. sad surp. anger
LR-BiLSTM-1 surp. surp. surp. anger
LR-BiLSTM-2 anger surp. disg. anger
LR-BiLSTM-3 surp. surp. disg. sad
LR-BiLSTM-4 surp. sad disg. anger
BiLSTM surp. surp. surp. anger
Lex-MLP joy surp. surp. anger
Final-sys surp. surp. surp. anger
True emotion disg. disg. disg. sad

Table 6: The predictions of models on 4 samples of
tweets in the test set

5 Conclusion

In this paper, we proposed 6 deep neural network
models as well as a MLP based on 3 kinds of
feature sets, lexicon-based, emotion-weight and
context-sensitive. The combination of all these
models in our ensemble system achieved the best
result on the official test set of IEST shared task.
However, the results indicate that the model ob-
tained from our proposed LR-BiLSTM approach
outperforms the other individual models on the
implicit emotion recognition task. Our results also
showed that the Lexicon-BiLSTM approach per-
forms better than BiLSTM by relying on the both
lexicon-based and emotion-weight features.
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