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Abstract
We present a general approach with reinforce-
ment learning (RL) to approximate dynamic
oracles for transition systems where exact dy-
namic oracles are difficult to derive. We
treat oracle parsing as a reinforcement learning
problem, design the reward function inspired
by the classical dynamic oracle, and use Deep
Q-Learning (DQN) techniques to train the or-
acle with gold trees as features. The combi-
nation of a priori knowledge and data-driven
methods enables an efficient dynamic oracle,
which improves the parser performance over
static oracles in several transition systems.

1 Introduction

Greedy transition-based dependency parsers
trained with static oracles are very efficient but
suffer from the error propagation problem. Gold-
berg and Nivre (2012, 2013) laid the foundation of
dynamic oracles to train the parser with imitation
learning methods to alleviate the problem. How-
ever, efficient dynamic oracles have mostly been
designed for arc-decomposable transition systems
which are usually projective. Gómez-Rodrı́guez
et al. (2014) designed a non-projective dynamic
oracle but runs in O(n8). Gómez-Rodrı́guez and
Fernández-González (2015) proposed an efficient
dynamic oracle for the non-projective Covington
system (Covington, 2001; Nivre, 2008), but the
system itself has quadratic worst-case complexity.

Instead of designing the oracles, Straka et al.
(2015) applied the imitation learning approach
(Daumé et al., 2009) by rolling out with the parser
to estimate the cost of each action. Le and Fokkens
(2017) took the reinforcement learning approach
(Maes et al., 2009) by directly optimizing the
parser towards the reward (i.e., the correct arcs)
instead of the the correct action, thus no oracle is
required. Both approaches circumvent the diffi-
culty in designing the oracle cost function by us-

ing the parser to (1) explore the cost of each action,
and (2) explore erroneous states to alleviate error
propagation.

However, letting the parser explore for both pur-
poses is inefficient and difficult to converge. For
this reason, we propose to separate the two types
of exploration: (1) the oracle explores the action
space to learn the action cost with reinforcement
learning, and (2) the parser explores the state space
to learn from the oracle with imitation learning.

The objective of the oracle is to prevent further
structure errors given a potentially erroneous state.
We design the reward function to approximately
reflect the number of unreachable gold arcs caused
by the action, and let the model learn the actual
cost from data. We use DQN (Mnih et al., 2013)
with several extensions to train an Approximate
Dynamic Oracle (ADO), which uses the gold tree
as features and estimates the cost of each action in
terms of potential attachment errors. We then use
the oracle to train a parser with imitation learning
methods following Goldberg and Nivre (2013).

A major difference between our ADO and the
search-based or RL-based parser is that our oracle
uses the gold tree as features in contrast to the lex-
ical features of the parser, which results in a much
simpler model solving a much simpler task. Fur-
thermore, we only need to train one oracle for all
treebanks, which is much more efficient.

We experiment with several transition systems,
and show that training the parser with ADO per-
forms better than training with static oracles in
most cases, and on a par with the exact dynamic
oracle if available. We also conduct an analysis of
the oracle’s robustness against error propagation
for further investigation and improvement.

Our work provides an initial attempt to combine
the advantages of reinforcement learning and imi-
tation learning for structured prediction in the case
of dependency parsing.
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2 Approximate Dynamic Oracle

We treat oracle parsing as a deterministic Markov
Decision Process (Maes et al., 2009), where a state
corresponds to a parsing configuration with the
gold tree known. The tokens are represented only
by their positions in the stack or buffer, i.e., with-
out lexical information. Unlike normal parsing,
the initial state for the oracle can be any possible
state in the entire state space, and the objective of
the oracle is to minimize further structure errors,
which we incorporate into the reward function.

