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Abstract

Sentiment analysis models often rely on
training data that is several years old. In
this paper, we show that lexical features
change polarity over time, leading to de-
grading performance. This effect is par-
ticularly strong in sparse models relying
only on highly predictive features. Using
predictive feature selection, we are able to
significantly improve the accuracy of such
models over time.

1 Introduction

Sentiment analysis models often rely on data that
is several years old. Such data, e.g., product
reviews, continuously undergo shifts, leading to
changes in term frequency, for example. We also
observe the emergence of novel expressions, as
well as the amelioration and pejoration of words
(Cook and Stevenson, 2010). Such changes are
typically studied over decades or centuries; how-
ever, we hypothesize that change is continuous,
and small changes can be detected over shorter
time spans (years), and that their cumulation can
influence the quality of sentiment analysis mod-
els. In this paper, we analyze temporal polarity
changes of individual features using product re-
views data. Additionally, we show that predictive
feature selection, trying to counteract shifts in po-
larity, significantly improves model accuracy over
time.

Contributions First, we show deterioration of
sentiment analysis model performance over time.
We propose rank-based metrics for detecting po-
larity shifts and identify several examples of lexi-
cal features that exhibit temporal drift in our data.
Finally, we use our findings to design a predictive
feature selection scheme, based on expected polar-
ity changes, and show that models using predictive

Sample positive review:
”Grand daughters really like this movie. Good
clean movie for all ages. Would recommend for

everyone. Good horse movie for girls.”

Sample negative review:
”Not what I expected. Very cheap and chintzy

looking for the price. Certainly did not look like a
wallet. Very disappointed in the quality.”

Figure 1: Examples of reviews

feature selection perform significantly better than
models that simply rely on the most predictive fea-
tures across the training data without estimating
temporal shifts.

Training data Model accuracy

Runs 1 2 3 Mean

2001-2004 0.858 0.855 0.863 0.859
2008-2011 0.877 0.873 0.878 0.877

Table 1: Classifier accuracy deterioration when
using older and newer training sets. Models were
trained using random independent data subsets
from periods 2001-2004 or 2008-2011 and tested
using random independent subsets from 2012-
2014. Subset size: K = 40, 000 with 80/20 split.

2 Sentiment analysis models get worse
over time

One way we may observe polarity shifts over time
is when we see models trained on older data per-
form worse than models trained on more recent
data. Or, equivalently, by seeing performance
degradations over time.

The Amazon product review data, which we
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will use in our experiments, is a collection of
user product reviews and meta-data crawled from
Amazon.com, consisting of 82 million reviews
and spanning May 1996 until July 2014 (He and
McAuley, 2016; McAuley et al., 2015). Previous
work already preprocessed the dataset, removing
duplicates and boiler plates. We sample large sub-
samples of reviews per year from the original data
set (K = 40000). Only years 2001 to 2014 were
used in this project, as the samples from earlier
years were of insufficient size.

Following previous work (Blitzer et al., 2007),
we map the user-provided sentiment annotations,
ranging from 1 star to 5 stars, into binary labels,
where 3 stars and less are replaced by negative
class labels, indicating negative or critical review,
and 4 or more stars were considered positive re-
views and associated with a positive class label.

Experiments with off-the-shelf classifiers In
our first set of experiments, we train logistic re-
gression models on data from 2001-2004 and on
data from 2008-2011, and test their accuracy on
random test samples from years 2012 to 2014. Our
results show that models trained on older data per-
formed noticeably worse than models trained on
data from years 2008-2011 (see Table 1). The
mean accuracies, obtained by averaging accura-
cies of models trained on three independently se-
lected samples, were 0.859 for models trained on
reviews from 2001-2004, and 0.877 for models
trained on reviews from 2008-2011, i.e., an aver-
age absolute 2% decrease in accuracy.

