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1 Introduction

Interpreting neural networks is a popular topic,
and there are many works focusing on analyz-
ing networks with respect to learning syntax (Shi
et al., 2016; Linzen et al., 2016; Blevins et al.,
2018).

In particular, Vaswani et al. (2017) showed that
the self-attentions in their Transformer architec-
ture may be directly interpreted as syntactic de-
pendencies between tokens. However, there is
a potential problem in the fact that the atten-
tion mechanism on deeper layers operates on the
previous-layer neurons, which already comprise
mixed information from multiple source tokens.

Our goal is to infer source sentence tree struc-
tures form the encoder’s self-attention energies
used in the Transfomer neural machine translation
(NMT) system. We would like to visualize how
the self-attention mechanism connects individual
words (or wordpieces) of the sentence, to cre-
ate various tree structures (e.g. constituency trees,
undirected trees, dependency trees), and to discuss
their characteristics with respect to the existing
syntactic theories and annotations. We would also
like to discuss results across various languages and
natural language processing (NLP) tasks.

In this abstract, we present our preliminary re-
sults, analyzing the encoder in English-to-German
NMT within the NeuralMonkey toolkit (Helcl and
Libovický, 2017). We introduce aggregation of
self-attention through layers to get a distribution
over the input tokens for each encoder position
and layer (Section 2). We then propose algorithms
for constructing two types of syntactic trees (Sec-
tions 3 and 4), apply them to 42 sentences sampled
from PennTB (Marcus et al., 1993), and compare
the resulting structures to established syntax anno-
tation styles, such as that of PennTB, UD (Nivre
et al., 2016), or PDT (Böhmová et al., 2003).
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Figure 1: Aggregated encoder’s self-attentions after the
6th layer. Each column contains a distribution over the
source wordpieces for one encoder position.

2 Aggregated self-attention visualization

We use the default setting: encoder is composed
of 6 layers, each consisting of a 16-head self-
attention mechanism and a fully connected feed-
forward network, both bridged by residual connec-
tions. Each position in one layer can attend to all
positions in the previous layer; the attention to the
same position is boosted by the residual connec-
tion. When translating a single sentence by Trans-
former, we would like to capture how much each
input token affects each particular position on each
layer in the encoder. This is done by aggregating
the attention distributions through the layers. For
each layer, we collect the self-attention distribu-
tion to the previous layer and add +1 to the same-
position attention for the residual connection. The
output is then normalized. So far, we take the at-
tention distribution as the average attention over
all the 16 heads.
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Figure 2: A binary constituency tree and an undirected tree, generated by the proposed algorithms.

3 Constituency trees extraction

In Figure 1, we can see that the self-attention
mechanism is quite strong within phrases. That
led us to an idea of extracting phrase-structure
trees from that. We define the score of a con-
stituent with span from position i to position j as

score(i, j) =

∑
x∈[i,...,j]

∑
y∈[i,...,j]w[x, y]

j − i+ 1
,

where w[x, y] is the attention weight of the token
y in the position x. We then build a binary con-
stituency tree by recurrently splitting the sentence.
When splitting a phrase with span (i, j), we look
for a position k maximizing the scores of the two
resulting phrases:

argmax
k

(score(i, k) · score(k + 1, j)) .

We also rejoin wordpieces into words, assigning
zero scores to constituents separating pieces of a
single word. One example is shown in Figure 2.

When compared to PennTB, clauses, noun
phrases, or shorter verb phrases are often well rec-
ognized. The differences are mainly inside them1

and in composing them together forming clauses.

4 Undirected trees extraction

First, for each pair of tokens i, j, we calculate a
coattention score, expressing how common it is
for the tokens to be attended to at the same time:

score(i, j) =
∑

m∈[1,N−1]

w[m, i] · w[m, j]

1This is also caused by very flat noun phrases representa-
tions in PennTB compared to our binary branching.

We then construct an undirected tree 2 maximiz-
ing the coattention scores along its edges, using
the algorithm of Kruskal (1956); see the bottom
tree in Figure 2. We have found the resulting trees
to bear surprising similarities to standard syntactic
dependency trees (which, however, are directed).

For example, we observe many flat treelets, re-
sembling headed syntactic phrases; the “phrase
heads” (bold) are mostly content words, while
the function words are mostly attached as leaf
nodes (as in UD). We hypothesize that the encoder
tries to concentrate the representation of the whole
phrase onto the position of a single token – ideally
one that already carries a lot of meaning.

Furthermore, the phrase treelets are then typi-
cally connected to each other via these heads (as
in UD), and/or via a sort of connector tokens at
phrase boundaries (underlined), such as commas,
conjunctions, or prepositions (as in PDT).

5 Future work

In future, we would like to (1) analyze how the
trees evolve through layers, (2) employ unsuper-
vised or supervised selection of “more syntactic”
heads, and (3) perform the experiments on more
language pairs; especially, we hope that transla-
tion into multiple languages could push the en-
coder to use a more syntactic internal representa-
tion.

2 We also tried to construct directed graphs, (i.e. a stan-
dard dependency tree), where the edges could be directly
viewed as dependencies, but we did not find any sensible way
of defining the coattention scores assymetrically; rather than
parent-child dependencies, many relations seem to be more
general, without a clear direction.
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