2.1 Transition Systems and Reward Function
We define a unified reward function for the four
transition systems that we experiment with: Arc-
Standard (Yamada and Matsumoto, 2003; Nivre,
2004), Attardi’s system with gap-degree of 1 (At-
tardi, 2006; Kuhlmann and Nivre, 2006), Arc-
Standard with the swap transition (Nivre, 2009),
and Arc-Hybrid (Kuhlmann et al., 2011). We de-
note them as STANDARD, ATTARDI, SWAP, and
HYBRID, respectively. We formalize the actions
in these systems in Appendix A.

The reward function approximates the arc
reachability property as in Goldberg and Nivre
(2013). Concretely, when an arc of head-
dependent pair 〈h,d〉 is introduced, there are two
cases of unreachable arcs: (1) if a pending token
h′ (h′ 6= h) is the gold head of d, then 〈h′,d〉 is
unreachable; (2) if a pending token d′ whose gold
head is d, then 〈d,d′〉 is unreachable. If an attach-
ment action does not immediately introduce un-
reachable arcs, we consider it correct.

The main reward for an attachment action is the
negative count of immediate unreachable arcs it
introduces, which sums up to the total attachment
errors in the global view. We also incorporate
some heuristics in the reward function, so that the
swap action and non-projective (Attardi) attach-
ments are slightly discouraged. Finally, we give a
positive reward to a correct attachment to prevent
the oracle from unnecessarily postponing attach-
ment decisions. The exact reward values are mod-
estly tuned in the preliminary experiments, and the
reward function is defined as follows:

r =



−0.5, if action is swap
0, if action is shift
−n, if n unreachable arcs are introduced
0.5, if attachment is correct but non-projective
1, if attachment is correct and projective

Although we only define the reward function for
the four transition systems here, it can be easily
extended for other systems by following the gen-
eral principle: (1) reflect the number of unreach-
able arcs; (2) identify the unreachable arcs as early
as possible; (3) reward correct attachment; (4) add
system-specific heuristics.

Also note that the present reward function is not
necessarily optimal. E.g., in the HYBRID system,
a shift could also cause an unreachable arc, which
is considered in the exact dynamic oracle by Gold-
berg and Nivre (2013), while the ADO can only
observe the loss in later steps. We intentionally
do not incorporate this knowledge into the reward
function in order to demonstrate that the ADO is
able to learn from delayed feedback information,
which is necessary in most systems other than HY-
BRID. We elaborate on the comparison to the exact
dynamic oracle in Section 4.

2.2 Feature Extraction and DQN Model
In contrast to the rich lexicalized features for the
parser, we use a very simple feature set for the ora-
cle. We use binary features to indicate the position
of the gold head of the first 10 tokens in the stack
and in the buffer. We also encode whether the gold
head is already lost and whether the token has col-
lected all its pending gold dependents. Addition-
ally, we encode the 5 previous actions leading to
this state, as well as all valid actions in this state.

We use the Deep Q-Network (DQN) to model
the oracle, where the input is the aforementioned
binary features from a state, and the output is the
estimated values for each action in this state. The
training objective of the basic DQN is to minimize
the expected Temporal Difference (TD) loss:

LT D = Es,a∼π [(r+ γ max
a′

Q(a′|s′)−Q(a|s))2]

where π is the policy given the value function Q,
which assigns a score for each action, s is the cur-
rent state, a is the performed action, r is the re-
ward, γ is the discount factor, s′ is the next state,
and a′ is the optimal action in state s′.

We apply several techniques to improve the sta-
bility of the DQN, including the averaged DQN
(Anschel et al., 2016) to reduce variance, the du-
eling network (Wang et al., 2016) to decouple the
estimation of state value and action value, and pri-
oritized experience replay (Schaul et al., 2015) to
increase the efficiency of samples.
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2.3 Sampling Oracle Training Instances
Our goal is learning to handle erroneous states,
so we need to sample such instances during train-
ing. Concretely, for every state in the sampling
process, apart from following the ε-greedy pol-
icy (i.e., select random action with ε probability),
we fork the path with certain probability by tak-
ing a valid random action to simulate the mistake
by the parser. We treat each forked path as a new
episode starting from the state after the forking ac-
tion. Also, to increase sample efficiency, we only
take the first N states in each episode, as illustrated
in Figure 1.

