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Introduction

BlackboxNLP is the first workshop on analyzing and interpreting neural networks for NLP, hosted by
the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 2018) in Brussels,
Belgium.

The goal of this workshop is to bring together people who are attempting to peek inside the neural
network black box, taking inspiration from machine learning, psychology, linguistics and neuroscience.
Neural networks have rapidly become a central component in language and speech understanding
systems in the last few years. The improvements in accuracy and performance brought by the
introduction of neural networks has typically come at the cost of our understanding of the system: what
are the representations and computations that the network learns?

We received an impressive number of 76 submissions (including both archival papers and extended
abstracts), suggesting that the issue of interpretability of neural networks is timely and important within
the NLP community. The final program contains three keynote talks, eight oral presentations and 47
posters. We hope this workshop provides a venue for bringing together ideas and stimulate new ways of
building methods and resources for facilitating better analysis and understanding of the inner-dynamics
of neural networks for NLP.

BlackboxNLP would not have been possible without the dedication of its program committee. We would
like to thank them for their invaluable effort in providing high-quality reviews in a very short period
of time and for a higher number of submission originally expected. We are also grateful to our invited
speakers, Leila Wehbe, Graham Neubig and Yoav Goldberg for contributing to our program. Finally,
we are very thankful to our sponsors, Amazon and the Department of Cognitive Science, Johns Hopkins
University for supporting the workshop.

Tal Linzen, Grzegorz Chrupała and Afra Alishahi
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Keynote Talk

Trying to Understand Recurrent Neural Networks for Language Processing.

Yoav Goldberg

Bar Ilan University

Abstract

Recurrent neural networks (RNNs), and in particular LSTM networks, emerge as very capable learners
for sequential data. Thus, my group started using them everywhere, achieving strong results on many
language understanding and modeling tasks. However, little is known about how RNNs represent
sequences, what they actually encode, and what they are capable representing. In this talk, I will
describe some attempts at trying to shed light on the inner-working of RNNs. Particularly, I plan to
describe at least two of the following: a method for comparing what is captured in vector
representations of sentences based on different encoders (Adi et al, ICLR 2017, and more generally the
notion of diagnostic classification), a framework for extracting a finite-state automata from trained
RNNs (Weiss et al, ICML 2018), and a formal difference between the representation capacity of
different RNN variants (Weiss et al, ACL 2018).

Biography of the Speaker

Yoav Goldberg is a Senior Lecturer at Bar Ilan University’s Computer Science Department. Before that,
he was a Research Scientist at Google Research New York. He works on problems related to Natural
Language Processing and Machine Learning. In particular he is interested in syntactic parsing,
structured-prediction models, learning for greedy decoding algorithms, multilingual language
understanding, and cross domain learning. Lately, he is also interested in neural network based methods
for NLP. He recently published a book on the subject.
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Keynote Talk

Learning with Latent Linguistic Structure

Graham Neubig

Carnegie Mellon University

Abstract

Neural networks provide a powerful tool to model language, but also depart from standard methods of
linguistic representation, which usually consist of discrete tag, tree, or graph structures. These structures
are useful for a number of reasons: they are more interpretable, and also can be useful in downstream
tasks. In this talk, I will discuss models that explicitly incorporate these structures as latent variables,
allowing for unsupervised or semi-supervised discovery of interpretable linguistic structure, with
applications to part-of-speech and morphological tagging, as well as syntactic and semantic parsing.

Biography of the Speaker

Graham Neubig is an assistant professor at the Language Technologies Intitute of Carnegie Mellon
University. His work focuses on natural language processing, specifically multi-lingual models that
work in many different languages, and natural language interfaces that allow humans to communicate
with computers in their own language. Much of this work relies on machine learning to create these
systems from data, and he is also active in developing methods and algorithms for machine learning
over natural language data. He publishes regularly in the top venues in natural language processing,
machine learning, and speech, and his work occasionally wins awards such as best papers at EMNLP,
EACL, and WNMT. He is also active in developing open-source software, and is the main developer of
the DyNet neural network toolkit.
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Keynote Talk

Language representations in human brains and artificial neural networks

Leila Wehbe

Carnegie Mellon University

Abstract

When studying language in the brain, it has become more common to image the brain of humans while
they process naturalistic language stimuli consisting of rich, natural text. To analyse the brain
representation of such complex stimuli, vector representations derived from various NLP methods are
extremely useful as a model of the information being processed in the brain. The recent deep learning
revolution has ignited a lot of interest in using artificial neural networks as a source of high dimensional
vector representation for modeling brain processes. However, these representations are hard to interpret
and the problem becomes increasingly difficult: how do we study complex brain activity – a black box
we want to understand – using hard-to-interpret artificial neural network representations – another black
box we want to understand? In this talk, I will summarize the recent effort in modeling the brain
processing of language, the use of artificial neural networks in this process, and how inferences about
brain processes and about artificial neural network representations can still be made under this setup.

