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Abstract

The Impression section of a radiology report
summarizes crucial radiology findings in nat-
ural language and plays a central role in com-
municating these findings to physicians. How-
ever, the process of generating impressions by
summarizing findings is time-consuming for
radiologists and prone to errors. We propose to
automate the generation of radiology impres-
sions with neural sequence-to-sequence learn-
ing. We further propose a customized neural
model for this task which learns to encode the
study background information and use this in-
formation to guide the decoding process. On
a large dataset of radiology reports collected
from actual hospital studies, our model outper-
forms existing non-neural and neural baselines
under the ROUGE metrics. In a blind exper-
iment, a board-certified radiologist indicated
that 67% of sampled system summaries are
at least as good as the corresponding human-
written summaries, suggesting significant clin-
ical validity. To our knowledge our work rep-
resents the first attempt in this direction.

1 Introduction

The radiology report documents and communi-
cates crucial findings in a radiology study. As
shown in Figure 1, a standard radiology report
usually consists of a Background section that de-
scribes the exam and patient information, a Find-
ings section, and an Impression section (Kahn Jr
et al., 2009). In a typical workflow, a radiologist
first dictates the detailed findings into the report,
and then summarizes the salient findings into the
more concise Impression section based also on the
condition of the patient.

The impressions are the most significant part
of a radiology report that communicate the find-
ings. Previous studies have shown that over 50%
of referring physicians read only the impression
statements in a report (Lafortune et al., 1988;

Background: history: swelling; pain. technique: 3
views of the left ankle were acquired. comparison: no
prior study available.

Findings: there is normal mineralization and alignment.
no fracture or osseous lesion is identified. the ankle mor-
tise and hindfoot joint spaces are maintained. there is no
joint effusion. the soft tissues are normal.

Human Impression:
normal left ankle radiographs.

Extractive Baseline:
there is no joint effusion.

Pointer-Generator:
normal right ankle.

Our model:
normal radiographs of the left ankle.

Figure 1: An example radiology report with study
background information organized into a Background
Section, and radiology findings in a Findings Sec-
tion. The human-written summary (or impression) and
predicted summaries from different models are also
shown. The extractive baseline does not summarize
well, the baseline pointer-generator model generates
spurious sequence, while our model gives correct sum-
mary by incorporating the background information.

Bosmans et al., 2011). Despite its importance, the
generation of the impression statements is error-
prone. For example, crucial findings may be for-
gotten, which would cause significant miscommu-
nications (Gershanik et al., 2011). Additionally,
the process of writing the impression statements is
time-consuming and highly repetitive with the dic-
tation of the findings. This suggests a crucial need
to automate the radiology impression generation
process.

In this work, we propose to automate the
generation of radiology impressions with neural
sequence-to-sequence learning. In particular, we
argue that this task could be viewed as a text sum-
marization problem, where the source sequence is
the radiology findings and the target sequence the
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impression statements. We collect a dataset of ra-
diology reports from actual hospital radiographic
studies, and find that this task involves both ex-
tractive summarization where descriptions of ra-
diology observations can be taken directly from
the findings, and abstractive summarization where
new words and phrases, such as conclusions of
the study, need to be generated from scratch. We
empirically evaluate existing popular summariza-
tion systems on this task and find that, while ex-
isting neural models such as the pointer-generater
network can generate plausible summaries, they
sometimes fail to model the study background in-
formation and thus generate spurious results. To
solve this problem, we propose a customized sum-
marization model that properly encodes the study
background information and uses the encoded in-
formation to guide the decoding process.

We show that our model outperforms existing
non-neural and neural baselines on our dataset
measured by the standard ROUGE metrics. More-
over, in a blind experiment, a board-certified radi-
ologist indicated that 67% of sampled system sum-
maries are at least as good as the reference sum-
maries written by well-trained radiologists, sug-
gesting significant clinical validity of the resulting
system. We further show through detailed analy-
sis that our model could be reliably transferred to
radiology reports from another organization, and
that the model can sometimes summarize radiol-
ogy studies for body parts unseen during training.

To review, our main contributions in this paper
include: (i) we propose to summarize radiology
findings into impression statements with neural
sequence-to-sequence learning, and to our knowl-
edge our work represents the first attempt in this
direction; (ii) we propose a new customized sum-
marization model to this task that improves over
existing methods by better leveraging study back-
ground information; (iii) we further show via a ra-
diologist evaluation that the summaries generated
by our model have significant clinical validity.