SH SH SH LA

RA SH SW LA SH

LA SH SH RA SHRA
SH LA SH SW

SH RA SH SH LA
SW SH LA SH RA

Figure 1: An illustration of the sampled episodes with N =
5, where light nodes represent the original path, dark nodes
represent the forked paths, and double circles represent the
end of the sampled path.

2.4 Cost-Sensitive Parser Training
Since the DQN estimates the cost for each ac-
tion, we can thus apply cost-sensitive training with
multi-margin loss (Edunov et al., 2017) for the
parser instead of negative log-likelihood or hinge
loss. Concretely, we enforce the margin of the
parser scores between the correct action and ev-
ery other action to be larger than the difference
between the oracle scores of these two actions:

L = ∑
a∈A

max(0,P(a|s)−P(a∗|s)+Q(a∗|s)−Q(a|s))

where A is the set of valid actions, P(·|s) is the
parser score, Q(·|s) is the oracle score, and a∗ is
the optimal action according to the oracle.

Cost-sensitive training is similar to the non-
deterministic oracle (Goldberg and Nivre, 2013),
since actions with similar oracle scores need to
maintain a smaller margin, thus allowing spurious
ambiguity. On the other hand, it also penalizes the
actions with larger cost more heavily, thus focus-
ing the training on the more important actions.

3 Experiments

3.1 Data and Settings
We conduct our experiments on the 55 big tree-
banks from the CoNLL 2017 shared task (Zeman

et al., 2017), referred to by their treebank codes,
e.g., grc for Ancient Greek. For easier replica-
bility, we use the predicted segmentation, part-of-
speech tags and morphological features by UD-
Pipe (Straka et al., 2016), provided in the shared
task, and evaluate on Labeled Attachment Score
(LAS) with the official evaluation script. We also
provide the parsing results by UDPipe as a base-
line, which incorporates the search-based oracle
for non-projective parsing (Straka et al., 2015).

We implement the parser architecture with bidi-
rectional LSTM following Kiperwasser and Gold-
berg (2016) with the minimal feature set, namely
three tokens in the stack and one token in the
buffer. For each token, we compose character-
based representations with convolutional neural
networks following Yu and Vu (2017), and con-
catenate them with randomly initialized embed-
dings of the word form, universal POS tag, and
morphological features. All hyperparameters of
the parser and the oracle are listed in Appendix B.1

We compare training the parser with ADOs to
static oracles in the four transition systems STAN-
DARD, ATTARDI, SWAP, and HYBRID. Addi-
tionally, we implement the exact dynamic oracle
(EDO) for HYBRID as the upper bound. For each
system, we only use the portion of training data
where all oracles can parse, e.g., for STANDARD

and HYBRID, we only train on projective trees.
We did preliminary experiments on the ADOs

in three settings: (1) Oall is trained only on the
non-projective trees from all training treebanks
(ca. 133,000 sentences); (2) Oind is trained on the
individual treebank as used for training the parser;
and (3) Otune is based on Oall, but fine-tuned in-
teractively during the parser training by letting the
parser initiate the forked episodes. Results show
that three versions have very close performance,
we thus choose the simplest one Oall to report
and analyze, since in this setting only one oracle
is needed for training on all treebanks.

