
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 25–29
Brussels, Belgium, November 1, 2018. c©2018 Association for Computational Linguistics

25

Nightmare at test time:
How punctuation prevents parsers from generalizing

Anders Søgaard1 Miryam de Lhoneux2 Isabelle Augenstein1

1Dpt. of Computer Science 2 Dpt. of Linguistics and Philology
University of Copenhagen Uppsala University

Abstract
Punctuation is a strong indicator of syntac-
tic structure, and parsers trained on text with
punctuation often rely heavily on this signal.
Punctuation is a diversion, however, since hu-
man language processing does not rely on
punctuation to the same extent, and in infor-
mal texts, we therefore often leave out punc-
tuation. We also use punctuation ungrammati-
cally for emphatic or creative purposes, or sim-
ply by mistake. We show that (a) dependency
parsers are sensitive to both absence of punctu-
ation and to alternative uses; (b) neural parsers
tend to be more sensitive than vintage parsers;
(c) training neural parsers without punctuation
outperforms all out-of-the-box parsers across
all scenarios where punctuation departs from
standard punctuation. Our main experiments
are on synthetically corrupted data to study the
effect of punctuation in isolation and avoid po-
tential confounds, but we also show effects on
out-of-domain data.

1 Introduction

We study the sensitivity of modern dependency
parsers to punctuation. While punctuation was
originally motivated by reading aloud, serving the
purpose of “breath marks” (Baldwin and Coady,
1978), many modern-day punctuation systems are
designed to facilitate grammatical disambiguation.
This paper aims to show that for this reason,
punctuation can significantly hurt the generaliza-
tion ability of state-of-the-art syntactic parsers. In
other words, syntactic parsers become too reliant
on punctuation and therefore suffer from the ab-
sence or creative uses of punctuation. Such uses
are abundant; see Table 1 for examples from Twit-
ter. Such situations, where highly predictive fea-
tures are absent or distorted at test time, were re-
ferred to in Globerson and Roweis (2006) as night-
mare at test time. Human reading is very robust
to variation in punctuation (Baldwin and Coady,

No punctuation
(1) i have so many questions i dont know where to start

Creative punctuation
(2) What. The. Fuck. Ever. Dot. Com
(3) . . . and then , , , , i start to feel ∼lonely∼

Both
(4) I feel like ... idk ... idk ... idk man. Nvm I’m good.

Table 1: Examples of uses of punctuation

1978); so creative use of punctuation does not hurt
human reading performance. In effect, sensitiv-
ity to punctuation is a major obstacle that prevents
our syntactic parser from achieving human-level
robustness.

The generalization ability of a dependency
parser is usually measured by evaluating its ac-
curacy on held-out data, our yardstick to prevent
over-fitting, i.e. we define the degree to which a
parser has over-fitted to the training data as the
difference between performance on training data
and performance on the held-out data. This prac-
tice is poor when data is not i.i.d., since the held-
out data cannot be assumed to be representative; in
such cases, little or no over-fitting does not guar-
antee our parsers have learned important linguis-
tic generalizations: Rather, the parsers may have
over-fitted to superficial cues that are present in
both the training and test datasets (Jo and Bengio,
2017). We argue that punctuation signs are super-
ficial cues preventing modern parsers from learn-
ing appropriately high-level abstractions from our
datasets.

Contributions We evaluate three neural depen-
dency parsers for English, as well as two older al-
ternatives, on a standard benchmark, before and
after stripping punctuation, as well as after in-
jecting more punctuation signs in the benchmark.

26

John , 27 , likes jazz .

nsubj

punct
amod

punct dobj
punct

Figure 1: Punctuation in Stanford dependencies

We show that (a) projective parsers are, unsur-
prisingly, more sensitive to punctuation injection
than non-projective ones, since punctuation injec-
tion may introduce crossing edges, and (b) neu-
ral parsers are more sensitive than vintage parsers.
The latter is our main contribution, but we also
show that training a neural parser without punc-
tuation outperforms all parsers trained in a regu-
lar fashion across all punctuation scenarios. Our
experiments are on semi-synthetic data to control
for confounds, but we also show the parser trained
without punctuation is superior on real data with
non-standard punctuation.

