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Abstract
Input optimization methods, such as Google
Deep Dream, create interpretable representa-
tions of neurons for computer vision DNNs.
We propose and evaluate ways of transfer-
ring this technology to NLP. Our results sug-
gest that gradient ascent with a gumbel soft-
max layer produces n-gram representations
that outperform naive corpus search in terms
of target neuron activation. The representa-
tions highlight differences in syntax awareness
between the language and visual models of the
Imaginet architecture.

1 Introduction

Deep Neural Networks (DNNs) have led to ad-
vances in Natural Language Processing, but they
are hard to interpret. This is partly due to the fact
that their smallest components, i.e., neurons, lack
interpretable representations.

For computer vision problems, Simonyan et al.
(2014) propose to use gradient ascent to find an in-
put image that maximizes the activation of a neu-
ron of interest. Using these image representations,
one can for instance show that lower level neu-
rons in vision CNNs specialize in patterns such as
stripes (Mordvintsev et al., 2015).

Applying gradient ascent input optimization to
NLP is not straightforward, as discrete symbols
are not open to continuous manipulation. A
common alternative approach is to search exist-
ing corpora for optimal documents or n-grams
(e.g., Kádár et al. (2017), Aubakirova and Bansal
(2016)). As this strategy only covers the space of
existing inputs, we assume that it may lead to in-
correct assumptions. For instance, the represen-
tation of a given neuron may suggest that syntax
was learned, when in reality this is due to a lack of
ungrammatical inputs in the corpus.

In the following, we propose and test methods
for gradient ascent input optimization in NLP. Our

quantitative assessment suggests that one method,
which is based on the gumbel softmax trick, pro-
duces inputs that are more highly activating than
corpus search. By applying this method to the
Imaginet architecture, we confirm that a language
model pays attention to syntax to some degree,
while a visual model looks for key content words
and ignores function words.

2 Input optimization for NLP

In the following, we denote as f(E) the activation
of some neuron of interest when forward-feeding
a sequence of embedding vectors E = [e1 . . . eT ].

2.1 Embedding optimization
One straightforward approach to NLP input opti-
mization is to treat E like Simonyan et al. (2014)
treat images, i.e., to apply gradient ascent directly
to the embedding vectors, while keeping other
model parameters constant: argmaxE

[
f(E)

]
.

However, there is no guarantee that the optimal
vectors will correspond to the embedding vectors
of real words, or even be close to them. In our
experiments, the average cosine proximity to the
closest real-word embedding is 0.24, suggesting
that there is a divergence between the training
goal (finding embedding vectors) and the real goal
(finding a representation made up of real words).

2.2 Word optimization
Note that the embedding operation can be written
as E = XM, where X ∈ {0, 1}T×V is a matrix
of one-hot vectors and M is the embedding matrix
for all V known words. If we relax the require-
ment that X be one-hot, we can perform gradient
ascent directly on X, while keeping M constant:
argmaxX

[
f(XM)

]
. This approach has the unde-

sirable effect that entries in X can become very
large or negative, and therefore unlike the one-hot
vectors seen in training.
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To enforce positive vectors that sum to one, we
can use the softmax function across the vocabu-
lary axis: argmaxX

[
f(PsmxM)

]
, where psmx

t =
softmax(xt). However, this input can still be un-
like the inputs seen during training, as the optimal
distribution may be smooth.

To remedy this situation, we use the gumbel
softmax trick (Jang et al. (2017), Maddison et al.
(2017)): argmaxX

[
f(PgblM)

]
, where

pgbl
t = softmax

[
τ−1

(
log(psmx

t ) + gt
)]

and gt,v ∼ −log(−log(U(0, 1))). By slowly an-
nealing τ , we are able to transition from a uniform
probability distribution to a “spiky” one where
probability mass is concentrated on few words.