3.2 Oracle Recovery Test
Before using the oracle to train the parser, we first
test the oracle’s ability to control the mistakes. In
this test, we use a parser trained with the static ora-
cle to parse the development set, and starting from
the parsing step 0, 10, 20, 30, 40, and 50, we let
the ADO fork the path and parse until the end. We

1The parser and the oracle are available at http:
//www.ims.uni-stuttgart.de/institut/
mitarbeiter/xiangyu/index.en.html.

http://www.ims.uni-stuttgart.de/institut/mitarbeiter/xiangyu/index.en.html
http://www.ims.uni-stuttgart.de/institut/mitarbeiter/xiangyu/index.en.html
http://www.ims.uni-stuttgart.de/institut/mitarbeiter/xiangyu/index.en.html
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use the error rate of the oracle averaged over the
aforementioned starting steps as the measurement
for the oracle’s robustness against error propaga-
tion: the smaller the rate, the more robust the or-
acle. Note that we identify the errors only when
the incorrect arcs are produced, but they could be
already inevitable due to previous actions, which
means some of the parser’s mistakes are attributed
to the oracle, resulting in a more conservative es-
timation of the oracle’s recovery ability.

Figure 2a and 2b show the average error rate
for each treebank and its relation to the percent-
age of non-projective arcs in the projective STAN-
DARD and the non-projective SWAP systems. Gen-
erally, the error rate correlates with the percentage
of the non-projective arcs. However, even in the
most difficult case (i.e., grc with over 17% non-
projective arcs), the oracle only introduces 5% er-
rors in the non-projective system, which is much
lower than the parser’s error rate of over 40%. The
higher error rates in the projective system is due to
the fact that the number of errors is at least the
number of non-projective arcs. Figure 2c and 2d
show the oracles’ error recovery performance in
the most difficult case grc. The error curves of
the oracles in the non-projective systems are very
flat, while in the STANDARD system, the errors
of the oracle starting from step 0 is only slightly
higher than the number of non-projective arcs (the
dotted line), which is the lower bound of errors.
These results all confirm that the ADO is able to
find actions to minimize further errors given any
potentially erroneous state.
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Figure 2: Results of the oracle recovery test, where (a) and
(b) are average error rates across treebanks, (c) and (d) are
cumulative error rates for grc.

3.3 Final Results

STANDARD ATTARDI SWAP HYBRID
UDPipe static ADO static ADO static ADO static ADO EDO

most
non-
proj

grc 56.04 51.49 51.94 59.02 60.21 58.59 60.87 50.40 52.46 52.74
nl las. 78.15 73.07 73.57 79.17 81.88 79.67 81.48 72.29 73.45 73.08
grc pro. 65.22 63.85 63.96 68.30 67.79 67.01 67.52 64.26 64.75 64.41

least
non-
proj

ja 72.21 73.03 73.07 73.12 72.99 73.16 73.26 72.91 73.39 73.34
gl 77.31 77.19 77.47 77.34 77.63 77.28 77.39 77.27 77.50 77.49
zh 57.40 57.99 58.56 58.69 58.86 57.83 59.19 57.99 57.83 58.57

most
data

cs 82.87 84.32 84.04 84.99 84.72 84.90 84.14 84.34 84.29 84.24
ru syn. 86.76 88.09 87.32 88.78 88.09 88.64 87.83 88.05 88.20 88.22
cs cac 82.46 83.61 83.57 83.65 83.68 83.64 84.40 82.94 83.52 83.69

least
data

cs cltt 71.64 71.36 73.65 74.04 74.93 73.81 74.23 70.54 72.32 72.25
hu 64.30 62.91 65.08 65.75 67.02 64.79 66.69 63.65 64.34 63.39
en par. 73.64 74.10 74.04 73.74 74.80 73.87 74.65 73.74 73.88 73.22

AVG 73.04 73.59 73.92 74.66 74.99 74.50 75.01 73.47 73.68 73.74

Table 1: LAS on the selected test sets, where green cells
mark ADO outperforming the static oracle and red cells oth-
erwise. Average is calculated over all 55 test set.

In the final experiment, we compare the perfor-
mance of the parser trained by the ADOs against
the static oracle or the EDO if available. Ta-
ble 1 shows the LAS of 12 representative tree-
banks, while the full results are shown in Ap-
pendix C. In the selection, we include treebanks
with the highest percentage of non-projective arcs
(grc, nl lassysmall, grc proiel), almost
only projective trees (ja, gl, zh), the most train-
ing data (cs, ru syntagrus, cs cac), and the
least training data (cs cltt, hu, en partut).