2 Related Work

Early Summarization Systems. Early work on
summarization systems mainly focused on extrac-
tive approaches, where the summaries are gener-
ated by scoring and selecting sentences from the
input. Luhn (1958) proposed to represent the in-
put by topic words and score each sentence by the
amount of topic words it contains. Kupiec et al.

(1995) scored sentences with a feature-based sta-
tistical classifier. Steinberger and Jezek (2004) ap-
plied latent semantic analysis to cluster the top-
ics and then select sentences that cover the most
topics. Meanwhile, various graph-based methods,
such as the LexRank (Mihalcea and Tarau, 2004)
and the TextRank algorithm (Erkan and Radev,
2004), were applied to model sentence depen-
dency by representing sentences as vertices and
similarities as edges. Sentences are then scored
and selected via modeling of the graph properties.

Neural Summarization Systems. Summariza-
tion systems based on neural network models en-
able abstractive summarization, where new words
and phrases are generated to form the summaries.
Rush et al. (2015) first applied an attention-based
neural encoder and a neural language model de-
coder to this task. Nallapati et al. (2016) used re-
current neural networks for both the encoder and
the decoder. To address the limitation that neural
models with a fixed vocabulary cannot handle out-
of-vocabulary words, a pointer-generator model
was proposed which uses an attention mechanism
that copies elements directly from the input (Nal-
lapati et al., 2016; Merity et al., 2017; See et al.,
2017). See et al. (2017) further proposed a cover-
age mechanism to address the repetition problem
in the generated summaries. Paulus et al. (2018)
applied reinforcement learning to summarization
and more recently, Chen and Bansal (2018) ob-
tained improved result with a model that first se-
lects sentences and then rewrites them.

Summarization of Radiology Reports. Most
prior work that attempts to “summarize” radiol-
ogy reports focused on classifying and extracting
information from the report text (Friedman et al.,
1995; Hripcsak et al., 1998; Elkins et al., 2000;
Hripcsak et al., 2002). More recently, Hassanpour
and Langlotz (2016) studied extracting named en-
tities from multi-institutional radiology reports us-
ing traditional feature-based classifiers. Goff and
Loehfelm (2018) built an NLP pipeline to identify
asserted and negated disease entities in the impres-
sion section of radiology reports as a step towards
report summarization. Cornegruta et al. (2016)
proposed to use a recurrent neural network archi-
tecture to model radiological language in solving
the medical named entity recognition and nega-
tion detection tasks on radiology reports. To our
knowledge, our work represents the first attempt
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at automatic summarization of radiology findings
into natural language impression statements.

3 Task Definition

We now give a formal definition of the task of
summarizing radiology findings. Given a passage
of findings represented as a sequence of tokens
x = {x1, x2, . . . , xN}, with N being the length
of the findings, our goal is to find a sequence of
tokens y = {y1, y2, . . . , yL} that best summarizes
the salient and clinically significant findings in x,
with L being an arbitrary length of the summary.1

Note that the mapping between x and y can either
be modeled in an unsupervised way (as done in un-
supervised summarization systems), or be learned
from a dataset of findings-summary pairs.

4 Models

In this section we introduce our model for the
task of summarizing radiology findings. As our
model builds on top of existing work on neu-
ral sequence-to-sequence learning and the pointer-
generator model, we start by introducing them.

4.1 Neural Sequence-to-Sequence Model
At a high-level, our model implements the sum-
marization task with an encoder-decoder architec-
ture, where the encoder learns hidden state repre-
sentations of the input, and the decoder decodes
the input representations into an output sequence.

For the encoder, we use a Bi-directional Long
Short-Term Memory (Bi-LSTM) network. Given
the findings sequence x = {x1, x2, . . . , xN}, we
encode x into hidden state vectors with:

h = Bi-LSTM(x), (1)

where h = {h1, h2, . . . , hN}. Here hN combines
the last hidden states from both directions in the
encoder.

After the entire input sequence is encoded, we
generate the output sequence step by step with a
separate LSTM decoder. Formally, at the t-th step,
given the previously generated token yt−1 and the
previous decoder state st−1, the decoder calculates
the current state st with:

st = LSTM(st−1, yt−1). (2)

We then use st to predict the output word. For the
initial decoder state we set s0 = hN .