This model deterioration over time could be at-
tributed to a decrease in vocabulary overlap – as
measured by, for example, the Jaccard similarity
coefficient over unigrams and bigrams. To mea-
sure possible influence of this factor, we moni-
tor the Jaccard index of unigram and bigram fea-
tures that occur at least 5 times in the data sets:
The average Jaccard indices between training and
test data were 0.112 for 2001-2004 and 0.154 for
2008-2011.1 Since the difference is minor, we hy-
pothesize that temporal shifts in polarity are re-
sponsible for at least some of the drops in model
performance over time. We confirm this hypoth-
esis below by monitoring performance over time
with a fixed feature set (fixing also the Jaccard in-
dex).

1The relatively low values are due to training and test sets
being of different sizes, 32000 and 8000 respectively.

2.1 Experiments with a fixed feature set

The purpose of our second set of experiments is
again to see how accuracy changesover time with
models being trained on ’older’ and ’newer’ data
subsets, but on identical feature sets. Similar to
the above experiments, years 2001 to 2004 were
selected as our older training data subsets, and
years 2008 to 2011 were selected as our newer
data. We again sample 40, 000 reviews per year
and create 80/20 train-test splits. The experiment
was repeated three times with new samples to ob-
tain the average accuracies seen below in Figure 2.
The fixed feature set used was obtained by select-
ing the 5,000 most frequent unigrams and bigrams
present in the training data for year 2001.We use
simple count vectors to represent the reviews.

The deterioration of performance over time is
clearly visible from the plot in Figure 2, by look-
ing at the gap between the red and the green scatter
points. We believe these results support our hy-
pothesis that over time, the polarities of individ-
ual features may change, and the cumulation of
such changes significantly influences performance
of sentiment classifiers.

Figure 2: Each dot represents the average accuracy
of the model trained on data from year x, where
y ∈ [2001, .., 2004, 2008, .., 2011], and tested on
year x, where x ∈ [2012, 2013, 2014]. All possi-
ble combinations were run 3 times with different
random yearly subsets to compute the average ac-
curacies presented in the figure.

3 Polarity shifts

In this section, we look at individual features in or-
der to detect examples of polarity shifts, i.e., ame-
lioration or pejoration over time. We do so by an-
alyzing the weights of classifiers trained on differ-
ent years. As in our previous experiments, we use



67

logistic regression classifiers trained with `1 regu-
larization penalties. For each year in the interval
2001 to 2014, we training a classifier on a training
set of 32,000 randomly sampled reviews, and we
then inspect the coefficients associated with par-
ticular lexical features. These values measure the
impact of lexical features on the final predictions
of the models; high coefficients associate lexical
features with positive sentiment, and low (neg-
ative) coefficients associate lexical features with
high negative sentiment.

Logistic regression coefficients are not compa-
rable across models, though, because of different
scales, and one option would therefore be to use
Min-Max scaling to transform coefficient values
to the interval [1, 0] for positive values and [0,−1]
for negative values. We use such scaling later in
the paper; however, for robustly detecting polarity
shifts, we instead propose using feature polarity
rankings. Such ranking is done by ordering fea-
tures by their respective coefficients and assign-
ing a rank to each feature. The highest coeffi-
cient is rank 1, the second highest rank 2, and so
on. This allows us to make direct comparisons be-
tween several models trained on different subsets
of data.

Year Positive feature polarity rank

’highly’ ’great’ ’incredible’
2001 1 11 9
2002 4 11 10
2003 4 6 57
2004 1 6 40
2005 3 4 50
2006 3 1 173
2007 6 1 137
2008 3 2 126

Table 2: Example feature ranks obtained by train-
ing a logistic regression classifier on 32,000 re-
views from each year.

Due to the exponential distribution of coeffi-
cient values, as seen in Figure 3, a cap on maxi-
mal rank is placed such that max{rank} ≤ 3 ∗ f ,
where f is the number of positive (or negative)
features. If ranks would be uncapped, even the
slightest decrease in coefficient value would dis-
proportionately increase feature ranks. As a re-
sult, rank and rank averages (used in predictive
feature selection) would be much more influenced

by randomness of logistic regression, and hence,
less interpretable. We argue that shifts in polarity
are more precisely measured this way.

Figure 3: Distribution of coefficient values of 100
most positive and negative features obtained from
models trained on data subsets from years 2001 to
2014. Coefficient values were scaled using Min-
Max.