Out of the 55 treebanks, the ADO is benefi-
cial in 41, 40, 41, and 35 treebanks for the four
systems, and on average outperforms the static
baseline by 0.33%, 0.33%, 0.51%, 0.21%, respec-
tively. While considering the treebank characteris-
tics, training with ADOs is beneficial in most cases
irrespective of the projectiveness of the treebank.
It works especially well for small treebanks, but
not as well for very large treebanks. The reason
could be that the error propagation problem is not
as severe when the parsing accuracy is high, which
correlates with the training data size.

In HYBRID, the benefit of the ADO and EDO
is very close, they outperform the static baseline
by 0.21% and 0.27%, which means that the ADO
approximates the upper bound EDO quite well.

Note that we train the parsers only on projective
trees in projective systems to ensure a fair com-
parison. However, the ADO is able to guide the
parser even on non-projective trees, and the result-
ing parsers in STANDARD outperform the baseline
by 1.24% on average (see Appendix C), almost
bridging the performance gap between projective
and non-projective systems.
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4 Comparing to Exact Dynamic Oracle

The purpose of the ADO is to approximate the dy-
namic oracle in the transition systems where an
exact dynamic oracle is unavailable or inefficient.
However, it could demonstrate how well the ap-
proximation is when compared to the EDO, which
serves as an upper bound. Therefore, we compare
our ADO to the EDO (Goldberg and Nivre, 2013)
in the HYBRID system.

First, we compare the reward function of the
ADO (see Section 2.1) to the cost function of the
EDO, which is: (1) for an attachment action that
introduces an arc 〈h,d〉, the cost is the number of
reachable dependents of d plus whether d is still
reachable to its gold head h′ (h′ 6= h); and (2) for
shift, the cost is the number of reachable depen-
dents of d in the stack plus whether the gold head
of d is in the stack except for the top item.

The general ideas of both oracles are very sim-
ilar, namely to punish an action by the number of
unreachable arcs it introduces. However, the defi-
nitions of reachability are slightly different.

Reachable arcs in the ADO are defined more
loosely: as long as the head and dependent of an
arc are pending in the stack or buffer, it is con-
sidered reachable, thus the reward (cost) of shift
is always zero. However, in the HYBRID system,
an arc of two tokens in the stack could be unreach-
able (e.g. 〈s0,s1〉), thus the cost of shift in the EDO
could be non-zero.

Note that both oracles punish each incorrect at-
tachment exactly once, and the different defini-
tions of reachability only affect the time when an
incorrect attachment is punished, namely when the
correct attachment is deemed unreachable. Gener-
ally, the ADO’s reward function delays the punish-
ment for many actions, and dealing with delayed
reward signal is exactly the motivation of RL al-
gorithms (Sutton and Barto, 1998).

The DQN model in the ADO bridges the lack
of prior knowledge in the definitions of reachabil-
ity by estimating not only the immediate reward of
an action, but also the discounted future rewards.
Take the HYBRID system for example. Although
the immediate reward of a shift is zero, the ADO
could learn a more accurate cost in its value esti-
mation if the action eventually causes an unreach-
able arc. Moreover, in a system where the ex-
act reachability is difficult to determine, the ADO
estimates the expected reachability based on the
training data.

We then empirically compare the behavior of
the ADO with the EDO, in which we use a parser
trained with the static oracle to parse the develop-
ment set of a treebank, and for each state along
the transition sequence produced by the parser we
consult the ADO and the EDO. Since the EDO
gives a set of optimal actions, we check whether
the ADO’s action is in the set.

