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Abstract
Probabilistic approaches have proven them-
selves well in learning phonological struc-
ture. In contrast, theoretical linguistics usu-
ally works with deterministic generalizations.
The goal of this paper is to explore possi-
ble interactions between information-theoretic
methods and deterministic linguistic knowl-
edge and to examine some ways in which both
can be used in tandem to extract phonological
and morphophonological patterns from a small
annotated dataset. Local and nonlocal pro-
cesses in Mishar Tatar (Turkic/Kipchak) are
examined as a case study.

1 Introduction

Morphophonology, or the interface between mor-
phology and phonology, encompasses a wide
range of phenomena. While this paper primar-
ily focuses on learning phonological rules from a
dataset, it is difficult to draw generalizations based
only on surface strings, since the rules may be
morphologically specific. The challenge goes be-
yond learning which phonotactic sequences are al-
lowed, also incorporating surface realizations of
morphemes and rules governing their distribution.

Large unannotated corpora are used by a large
portion of the existing work on learning phono-
logical patterns e.g. approaches to learning vowel
harmony (Goldsmith and Riggle 2012; Szabó and
Çöltekin 2013; Flinn 2014). However, in the case
of rare languages, a large corpus may be unavail-
able. On the other hand, small hand-annotated
examples or texts are a natural output of linguis-
tic fieldwork and readily available even for under-
resourced and under-studied languages.

Interlinear glossed text is a format tradition-
ally utilized in linguistic papers for presenting lan-
guage data. It annotates each morpheme with a
label, or gloss tag. When the amount of data is in-
sufficient, the role of such linguistic knowledge in

making generalizations becomes more prominent;
see (Wax 2014; Zamaraeva 2016) for approaches
to extraction of morphological rules that take this
path.

When it comes to morphophonology, agglutina-
tive languages are of special interest. They tend
to exhibit a variety of interacting processes which
give rise to multiple surface realizations of most
morphemes.1 A small dataset is very likely to con-
tain only a subset of possible allomorphs – an ad-
ditional challenge for the learning algorithm. As a
case study, this paper focuses on Mishar dialect
of Tatar language (Turkic/Kipchak). The data
sample used here is a hand-glossed collection of
texts elicited from native speakers in the course of
fieldwork (MSU linguistic expedition 1999–2012)
(3090 word tokens; 1740 types).

2 (Morpho)phonological processes

One common type of alternations stems from lo-
cal processes, where the context is immediately
adjacent to the segment undergoing the change.
The same surface segment may arise from differ-
ent processes. For example, the ablative suffix
(1) has different realizations after voiceless con-
sonants, nasals, and elsewhere. The locative mor-
pheme (2) demonstrates only a two-way distinc-
tion after voiceless consonants and elsewhere. The
plural suffix (3) is also sensitive to a two-way dis-
tinction, drawing a line between nasal consonants
and other segments.

(1) a. kibet-tän
shop-ABL

b. k7z-dan
girl-ABL

c. ur7n-nan
place-ABL

1For example, the idea of correlation between agglutina-
tion and vowel harmony goes back to (Baudouin de Courte-
nay 1876, 322–323), and its history and development are doc-
umented in (Plank 1998).



168

(2) a. j7rt-ta
yard-LOC

b. k7z-da
girl-LOC

c. ten-dä
night-LOC

(3) a. at-lar
horse-PL

b. k7z-lar
girl-PL

c. uj7n-nar
game-PL

While this data does hint at certain general phono-
tactic patterns (e.g. a voiceless stop is never fol-
lowed by an affix beginning with a voiced obstru-
ent), the contexts cannot be inferred exclusively
from surface strings; each morpheme has to be
considered separately. Moreover, even the same
set of alternants may be found in multiple pro-
cesses. Consider the following voicing alterna-
tion:

(4) a. matur-l7g-7
pretty-NOMIN-P3

b. jaxš7-l7k-ka
good-NOMIN-DAT

(5) a. kal-gan
stay-PFCT

b. č7k-kan
exit-PFCT

The difference between (4) and (5) lies in the di-
rectionality of the {g, k} alternation: the obstruent
in the former is located at the left edge of the affix
and assimilated to the preceding segment; in the
latter it is sensitive to the voicing of the following
segment.