Biography of the Speaker

Leila Wehbe is an assistant professor of Machine Learning at Carnegie Mellon University. Previously,
we was a postdoctoral researcher at the Gallant Lab in the Helen Wills Neuroscience Institute at UC
Berkeley. She obtained her PhD from the Machine Learning Department and the Center for the Neural
Basis of Cognition at Carnegie Mellon University, where she worked with Tom Mitchell. She works on
studying language representations in the brain when subjects engage in naturalistic language tasks.
Specifically, she combines functional neuroimaging with natural language processing and machine
learning tools to build spatiotemporal maps of the information represented in the brain during language
processing.
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Chloé Braud∗
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Abstract

This work aims to contribute to our under-
standing of when multi-task learning through
parameter sharing in deep neural networks
leads to improvements over single-task learn-
ing. We focus on the setting of learning from
loosely related tasks, for which no theoretical
guarantees exist. We therefore approach the
question empirically, studying which proper-
ties of datasets and single-task learning char-
acteristics correlate with improvements from
multi-task learning. We are the first to study
this in a text classification setting and across
more than 500 different task pairs.

1 Introduction

Multi-task learning is a set of techniques for ex-
ploiting synergies between related tasks, and in
natural language processing (NLP), where there is
an overwhelming number of related problems, and
different ways to represent these problems, multi-
task learning seems well-motivated. Since multi-
task learning, by exploiting related tasks, also re-
duces the need for labeled data, multi-task learn-
ing is also often seen as a way to obtain more ro-
bust NLP for more domains and languages.

Multi-task learning has seen a revival in recent
years, amplified by the success of deep learning
techniques. Multi-task learning algorithms have
been proven to lead to better performance for sim-
ilar tasks, e.g., Baxter and others (2000), such as
models of individual patients in health care, but
recently multi-task learning has been applied to
more loosely related sets of tasks in artificial in-
telligence. Examples include machine translation
and syntactic parsing (Kaiser et al., 2017) or fixa-
tion prediction and sentence compression (Klerke,
Goldberg, and Søgaard, 2016). Reported results

∗This work was done, when the third author was affiliated
with Dpt. of Computer Science, University of Copenhagen.

have been promising, but in the case of loosely re-
lated tasks, often also with different label spaces,
we have no guarantees that multi-task learning
will work.

Recent studies have tried to study empirically
when multi-task learning leads to improvements
(Alonso and Plank, 2017; Bingel and Søgaard,
2017). These preliminary studies have argued –
Bingel and Søgaard (2017) most clearly – that
multi-task learning is particularly effective when
the target task otherwise plateaus faster than the
auxiliary task. This study compliments these stud-
ies, considering new tasks and architectures, and
our findings are largely supportive of this conclu-
sion. In text classification, however, performance
also depends crucially on the divergence between
the marginal distributions of words in the target
and auxiliary task.

Document classification comes in many differ-
ent flavors, including spam detection, sentiment
analysis, customer support ticket routing, and di-
agnosis support based on patient records, but in
this paper we focus on topic-level multi-way clas-
sification. We use the 20 Newsgroups dataset, a
corpus of newsgroup posts that are labeled by the
topics of the newsgroups. One key challenge in
document classification is the high number of fea-
ture dimensions introduced by n-gram features,
often outnumbering the number of document in-
stances in the training corpus. Specifically, it is
easy to overfit to the training corpus in high di-
mensions.

Multi-task learning (Caruana, 1993) has strong
regularization effects and can therefore potentially
make our models less prone to overfitting. Previ-
ous empirical meta-studies of multi-task learning
have focused on sequence tagging problems and
recurrent neural networks, but there is no guaran-
tee that results extend to document classification.
This work, which extends previous work on recur-
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rent neural networks, is thus motivated by a) an
interest in whether previous findings generalize to
document classification algorithms – in our case,
multi-layered perceptrons, b) a practical consid-
eration that any recommendations coming out of a
study of document classification would be helpful
to a wider audience.