On average, the ADO differs from the EDO
(i.e., making suboptimal actions) only in 0.53% of
all cases. Among the states where the ADO makes
suboptimal actions, more than 90% has the pattern
shown in Figure 3, where the gold head of s1 is s0
but it is already impossible to make the correct at-
tachment for it, therefore the correct action is to
make a left-arc to ensure that s0 is attached cor-
rectly. However, the ADO does not realize that s1
is already lost and estimates that a left-arc attach-
ment would incur a negative reward, and is thus
inclined to make a “harmless” shift, which would
actually cause another lost token s0 in the future.
This type of mistakes happens about 30% of the
time when this pattern occurs, and further investi-
gation is needed to eliminate them.

[ ... s1 s0 ]σ [ b0 ... ]β

. .

Figure 3: A typical pattern where the ADO makes a mistake.

5 Conclusion

In this paper, we propose to train efficient approx-
imate dynamic oracles with reinforcement learn-
ing methods. We tackle the problem of non-
decomposable structure loss by letting the oracle
learn the action loss from incremental immediate
rewards, and act as a proxy for the structure loss
to train the parser. We demonstrate that training
with a single treebank-universal ADO generally
improves the parsing performance over training
with static oracle in several transition systems, we
also show the ADO’s comparable performance to
an exact dynamic oracle.

Furthermore, the general idea in this work
could be extended to other structured prediction
tasks such as graph parsing, by training a better-
informed oracle to transform structure costs into
action costs, which gives the learning agent more
accurate objective while staying in the realm of
imitation learning to ensure training efficiency.
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A Transition Systems

Table 2 provides a unified view of the the actions
in the four transition systems: shift and right are
shared by all four systems; left is shared by all
but the HYBRID system, which uses left-hybrid
instead; left-2 and right-2 are defined only in the
ATTARDI system; and swap is defined only in the
SWAP system.

For all systems, the initial states are identical:
the stack contains only the root, the buffer contains
all other tokens, and the set of arcs is empty. The
terminal states are also identical: the stack con-
tains only the root, the buffer is empty, and the set
of arcs is the created dependency tree.

Action Before After
shift (σ , j | β , A) → (σ | j, β , A)
left (σ | i | j, β , A) → (σ | j, β , A∪{〈 j, i〉})
right (σ | i | j, β , A) → (σ | i, β , A∪{〈i, j〉})
left-2 (σ | i | j | k, β , A) → (σ | j | k, β , A∪{〈k, i〉})
right-2 (σ | i | j | k, β , A) → (σ | i | j, β , A∪{〈i,k〉})
left-hybrid (σ | i, j | β , A) → (σ , j | β , A∪{〈 j, i〉})
swap (σ | i | j, β , A) → (σ | j, i | β , A)

Table 2: The actions defined in the four transition systems,
where σ denotes the stack, β denotes the buffer, and A de-
notes the set of created arcs.

B Architecture and Hyperparameters

The parser takes characters, word form, univer-
sal POS tag and morphological features of each
word as input. The character composition model
follows Yu and Vu (2017), which takes 4 convolu-
tional filters with width of 3, 5, 7, and 9, each filter
has dimension of 32, adding to a 128-dimensional
word representation. The randomly initialized
word embeddings are also 128-dimensional, the
POS tag and morphological features are both 32-
dimensional. The concatenated word representa-
tions are then fed into a bidirectional LSTM with
128 hidden units to capture the contextual infor-
mation in the sentence. The contextualized word
representations of the top 3 tokens in the stack and
the first token in the buffer are concatenated and
fed into two layers of 256 hidden units with the
ReLU activation, and the output are the scores for
each action. The argmax of the scores are then fur-
ther concatenated with the last hidden layer, and
outputs the scores for the labels if the predicted
action introduces an arc. In this way, the predic-
tion of action and label are decoupled, and they are
learned separately.

The oracle (DQN) takes the binary features de-
scribed in Section 2.2 as input, which is fed into

a layer of 128 hidden units. It then forks into two
channels to calculate the value for the state and
the actions separately, then they are aggregated as
the estimated state-action value, as in Wang et al.
(2016). In the DQN training, we use discount fac-
tor γ = 0.9, for the proportional prioritized experi-
ence replay, we select α = 0.9, β = 0.5.