2 Punctuation in Stanford dependencies

Dependency annotation Dependency annota-
tion refers to the manual assignment of syntac-
tic structures to sentences, following one of sev-
eral sets of available annotation guidelines. This
paper focuses exclusively on the Stanford depen-
dencies annotation scheme (de Marneffe and Man-
ning, 2008). This scheme restricts the set of
possible syntactic structures to single-rooted, or-
dered, possibly non-projective trees whose edges
are uniquely labeled by a single dependency label.

Punctuation Punctuation should be distin-
guished from diacritics and logographs. The
two most frequently used punctuation signs are
periods and commas. Periods (“.”), however, are
potentially ambiguous with other uses of dots,
typically indicating omissions or pauses. When
dots are used emphatically and creatively it is
hard to maintain this distinction, and we will
simply refer to dots and commas in this paper. We
ignore other punctuation signs, including dashes,
question and exclamation marks, and colons and
semicolons.

Punctuation is, among other things, used to
mark boundaries between constituents of written
language. Space characters, for example, sepa-
rate words, albeit sometimes inconsistently. Spac-
ing is a fairly recent innovation in writing; classi-
cal Latin and Greek did not leave spaces between

words, and many Asian languages, e.g., Thai and
Lao, still do not. A period is typically used to
mark the end of a grammatical sentence, and com-
mas are often used to separate clauses. Therefore,
punctuation also correlates strongly with proper-
ties of syntactic structures and is therefore very
predictive of dependency structures.

Variation in punctuation is often observed in in-
formal texts, but variation may also be the result
of errors. Punctuation errors are by far the most
frequent error type in scientific writing, for exam-
ple (Remse et al., 2016). Modern parsers should
be robust to such variation, just like humans are
(Baldwin and Coady, 1978).

Punctuation in Stanford dependencies In the
Stanford dependencies (de Marneffe and Man-
ning, 2008), periods attach to root tokens, and
commas attach to their left neighbor or to root to-
kens; see Figure 1.

3 Experiments

This section describes how we remove and inject
punctuation (our perturbation maps), and details
of the parsers used in our experiments.

Perturbation maps Since dots consistently at-
tach to the root token of the sentence, and com-
mas attach to their left neighbour or to the root
token, we can remove and inject additional punc-
tuation in a sentence without affecting the rest of
its syntactic structure and without violating the
wellformedness of dependency trees. Note, how-
ever, that injecting a root-dominated dot or comma
may lead to crossing edges, i.e., turn a projective
dependency tree into a non-projective one. This
may lead to cascading errors for projective de-
pendency parsers (Ng and Curran, 2015). In our
experiments, arc-eager MALTPARSER and STAN-
FORD are the only projective parsers. We there-
fore propose two perturbation maps (Jo and Ben-
gio, 2017): (a) simply removing punctuation, and
(b) a simple injection scheme with two parame-
ters χ and δ. Let a dependency structure be an
ordered tree with n nodes decorated with words
w1, . . . , wn. At any node 1 ≤ i ≤ n, we (a) in-
ject a comma at position i with probability χ and
move nodes i ≤ j ≤ n to positions j + 1, increas-
ing the size of the graph by 1; and (b) inject a dot
at position i+1 with probability δ and move nodes
i < j ≤ n to positions j+1, increasing the size of
the graph by 1. If we follow standard methodology

27

Parser Neural Trans.-based Projective

UUPARSER D D

KGRAPHS D

MALTPARSER D D

TURBOPARSER

STANFORD D D D

Table 2: Our dependency parsers

and ignore punctuation when evaluating parsers,
we can compare evaluations before and after ap-
plying the injection scheme. It is equally straight-
forward to remove punctuation without affecting
the rest of the dependency tree. Each element wi

to the right of punctuation nodeswj (i > j) moves
to the left (j − 1) for every punctuation item, de-
creasing the length of the sentence by 1 each time.