As already said, our focus on topic-level classi-
fication is motivated by the observation that this
is an extremely common problem, and key to
structuring content on websites, customer support
ticket routing, intelligent email, etc. Also, the 20
Newsgroups corpus uses a set of 20 labels that are
hierarchically organized (see Figure 1), which we
can exploit to extract a large set of task pairs.

The problem that we consider is the following:
If we have two topic-level classification datasets
that are loosely related – i.e, contrasts the same
upper level classes in the hierarchy in Figure 1 –
and we have run single-task experiments for each
of these, when does multi-task learning help, keep-
ing hyper-parameters fixed? We approach this as
a prediction problem, trying to predict gains or
losses based on meta features such as dataset char-
acteristics and features of the single-task learning
curves. This approach was first introduced in (Bin-
gel and Søgaard, 2017).

1.1 Contributions

Our contributions are as follows: a) We present
the first study of when multi-task learning works
in the context of document classification. b) This
is, to the best of our knowledge, also the first meta-
study that focuses on hard parameter sharing in
multilayered perceptrons, although this approach
to multi-task learning goes all the way back to
(Caruana, 1993). c) We find that many of the re-
sults obtained with other types of deep neural net-
works scale to our case, but also that distributional
divergence is strongly, negatively correlated with
performance gains; something not observed with
sequence tagging problems. Finally, we make all
our code available at [anonymized].

2 Related Work

Document classification has a very long history
and is one of the most fundamental applications
of machine learning. It is extremely important to
many industries, from customer support to medi-
cal diagnosis support.

The standard approach to document classifica-

tion is to represent documents by what is known as
bags of words, i.e., vector representations where
each dimension encodes the presence or relative
frequency of a particular n-gram (sequence of
words). In this work, we use TF-IDF scores and
only encode the presence of unigrams (words).
Each document is thus a |V |-dimensional array of
floats, where |V | is the size of our vocabulary.

The dataset that we use, is 20 Newsgroups.1 It
has been used in several comparisons of classifi-
cation algorithms (Dredze, Crammer, and Pereira,
2008; Crammer and Chechik, 2012), and some
of the best results have been achieved with ran-
dom forests and multi-layered perceptrons (deep
learning models). The dataset, however, is also
known to allow for over-fitting (Ribeiro, Singh,
and Guestrin, 2016). Such overfitting can be reme-
died by multi-task learning. In this paper, we focus
on multi-task learning with multi-layered percep-
trons.

Multi-task learning comes in many different
flavors, but most approaches can be cast as ways
of doing matrix regularization. To see this, con-
struct a m×n matrix for m models with n param-
eters. Multi-task learning corresponds to jointly
fitting the m models penalized by a regulariza-
tion term defined over this matrix. One common
approach to multi-task learning, for example, is
mean-constrained `2-regularization. The penalty
in this case is the sum of the `2-distances of the m
models to their mean.

In this paper, we focus on hard parameter shar-
ing, in which we jointly learn m multi-layered per-
ceptrons that share the parameters of their hidden
layers. This is also the kind of architecture dis-
cussed in (Collobert et al., 2011), one of the sem-
inal papers in multi-task learning for natural lan-
guage processing. See Ruder (2017) for a more
complete overview of multi-task learning algo-
rithms used in natural language processing.

Hard parameter sharing comes with several
guarantees when applied to closely related tasks
(Baxter and others, 2000), including a reduction
in Rademacher complexity (Maurer, 2006). These
guarantees, however, do not apply to our case of
more loosely related tasks. For example, (Baxter
and others, 2000) requires the tasks to have shared
optimal hypothesis classes; which does not have
to be the case in 20 Newsgroups.

1http://qwone.com/˜jason/20Newsgroups/
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Figure 1: Hierarchical structure of 20 News-
groups, with a= ibm.pc.hardware, mac.hardware;
b= graphics, os.ms-windows.misc, windows.x; c=
baseball, hockey; d= autos, motorcycles; e= crypt,
electronics, med, space; f= misc, guns, mideast;
g= misc, atheism, christian, h= forsale.