Another prominent source of allomorphy is
vowel harmony. This process is nonlocal in the
sense that it only affects a subset of segments (in
this case, the set of vowels); all other segments
are transparent and do not interact with the rule
in any way. Vowel harmony can be analyzed of
in terms of underspecification (Archangeli 1988):
vowels in affixes lack some feature specifications,
and their surface realization is dependent on the
closest fully specified vowel.

In Mishar Tatar, vowels are subject to fronting
harmony controlled by the root; most affixes have
front and back allomorphs.

[−BK,
−RND]

[−BK,
+RND]

[+BK,
−RND]

[+BK,
+RND]

[+HI, −LO] i ü 7j u
[−HI, −LO] e (ö) 7 (o)
[−HI, +LO] ä a

Table 1: Mishar Tatar vowels

(6) a. bala-lar-7b7z-ga
child-PL-P1PL-DAT

b. täräz-lär-ebez-gä
window-PL-P1PL-DAT

These phenomena are not completely free of ex-
ceptions and problematic cases. Two instances
of non-canonical vowel harmony in suffixes at-
tached to borrowed roots are presented in (7). Sim-
ilarly, (8a) shows the expected voiced variant of
PFCT arising after a vowel while (8b) demonstrates
the exceptional unvoiced variant in an identical
phonological context. Another issue is true allo-
morphy triggered by morphosyntactic features as
opposed to phonological context; and determin-
ing which is the case is in itself a nontrivial task.
For example, in (9) 2PL is realized differently de-
pending on the TAM (tense/aspect/mood) marker
on the verb.

(7) a. tarix-7
history-P3

b. činovnig-7
official-P3

(8) a. i-kän
AUX-PFCT

b. di-gän
speak-PFCT

(9) a. bar-a-s7z
go-ST.IPFV-2PL

b. bar-d7-g7z
go-PST-2PL

3 Finding alternations

3.1 Alternations as sets
Consider the following rule encoding Mishar Tatar
vowel harmony:

(10)
[
+SYL
0 BK

]
→ [αBK] / [+SYL

αBK ] ([−SYL])∗

(11) {e, 7} → e / (e | i | ä | ö | ü) (b | d | g | ...)∗

{e, 7} → 7 / (7 | 7j | a | o | u) (b | d | g | ...)∗

This rule can be represented succinctly using fea-
ture bundle notation (10): any vowel not specified
for [±BK] receives these values from the closest
vowel to the left. However, underspecified vow-
els can be equivalently thought of as sets of fully
specified segments, and the rule as the condition
determining which member of the set appears on
the surface, e.g. (11). An alternation can then
be defined as the set of all surface outcomes of a
process, each associated with a set of contexts that
trigger it.

At this proof-of-concept stage we adopt the fol-
lowing simplifying assumption: alternations occur
between segments (i.e. one-segment substrings),
or between a segment and zero, and the context of
each alternant is a segment, not necessarily adja-
cent to the alternant. Further implications of this
assumption for contexts will be examined in sec-
tion 4.1.
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3.2 String differences
The learning algorithm proposed here is based
on the notion of string differences introduced by
(Goldsmith 2011). This approach required defin-
ing an alphabet of symbols A and a binary con-
catenation operator • (also represented by sim-
ple juxtaposition). The alphabet is augmented by
adding a null element for concatenation (indicated
∅) as well as inverse for each letter in A. The in-
verse of a ∈ A is a−1, and aa−1 = a−1a = ∅.
Moreover, (ab)−1 = b−1a−1. These definitions
establish group structure over the set of all strings
in the extended alphabet.