Note that both removing punctuation and our in-
jection scheme can be seen as perturbation maps
(Jo and Bengio, 2017) of our dataset, with the
following important properties: (a) grammatical
structure recognizability, i.e., human ability to cor-
rectly process sentences, is preserved (Baldwin
and Coady, 1978), (b) surface statistical regular-
ities are qualitatively different, and (c) there exists
a non-trivial generalization map between the orig-
inal dataset and the perturbed version. These prop-
erties mean we can use our punctuation injection
scheme to evaluate the sensitivity of neural depen-
dency parsers to the surface statistical regularities
involving dots and commas (Jo and Bengio, 2017).
Since human reading is largely unaffected by er-
roneous punctuation, we may expect parsers to be
robust to absence of punctuation and punctuation
injection, as well. Our results clearly show this is
not the case; in fact, recently proposed neural de-
pendency parsers are very sensitive to differences
in punctuation.

Our dependency parsers We use five parsers
in our experiments: the Uppsala parser (UU-
PARSER) (de Lhoneux et al., 2017a,b), the graph-
based parser proposed in (Kiperwasser and Gold-
berg, 2016)(KGRAPHS) , the arc-eager MALT-
PARSER (Nivre et al., 2007), the TURBOPARSER

(Fernández-González and Martins, 2015), and the
STANFORD parser (Chen and Manning, 2014).
UUPARSER is a neural transition-based depen-
dency parser, while KGRAPHS is a neural graph-
based parser. MALTPARSER is a more tradi-
tional transition-based parser, and TURBOPARSER

is a more traditional graph-based parser. Fi-

nally, the STANFORD parser is a projective, neu-
ral transition-based dependency parser. All parsers
rely on predicted part-of-speech tags, except UU-
PARSER (which does not rely on part-of-speech
information at all). We use the TURBOTAGGER

to obtain those. See Table 2 for an overview of our
parsers.

Finally, we also evaluate three non-standard
versions of the UUPARSER, namely, a parser
trained with the same parameters as the off-
the-shelf parser (de Lhoneux et al., 2017b), but
which simply ignores dots and commas com-
pletely (NOPUNCT), and two heavily regularised
versions of the parser trained in the standard fash-
ion: (a) a version trained with the drop-out param-
eter set to 0.8 (zeros out 80% of activations); (b) a
version with the gradient clipping parameter set to
0.075. We do so to answer the question of whether
more heavily regularized dependency parsers are
less sensitive to punctuation (they are not).

4 Results and analysis

We discuss the sensitivity of off-the-shelf depen-
dency parsers to our perturbation maps, comparing
to a parser trained after removing punctuation in
the training data, as well as to heavily regularised
versions of the same parser.

No punctuation We first test our parsers on
a version of the validation set where we strip
away all punctuation. The data thus consists of
newswire (WSJ 22) with punctuation removed.
This is similar to Example (1) in Table 1, but in-
domain. The results are in the second results col-
umn in Table 3, with the relative increases in er-
ror listed in the third results column. The drop in-
duced by removing punctuation is quite dramatic:
The UUPARSER, for example, suffers an absolute
drop of 5.4% LAS or an error increase of 67%.
For every three mistakes, UUPARSER does, strip-
ping away punctuation makes it introduce another
two. Note that, generally, the relative increase in
error is much higher for the three neural parsers,
and that the regularisation strategies (drop-out and
gradient clipping) do not seem to help much.