3 Methodology

We begin with a brief summary of our method-
ology: We sample pairs of tasks from 20 News-
groups. The documents are represented as TF-IDF
vectors, and we train single-task and multi-task
multilayered perceptrons to predict topics from
such vectors. We then run meta-experiments using
logistic regression classifiers to predict the sign
of the relative difference between multi-task and
single-task performance, from features derived
from the data and the single-task runs. We are pri-
marily interested in the coefficients of the logistic
regression meta-models, which tell us what char-
acteristics of the data and the single-task experi-
ments are predictive of multi-task learning gains.

3.1 20 Newsgroups
The 20 Newsgroups data set is a collection of ap-
proximately 20,000 newsgroup documents, parti-
tioned across 20 different topics. It contains about
60,000 different words in total.

Some of the newsgroups are very closely re-
lated and can be seen as subtopics of the same
topic, while others are highly unrelated. The top-
ics can be represented as a 3-level hierarchy: The
first level partitions the set of topics into 5 classes
(e.g. comp, rec. . .), the second one into 8
subclasses (e.g. sys, others, sport. . .),
and at the leaf nodes we have the 20 topics
(e.g. ibm.pc.hardware, baseball. . .);
see Figure 1.

3.2 Classification tasks
Based on the 20 Newsgroups’ structure, we define
pairs of tasks in ways similar to previous studies
(Søgaard and Johannsen, 2012). We do this in two
different ways, leading to Problem 1 and 2, defined
below.

3.2.1 Problem 1 (RELATED TOPICS)
The main task is to distinguish between two topics
A and B (third level) that have the same ancestor at
the first level of the above hierarchy, i.e. they per-
tain to the same class, but to different subclasses.
An auxiliary task is to distinguish between two
topics C and D, with the following constraints: C
has the same father as A, and D the same as B.

A task pair example would be: A=baseball
and B=autos for the main task since;
C=hockey and D=motorcycles for the
auxiliary task (see 2). We obtained 52 unique
such pairs of main-auxiliary tasks for problem 1.

rec

sport

A=baseball C=hockey

vehicles

B=autos D=motorcycles

...

Figure 2: Problem 1 (Related topics): A and B are
the main tasks, C and D the auxiliary ones.

3.2.2 Problem 2 (UNRELATED TOPICS)
For the second problem, we keep the constraints
that C has the same father as A and D the same as B,
and that A and B have different fathers. However,
A and B are not forced to have the same ancestor
at the first level anymore. In this setting, the main
and auxiliary tasks could be about distinguishing
texts corresponding to unrelated topics, but they
still share topics pertaining to the same classes,
making multi-task learning a relevant framework.

An example of pairs of tasks would be:
A=guns and B=autos for the main task;
C=Mideast and D=motorcycles for the aux-
iliary task (see Figure 3).

rec

sport

...

vehicles

B=autos D=motorcycles

talk

politic

A=guns C=mideast

religion

...

Figure 3: Problem 2 (Unrelated topics):A and B are
the main tasks, C and D the auxiliary ones.

We obtained 516 different pairs of main-
auxiliary tasks for UNRELATED TOPICS.

Note that the instances (i.e. pairs of main-
auxiliary tasks) of RELATED TOPICS are included
in the set of instances of UNRELATED TOPICS.
We have many more instances for UNRELATED
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TOPICS than for RELATED TOPICS, which means
that we have many more training points when try-
ing to predict the performance of multi-task learn-
ing.

3.3 Representation of the data

We use TF-IDF (term frequency-inverse document
frequency) over the bag-of-words to represent the
data. The TF-IDF value increases proportionally
to the number of times a word appears in a doc-
ument, but is offset by the frequency of the word
in the corpus, which helps to adjust for the fact
that some words appear more frequently in gen-
eral. This representation is known to be efficient
(Salton and Buckley, 1988; Aizawa, 2003); es-
pecially in the case of text classification (Zhang,
Yoshida, and Tang, 2011). We keep the 10,000
most frequent features, the frequency being com-
puted on the training data available for the entire
20 Newsgroups corpus.

3.4 Models

Both our single and multi-task learning architec-
tures consist of a multi-layered perceptron with
two hidden layers. In the case of multi-task
learning, those layers are shared across all tasks.
This setting is known as hard parameter shar-
ing. Hard parameter sharing was first intro-
duced by (Caruana, 1993) and used with success
for different tasks, for example in (Collobert et
al., 2011; Klerke, Goldberg, and Søgaard, 2016;
Plank, Søgaard, and Goldberg, 2016). Hard pa-
rameter sharing greatly reduces the risk of overfit-
ting. In fact, Baxter and others (2000) showed that
the risk of overfitting the shared parameters is an
order n where n is the number of tasks smaller
than overfitting the task-specific parameters, i.e.
the output layers.