The right difference of strings s and t is defined
as s

tR = t−1 • s. Similarly, the left difference of
s and t is s

tL = s • t−1. The following examples
clarify this notation:

(12) jumps
jumpedR = (jumped)−1jumps =

(ed)−1(jump)−1jumps = (ed)−1s = s
ed

(13) undo
redo L = undo(redo)−1 =

undo(do)−1(re)−1 = un(re)−1 = un
re

For our purposes, it is sufficient to interpret string
differences as ordered pairs of strings.2 In its
turn, left/right commonality can be defined as the
longest common prefix/suffix of two strings. The
left commonality of jumps and jumped is jump,
and the right commonality of undo and redo is do.

Given a paradigm (set of strings) P with n el-
ements, its left/right self-difference array is the
n × n array D such that D[i][j] is the left/right
difference of P [i] and P [j]. The array of common-
alities is defined similarly. A paradigm is regular
if each row in its self-difference array has a single
common nominator and all elements in its com-
monality array are identical (ignoring the main di-
agonal).

jump jumps jumped jumping

jump ∅
s

∅
ed

∅
ing

jumps s
∅

s
ed

s
ing

jumped ed
∅

ed
s

ed
ing

jumping ing
∅

ing
s

ing
ed

Figure 1: Regular paradigm: right self-differences
of {jump, jumps, jumped, jumping}

2As Goldsmith (2011) points out, one can also think of
the right difference of s and t as a function that maps t to s.

try tries tried trying

try y
ies

y
ied

∅
ing

tries ies
y

s
d

ies
ying

tried ied
y

d
s

ied
ying

trying ing
∅

ying
ies

ying
ied

Figure 2: Non-regular paradigm: right self-
differences of {try, tries, tried, trying}

This notion of self-difference is still limited to
prefixes and suffixes. Let P = {w1, ..., wn} be a
paradigm whose left and right self-difference ar-
rays are regular, with l and r denoting its (unique)
left and right commonality respectively. Omit-
ting some details for the sake of space, we define
the set of internal difference substrings of P as
{l−1w1r

−1, ..., l−1wnr
−1}.

Under the assumptions outlined previously, the
task of identifying alternations reduces to finding
segment-sized (or smaller) differences between re-
alizations of the same morpheme. The following
recursive definition captures this idea:

(14) An alternation is the set of internal differ-
ence substrings of a paradigm that is reg-
ular if any previously determined alterna-
tions are ignored and, moreover, satisfies
two conditions:

(i) the paradigm’s left or right common-
ality is a non-empty string;

(ii) none of the difference substrings are
longer than one character.

3.3 A two-step algorithm

In the input, morphs are arranged into sets by gloss
tag, each morph forming its own group. A frag-
ment of the input is shown below.

(15) Q: {[m 7], [m e]}
PST: {[d 7], [d e], [t 7], [t e]}
P1PL: {[b e z], [e b e z], [7 b 7 z]}

The definition introduced in (14) lends itself nat-
urally to a two-step iterative algorithm that calcu-
lates self-differences for each set of morphs, iden-
tifying alternations as it proceeds. The extrac-
tion step employs the definitions introduced above
to find all possible alternations between groups
within each set. The reduction step collapses all
groups in each set that are identical up to known
alternations, essentially factoring out some of the
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differences and making more alternations accessi-
ble to subsequent passes. The algorithm alternates
between extraction and reduction until the number
of groups stops decreasing.

Consider the toy example in (15). The first it-
eration starts out with no known alternations; the
only morph set conforming to (14) is Q. The ex-
traction step discovers one alternation: {e, 7}. The
reduction step then collapses all morph groups that
are identical up to this alternation:

(16) Q:
{[m 7,

m e
]}

PST:
{[d 7,

d e

]
,
[t 7,

t e

]}
P1PL:

{[
b e z
]
,
[e b e z,

7 b 7 z

]}
At the second iteration (17), members of the {e,
7} set are now treated as the same segment, and
PST and P1PL satisfy the conditions of (14). They
yield two new alternations, {d, t} and {∅, e, 7},
allowing the reduction step to collapse both PST

and P1PL:

(17) Q:
{[m 7,

m e
]}

PST:

{[
d 7,
d e,
t 7,
t e

]}

P1PL:
{[
∅ b e z,
e b e z,
7 b 7 z

]}
At this point no further reduction is possible,

and the algorithm halts.