Comma and dot injection At medium injection
rates, all parsers are sensitive to punctuation in-
jection. With δ = 0.05, γ = 0.05, for example, all
parsers perform worse than in the absence of punc-
tuation. Our main observation is, again, that neu-
ral parsers suffer higher relative increases in errors

28

ENGLISH PENN TREEBANK (CORRUPTED) OUT-OF-DOMAIN

δ=0 NO Rel.err. δ=0.01 δ=0.01 δ=0.05 δ=0.05 δ=0.1 Rel.err. GWEB FOSTER

χ=0 PUNCT incr. χ=0.01 χ=0.05 χ=0.01 χ=0.05 χ=0.1 incr. ANSW REV FOOTBALL TWITTER

UUPARSER 0.918 0.869 0.598 0.901 0.867 0.886 0.851 0.794 1.512 0.676 0.662 0.770 0.699
KGRAPHS 0.910 0.865 0.500 0.894 0.861 0.876 0.841 0.779 1.456 0.645 0.609 0.774 0.715
MALTPARSER 0.858 0.805 0.373 0.836 0.791 0.804 0.757 0.675 1.289 0.605 0.566 0.721 0.642
TURBOPARSER 0.894 0.852 0.396 0.883 0.858 0.875 0.851 0.802 0.868 0.640 0.595 0.766 0.722
STANFORD 0.870 0.816 0.415 0.845 0.808 0.806 0.772 0.688 1.400 0.640 0.608 0.735 0.689

NO PUNCT 0.898 0.898 0.000 0.898 0.898 0.000 0.670 0.669 0.792 0.701

DROPOUT α=0.8 0.904 0.847 0.594 0.884 0.845 0.858 0.820 0.748 1.625 0.661 0.652 0.761 0.682
CLIP t=0.075 0.917 0.871 0.554 0.900 0.864 0.887 0.851 0.793 1.494 0.672 0.657 0.792 0.676

Table 3: Labeled attachment scores with punctuation removed. All parsers suffer from absence of or additional
punctuation. The relative increase in error (1-BL

1-SYS
− 1; with BL performance on original text; SYS performance

under NO PUNCT and δ = 0.1, κ = 0.1, resp.) for neural parsers is higher than for non-neural parsers. GWEB and
FOSTER scores are on development sentences (of at least five words) with no punctuation.

than vintage parsers. Note that the MALTPARSER

is a projective parser and therefore has a higher
relative increase in error; but TURBOPARSER is
much more robust than the other parsers. That
said, it still does much worse than the UUPARSER

trained without punctuation.

Evaluation on informal text with non-standard
punctuation We also evaluate the models on
sentences with non-standard punctuation in the de-
velopment sections in the Google Web Treebank
with informal text (from Yahoo Answers and user
reviews). Specifically, we evaluate the models on
sentences with more than one dot. Again, we show
that the neural dependency parser trained without
punctuation is superior to the other parsers.

5 Related work

Punctuation in parsing Spitkovsky et al.
(2011) introduced the idea of splitting sentences
at punctuation and imposing parsing restrictions
over the fragments and observed significant im-
provements in the context of unsupervised pars-
ing. Ng and Curran (2015) aim to prevent cascad-
ing errors by enforcing correct punctuation arcs.
They restrict themselves to projective dependency
parsing; erroneous punctuation arcs do not lead
to cascading errors in non-projective dependency
parsing. Ma et al. (2014), motivated by the same
observation, treat punctuation marks as properties
of their neighboring words rather than as individ-
ual tokens, showing improvements on in-domain
data.

Breaking NLP models Jia and Liang (2017)
show how machine reading models can easily
be broken with distractor sentences at test time

and propose an alternative evaluation scheme, and
Belinkov and Bisk (2018) show how susceptible
character-based machine translation models are to
noise. Both papers are similar to ours in evaluat-
ing the performance of state-of-the-art models un-
der corruptions of the data. There was recently a
workshop dedicated to evaluation of NLP models
under human adversarial example selection (Et-
tinger et al., 2017). Historically, NLP models were
rarely evaluated on synthetic or otherwise adver-
sarial data, but we believe this is a fruitful research
direction. This is largely a philosophical ques-
tion, and we believe a philosophical argument is
in order. John Dewey (John Dewey, 1910), the
American philosopher, distinguishes three modes
of thinking: (i) common reasoning, which iden-
tifies pattern in available, historical data, (ii) em-
pirical thinking, which collects new data to vary
the experimental conditions, and (iii) experimental
thinking, which actively modifies the conditions in
controlled experiments to isolate the relevant vari-
ables. We believe recent work on breaking NLP
models is an attempt to introduce experimental
thinking into NLP, which has otherwise been lim-
ited – or handicapped in Dewey’s words – by what
data happens to be available.