1While the name “impression” is often used in clinical set-
tings, we use “summary” and “impression” interchangably.

The vanilla sequence-to-sequence model that
uses only st to predict the output word has a major
limitation: it generates the entire output sequence
based solely on a vector representation of the in-
put (i.e., hN ), which may result in significant in-
formation loss. For better decoding we therefore
employ the attention mechanism (Bahdanau et al.,
2015; Luong et al., 2015), which uses a weighted
sum of all input states at every decoding step.

Given the decoder state st and an input hidden
state hi, we calculate an input distribution at as:

eti = v> tanh(Whhi +Wsst), (3)

at = softmax(et), (4)

where Wh, Ws and v are learnable parameters.2

We then calculate a weighted input vector as:

h∗t =
∑
i

atihi. (5)

h∗t encodes the salient input information that is
useful at decoding step t. Lastly, we obtain the
output vocabulary distribution at step t as:

P (yt|x, y<t) = softmax(V ′ tanh(V [st;h
∗
t ])), (6)

where V ′ and V are learnable parameters.

4.2 Pointer-Generator Network
While the encoder-decoder framework described
above can generate impressions from a fixed vo-
cabulary, the model can clearly benefit from being
able to “copy” salient observations directly from
the input findings. To add such “copying” capacity
into the model, we use a pointer-generator network
similar to the one described in See et al. (2017).

The main idea is that at each decoding step t,
we allow the model to either generate a word from
the vocabulary with a generation probability pgen,
or copy a word directly from the input sequence
with probability 1− pgen. We model pgen as:

pgen = σ(w>h∗h∗t + w>s st + wyyt−1), (7)

where yt−1 denotes the previous decoder output,
wh∗ , ws and wy learnable parameters and σ a
sigmoid function. For the copy distribution, we
reuse the attention distribution at calculated in (4).
Therefore, the overall output distribution in the
pointer-generator network is:

P (yt|x, y<t) = pgenPvocab(yt)+(1−pgen)
∑

i:xi=yt

ati,

(8)
2For clarity we leave out the bias terms in all linear layers.
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Figure 2: Overall architecture of our summarization model.

where Pvocab(yt) is the same as the output distri-
bution in (6).

4.3 Incorporating Study Background
Information

The background part of a radiology report is also
important, since crucial information such as the
purpose of the study, the body part involved and
the condition of the patient are often mentioned
only in the background. A straightforward way
of incorporating the background information is
to prepend all the background text to the find-
ings, and treat the entire sequence as input to the
pointer-generator network. However, as we show
in Section 6, this naive method in fact hurts the
summarization quality, presumably because the
model cannot sufficiently distinguish between the
findings and the background information, which
as a result leads to insufficient modeling of both
the findings and the background. To solve this,
we propose to encode the background text with a
separate attentional encoder, and use the resulting
background representation to guide the decoding
process in the summarization model (Figure 2).

For clarity we now use xb to denote the back-
ground token sequence, and x to denote the actual
findings section. Our goal is then to find y that
maximizes P (y|x,xb). To do this, we again ob-
tain the hidden state vectors h of the findings sec-
tion as in (1). Similarly, we obtain the hidden state
vectors of the background text with xb as input us-
ing a separate Bi-LSTM encoder:

hb = Bi-LSTMb(xb). (9)

Next, we calculate a distribution over hb as:

e′i = v′
>
tanh(Wbh

b
i +WhhN ), (10)

a′ = softmax(e′), (11)

where Wb and Wh are learnable parameters and
hN the last hidden state of the findings encoder.
The distribution a′ models the importance of to-
kens in the background section. We then obtain a
weighted representation of the background text as:

b =
∑
i

a′ih
b
i , (12)

where vector b has the same size as hb, and en-
codes the salient background information.

Lastly, we use the background vector b to guide
the decoding process, by modifying the recurrent
kernel of the decoder LSTM in (2) to be:

it
ft
ot
ut

 =


σ
σ
σ

tanh

W ·
 st−1
yt−1
b

 , (13)

ct = ft · ct−1 + it · ut, (14)

st = ot · tanh(ct), (15)

where it, ft, ot denotes the input, forget, and out-
put gates, W the weight matrix and ct the inter-
nal cell of the LSTM repectively, and · represents
an element-wise multiplication. Again for clarity
we leave out the bias terms in (13). As a result,
every state in the decoding process is directly in-
fluenced by the information encoded by the back-
ground vector b. The rest of the model, including
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Figure 3: Number of examples split by body part in the
collected Stanford Hospital dataset.

the calculation of the vocabulary distribution and
the copy distribution, remains the same.