3.4 Intermediate results

The Mishar Tatar sample contained 55 different
gloss tags and 160 surface realizations. The algo-
rithm converged after three iterations, collapsing
the morphs into 85 groups.

Correct
{d, n, t}, {d, t}, {∅, k, g}, {l, n},
{k, g}, {∅, e, 7}, {a, ä}, {e, 7}

Incomplete {∅, 7}, {∅, ä}
Incorrect {g, s}, {n, N}

Table 2: Extracted alternations

The following output snippets illustrate the
work of the reduction step. Multiple processes af-
fecting the same morpheme can be learned (18);
this also holds for alternations with zero (19). Not
every set of morphs is reduced to a single group;
the algorithm has successfully learned that the

ATTR gloss corresponds to three different attribu-
tivizer suffixes, each of which has multiple real-
izations (20).

(18) ---- PL
---- Group 0
[['n' 'ä' 'r']
['n' 'a' 'r']
['l' 'ä' 'r']
['l' 'a' 'r']]

(19) ---- ORD
---- Group 0
[['e' 'n' 'č' 'e']
[' ' 'n' 'č' 'e']
['7' 'n' 'č' '7']]

(20) ---- ATTR
---- Group 0
[['s' '7' 'z']
['s' 'e' 'z']]
---- Group 1
[['l' 'e']
['l' '7']]
---- Group 2
[['g' 'e']
['g' '7']
['k' 'e']]

One interesting observation is related to the
learner’s ability to retain group boundaries if the
groups appear to represent distinct morphemes.
This has a practical potential for detecting incon-
sistencies in labelling – such as the COMP gloss
tag being used for the complementizer dip and the
comparative suffix -r{aä}k (21), when CMPR is
expected for the latter (22).

(21) ---- COMP
---- Group 0
[['d' 'i' 'p']]
---- Group 1
[['r' 'ä' 'k']
['r' 'a' 'k']]

(22) ---- CMPR
---- Group 0
[['r' 'a' 'k']]

4 Learning contexts

4.1 Rules and locality
Above, we have introduced a method of detecting
likely phonological processes and collecting them
as sets of alternating segments. This section makes
the next logical step and focuses on patterns gov-
erning the distribution of alternants.

A straightforward way to formalize this task
and define its boundaries is grounded in formal
language theory. Two classes of subregular lan-
guages are particularly relevant to the discussion
of phonology. One of them is Strictly Local lan-
guages (McNaughton and Papert 1971; Rogers
and Pullum 2011). Given an alphabet Σ, a Strictly
k-Local (SL) grammar can be expressed as a set
of strings in Σ of length at most k. The corre-
sponding language is the set of all strings in Σ that
do not contain any of the strings in the grammar.
Tier-based Strictly Local grammars (TSL) (Heinz
et al. 2011) are a generalization of SL grammars.
A k-TSL grammar can also be defined as a set of
illicit strings; however, they only apply to a cer-
tain subset, or tier, of elements in Σ, ignoring any
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intervening elements that do not belong to the sub-
set.

How can this model be used to produce a practi-
cal representation of a phonological process? One
way is to link each alternant occurring in a sur-
face form to a set of trigger segments, indicating
whether they occur to the left or right. Each al-
ternation should also be associated with a set of
transparent segments – non-tier elements in TSL
terms. This is essentially a bigram model, encod-
ing dependencies between pairs of elements, and
has a clear counterpart in 2-TSL grammars. Given
an alternation with n variants, the process of learn-
ing the rule boils down to determining the direc-
tionality and partitioning the set of segments into
n + 1 subsets of triggers (for each alternant) and
transparent segments.

4.2 Mutual information

Mutual information (MI) is a measure of depen-
dence between two random variables, or the reduc-
tion of uncertainty in one random variable through
the other (Cover and Thomas 2012).

(23) MI(X;Y ) =∑
x∈X

∑
y∈Y

p(x, y) log2
p(x,y)
p(x)p(y)

For the task at hand, it is convenient to think of
MI as the expected value of pointwise mutual in-
formation (PMI). In its turn, PMI is an indication
of how much the probability of a particular pair
of events differs from what it is expected to be as-
suming independence (Bouma 2009). Intuitively,
PMI measures correlation (positive or negative)
between events.