6 Conclusions

We evaluate the sensitivity of five dependency
parsers to variations in punctuation, showing that
available neural parsers tend to be more sensitive
to such variation. We also show, however, that
training neural parsers without punctuation pro-
vides a robust model that is better than any off-
the-shelf parsers.

29

Acknowledgments

We thank CSC in Helsinki and Sigma2 in Oslo for
providing the computational resources used in the
experiments, through NeIC-NLPL (www.nlpl.eu).
The first author was supported by an ERC Starting
Grant.

References
Scott Baldwin and James Coady. 1978. Psycholinguis-

tic approaches to a theory of punctuation. Journal
of Literacy Research, 10(4):363–376.

Yonatan Belinkov and Yonatan Bisk. 2018. Syn-
thetic and Natural Noise Both Break Neural Ma-
chine Translation.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of EMNLP, pages 740–750.
Association for Computational Linguistics.

Allyson Ettinger, Sudha Rao, Hal Daumé III, and
Emily M. Bender. 2017. Towards Linguistically
Generalizable NLP Systems: A Workshop and
Shared Task. In Proceedings of the First Workshop
on Building Linguistically Generalizable NLP Sys-
tems, pages 1–10, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Daniel Fernández-González and André F. T. Martins.
2015. Parsing as reduction. In Proceedings of
ACL, pages 1523–1533. Association for Computa-
tional Linguistics.

Amir Globerson and Sam Roweis. 2006. Nightmare
at test time: robust learning by feature deletion. In
ICML.

Robin Jia and Percy Liang. 2017. Adversarial Ex-
amples for Evaluating Reading Comprehension Sys-
tems. In Proceedings of EMNLP.

Jason Jo and Yoshua Bengio. 2017. Measuring the ten-
dency of CNNs to Learn Surface Statistical Regular-
ities. CoRR, abs/1711.11561.

John Dewey. 1910. How we think. Dover.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. 4:313–327.

Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu
Kiperwasser, Sara Stymne, Yoav Goldberg, and
Joakim Nivre. 2017a. From raw text to universal
dependencies - look, no tags! pages 207–217, Van-
couver, Canada.

Miryam de Lhoneux, Sara Stymne, and Joakim Nivre.
2017b. Arc-hybrid non-projective dependency pars-
ing with a static-dynamic oracle. In Proceedings of
the 15th International Conference on Parsing Tech-
nologies, pages 99–104, Pisa, Italy.

Ji Ma, Yue Zhang, and Jingbo Zhu. 2014. Punctua-
tion processing for projective dependency parsing.
In ACL.

Marie-Catherine de Marneffe and Chris Manning.
2008. The Stanford typed dependencies representa-
tion. In Coling Workshop on Cross-Framework and
Cross-Domain Parser Evaluation.

Dominick Ng and James Curran. 2015. Identifying
cascading errors using constraints in dependency
parsing. In ACL.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gülşen Eryiğit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. 2007. MaltParser: A
language-independent system for data-driven depen-
dency parsing. Natural Language Engineering,
13(2):95–135.

Madeline Remse, Mohsen Mesgar, and Michael
Strube. 2016. Feature-rich error detection in scien-
tific writing using logistic regression. In BEA.

Valentin Spitkovsky, Hiyan Alshawi, and Dan Jurafsky.
2011. Punctuation: Making a point in unsupervised
dependency parsing. In CoNLL.

https://doi.org/10.3115/v1/P15-1147

