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Abstract

Our team at the University of Zürich par-
ticipated in the first 3 of the 4 sub-tasks at
the Social Media Mining for Health Applica-
tions (SMM4H) shared task. We experimented
with different approaches for text classifica-
tion, namely traditional feature-based classi-
fiers (Logistic Regression and Support Vector
Machines), shallow neural networks, RCNNs,
and CNNs. This system description paper pro-
vides details regarding the different system ar-
chitectures and the achieved results.

1 Introduction

The 2018 edition of the Social Media Mining for
Health Applications (SMM4H) challenge (Weis-
senbacher et al., 2018) consists of 4 tasks, all of
which can be framed as document classification
problems: automatic detection of posts mention-
ing a drug name (task 1), automatic classification
of posts describing medication intake (task 2), au-
tomatic classification of posts mentioning adverse
drug reaction (task 3) and vaccination behavior, re-
spectively (task 4). Our team participated in the
first three of them.

While tasks 1 (drug name detection) and 3 (ad-
verse drug reaction mentioning detection; ADR)
consisted in binary text classification, task 2
(medication intake classification) included three
classes: personal medication intake, possible med-
ication intake and non-intake.

2 Data Description and Pre-processing

For each task, participants were provided with a
dataset. The tweets were provided by ID, and had
to be downloaded individually from Twitter. Be-
cause of that, not all tweets in the datasets were
available anymore at the time of our participation.
The number of tweets that we had at our disposal
are shown in Table 1.

Task Labels Tweets Train Develop.

1 0 4462 4357 105
1 4776 4657 119

Total 9238 9014 224

2
1 3198 3129 69
2 5162 5058 104
3 7155 7028 127

Total 15515 15215 300

3 0 15416 15148 268
1 1359 1327 32

Total 16775 16475 300

Table 1: Overview of available tweets for each task,
split by us into a training and a small development set.

We tokenized the tweets using SpaCy (Honni-
bal and Montani, 2017) and applied a number of
pre-processing steps before further processing the
tweets. These include the following:

• We found that URLs are frequently merged
with the preceding token. Therefore, we split
before URLs (i.e. before “http”).
• We split URLs into their components (i.e.

parts of each URL are treated as separate to-
kens).
• We split all tokens at camel case (e.g. “Med-

icationProblems” is split into “Medication”
and “Problems”).
• We stripped the hashtag symbol (#) from all

tokens where it applies.
• We replaced “w/” and “w/o” by their full ver-

sions (“with” and “without”).
• We additionally split at the following punctu-

ation symbols: -/.]
• We replaced numbers and usernames by

placeholder tokens.

Following these pre-processing steps, we used
SpaCy for lemmatization and part-of-speech tag-
ging.



57

Task 1 Task 2 Task 3
P R F P R F P R F

Logreg: 0.861 0.861 0.861 0.591 0.565 0.578 0.917 0.344 0.500
MLP: 0.861 0.861 0.861 0.679 0.522 0.590 0.750 0.281 0.409

Lin SVM: 0.534 0.534 0.534 0.575 0.609 0.592 0.571 0.375 0.453
Shallow NN: 0.577 0.381 0.459 0.780 0.565 0.655 0.550 0.344 0.423

RCNN: 0.916 0.924 0.920 0.468 0.638 0.540 0.185 0.156 0.169

Table 2: Results of feature based systems on the development set. For task 2, results are micro-averaged over the
two positive labels only. For task 3, they are micro-averaged over the positive label only.

3 System Descriptions

The following sections give an overview of the
system architectures with which we experimented.
The results obtained on our development set by
a selection of configurations (as described below)
are shown in Table 2.

3.1 Feature-based systems
The feature-based classifiers include the following
features:

• bag-of-lemmas (unigrams and bigrams)
• averaged pre-trained word embeddings

(Sarker and Gonzalez, 2017)
• a binary feature providing information if the

tweet contains any token found in a terminol-
ogy list described later in this section
• a set of features recording all exact matches

from that list as observed in the training data.
This allows the classifier to assign a weight
depending on the number of positive or nega-
tive tweets in which these terms are observed.

We experimented with Naive Bayes, linear
SVMs, Logistic Regression and Multilayer Per-
ceptron classifiers. However, since Naive Bayes
consistently gave us the worst performance on the
development set, we excluded it. Our Multilayer
Perceptron has two hidden layers using tanh acti-
vation with 100 and 50 units, respectively, and ap-
plies an Adam optimizer with an adaptive learning
rate.

