
Proceedings of the 9th International Workshop on Health Text Mining and Information Analysis (LOUHI 2018), pages 160–164
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

160

In-domain Context-aware Token Embeddings Improve Biomedical
Named Entity Recognition

Golnar Sheikhshab
Simon Fraser University
gsheikhs@sfu.ca

Inanc Birol
British Columbia Cancer Agency

ibirol@bcgsc.ca

Anoop Sarkar
Simon Fraser University
gsheikhs@sfu.ca

Abstract

Rapidly expanding volume of publications in
the biomedical domain makes it increasingly
difficult for a timely evaluation of the latest lit-
erature. That, along with a push for automated
evaluation of clinical reports, present oppor-
tunities for effective natural language process-
ing methods. In this study we target the prob-
lem of named entity recognition, where texts
are processed to annotate terms that are rele-
vant for biomedical studies. Terms of inter-
est in the domain include gene and protein
names, and cell lines and types. Here we re-
port on a pipeline built on Embeddings from
Language Models (ELMo) and a deep learning
package for natural language processing (Al-
lenNLP). We trained context-aware token em-
beddings on a dataset of biomedical papers us-
ing ELMo, and incorporated these embeddings
in the LSTM-CRF model used by AllenNLP
for named entity recognition. We show these
representations improve named entity recogni-
tion for different types of biomedical named
entities. We also achieve a new state of the art
in gene mention detection on the BioCreative
II gene mention shared task.

1 Introduction

Last decade witnessed substantial improvements
in machine learning methods and their application
to natural language processing tasks. Recently, Pe-
ters et al. (2018) introduced ELMo (Embeddings
from Language Models), a system for deep con-
textualized word representation, and showed how
it can be used in existing task-specific deep neural
networks. The method improves the state of the
art over a variety of NLP tasks such as question
answering, word sense disambiguation, sentiment
analysis, and named entity recognition. The de-
velopers of the tool also provide an ELMo model
pre-trained on the Billion-word Language Model
(LM) dataset (Chelba et al., 2014) as an off-the-

shelf tool for use in a wide variety of NLP tasks
and domains.

This begs the question of how the performance
of downstream analysis would improve if the
model were to be adapted to work with domain-
specific texts. In this paper, we investigate the
effect of an in-domain training set for ELMo in
Named Entity Recognition (NER) applications.
Our contributions are as follows:

1. Off-the-shelf ELMo has room for improve-
ment in domain-specific applications

2. ELMo consistently improves biomedical
named entity recognition when trained on in-
domain data

3. Such improvement can be achieved even
when the in-domain training dataset is
smaller than the Billion-word LM data.

4. The resulting model achieves the highest
precision/recall/F1 scores so far on BioCre-
ative II Gene mention detection shared task
(BC2GM).

We explain ELMo and AllenNER, the named
entity recognizer we used, in sections 2 and sec-
tion 3. Then, we describe our datasets in section 4,
and we move on to report the results in section 5.

2 ELMo

ELMo (Peters et al., 2018) is a system that pro-
duces context-aware embeddings for word tokens.
Similar to traditional context-independent word
embeddings such as GloVe (Pennington et al.,
2014) and Word2Vec (Mikolov et al., 2013),
ELMo representations can be used as input to a
neural network for downstream tasks. Though,
ELMo is different from the traditional word em-
beddings in that it gives the representation of the
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Figure 1: ELMo is a bidirectional LSTM for language modelling where the next or precedent tokens are predicted
from the softmax layers over forward and backward LSTMs respectively.

word in the context of the specific given sentence;
hence it is a context-aware word token representa-
tion as opposed to a word type representation.

It is trained using a language modeling objec-
tive function, where the objective is to predict the
next word in the sequence; either sequentially left
to right or right to left. As such, it can be viewed
as learning a token level representation of words
for a task that can be trained on unannotated data.
These word representations can then be used for a
task that is trained on labeled data. In our case, the
task is biomedical named-entity recognition.

Figure 1 shows the architecture of ELMo as
a recurrent language modelling network. The
input to this system is a sequence of words
w1w2 . . . wi . . . wn. First, each word is converted
to a context-independent embedding by a convo-
lutional neural network (CNN) over its charac-
ters. These character-based representations are
then fed into a two-layer bidirectional long short-
term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) recurrent neural network. Output of
the second layers of the forward and backward
LSTMs are fed to a soft-max layer to predict wi+1

and wi−1, respectively, at each position i.
Task-specific learned weights can be used later

to combine all layers in ELMo model at position
i and form the task-specific ”ELMo representation
of wi”.