(24) PMI(x; y) = log2
p(x,y)
p(x)p(y)

The PMI metric is naturally applicable to learning
of vowel harmony. In our case, the algorithm is
expected to learn the triggers and transparent seg-
ments for each process, which translates into cal-
culating PMI values with respect to each specific
alternation. Instead of the full set of bigrams in
the corpus, the input for this procedure is the set
of bigrams containing an alternant (member of the
alternation in question) and a context segment.

A character bigram can be defined either lo-
cally, as a substring in a word, or nonlocally, as
a subsequence (potentially non-contiguous pair),
using left or right contexts of the alternant. These
two parameters – locality and directionality – yield

four different modes of collecting bigrams; see Ta-
ble 3 for a concrete example.

Left Right
Local š7 7N
Nonlocal #7, b7, a7, š7 7N, 7#

Table 3: Bigrams for {e, 7} in the word baš7N

Consider the voicing alternation {d, t} and the
harmonic pair {e, 7}. Both have triggers to the left
of the target; the former is a local process, while
the latter is nonlocal. Both alternations are present
in the past tense suffix:

(25) a. ker-de
enter-PST

b. k7čk7r-d7
shout-PST

c. 7r7š-t7
scold-PST

d. teš-te
fall-PST

Presented in Figure 3 and Figure 4 are heat maps
showing PMI values calculated for the alternations
in question. High positive values in cells indicate
attraction, whereas negative values correspond to
elements repelling each other. Cells without val-
ues indicate unattested bigrams.

(a) Local process: {d, t} (b) Vowel harmony: {e, 7}

Figure 3: PMI heat maps for local left bigrams;
higher values indicate stronger attraction between
segments

Local bigrams yield a very clear picture for the
voicing alternation {d, t}. In Figure 3a, unex-
pected pairs – voiced trigger and unvoiced alter-
nant, or vice versa – are either absent or have
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very low PMI values. However, local bigrams do
not perform well on the vowel harmony pair {e,
7}. Figure 3b does indicate correct preference for
some vowels, but the absolute values are compara-
bly high for a number of consonants as well. With
nonlocal bigrams the results are almost reversed.
For {d, t} (Figure 4a), the pattern is obscured.
However, nonlocal processes such as vowel har-
mony yield some correct information: for {e, 7}
(Figure 4b) more vowels and fewer consonants ex-
hibit strong positive or negative correlation ten-
dencies.

(a) Local process: {d, t} (b) Vowel harmony: {e, 7}

Figure 4: PMI heat maps for nonlocal left bigrams

The heat maps demonstrate that PMI values can
be successfully used to match triggers to alter-
nants. What is needed at this point is a procedure
that would assign correct sets of transparent seg-
ments to each process – namely, the empty set for
local processes and the set of consonants for vowel
harmony.

Augmenting local bigrams with the notion of
transparent segments produces a generalization
applicable to both local and nonlocal processes.
A left (right) local bigram consists of an alternant
and the closest non-transparent segment to its left
(right). One option, then, is to compare context
segments directly in terms of how likely they are
to be transparent for a given alternation. A non-
transparent segment is expected to have high ab-
solute PMI values – positive with the alternant it

triggers and negative with all other alternants. The
definition of MI (23) can be rewritten as follows:

(26) MI =
∑
x∈X

p(x)
∑
y∈Y

p(y|x)PMI(x; y)

Fixing x and normalizing the value by its proba-
bility to avoid unnecessarily high scores for rarely
attested segments, we obtain the following metric:

(27) MI(x) =
∑
y∈Y

p(x, y)PMI(x; y)

This allows to rank context segments by their MI
value. The bigrams have to be calculated in the
nonlocal mode to capture information about long-
distance dependencies. Intuitively, the higher a
segment is ranked, the more likely it is to be trans-
parent with respect to the alternation in question.
For each segment, the ranking also shows the al-
ternant that corresponds to the highest PMI value.
The ranking for {e, 7} (left contexts) is shown in
(28).