To improve on our results, we employ two term
lists; one with terms derived from an external re-
source, and one with terms extracted from the task
data. Firstly, we use a manually curated list of
drug names, derived from RX Norm (Nelson et al.,
2011), which we had originally created for a dif-
ferent project. RX Norm is a normalized list of
all clinical drugs available in the US, indexing
them by commercial name and compounds. We

142 drug names
85 chemical compounds
42 class of drugs (such as analgesics)
41 misspellings
39 symptoms
38 related term (such as addictive)
17 hashtag (such as #advilsinuscrowd)
16 abbreviations (such as alka)
12 pharmaceutical company
73 others (plants, medical devices etc)

505 total

Table 3: Categories of terms derived from tweets.

compared this list with a list of the 10000 most
common English words in order to determine the
amount of ambiguity and found only a negligi-
ble overlap. This means that both chemical com-
pounds and brand names are very specific in most
cases and therefore only show a very small amount
of ambiguity.

However, to better account for the fact that so-
cial media data is noisy, and users misspell and
abbreviate drug names or use different names not
contained in the vocabulary, we constructed a sec-
ond list: We gathered tokens from positive tweets
in the training data which do not contain any drug
names from the list above. From this set, only to-
kens that do not occur in the 20000 most frequent
natural language words as computed on Google
Books Ngram Corpus were kept, and evaluated
manually if they refer to a drug. This method re-
vealed common misspellings such as adderal
(instead of adderall) or codrol (instead of
codral), but also lead to the identification of sev-
eral word categories that can be positive predictors
for drug usage, such as diseases and symptoms.
Table 3 lists the categories of the terms extracted
in this fashion.
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3.2 Shallow Neural Network with Tunable
Embeddings

This is a simple system based on end-to-end learn-
ing within a shallow neural network. The first
layer consists of tunable pre-trained embeddings
followed by average pooling and a dense layer
with sigmoid activation to reach a final classifica-
tion decision. The embedding layer uses the fast-
text embeddings trained on the English version of
Wikipedia (Bojanowski et al., 2016), which, dur-
ing training, we fine-tune to the task. We use
cross-entropy as loss function and Adam for op-
timization. Furthermore, we apply early stopping
using a small portion of the training set.

3.3 Recurrent Convolutional Neural Network
(RCNN)

For task 1, we additionally apply a combination
of a recurrent neural network and a convolutional
neural network. The recurrent convolutional neu-
ral network (RCNN) (Lai et al., 2015) uses re-
current structures which enables it to capture the
context information of each word while simulta-
neously producing minimal noise. Additionally, it
uses a max-pooling layer to capture the relevance
of every word in the text. Our recurrent structure
is a two layer stacked bidirectional network with
gated recurrent unit (GRU) (Cho et al., 2014) cells.
The final hidden states of the recurrent structure
are the input to the 1D-max-pooling layer. The
model is based on Prakash Pandey’s implementa-
tion of Text Classification in PyTorch. We exper-
imented with a character-based and a word-based
version, which are described in the following.

The words of the lemmatized version of the
tweets serve as input for the word-based RCNN.
We have experimented with various word embed-
dings in combination with and without a lemma-
tized input. We used embeddings that were trained
on a lemmatized corpus of tweets as well as em-
beddings that were trained on a non-lemmatized
corpus of tweets. In the final version we used
embeddings trained on a non-lemmatized corpus
for processing the lemmatized version of corpus.
Even if it might seems methodologically incorrect,
it this was relatively simple to do, and it was em-
pirically found to produce the best results on our
development corpus. Our model has 256 hidden
states for each direction of the bidirectional re-
current network. We use Adam with a learning
rate of 0.00008 for the optimization and softmax

cross entropy to compute the loss. We utilize L2
regularization with a rate of 0.005 and to prevent
overfitting, we employ a dropout with a rate of
0.8. The whole system learns for 45 epochs with
a batch size of 256. We apply domain-specific,
pretrained word embeddings (Sarker and Gonza-
lez, 2017) that are trained on 1 billion tweets from
drug-related conversations on Twitter. In addition,
we append one dimension to the word embeddings
to determine whether a word is listed in the list
of RX Norm drug names mentioned before. If a
word is included in the list, we insert the value 5
and if it is not included we insert the value -1. In
the case of drug names for which no pre-trained
embedding is available, we generate a generic em-
bedding vector by averaging the vectors of all RX
terms for which an embedding can be found.

We also experimented with a character-based
RCNN (using 1-grams and 3-grams) as another
approach to the detection of drug name mention-
ing tweets. However, we did not use this sys-
tem in the final submission since its performance
was consistently worse than that of the word-based
model. We considered a combination of the two
approaches, however we could not implement it
due to lack of time. As input we use the lemma-
tized version of the tweets converted to the spe-
cific character N-gram. Each N-gram corresponds
to a unit that is fed into the RNN in the form of
its embedding. The same hyperparameters as in
the word-based RCNN are used in the character-
based RCNN, except that we apply a learning rate
of 0.0001, an L2 regularization with a rate of 0.001
and train the system only for 40 epochs. To test the
model we have divided the given training set into
a validation, test and training set1. With the test
set, which contains 1000 samples, we achieve an
precision of 0.8879, a recall of 0.8840 and an F1
score of 0.8860.