Peters et al. (2018) showed that different layers
in this deep recurrent model learn different aspects
of a given token. The lower layers learn more syn-
tactic features whereas higher layers learn the con-
textual aspects of the word. They linearly com-

bined the layers using task-dependent weights,
and their experiments show that for Named Entity
Recognition tasks, the layers are combined with
effectively the same weights.

3 Named Entity Recognition with
AllenNLP

In our pipeline, we couple ELMo embeddings to
AllenNLP (Gardner et al., 2017) for NER tasks.

AllenNLP uses a bidirectional two-layer
LSTM-CRF (Lample et al., 2016) to perform
NER as a sequence tagging task. Each word is
tagged with an output that marks if it is at the
beginning (B), in the middle (I), at the end (E or
L), or outside (O) of an entity type. One-word
entities are also marked (as S or U). For example
B-Gene and I-Gene stand for beginning and inside
of a Gene, whereas B-DNA and E-DNA stand for
beginning and ending of a DNA entity type.

AllenNLP embeds the input words using a Con-
volutional Neural Network over characters. Rei
et al. (2016) showed that word embeddings from
character compositions outperform lookup em-
beddings such as word2vec, when used for named
entity recognition.

AllenNLP combines the layers in ELMo Model
using learned task-specific weights, concatenates
the result for each token to context-independent
word embeddings, and feed the concatenation into
the LSTM-CRF as illustrated in Figure 2.

4 Datasets

We collected a focused domain-specific subset
of PubMed Central (PMC) documents, and used
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Figure 2: Architecture of LSTM-CRF (Lample et al., 2016) with ELMo. Traditional word embeddings and ELMo
representations are concatenated and fed into a bidirectional LSTM. A CRF layer on top of bidirectional LSTM
takes local label dependencies into account. At training time the log likelihood of gold label sequences is maxi-
mized. At test time, Viterbi (Viterbi, 1967) algorithm is used to decode the complete label sequence. -CLT in the
labels of the example indicate cell type entity.

them for training ELMo. This dataset is described
in detail in section 4.1. We report results on two
benchmark datasets, which we describe in sec-
tions 4.2 and 4.3.

4.1 ELMo Training Set
We downloaded the text files of a subset
of PMC documents that are available at
ftp://ftp.ncbi.nlm.nih.gov/pub/pmc in May
2018, and picked 3960 full-text documents
that had a Medical Subject Heading (Mesh)
term ’cancer’. We ran StanfordNLP/CoreNLP
toolkit (Manning et al., 2014) on these documents
for sentence splitting and tokenization. Tokens of
each sentence were joined with space character
in between to form the sentences in the training
set. This dataset contains about 21 million tokens,
and is substantially smaller than the One Billion
Word Benchmark (Chelba et al., 2014) that Peters
et al. (2018) used for training ELMo but contains
in-domain text that is more likely to benefit the
biomedical text analysis of interest in this paper.

4.2 BC2GM
BC2GM is the data set for BioCreative II Gene
Mention detection shared task (Smith et al., 2008).
This dataset contains 15000 training and 5000 test
sentences, all from PubMed abstracts. Gold anno-
tations give the gene mentions by providing the
sentence ID, the start and end characters of the
mention (ignoring all space characters), and the
mention itself.

4.3 JNLPBA
JNLPBA (Kim et al., 2004) is the dataset for a
shared task on biomedical entity detection. Its
training set contains 2000 GENIA (Kim et al.,
2003) abstracts, which the authors had collected

by searching MEDLINE abstracts for Mesh terms
’human’, ’blood cells’ and ’transcription factors’.
The test set contain 404 abstracts, half of which
are from the same domain and the other half are
from a super-domain of ’blood cells’ and ’tran-
scription factors’. The documents are annotated
for protein, DNA, RNA, cell line, and cell type
entity classes.

5 Results

Table 1 shows the leading results in the litera-
ture (top four rows) in comparison with our results
(bottom three rows) on BC2GM dataset.