Using the feature polarity ranking described
above, we analyze what shifts occur in individ-
ual unigrams and bigrams. To do so, we again
use random data subsets of 40, 000 reviews and
80/20 splits. For each year spanning 2001 to 2014,
we again generate three independent subsets to al-
low for more robust results and less randomness
caused by logistic regression. Each subset is used
to train a classifier, and we compute the polarity
ranks of all lexical features.

Once we have established the ranks of lexical
features, we use linear regression to estimate the
degree to which polarity has changed. Using the
p value of such a linear fit, we filter out non-
significant changes where p > 0.05. See Figure
4 for examples of significant polarity shifts.

4 Models that are robust over time

Based on our previous findings that sentiment
analysis models deteriorate over time, as training
data sets get older, combined with observing sig-
nificant changes in the polarity of lexical features,
we hypothesize, that predictive feature selection
can, to some extent, counteract the negative effects
of polarity shift. In our final set of experiments, we
perform predictive feature selection using polarity
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Figure 4: Figure shows a sample of 3 bigrams and
2 unigrams, where significant degradation in pos-
itivity was observed. Each color represents an in-
dependently selected collection of random yearly
subsets of reviews.

rank predictions to select features based on their
expected polarity.

We use two methods for predictive feature se-
lection, both relying on the predicted rate (or
slope) of change in polarity and a metric of signif-
icance that serves as a filtering mechanism. The
methods used are:

• Difference of means: This method uses two
mean polarity ranks - initial and final, to de-
termine rate of change in feature polarity, and

whether the change is significant. Initial and
final mean ranks are calculated using polarity
ranks from individual years (i.e. how feature
ranked in polarity as determined by model
trained on data from that year). In our case,
the training data spans 2001-2008 and differ-
ence of means uses years 2001-2003 for the
initial mean rank and 2006-2008 for the fi-
nal mean rank. Furthermore, each feature to
be included has to pass the following signifi-
cance test:

|mean(06−08)−mean(01−03)
mean(01−03) | > 0.05

The exact value can optionally be determined
by experimentation, however in this experi-
ment the significance threshold was set to 5%
of the initial rank.

• Linear regression: We use linear regression
to find the trend line of the feature polarity
rank and use that in the decision process. As
in previous method, yearly polarity ranks are
used, however, instead of using only initial or
final years we use the whole span of training
data to obtain a linear fit. The p-value calcu-
lated during the fit is used as the significance
threshold, where p < 0.05, for the feature
polarity shift to be considered significant.

Using the methods described above, if signifi-
cant temporal shift in polarity occurs, we obtain
an expected rank for each such feature. This infor-
mation is then used in predictive feature selection
that is identical with both methods. First, a feature
set of fixed size K (e.g. K positive and K negative
features) is created by looking at features that have
the best average rank. Additionally, an extended
supplement feature set is made of features that are
in the next best category (i.e. mean rank K + 1
to mean rank 3K). This next best feature set is
then analyzed by one of the predictive methods de-
scribed above, and expected rank is determined for
features with significant temporal polarity shift.
The results of such analysis are ordered from the
most polar expected rank to the least polar, while
any result where the expected rank is larger than
the fixed size K is ignored. The next step is to
analyze the K-sized original feature set using the
same method. Results are then ordered in inverse
order, so that features expected to be least polar are
first, while also, any feature that is expected to re-
main polar (i.e. feature rank < K) is ignored.
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This new smaller set of features is then read from
least polar expected rank, and while there is a fea-
ture in the next best set we make a switch. Simply
put, this procedure eliminates features predicted to
lose polarity and features predicted to gain most
polarity are included instead. Experiments show
that number of features switched changes based
on parameters (i.e. p-values, size of K, etc.) from
around 10% of the feature set for K = 100 to 30%
for K = 300.