5 Experiments

To test the effectiveness of our summarization
model, we collected reports of radiographic stud-
ies from the picture archiving and communication
system (PACS) at the Stanford Hospital. We de-
scribe our data collection process, baseline models
and experimental setup in this section, and present
the results and discussions in Section 6.

5.1 Data Collection

Reports of all radiographic studies from 2000 to
2014 were collected. We first tokenized all reports
with Stanford CoreNLP (Manning et al., 2014),
and filtered the dataset by excluding reports where
(1) no findings or impression section can be found;
(2) multiple findings or impression sections can be
found but cannot be aligned; or (3) the findings
have fewer than 10 words or the impression has
fewer than 2 words.

We removed body parts where only a small
number of cases are available, and included re-
ports of the top 12 body parts in the PACS system
to maintain generalizability. For common body
parts with more than 10k reports (e.g., chest), we
subsampled 10k reports from them.

This results in a dataset with a total of 87,127
reports. We further randomly split the dataset
into a 70% training (60,990), a 10% development
(8,712) and a 20% test set (17,425). We show the
dataset statistics split by body part in Figure 3.

5.2 Baseline Models

For our main experiments, we compare our model
against several competitive non-neural and neural
systems on the collected dataset. Unless otherwise
stated, the baseline models take only the findings

section as input.3

S&J-LSA. This is an extractive approach de-
scribed by Steinberger and Jezek (2004), which
applies Latent Semantic Analysis (LSA) to sum-
marization. It first scores “concept” clusters by ap-
plying singular value decomposition to the term-
by-sentence co-occurence matrix derived from the
passage. Sentences with the top scored concepts
are then kept as the summaries.

LexRank. LexRank is another popular extrac-
tive model introduced by Erkan and Radev (2004).
In LexRank, a passage is represented as a graph
of sentences, and a connectivity matrix based on
intra-sentence cosine similarity is used as the ad-
jacency matrix of the graph. Sentences are scored
by the eigenvector centrality in the graph, and the
highest scored sentences are kept.

Pointer-Generator. We also run the baseline
pointer-generator model introduced by See et al.
(2017). We find the “coverage” mechanism de-
scribed in the paper did not improve summary
quality in our task and therefore did not use it
for simplicity. We compare our model with two
versions of the pointer-generator model: one with
only the findings section as input and another one
with the background sections prepended to the
findings section as input.

5.3 Experimental Setup
Evaluation Metrics. In our main experiments
we evaluate the models with the widely-used
ROUGE metric (Lin, 2004). We report the F1

scores for ROUGE-1, ROUGE-2 and ROUGE-L,
which measure the word-level unigram-overlap,
bigram-overlap and the longest common sequence
between the reference summary and the system
predicted summary respectively.

Word Vectors. To enable knowledge transfer
from a larger corpus, we applied the GloVe algo-
rithm (Pennington et al., 2014) to a corpus of 4.5
million radiology reports of all modalities (e.g.,
X-ray, CT) and body parts. We used the result-
ing 100-dimensional word vectors to initialize all
word embedding layers in our neural models, and
empirically found this to improve the performance
of our neural models by about 1 ROUGE-L score.

3We find that when the background section is prepended
to the input, the extractive baseline models may select sen-
tences in the background part as the summary, resulting in
deteriorated performance.
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System ROUGE-1 ROUGE-2 ROUGE-L

Extractive Baseline: S&J-LSA 29.39 16.27 27.38
Extractive Baseline: LexRank 30.48 17.09 28.49
Pointer-Generator 46.51 33.39 45.07
Pointer-Generator (⊕ Background) 45.39 32.60 44.05
Our model 48.56 35.25 47.06

Table 1: Main results on the test set of the Stanford reports. “⊕Background” represents prepending the background
section to the findings section to form the input to the model. All the ROUGE scores have a 95% confidence interval
of at most ±0.50 as calculated by the official ROUGE script.