In the year it was held, Ando (2007) had
won the challenge with a semi-supervised sys-
tem equipped with a lexicon and a combination
of several classifiers. Gimli (Campos et al., 2013)
is a supervised method based on conditional ran-
dom fields (CRF) (Lafferty et al., 2001) with
hand-engineered features that was the state of
the art for gene mention detection before Graph-
NER (Sheikhshab et al., 2018) obtained a higher
F-score. GraphNER, obtained the distributions
over labels from the CRF and propagated them on
a graph of 3-grams similarities constructed over
BC2GM.

Rei et al. (2016) set the previous state of the
art on BC2GM by applying an LSTM-CRF based
system with attention to characters. Our baseline,
AllenNER (described in detail in section 3) is sim-
ilar to their system, except AllenNER uses a con-
volutional neural network (CNN) over characters
instead of using attention mechanism.

Our results, the lower part of Table 1, show
that using the off-the-shelf ELMo, that is trained
on the one Billion word language model bench-
mark (Chelba et al., 2014), improves the preci-
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Model Prec. (%) Rec. (%) F1 (%)
Ando (2007) 88.48 85.97 87.21
Gimli (2013) 90.22 84.32 87.17

GraphNER (2018) 89.18 85.57 87.34
Rei et al. (2016) - - 87.99

AllenNER with no ELMo (Baseline) 88.05 88.72 88.39
AllenNER + off-the-shelf ELMO 89.03 87.95 88.49

AllenNER + ELMO Trained In-Domain 89.86 89.59 89.72*

Table 1: Leading results in the literature (up) in comparison with our results (down) on BC2GM dataset

Model protein DNA RNA cell line cell type
AllenNER with no ELMo (Baseline) 70.47 70.87 63.94 57.17 73.55

AllenNER + off-the-shelf ELMO 69.96 70.56 65.38 59.70 73.21
AllenNER + ELMO Trained In-Domain 75.08* 73.13 65.17 61.15 75.87*

Table 2: F1-scores (%) for different entity types in JNLPBA dataset

sion on the expense of recall, modestly improving
the F1 score. When ELMo is trained on approxi-
mately 21 million in-domain tokens both precision
and recall are considerably improved resulting in
a more than 1 percentage point improvement in
the F1-score. A significance test using sigf (Padó,
2006) showed that this improvement is statistically
significant (p < 10−5), and the one from off-the-
shelf ELMo is not (p > 0.02).

Table 2 shows our F1 scores on JNLPBA. It
is evident from the table that using ELMo leads
to salient improvements over the baseline if it is
trained in-domain. The off-the-shelf ELMo has
improved the performance for RNA and cell line
entity types but hurt the performance for protein,
DNA, and cell type. In-domain ELMo always ob-
tains the best performance with the exception of
RNA entity type where it is competitive with off-
the-shelf ELMo and considerably better than the
baseline.

Statistical significance tests using sigf (Padó,
2006) showed that most differences in Table 2 are
not statistically significant after Bonferroni cor-
rection for multiple testing. The only statistically
significant improvements are those of in-domain
ELMo for protein and cell type mention detec-
tions over both off-the-shelf ELMo and baseline.
This could be due to the fact that proteins and
cell types are more frequent in JNLPBA when
compared to other entities. Still, it is interest-
ing to note that in-domain trained ELMo model is
consistently performed better than the alternative
ELMo models in all but one NER task. Table 3
shows the frequencies of different entity types in
training and test sets of JNLPBA.

Our results on JNLPBA are not the state of the
art. Habibi et al. (2017) report F1 scores as high as

Entity type Training Test
protein 30,269 5,067
DNA 9,533 1,056
RNA 951 118
cell type 6,718 1,921
cell line 3,830 500

Table 3: Frequencies of different entity types in train-
ing and test sets of JNLPBA

77.25% for protein and 63.31% for cell line entity
types when they use word embeddings trained on
the union of (nearly 23 million) PubMed abstracts,
(nearly 700,000) PMC full articles, and (approxi-
mately four million) English Wikipedia articles as
input to an LSTM-CRF. Nevertheless, our results
show the positive effect of using in-domain trained
ELMo representations compared to a very strong
baseline. We believe new state of the art will be
achieved if in-domain ELMo representations are
used to augment current state-of-the-art systems.

6 Conclusion

We show that token level context-aware embed-
dings trained on an auxiliary task of language
modeling using the ELMo toolkit can be used
to consistently improve biomedical named entity
recognition tasks, but only when the pre-trained
embeddings are trained on in-domain biomedical
data. Using this technique we produce a new state
of the art result on the BioCreative II dataset for
gene mention detection.
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