3 Experiment

3.1 Model
We re-implement the Imaginet architecture from
Kádár et al. (2017). It consists of a joint word
embedding layer (embedding size 1024) and two
separate unidirectional GRUs (hidden size 1024
each). One GRU serves as a language model,
while the other predicts visual features of a scene
described in the input sentence. The model is
trained on 566435 MSCOCO captions with visual
features taken from Chrupała et al. (2017)1.

Figure 1: Activation after input optimization for ran-
domly selected projection layer neurons. crp: corpus
search; emb: embedding opt.; logit: word opt. w/o
softmax; smx: word opt. w/ softmax; gbl: word opt.
w/ gumbel softmax.

3.2 Quantitative evaluation
We evaluate the input optimization methods by the
activation that they achieve in 160 randomly cho-
sen neurons of the language and visual model pro-
jection layers. For embedding optimization, repre-
sentations are derived by finding the nearest real-
word neighbor of the optimized embeddings in the

1https://zenodo.org/record/804392/files/data.tgz

embedding space. For word optimization, we take
the argmax over the vocabulary dimension of X.

We find that while representations from embed-
ding, logit and softmax optimization are not com-
petitive, the gumbel softmax trick outperforms the
corpus search strategy in terms of target neuron
activation.

3.3 Qualitative observations

Table 1 shows optimal 5-grams for some neurons.
We observe that, contrary to what corpus search

suggests, optimal inputs for the visual model
rarely contain function words, i.e., the model
seems to ignore them. Optimal inputs for the
language model sometimes display grammatically
correct structures with function words directly be-
fore the predicted word (e.g., “stare to their [left]”,
“under an [umbrella]”, see Table 1). This suggests
that the language model pays attention to function
words and has indeed learned some syntax, as sug-
gested by Kádár et al. (2017).

method optimal 5-gram target neuron activation
crp pizza a sandwich and appetizers 48.44
gbl fangs calzone raspberries sandwhich pizzas 64.46

315th neuron in visual projection layer

crp fighter jet flying in formation 31.25
gbl propelleor phrases jetliners treetops flight 37.82

657th neuron in visual projection layer

crp a woman sitting under an 13.28
gbl campbell lawn raincoat under an 17.54

314th neuron (“umbrella”) in language model projection layer

crp the view through a car 10.42
gbl logging jeep watch through cracked 14.87
957th neuron (“windshield”) in language model projection layer

crp a giraffe looks to its 10.64
gbl fest stares stares to their 13.22

973th neuron (“left”) in language model projection layer

Table 1: Examples of optimal 5-grams via corpus
search and via gradient ascent with gumbel softmax.
Spelling errors stem from the Imaginet dictionary.

4 Conclusion

The gumbel softmax trick makes it possible to ex-
tend the input optimization method to NLP, and
to find interpretable textual neuron representations
via gradient ascent. Our experimental results sug-
gest that this technique exceeds naive search on a
large in-domain corpus in terms of target neuron
activation. The representations also show interest-
ing differences in syntax awareness based on tar-
get modality in Imaginet.



327

References
Malika Aubakirova and Mohit Bansal. 2016. Interpret-

ing neural networks to improve politeness compre-
hension. In Empirical Methods in Natural Language
Processing, pages 2035–2041, Austin, USA.

Grzegorz Chrupała, Lieke Gelderloos, and Afra Al-
ishahi. 2017. Representations of language in a
model of visually grounded speech signal. In An-
nual Meeting of the Association for Computational
Linguistics, pages 613–622, Vancouver, Canada.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with gumbel-softmax. In
International Conference on Learning Representa-
tions, Toulon, France.

Akos Kádár, Grzegorz Chrupała, and Afra Alishahi.
2017. Representation of linguistic form and func-
tion in recurrent neural networks. Computational
Linguistics, 43(4):761–780.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous re-
laxation of discrete random variables. In Inter-
national Conference on Learning Representations,
Toulon, France.

Alexander Mordvintsev, Christopher Olah, and Mike
Tyka. 2015. DeepDream – a code example for visu-
alizing neural networks. Google Research.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. In International Conference on Learning
Representations, Banff, Canada.