(28) ---- Alternation: {'e', '7'}:
N: 7 0.00001362
h: e 0.00001943
#: e 0.00003585
d: e 0.00004618
r: e 0.00004704
...
z: e 0.00034681
ö: e 0.00042929
o: 7 0.00051578
7j: 7 0.00051578
k: e 0.00053448
...
u: 7 0.01335405
i: e 0.01762960
ü: e 0.01845926
7: 7 0.03614305
ä: e 0.03741840
e: e 0.04574272
a: 7 0.04901854

As expected, most vowels have high values,
whereas consonants tend to score low. Some vow-
els still end up in the middle – in particular, o and
ö, which are uncharacteristic for this dialect and
generally found in borrowed roots. Provided that
the alternation set itself has been identified cor-
rectly, for every trigger segment the highest PMI
value unerringly points at the correct alternant un-
less the segment is transparent.

4.3 Phonological viability and rule evaluation
Due to the limited data, the learner cannot be
expected to have access to all possible contexts.
Moreover, as shown in (28) above, the rankings
of segments produced by calculating PMI tend to
contain some degree of noise. It is at this point that
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phonological features come into play. Adopting
the standard textbook definition, a natural class is
a set of segments that share a particular value for
some feature or a set of features (Odden 2013).
A rule is considered phonologically viable just in
case the sets of triggers of all alternants corre-
spond to disjoint natural classes.34

Phonological viability introduces a straightfor-
ward way of producing generalizations. Com-
bined with PMI rankings, it can be used to gener-
ate phonologically meaningful rules for known al-
ternations. First, each trigger set is extended with
segments in its natural class that have not occurred
in the context of the given alternation. Second, any
transparent segments that were accidentally added
to the transparent list is removed from it if they
are also found in one of the expanded trigger sets.
These modifications produce generalized rules.

We use two metrics to evaluate and compare
these rules. The primary objective is to explain
as many instances of the given alternation as pos-
sible. This intuition is easy to formalize: an ex-
ample is explained if it contains a correct trigger
which is either adjacent to the alternant or sepa-
rated only by transparent segments. Another op-
tion is to calculate the average PMI over all (seg-
ment, alternant) pairs, following the standard def-
inition of mutual information shown in (24).

4.4 Assembling the pieces
In order to determine the best cutoff point in
the ranking, each alternation A is processed as
follows. At initialization, MI values are calcu-
lated once with nonlocal bigrams in order to rank
the segments; all subsequent calculations are per-
formed with local bigrams. The set of transparent
segments, TranspA, starts out empty. The algo-
rithm traverses the ranking, starting with the low-
est MI value. At each step, the selected segment is
added to TranspA, and both metrics (mutual infor-
mation and explained examples) are recalculated.
Thus, TranspA is expanded incrementally until it

3This is a simplification, as one of the trigger sets may
form an unnatural class that corresponds to the general case –
a fact captured by the Elsewhere Condition (Kiparsky 1973).
The definition of phonological viability implements the Else-
where Condition to some degree, as no natural class require-
ment is imposed on the set of transparent segments.

4Under this definition, classes of segments specified by
disjunction are generally unnatural. While languages have a
tendency to favor natural classes (definable by feature con-
junction) in their rules (Halle and Clements 1983), exploring
more relaxed definitions for the purposes of determining ac-
ceptable rules is an interesting avenue of future work.

contains all segments in the ranking; every step
produces a new rule with triggers assigned accord-
ing to the current PMI values. If the rule is phono-
logically viable, it is converted into a generalized
rule, and the metrics are recalculated once more.
The procedure is performed twice for each alterna-
tion, on left and right contexts separately. Once it
halts, the best generalized rule is selected – which
means that only phonologically viable configura-
tions are eligible candidates.

The results are summarized in Table 4. For each
alternation, MI and explained examples ratio (EE)
are shown for the best rule based on left and right
contexts. Colored rows indicate that the learner
has both partitioned the set of attested context seg-
ments and determined whether the trigger is to the
left or to the right correctly with respect to the
ground truth.