Implementations & Model Details. For the two
non-neural extractive baselines, we use their open
implementations.4 For both of them, we select the
top N scored sentences to form the summary and
treat N as a hyperparameter. We use N = 3 in
our experiments as it yields best scores on the dev
set. We implemented all neural models with Py-
Torch.5 To train the neural models we append
a special <EOS> token to the end of every ref-
erence summary. We then employ the standard
teacher-forcing with the reference summaries and
optimize the negative log-likelihood loss using the
Adam optimizer (Kingma and Ba, 2015). We tune
all hyperparameters on the dev set. We use 2-layer
Bi-LSTM for all encoders, and set the hidden size
to be 100 for each direction; 1-layer LSTM for the
decoder and set the hidden size to be 200. During
inference, we employ the standard beam search
with a beam size of 5. We stop decoding when-
ever a <EOS> token is predicted, and otherwise
use a maximum output sequence length of 100.

6 Results & Analysis

6.1 Main Results

We present results of our main experiments in
Table 1. We find that the two non-neural ex-
tractive models perform comparably, and both
are able to obtain non-trivial subsequence over-
lap with the reference summaries as measured
by ROUGE scores. However, a baseline neural
pointer-generator that combines the sequence gen-
eration and the copy mechanism beats the non-
neural baselines substantially on all metrics. We
confirm that naively incorporating the study back-
ground information by prepending the background
section directly to the input findings in the pointer-
generator model in fact hurts the performance

4https://github.com/miso-belica/sumy
5https://pytorch.org/

(noted by ⊕ Background). In comparison, our
model benefits from using the separately encoded
background vector to guide the decoding process,
and achieves best scores on all ROUGE metrics.

We also present sampled test examples and sys-
tem output in Figure 4. We find that compared
to the non-neural extractive baselines, the neural
models are not limited by sentences in the findings
section and therefore generate summaries of bet-
ter quality. For example, the neural models learn
to compose the summary by combining observa-
tion phrases from different sentences, or by gen-
erating new conclusive phrases such as “negative
study”. Compared to the pointer-generator model,
our model learns to correctly utilize relevant back-
ground information (e.g., previous study or exam
information) to improve the summary.

6.2 Clinical Validity with Radiologist
Evaluation

One potential shortcoming of the ROUGE met-
rics is that they only measure the similarity be-
tween the predicted summary and the reference
summary, but do not sufficiently reflect the overall
grammaticality or utility of the predictions. There-
fore, we also conducted evaluations with a board-
certified radiologist to understand the clinical va-
lidity of our system generated summaries.

In this evaluation, we randomly sampled 100
examples from our test set. We ran our best
model over these 100 examples, and presented
each example along with the corresponding sys-
tem predicted summary and reference human-
written summary to the radiologist. We randomly
ordered the predicted and reference summary such
that the correspondence cannot be guessed from
the order. The radiologist was asked to select
which of the two summaries was better, or that
they have roughly equal quality.

Table 2 presents the result. For 51 examples, the

https://github.com/miso-belica/sumy
https://pytorch.org/
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Background: radiographic examination of the
abdomen. clinical history: xx years of age, male,
please obtain upright and lateral decub. compar-
ison: abdominal x-ray <date>. procedure com-
ments: two views of the abdomen.

Findings: median sternotomy wires are seen in
the anterior chest wall in addition to several me-
diastinal clips and an aicd. trace bilateral pleu-
ral effusions are noted. interval increase in small
bowel dilatation compared to previous study with
multiple air-fluid levels, consistent with small
bowel obstruction. there is a paucity of colonic
gas. no pneumoperitoneum.

Background: three views of the right shoulder
and three views of the left shoulder: <date>.
clinical history: an xx-year-old female with bi-
lateral shoulder pain.

Findings: three views of the right shoulder con-
sisting of external rotation, axillary, and scapu-
lar views demonstrate no evidence of fracture or
dislocation. the joint spaces are well-maintained
without evidence of degenerative change. there is
normal mineralization throughout. three views of
the left shoulder . . . are well-maintained without
evidence of degenerative change. mineralization
is normal throughout.

Background: three views of the abdomen:
<date>. comparison: <date>. clinical history:
a xx-year-old male status post hirschsprung’s dis-
ease repair.