Both the parser and the oracle are trained with
maximum 50000 mini-batches and early-stop on
the development set. In every step, the parser
trains on mini-batches of 10 sentences, and the
oracle generates samples from 5 sentences into
the replay memory, and trains on mini-batches of
1000 samples. While generating the samples for
the oracle, we fork each state by a random valid
action with a probability of 0.05, and we take at
most 5 forked episodes for each sentence, with the
maximum episode length N = 20.

C Full Results

The results for all 55 treebanks are shown in Ta-
ble 3.
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STANDARD SWAP ATTARDI HYBRID
UDPipe static ADO ADO∗ static ADO static ADO static ADO EDO

ar 65.30 66.75 66.75 66.75 67.34 67.34 67.15 67.15 67.14 67.14 67.14
bg 83.64 84.14 84.54 84.48 84.19 84.64 83.95 84.46 84.31 84.31 84.31
ca 85.39 86.08 86.08 86.08 86.62 86.62 86.54 86.54 86.09 86.09 86.15
cs 82.87 84.32 84.32 84.47 84.99 84.99 84.90 84.90 84.34 84.34 84.34
cs cac 82.46 83.61 83.61 84.48 83.65 83.68 83.64 84.40 82.94 83.52 83.69
cs cltt 71.64 71.36 73.65 75.15 74.04 74.93 73.81 74.23 70.54 72.32 72.25
cu 62.76 63.81 64.16 65.94 66.47 66.92 66.37 67.09 63.85 64.39 64.69
da 73.38 73.55 74.73 75.50 74.51 75.00 74.51 75.30 73.45 73.45 74.36
de 69.11 71.93 71.94 72.87 73.26 73.26 73.03 73.03 71.72 71.80 71.96
el 79.26 79.47 79.99 80.27 80.15 80.84 79.96 80.64 79.04 79.04 79.20
en 75.84 75.99 76.37 76.76 76.37 76.65 76.32 76.63 75.82 76.31 76.19
en lines 72.94 72.52 72.76 73.56 74.12 74.27 74.08 74.57 73.20 73.20 73.20
en partut 73.64 74.10 74.10 74.56 73.74 74.80 73.87 74.65 73.74 73.88 73.74
es 81.47 82.79 82.79 82.79 82.76 82.76 82.49 82.49 82.85 82.85 82.85
es ancora 83.78 84.83 84.85 85.33 85.56 85.56 85.66 85.66 85.34 85.34 85.34
et 58.79 58.77 59.34 59.47 59.10 60.84 58.93 61.12 59.11 59.11 59.11
eu 69.15 68.91 69.54 71.27 71.44 72.72 70.63 72.64 68.55 68.95 68.72
fa 79.24 79.73 79.76 80.47 80.47 80.47 79.67 79.87 80.20 80.20 80.20
fi 73.75 74.34 74.57 74.90 74.53 74.70 74.48 75.20 73.96 73.96 74.33
fi ftb 74.03 75.58 75.86 76.10 75.93 76.03 75.18 75.18 75.41 75.41 75.42
fr 80.75 81.42 81.44 81.42 81.88 81.88 81.21 81.98 81.25 81.25 81.25
fr sequoia 79.98 80.90 80.90 81.52 81.64 81.76 81.37 81.37 80.56 80.58 80.67
gl 77.31 77.19 77.47 77.96 77.34 77.63 77.28 77.39 77.27 77.50 77.49
got 59.81 59.81 60.61 62.05 61.26 61.97 60.94 62.53 59.09 60.78 60.14
grc 56.04 51.49 51.94 58.13 59.02 60.21 58.59 60.87 50.40 52.46 52.74