The input is thus a 10,000-dimensional TF-IDF
vector representation of the texts. A training step
consists of sampling a random batch of 32 in-
stances, i.e. texts (for both main and auxiliary task
in the case of multi-task learning) and minimizing
the binary cross-entropy loss using an Adam opti-
mizer (Kingma and Ba, 2014).

We tune the following hyper parameters of the
single-task architectures on a similar document
classification problem, using data from Amazon
reviews,2 and, following (Bingel and Søgaard,

2https://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/index2.html

2017), we apply the same hyper-parameter values
to multi-task learning: number of hidden layers
(2) and layer size (100). See §4.1 for number of
epochs (100).

3.5 Meta-analysis
We want to investigate whether we can predict
gains from multi-task learning given features of
the data sets and single-task learning character-
istics, as well as understand how gains correlate
with data set and single-task learning characteris-
tics. For each problem instance, we thus extract
several features from the datasets and the learning
curves of the single task models. These features
are similar to those used in (Bingel and Søgaard,
2017):

• Jensen-Shannon Divergence between the
(unigram) word distributions of the target and
auxiliary task training sets, as well as inter-
nally (between target and test data) for each
task,

• Gradients of the loss curve at 10, 25, 50 and
75 percent of a training of 150 epochs, for
each single-task, as well as the relative dif-
ferences in the learning curve gradients,

• Type-token ratios and out-of-vocabulary
rates in the target and auxiliary task training
sets, and their relative difference,

• Finally, we fit logarithmic functions to the
(log-like) loss curves, where the function is
of the form: a · ln(c · i + d) + b, and we in-
clude a and c as features. Both parameters
relate to the steepness of the loss curve, re-
flecting when training plateaus or comes with
diminishing returns.

In total, for each problem instance we have 30
features that we normalize to the [0, 1] interval.
We use logistic regression to predict benefits or
detriments of multi-task learning setups based on
the features computed above.

4 Experiments

We run single-task and multi-task learning exper-
iments for all pairs of main and auxiliary tasks,
as described in Section 3.2. We then extract data
characteristics and features from the logs of the
single-task learning experiments. We train a meta-
learning model to predict gains from doing multi-
task learning over single-task performance using
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(a) RELATED TOPICS (b) UNRELATED TOPICS

Figure 4: Mean F1 over the number of epochs, for
single-task (crosses/blue) and multi-task learning
models (points/orange), for classification prob-
lems 1 and 2.

the above features. Then we build a final model to
predict gains from multi-task learning using these
pairs as instances. We use the 20 Newsgroups for
both RELATED TOPICS and UNRELATED TOP-
ICS, as explained above. We use 200 topics for
each class for training, and the rest of each dataset
for testing (5-700 data points, depending on the
topics).

4.1 Hyper-parameters

Hyper-parameters were tuned using the Amazon
data, as described in §3.4. Our models are trained
with two layers of size 100. The input is a
10,000 dimensional TF-IDF vector, and the out-
put is a probability distribution from a softmax
layer, whose predictions are evaluated using cross-
entropy loss.

Figures 4a and 4b plot the impact of the number
of epochs on the F1 scores. This parameter was
not optimized on the Amazon data, but set such
that multi-task learning gains were reasonably bal-
anced.

In meta-learning, when predicting the gains
from multi-task learning, we use the mean perfor-
mance of 100 runs of randomized five-fold cross-
validation with logistic regression.

4.2 Evaluation

We train single-task models for all tasks, as well as
multi-task learning models for all combinations of
target and auxiliary tasks. We report the F1 gains
obtained for multi-task learning over single-task
learning below.

Our real aim, however, is to try to predict the
gains one can get from doing multi-task learn-
ing. This is a meta-learning problem, and here,
the above experiments are our instances, i.e., one
instance for each of the main-auxiliary task pairs,

meaning that we have 52 instances for RELATED

TOPICS and 516 for UNRELATED TOPICS. In or-
der to compensate for the small number of train-
ing instances, we repeat our RELATED TOPICS ex-
periments five times with random initializations,
and report means over the results. We use the
same procedure for UNRELATED TOPICS, also.
F1 scores, obtained by a logistic regression model
over 100 runs using a 5-fold cross-validation pro-
cedure, are reported at the end of the next section.