Findings: the supine, left-sided decubitus and
erect two views of the abdomen show increased
dilatation of the small bowel since the prior exam
on <date>. there are multiple air-fluid levels,
suggesting bowel obstruction. no free intraperi-
toneal gas is present.

Human: small bowel dilatation with multiple
air-fluid levels and colonic decompression con-
sistent with small bowel obstruction.

Human: unremarkable radiographs of bilateral
shoulders.

Human: increased dilatation of the small bowel
with multiple air-fluid levels, suggesting bowel
obstruction. no free intraperitoneal gas.

Extractive Baseline: median sternotomy wires
are seen in the anterior chest wall in addition to
several mediastinal clips and an aicd.

Extractive Baseline: three views of the right
shoulder consisting of external rotation, axillary,
and scapular views demonstrate no evidence of
fracture or dislocation.

Extractive Baseline: the supine, left sided decu-
bitus and erect two views of the abdomen show
increased dilatation of the small bowel since the
prior exam on <data>.

Pointer-Generator: interval increase in bowel
dilatation, consistent with bowel obstruction.

Pointer-Generator: no evidence of fracture or
dislocation of the right shoulder.

Pointer-Generator: increased dilatation of
small bowel, suggesting small bowel obstruction.

Our model: interval increase in small bowel
dilatation compared to abdominal x-ray dated
<date> with multiple air-fluid levels, consistent
with small bowel obstruction.

Our model: unremarkable bilateral shoulders. Our model: increased dilatation of small bowel,
suggesting bowel obstruction. no free intraperi-
toneal gas.

Figure 4: Sampled test examples and system predictions from the Stanford dataset. First example: our model
learns to relate the summary with a previous study mentioned only in the background section. Second: our model
correctly summarizes the body part involved in the study. Third: our model correctly includes more crucial infor-
mation as found in the human summary.

Category Percentage

Human Summary Wins 33
System Prediction Wins 16
Roughly Equal Quality 51

Table 2: Radiologist evaluation result on 100 sampled
test examples. For a total of 67 examples, the radiol-
ogist indicated that the system summary is at least as
good as the human-written summary.

radiologist indicated that the human-written and
system-generated summaries are equivalent. For
16 examples, the radiologist preferred the system
summary, and for the remaining 33 examples, the
radiologist preferred the human-written summary.
Note that under our setting, a randomly generated
sequence would have almost zero chance to be in-
dicated as good as the human-written summary.
We therefore believe the result suggests significant
clinical validity of our system.

6.3 Does the model transfer to reports from
another organization?

Deploying a clinical NLP system at an organiza-
tion different from the one where the training data
comes from is a common need. However, this is
challenging in that medical practitioners includ-
ing radiologists from different organizations tend

System ROUGE-1 ROUGE-2 ROUGE-L

LexRank 15.42 5.65 14.60
Our model 35.02 20.79 34.56

Table 3: Cross-organization evaluation results on the
Indiana University chest x-ray dataset. All the ROUGE
scores have a 95% confidence interval of at most±1.10
as calculated by the official ROUGE script.

to go through different training and follow differ-
ent templates or styles when writing medical text.
Here we aim to understand the cross-organization
transferability of our summarization model.

We use the publicly available Indiana Uni-
versity Chest X-ray Dataset (Demner-Fushman
et al., 2015), which consists of chest X-ray images
paired with the corresponding radiology reports.
We filtered the reports with the same set of rules
and arrived at a collection of 2,691 unique reports.
We used this dataset as the test set, and ran our best
model trained on our own dataset directly on it.
The results are shown in Table 3 and sampled ex-
amples are shown in the first two columns of Fig-
ure 5. We find that our model again outperforms
the baseline extractive model substantially in this
transfer setting, and the generated summaries are
both grammatical and clinically meaningful.
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Cross-organization Cross-organization Cross-body part: Knee

Background: indication: xxxx year old male
with end-stage renal disease on hemodialysis

Findings: the heart size is mildly enlarged. there
is tortuosity of the thoracic aorta. no focal
airspace consolidation, pleural effusions or pneu-
mothorax. no acute bony abnormalities.

Background: indication: xxxx year old female,
hypoxia. comparison: pa lateral views of the
chest dated xxxx.