4.1 Experiments

In the first experiment with temporally robust
models, we used the difference of means to imple-
ment predictive feature selection. The data used to
create baseline accuracy was a random subset of R
reviews, where, again, R = 40, 000 reviews were
selected uniformly at random from years 2001 to
2008. After using 80/20 splits, a subset of 32,000
reviews was used to train a logistic regression clas-
sifier, and following the training, K most negative
and K most positive features were selected. In
contrast to the baseline model, the temporally ro-
bust model used the difference of means method
to select K negative and K positive features using
predictive feature selection described in the sec-
tion above. This setup was run 3 times with dif-
ferent random subsets of data for both the baseline
and the temporally robust model. The result ob-
tained from the runs can be seen below in Figure
5 and Table 3.

Average model accuracies using 200 features

Test years Baseline Temp. robust

2010 0.828 0.834
2011 0.821 0.825
2012 0.834 0.839
2013 0.845 0.847
2014 0.845 0.85

Table 3: Each value in the table represents an av-
erage accuracy of either a baseline or a temporally
robust model tested on a data set of 8,000 reviews
from the designated year. Each average is made
over 3 experimental runs using different random
subsets as training and test data (with no overlap
between training and test). Every model used 100
positive and 100 negative features (i.e. K = 100).
The predictive feature selection was implemented
using the difference of means method.

Figure 5: The figure contains results from both the
baseline and the temporally robust models trained
with 200 features on 32,000 reviews. Upper part
of the figure depicts model accuracies for all tested
years and all 3 experimental runs; the lower part
shows the average accuracy for each tested year.
The difference of means method was used for pre-
dictive feature selection.

In this particular experiment K = 100 (i.e. 200
features in total), however, identical experiments
were run also with K = 200 and K = 400 (see
Figure 6). The results indicate that with the num-
ber of features limited to 200, the predictive fea-
ture selection on average outperforms our base-
line model by a significant margin across all tested
years, i.e. 2010 to 2014.
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Figure 6: The figure contains results from both the
baseline and the temporally robust models trained
with 800 features on 32,000 reviews. Upper part
of the figure depicts model accuracies for all tested
years and all 3 experimental runs; the lower part
shows the average accuracy for each tested year.
The difference of means method was used for the
predictive feature selection.

As can be seen above in Figure 6, significantly
increased performance is present even in models
that use increased number of features, i.e. from
K = 100 to K = 400. Such a result suggests that
predictive feature selection increases performance
even when more features are used, and not only in
the extremely sparse model with 200 features.

Figure 7: The figure contains results from both the
baseline and the temporally robust models trained
with 800 features on 32,000 reviews. Upper part
of the figure depicts model accuracies for all tested
years and all 3 experimental runs; the lower part
shows the average accuracy for each tested year.
The linear regression method with p-value filtering
was used for the predictive feature selection.

Furthermore, additional experiment with an
identical experimental setup (K = 400) was per-
formed; however, the predictive feature selection
was implemented using linear regression method
with p-value filter, as described above in the pa-
per. Results, seen in Figure 7, clearly show that
this method also performs better than the baseline
approach consisting of selecting only most polar
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features based on training data. In general, both
methods - difference of means and linear regres-
sion with p-value filter - achieve a similar perfor-
mance, which is consistently better than our base-
line model for all tested years and all tested num-
bers of features, i.e. K ∈ [100, 200, 400].

5 Conclusion

Large data sets for sentiment analysis are costly
to create and are quite commonly a few years old.
The performance of classifiers trained on such data
sets decreases over time, as the interval between
creations of test and training sets expands. This
is, in part, due to a cumulative effect of individual
lexical features going through amelioration, or pe-
joration, which significantly changes their polarity
over time. We call this effect for temporal polarity
shift.

To counter effects of these shifts, and improve
the overall performance of a classifier, we devised
two methods that allow us to predict the expected
feature polarity. Using these methods, we imple-
mented predictive feature selection, an approach,
especially beneficial for sparse models, that se-
lects a better feature set for the classifier using
the expected polarity, rather than using the current
most polar features in the training data. Tempo-
rally robust models, i.e., the models using predic-
tive feature selection, consistently achieve better
accuracy than the baseline models, which suggest
that negative effects of temporal polarity shifts can
be countered to some degree.
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