5 Results

We first discuss the performance of our multi-task
learning models on the 20 NEWSGROUPS data,
and then present the results of our meta-learning
experiments.

5.1 Multi-task versus single-task learning

As mentioned above, we report averages over five
runs. The mean F1 scores across all the prob-
lems, and five runs, are presented in Table 1. We
observe that on average, multi-task learning leads
to slight improvements over single-task learning.
This holds for both our problems, also for RE-
LATED TOPICS. The number of epochs needed
to train the multi-task models is slightly greater
than the one for the single-task ones (Figures 4a
and 4b), and the global stabilization occurs after
approximatively 75 epochs. We can also observed
that UNRELATED TOPICS, where tasks to differ-
entiate are in general theoretically more different,
has better result than RELATED TOPICS (for both
single-task and multi-task learning) see Table 1.

For RELATED TOPICS, we see improvements in
more than 70% of the cases, and the mean gain is
about 5%. Figure 5a presents the relative gains
and losses over the different high-level classes of
the RELATED TOPICS problem. Note there is a lot
of variance. Some class pairs exhibit a lot of syn-
ergy, with gains doing multi-task learning, while
others seem relatively immune to multi-task learn-
ing. For UNRELATED TOPICS, multi-task learning
leads to improvements in about 57% of all cases.

5.2 Predicting gains from multi-task learning

In our meta-learning experiment, the objective
is to predict multi-task learning gains given the
dataset and single-task learning characteristics.
This is not only because it is of practical im-
portance to be able to predict whether multi-task
learning is worthwhile, when dealing with massive
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Single-task Multi-task Improvements
RELATED 0.834 0.843 0.719
UNRELATED 0.893 0.897 0.572

Table 1: Mean F1 score for single-task and multi-task models, with average fraction of datasets with
improvements.

(a) ”rec”: VEHICLES (motorcycles
and autos) vs. SPORTS (hockey and
baseball).

(b) ”comp”: OTHERS (graphics, mis-
cellaneous, Windows) vs. SYSTEMS
(IBM, Mac).

(c) ”talk”: POLITICS (miscellaneous,
guns, Middle East) vs. RELIGION
(miscellaneous, atheism, Christian-
ity).

Figure 5: Relative F1 gains from multi-task learning for Related Topics

datasets or thousands of tasks. More importantly,
our meta-learning models implicitly learn correla-
tions between such characteristics and gains, giv-
ing us insights as to when and why multi-task
learning works. If a dataset characteristic, for ex-
ample, is highly predictive of gains, this can either
be a feature that puts single-task learning at a dis-
advantage, or something that multi-task learning
can exploit.

The mean scores over 100 runs (5-fold CV) of
our logistic regression model for different feature
combinations are listed in Table 2. The results
show that generally, features extracted from the
loss curves are more predictive of gains than any
other features. This confirms findings in Bingel
and Søgaard (2017).

RELATED TOPICS UNRELATED TOPICS

Using all features 0.67 0.57

Not using curve features 0.66 0.53

Only using curve features 0.71 0.58

Only using ratio features 0.69 0.57

Table 2: Mean performance across 100 runs of 5-
fold CV logistic regression.

6 Discussion

The mean score (inverse rank) of each predic-
tor is given in Table 4a; and the coefficients of
the predictors in Table 4b. The JSD features ei-

ther capture divergences between target and auxil-
iary tasks, in general, or between the classes, or
between target and auxiliary with respect to ei-
ther positive or negative class. Other features in-
clude the number of words in the training and test
set, their relative numbers, or the relative numbers
between target and auxiliary tasks (equivalent to
type-token ratios). Finally, the curve-related fea-
tures come in two flavors. One set is simply the
gradients of the loss curve at different time steps.
The other set is the parameters a and c from a log-
curve fitted to the entire loss curve.

6.1 Most predictive features
The most predictive features across both tasks are
Jensen-Shannon divergences, and the fitted loss
curve parameters a and c. OOV rate is also predic-
tive of gains, i.e., correlated with gains from multi-
task learning, which makes sense, since our em-
bedding parameters are updated during training,
leading to better representations for rare words
that occur more frequently in the auxiliary data.