Alternation MI
(left)

EE
(left)

MI
(right)

EE
(right)

{d, n, t} 1.4277 1.0000 0.0000 0.0000
{d, t} 0.8079 0.9864 0.0421 0.3143
{∅, k, g} 0.4951 0.4909 0.0000 0.0000
{l, n} 0.5547 0.9738 0.0514 0.1154
{k, g} 0.0814 0.1653 0.0000 0.0000
{∅, 7, e} 0.8431 0.6220 0.6205 0.5357
{a, ä} 0.8319 0.9733 0.8331 0.8387
{e, 7} 0.8825 0.9857 0.7148 0.7912

{∅, 7} 0.8113 1.0000 1.0000 1.0000
{∅, ä} 0.1651 0.4688 0.5586 1.0000

Table 4: Rule evaluation for correct and incomplete
alternations

As mentioned in section 2, some alternations
are involved in multiple processes. For instance,
{k, g} conflates two assimilation processes with
different directionality, while {∅, 7, e} corre-
sponds to a combination of a local and nonlocal
processes. As expected, they have lower scores.

The algorithm yields promising results for both
local and nonlocal processes, provided that the al-
ternation set itself is non-problematic. The vowel
harmony case is further illustrated by the final heat
map showing all non-transparent segments in the
best generalized rule for {e, 7} in Figure 5. In par-
ticular, compare Figure 5 to Figures 3b and 4b and
the ranking in (28).
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Figure 5: Final PMI heat map for vowel harmony:
{e, 7}, left contexts

One way to gain insight into the procedure of
context learning is to plot the step-by-step change
of metric values depending on the set of transpar-
ent segments.

(a) Left contexts

(b) Right contexts

Figure 6: MI and explained examples for {t, d}

Figures 6–7 show graphs for left and right con-
texts with respect to the {t, d} and {e, 7} alterna-
tions. Each graph has context segments, ordered
according to the MI ranking, along its x-axis. Each
point corresponds to a step performed by the al-
gorithm – or, equivalently, to a rule whose set of
transparent segments contains all items on the x-
axis up to and including that point. In addition,
circle markers are present at every phonologically
viable step and indicate values obtained by gener-
alized rules.

Graphs for local and nonlocal processes display
strikingly different behaviour. The typical pic-
ture for a local process is a monotonic sequence:
both metrics start out high but decline steadily as
more segments are declared transparent. For left-
triggered processes, right contexts show notice-
ably lower values throughout the procedure – es-
pecially so if only phonologically viable steps are
considered.

For vowel harmony (Figure 7) the plots start low
and show a distinct peak once a sufficient number
of segments are moved to the transparent set. The
peak corresponds to the last consonant in the rank-
ing.

(a) Left contexts

(b) Right contexts

Figure 7: MI and explained examples for {e, 7}
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While the values for left contexts are still
higher, the difference is not as great. This is an ex-
pected result: since vowels serve as both triggers
and targets of harmony, most vowels in non-final
syllables would have a harmonizing vowel both to
the left and to the right.

5 Discussion

This paper presents an approach to learning (mor-
pho)phonological phenomena from small anno-
tated datasets that combines information-theoretic
methods with linguistic information. The proposal
includes an algorithm that discovers phonologi-
cal alternations (represented as sets of segments)
shared by multiple morphological paradigms. The
notion of mutual information is used to assign a
set of contexts to each alternant. Possible rules are
then restricted to phonologically plausible config-
urations via a procedure reminiscent of regulariza-
tion in machine learning. This approach is appli-
cable to both local and nonlocal processes.

All these should be taken as interim results. One
option for future work is to explore interaction be-
tween alternation sets. For example, it may be
possible to decompose the complex {∅, e, 7} al-
ternation by first factoring out the known vowel
harmony pattern {e, 7}, leaving a simple local pro-
cess. Other steps that follow directly from the re-
sults described here include predicting and recon-
structing morphs that are absent from the dataset
and, as a more practically oriented goal, identify-
ing inaccuracies and instances of mislabelling in
the data.
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