Findings: bilateral emphysematous again noted
and lower lobe fibrotic changes. postsurgical
changes of the chest including cabg procedure,
stable. stable valve artifact. there are no focal ar-
eas of consolidation. no large pleural effusions.
no evidence of pneumothorax. . . . contour ab-
normality of the posterior aspect of the right 7th
rib again noted, stable.

Background: radiographic examination of the
knee: <date> <time>. clinical history: xx-
year-old man with right knee pain. comparison:
none. procedure comments: 2 views of the right
knee were performed.

Findings: there is no visible fracture or
malalignment. likely small joint effusion. mild
fullness in the popliteal region of the right knee
may represent a baker ’s cyst. mild soft tissue
swelling along the medial aspect of the knee is
present.

Human: cardiomegaly without acute pulmonary
findings.

Human: no acute cardiopulmonary abnormality.
stable bilateral emphysematous and lower lobe fi-
brotic changes.

Human: no acute bony abnormality. likely joint
effusion and soft tissue swelling along the medial
aspect of the knee.

Our model: mild cardiomegaly. no radiographic
evidence of acute cardiopulmonary process.

Our model: stable postsurgical changes of the
chest as described above. no evidence of pneu-
mothorax.

Our model: mild soft tissue swelling along
the medial aspect of the knee. no fracture or
malalignment.

Figure 5: First two columns: sampled examples from the Indiana University dataset and system output in the cross-
organization evaluation. Last column: sampled test example of a “knee” study in our cross-body part evaluation.

Body Part ROUGE-1 ROUGE-2 ROUGE-L

Chest 31.24 17.99 30.38
Abdomen 28.90 17.23 27.83
Knee 48.78 35.07 47.49

Table 4: Cross-body part evaluation results of our neu-
ral model on the Stanford dataset. All the ROUGE
scores have a 95% confidence interval of at most±0.75
as calculated by the official ROUGE script.

6.4 Does the model transfer to body parts
unseen during training?

Radiology studies conducted on different body
parts often include vastly different observations
and diagnosis. For example, while “lung base
opacity” is a common observation in chest radio-
graphic studies, it does not exist in musculoskele-
tal studies. In practice, an organization may not
have adequate report data that covers some rare
body parts. It is therefore interesting to test to what
extent our summarization model can generalize to
reports for body parts unseen during training.

We study this by simulating the condition where
a specific body part is not present in the train-
ing data. Given the entire dataset D, and a sub-
set of the dataset DB that corresponds to a body
part B, we reserved the entire subset DB as test
data, and used D − DB for training (90%) and
validation (10%). Table 4 presents the evalua-
tion results for body part “chest”, “abdomen” and
“knee”. We find that for “chest” and “abdomen”,
the system summaries degrade substantially when
the corresponding data were not seen during train-
ing. However, the predicted summaries degrade

Category Percentage

Good Summary 63

Missing Critical Info. 24
Inaccurate/Spurious Info. 8
Redundant 4
Ungrammatical 6

Table 5: Error analysis on 100 sampled dev examples
from the Stanford dataset.

less for “knee” when reports of it were not seen
during training, presumably because the model
can learn to summarize reasonably well from re-
ports of other close musculoskeletal studies such
as “ankle” or “elbow” studies. We confirm this by
examining the model predictions: in the example
shown in the last column of Figure 5, the model
learns to compose the summary with salient obser-
vations such as “tissue swelling” and “fracture”,
while being able to copy the anatomy “knee” (un-
seen during training) from the findings section.

6.5 What is the model missing on?

Lastly, we run a detailed error analysis on 100
sampled dev examples. We focus on four types
of errors: (1) missing critical information, if the
predicted summary fails to include some clinically
important information; (2) inaccuate/spurious in-
formation, if the predicted summary contains ob-
servations or conclusions that are inaccurate, or
that do not exist in the findings; (3) redundant
summary, if the predicted summary is repetitive or
over-verbose; and (4) ungrammatical summary, if
the predicted summary contains significant gram-
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Error type: missing critical information Error type: redundant summary Error type: ungrammatical summary

Background: radiographic examination of the
lumbar spine: <time>. clinical history:
<age>, lower back pain. comparison: none.
procedure comments: 4 views of the lumbar
spine.

Findings: five non-rib bearing lumbar type ver-
tebral bodies are present. there is trace retrolis-
thesis of l5 on s1. there is no evidence of in-
stability on flexion and extension views. the
spinal alignment is otherwise normal. the disc
spaces and vertebral body heights are preserved.
there is no visible fracture. no visible facet joint
arthropathy or pars defects.