Jensen-Shannon Divergence (JSD) We com-
pute JSD between training and test, in both tasks,
and their relative ratio, as well as between classes.
JSD between training and test is strongly nega-
tively correlated with gains from multi-task learn-
ing. In other words, the more divergence be-
tween your target and your auxiliary task, the
less likely multi-task learning is to work. The
importance of JSD is very interesting – and per-
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Feature Data Inverse rank
JSD pos. class main 23
Curve param a main 21
JSD pos. class ratio 21
Curve gradient 10% main 20
Curve gradient 10% ratio 18
JSD between classes aux 17
# words ratio 17
OOV rate all 17
Curve param c aux 16
Curve gradient 50% ratio 16
JSD neg. class aux 16
# words main 15
Curve gradient 75% main 14
Curve gradient 25% aux 14
JSD between classes ratio 14
Curve gradient 75% ratio 14
JSD neg. class all 14
Curve gradient 25% ratio 13
Curve gradient 50% aux 12
Curve gradient 75% aux 12
Curve param a aux 11
Curve param a ratio 11
# words test 11
Curve gradient 50% main 10
Curve param c ratio 10
JSD pos. class all 10
Curve param c main 9
# words aux 9
Curve gradient 10% aux 9
Curve gradient 25% main 8

(a) Inverse ranks for RELATED TOPICS

Feature Data Coefficient
JSD pos. class all -0.93
JSD neg. class all -0.88
OOV rate all 0.81
JSD between classes all 0.64
JSD between classes aux 0.63
JSD between classes main 0.58
# words test -0.49
# words train -0.47
Curve param a ratio 0.34
Curve param a aux -0.31
Curve gradient 75% ratio 0.26
Curve param c ratio 0.24
# words aux -0.21
Curve param c main -0.17
Curve gradient 75% main 0.17
# words main 0.13
Curve gradient 50% aux -0.11
Curve gradient 75% aux 0.10
JSD neg. class aux -0.08
Curve gradient 50% main -0.07
Curve param a main 0.07
JSD pos. class aux 0.07
Curve gradient 25% aux -0.05
Curve gradient 10% ratio 0.04
Curve gradient 25% ratio 0.04
Curve gradient 25% main 0.03
Curve gradient 50% ratio -0.03
Curve gradient 10% aux -0.02
Curve param c aux -0.02
Curve gradient 10% main 0.01

(b) Coefficients for UNRELATED TOPICS

Table 3: Average inverse ranks and average logistic regression coefficients of various predictors of gains
from multi-task learning

haps a bit surprising in the light of recent results
for sequence tagging (Alonso and Plank, 2017;
Bingel and Søgaard, 2017). These recent results
suggested that JSD is not predictive of multi-task
learning performance at all. Of course, JSD over
unigram occurrences is more closely related to the
model bias arising when training document clas-
sification models on loosely related tasks, than
to the model bias in sequence models. After all,
transition probabilities are typically at least as im-
portant as emission probabilities in statistical se-
quence tagging models.

Loss curve gradients were shown in (Bingel
and Søgaard, 2017) to be the best predictors of

multi-task learning gains. The intuition offered
there is that multi-task learning is more likely to
work when the target task quickly plateaus, but the
auxiliary task keeps pounding, eventually letting
the target task out of a potentially suboptimal local
optimum. Multi-task learning leads to a smoother
loss landscape, where it is harder to get trapped,
and when randomly sampling from the auxiliary
task, also, there is ample chance to be led out of
poor, local optima. Note that in our experiments
the good predictors based on loss curve gradients
are found in the last regions of the curve, just be-
fore early stopping.
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Stability Some features are highly correlated,
which can produce instability – and poor results
and misleading coefficients – when training logis-
tic regression models. Note, however, that we re-
port averages over multiple models. This is sim-
ilar to the idea of using stability selection (Mein-
shausen and Bühlmann, 2010), though averaging
over multiple problems is arguably more robust
than doing it over bootstrap samples with replace-
ment.

7 Conclusion

We have investigated the performance of single-
task and multi-task multi layer perceptrons for text
classification using a TF-IDF representation of
documents. We ran experiments on the 20 News-
groups corpus and took advantage of the class hi-
erarchy in this dataset, to extract hundreds of pairs
of loosely related documents, for which no theo-
retical guarantees exist.