After the challenge, we performed a small error
analysis on the results obtained by the word-based
RCNN over the 244 tweets in the development
set. We found that 19 tweets were misclassified,
10 tweets were mistakenly classified as drug name
mentioning, but six of them contain words like ’vi-
tamin’, ’maca’ and ’pills’. The distinction made
by the dataset between the fine nuances of some
substances as endogenous rather than as a supple-
ment seems to be a problem for the system. Nine

1The partition of the data used within this set-up is differ-
ent from the partitions reported in table 1
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tweets were falsely identified as drug-free tweets,
one of these contains a misspelled drug name and
another one contains incorrectly tokenized words
(e.g. aspirin!). Another two tweets contained the
word “weed” in the medical context and the word
“cannabinoid”, which may have been classified as
drug names rather than medication names. For the
remaining tweets, there is no specific property that
would lead to a misclassification.

For comparison, we briefly report on results ob-
tained using a simple biLSTM (bidirectional long
short term memory) model as a baseline. The biL-
STM model has 128 hidden states for each direc-
tion of the bidirectional recurrent network. Adam
is used for the optimization with a learning rate of
0.0001. As loss function we use softmax cross en-
tropy. We apply L2 regularization with a rate of
0.005 and a dropout with a rate of 0.5 to achieve
a greater generalization. We run the model for
30 epochs with a batch size of 128. On the de-
velopment set with 1000 tweets the baseline biL-
STM achieves an F1 score of 0.881, while the
previously described final version of the RCNN
achieves an F1 score of 0.92.

3.4 Ensemble of Convolutional Neural
Networks (CNNs)

For task 3 we created a tiered ensemble of con-
volutional neural networks (CNNs). To create the
first ensemble, we downsampled the majority class
by splitting it up into 5 equally sized training sets.
The minority class data remained unsampled and
was paired with each of those majority class splits,
giving 5 data sets of a 1:2 minority-majority ratio.
A CNN was trained on each of these samples for
20 epochs. Input features are the pre-trained word
embeddings by Sarker and Gonzalez (2017). The
decisions of each CNN for each sample are fed
into a simple voting classifier. Twenty of these en-
sembles were created, and their predictions are fed
into a simple majority vote classifier, forming the
final set of predictions. This system is based on
the general architecture used by (Friedrichs et al.,
2018) whereas the individual CNNs is based on
(Kim, 2014). Despite promising results on our
development set (F: 48.3), this setting performed
poorly in the official evaluation (Run 3 of task 3),
probably due to a configuration error.

Precision Recall F-Score

Task 1
run 1 0.908 0.834 0.870
run 2 0.927 0.878 0.902
run 3 0.908 0.856 0.878
Mean 0.890 0.872 0.880

Task 2
run 1 0.315 0.434 0.365
run 2 0.371 0.437 0.401
run 3 0.431 0.368 0.397
Best 0.654 0.783 0.713

Task 3
run 1 0.593 0.231 0.333
run 2 0.455 0.436 0.445
run 3 0.132 0.935 0.232
Best 0.442 0.636 0.522

Table 4: Official scores for our submissions, compared
with scores obtained by other participating systems.

4 Results

Our official results are summarized in Table 4,
compared with other official results as currently
available to us (score means for task 1, scores of
the system with best F-score for task 2 and 3). Be-
low a brief description of our submitted runs.

For task 1, Run 1 was based on the best
performing among the models described in sec-
tion 3.1 (logistic regression). Run 2 was based
on the word-based RCNN model described in 3.3.
Run 3 was based on a rather crude attempt to im-
prove the scores of a previous run based on a man-
ually curated version of the drug list described in
section 3.1, flipping a negative into a positive if
the presence of one of terms in the list was de-
tected. The idea was that such a presence should
be considered as a highly reliable indicator that the
tweet is positive. Experiments on the training cor-
pus had shown generally an increase in recall with
a minimal loss in precision. This was confirmed in
the official results, where the correction described
above was applied to the results of Run 1. How-
ever, after the competition we asked the organiz-
ers to score another run generated by applying the
same “corrector” to Run 2, but in this case the re-
sults improved only slightly (P: 0.890, R: 0.872,
F:0.880).

For task 2, Run 1 was based on the best
performing among the models described in sec-
tion 3.1 (linear SVM), Run 2 with the second best
model (Multilayer Perceptron), Run 3 with the
Shallow Neural Network model described in sec-
tion 3.2.

For task 3, Run 1 was generated with the Lo-



60

gistic Regression model, Run 2 with the Shallow
Neural Network model, Run 3 with the complex
CNN ensemble approach described in section 3.4.
However, we suspect a bug in the latter approach
since the results were worse than anticipated.

5 Conclusion

In this system description paper we provide de-
tails and results for the different approaches with
which we experimented for our participation in 3
sub-tasks of the SMM4H shared task. Our inter-
est in this shared task stems from the fact that we
are involved in a recently started research project
where we will process social media data, includ-
ing tweets in a related domain. Therefore we plan
to continue our experiments with the datasets pro-
vided and report new results at the final workshop.
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