Background: radiographic examination of the
shoulder: <time>. clinical history: <age>
years of age, pain in joint involving shoulder re-
gion. comparison: outside study dated <date>.
procedure comments: single axillary view of the
left shoulder.

Findings: single axillary view of the shoulder
again demonstrates a highly comminuted frac-
ture of the humeral head and likely fracture of the
scapular body. the humeral head appears located
on the glenoid.

Background: radiographic examination of the
shoulder: <time>. clinical history: <age>
years of age, xray exam of lower spine 2 or 3
views. x-ray exam of right shoulder complete.
comparison: none. procedure comments: three
views of the right shoulder.

Findings: a calcification of the rotator cuff is
seen above the greater tuberosity. there is no frac-
ture or malalignment. the soft tissues and visual-
ized lung are unremarkable.

Human: trace retrolisthesis of l5 on s1 with no
evidence of instability with motion. otherwise
normal lumbar spine.

Human: redemonstration of a highly commin-
uted fracture of the humeral head and likely frac-
ture of the scapular body . the humeral head ap-
pears to be located on the glenoid .

Human: no acute bony or joint abnormality, but
there is calcification of the rotator cuff that may
be due to calcific tendinitis.

Our model: no acute bony or articular abnor-
mality.

Our model: highly comminuted fracture of the
scapular body and likely fracture of the scapular
body.

Our model: calcification acute bony or joint ab-
normality.

Figure 6: Examples of different types of errors that our system makes on the Standord dataset. Words that are
missing from or are erroneously included in the model predictions are highlighted in red.

matical errors. For each example, we examine
whether it contains any of the errors by comparing
it with the reference summary; otherwise we clas-
sify it as a good summary. Note that an example
can be assigned to more than one error categories.

We include examples of different error types in
Figure 6, and present the result of error analysis
in Table 5. We find that 63% examples are qual-
itatively close to the reference summary, which
aligns well with the radiologist evaluation result.
Among the four error categories, missing critical
information is the most common error with 24%
examples, suggesting that the summaries may be
improved with explicit modeling of the impor-
tance of different radiology findings. We also find
through qualitative analysis that the model tends to
miss on followup procedures recommended by the
human radiologist, since these procedures are of-
ten not included in the findings section and gener-
ating them needs significant understanding of the
study and domain knowledge.

7 Conclusion

In this paper we proposed to generate radiology
impressions from findings via neural sequence-to-
sequence learning. We proposed a customized
neural model for this task which uses encoded
background information to guide the decoding
process. We collected a dataset from actual hos-
pital studies and showed that our model not only
outperforms non-neural and neural baselines, but
also generates summaries with significant clinical
validity and cross-organization transferability.

Acknowledgments

We thank Peng Qi and the anonymous reviewers
for their helpful suggestions.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. The 2015 Interna-
tional Conference on Learning Representations.

Jan ML Bosmans, Joost J Weyler, Arthur M De Schep-
per, and Paul M Parizel. 2011. The radiology report
as seen by radiologists and referring clinicians: re-
sults of the COVER and ROVER surveys. Radiol-
ogy, 259(1):184–195.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. The 2018 Annual Meeting of the Associa-
tion of Computational Linguistics (ACL 2018).

Savelie Cornegruta, Robert Bakewell, Samuel Withey,
and Giovanni Montana. 2016. Modelling radio-
logical language with bidirectional long short-term
memory networks. Proceedings of the Seventh In-
ternational Workshop on Health Text Mining and In-
formation Analysis (LOUHI).

Dina Demner-Fushman, Marc D Kohli, Marc B Rosen-
man, Sonya E Shooshan, Laritza Rodriguez, Sameer
Antani, George R Thoma, and Clement J McDon-
ald. 2015. Preparing a collection of radiology ex-
aminations for distribution and retrieval. Journal
of the American Medical Informatics Association,
23(2):304–310.

Jacob S Elkins, Carol Friedman, Bernadette Boden-
Albala, Ralph L Sacco, and George Hripcsak. 2000.



213

Coding neuroradiology reports for the northern man-
hattan stroke study: a comparison of natural lan-
guage processing and manual review. Computers
and Biomedical Research, 33(1):1–10.
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