grc proiel 65.22 63.85 63.96 67.40 68.30 68.30 67.01 67.52 64.26 64.75 64.41
he 57.23 57.95 58.30 59.01 58.02 58.72 58.18 58.41 57.82 58.02 58.06
hi 86.77 87.48 87.48 88.06 88.22 88.22 88.08 88.08 87.53 87.53 87.56
hr 77.18 77.19 77.98 78.23 78.45 78.63 77.64 77.96 77.26 77.45 77.70
hu 64.30 62.91 65.08 65.59 65.75 67.02 64.79 66.69 63.65 64.34 63.65
id 74.61 74.85 74.85 74.85 74.42 74.42 74.79 74.79 74.17 74.50 74.48
it 85.28 85.76 86.06 85.91 86.33 86.33 86.18 86.18 86.24 86.24 86.24
ja 72.21 73.03 73.07 73.06 73.12 73.12 73.16 73.26 72.91 73.39 73.34
ko 59.09 72.48 74.07 75.09 73.98 74.61 73.97 74.70 72.25 73.40 72.85
la ittb 76.98 77.80 77.80 80.56 81.27 81.35 82.33 82.33 77.05 77.56 77.61
la proiel 57.54 56.15 56.85 60.00 58.67 59.38 59.18 60.80 55.92 57.01 57.58
lv 59.95 60.04 61.39 61.53 60.62 60.66 60.32 60.96 59.76 60.34 60.05
nl 68.90 69.69 70.47 71.53 71.77 72.03 70.50 71.87 69.42 69.83 69.90
nl lassysmall 78.15 73.07 73.57 78.82 79.17 81.88 79.67 81.48 72.29 73.45 73.08
no bokmaal 83.27 84.07 84.50 84.56 84.47 84.68 84.15 84.82 83.92 83.92 84.04
no nynorsk 81.56 82.41 82.45 83.46 82.64 82.99 82.64 82.91 81.74 82.47 82.32
pl 78.78 80.25 80.41 80.61 80.28 80.34 79.84 80.14 79.26 80.20 79.95
pt 82.11 82.33 82.33 82.83 82.49 82.73 82.92 83.07 81.77 82.03 81.93
pt br 85.36 86.11 86.40 86.30 86.17 86.17 85.98 86.28 86.01 86.21 86.17
ro 79.88 80.06 80.21 80.45 79.96 80.37 80.41 80.41 79.59 79.66 79.73
ru 74.03 74.66 74.66 75.26 75.07 75.78 74.62 75.60 74.68 74.68 75.15
ru syntagrus 86.76 88.09 88.09 88.09 88.78 88.78 88.64 88.64 88.05 88.20 88.22
sk 72.75 73.73 73.99 75.84 74.27 74.75 74.28 75.58 74.09 74.26 74.51
sl 81.15 81.26 81.97 83.13 82.94 83.32 82.61 83.65 81.85 81.86 81.94
sv 76.73 77.24 77.70 78.39 77.86 78.25 78.03 78.54 77.70 78.24 77.70
sv lines 74.29 74.28 74.64 75.49 74.32 75.22 74.01 75.36 73.40 73.80 74.00
tr 53.19 53.97 54.82 55.38 54.20 55.38 54.53 55.18 54.32 54.56 54.32
ur 76.69 77.16 77.16 77.25 77.40 77.83 77.89 77.92 77.16 77.16 77.16
vi 37.47 38.32 39.09 39.10 38.38 38.85 38.50 39.68 38.36 38.67 38.80
zh 57.40 57.99 58.56 58.65 58.69 58.86 57.83 59.19 57.99 57.99 58.57

AVG 73.04 73.59 73.92 74.83 74.66 74.99 74.50 75.01 73.47 73.68 73.74

Table 3: LAS on the 55 test sets, where green cells mark ADO outperforming the static oracle and red cells for the opposite.
The column ADO∗ indicate the parsers trained on both projective and non-projective trees. Average is calculated over all 55
test set.