Based on this data, we conduct meta-learning
experiments, trying to predict when multi-task
learning works, and when it does not. We in-
spect the coefficients of such meta models to es-
timate the contribution of various dataset features
or learning characteristics to such gains. Our ex-
periments show the importance of loss curve gra-
dients and out-of-vocabulary rates, supporting re-
cent findings from sequence tagging (Bingel and
Søgaard, 2017), but we also see that biases in the
marginal distribution of the data, as measured by
JSD, are predictive of multi-task learning gains in
document classification.
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Abstract

This paper addresses a relatively new task:
prediction of ASR performance on unseen
broadcast programs. In a previous paper, we
presented an ASR performance prediction sys-
tem using CNNs that encode both text (ASR
transcript) and speech, in order to predict word
error rate. This work is dedicated to the anal-
ysis of speech signal embeddings and text em-
beddings learnt by the CNN while training our
prediction model. We try to better understand
which information is captured by the deep
model and its relation with different condition-
ing factors. It is shown that hidden layers con-
vey a clear signal about speech style, accent
and broadcast type. We then try to leverage
these 3 types of information at training time
through multi-task learning. Our experiments
show that this allows to train slightly more ef-
ficient ASR performance prediction systems
that - in addition - simultaneously tag the an-
alyzed utterances according to their speech
style, accent and broadcast program origin.

1 Introduction

Predicting automatic speech recognition (ASR)
performance on unseen speech recordings is an
important Grail of speech research. In a previ-
ous paper (Elloumi et al., 2018), we presented
a framework for modeling and evaluating ASR
performance prediction on unseen broadcast pro-
grams. CNNs were very efficient encoding both
text (ASR transcript) and speech to predict ASR
word error rate (WER). However, while achiev-
ing state-of-the-art performance prediction results,
our CNN approach is more difficult to understand
compared to conventional approaches based on
engineered features such as TransRater1 for in-
stance. This lack of interpretability of the repre-
sentations learned by deep neural networks is a

1https://github.com/hlt-mt/TranscRater

general problem in AI. Recent papers started to
address this issue and analyzed hidden represen-
tations learned during training of different natu-
ral language processing models (Mohamed et al.,
2012; Wu and King, 2016; Belinkov and Glass,
2017; Shi et al., 2016; Belinkov et al., 2017; Wang
et al., 2017).

Contribution. This work is dedicated to the
analysis of speech signal embeddings and text em-
beddings learnt by the CNN during training of
our ASR performance prediction model. Our goal
is to better understand which information is cap-
tured by the deep model and its relation with con-
ditioning factors such as speech style, accent or
broadcast program type. For this, we use a data
set presented in (Elloumi et al., 2018) which con-
tains a large amount of speech utterances taken
from various collections of French broadcast pro-
grams. Following a methodology similar to (Be-
linkov and Glass, 2017), our deep performance
prediction model is used to generate utterance
level features that are given to a shallow classifier
trained to solve secondary classification tasks. It
is shown that hidden layers convey a clear signal
about speech style, accent and show. We then try
to leverage these 3 types of information at training
time through multi-task learning. Our experiments
show that this allows to train slightly more effi-
cient ASR performance prediction systems that -
in addition - simultaneously tag the analyzed utter-
ances according to their speech style, accent and
broadcast program origin.

Outline. The paper is organized as follows. In
section 2, we present a brief overview of related
works and present our ASR performance predic-
tion system in section 3. Then, we detail our
methodology to evaluate learned representations
in section 4. Our multi-task learning experiments
for ASR performance prediction are presented in
section 5. Finally, section 6 concludes this work.
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2 Related works

Several works tried to understand learned rep-
resentations for NLP tasks such as Automatic
Speech Recognition (ASR) and Neural Machine
Translation (NMT).

(Shi et al., 2016) and (Belinkov et al., 2017)
tried to better understand the hidden represen-
tations of NMT models which were given to a
shallow classifier in order to predict syntactic la-
bels (Shi et al., 2016), part-of-speech labels or
semantic ones (Belinkov et al., 2017). It was
shown that lower layers are better at POS tag-
ging, while higher layers are better at learning
semantics. (Mohamed et al., 2012) and (Be-
linkov and Glass, 2017) analyzed the feature rep-
resentations from a deep ASR model using t-
SNE visualization (Maaten and Hinton, 2008) and
tried to understand which layers better capture
the phonemic information by training a shallow
phone classifier. Also relevant is the work of
(Wang et al., 2017) who proposed an in-depth in-
vestigation on three kinds of speaker embeddings
learned for a speaker recognition task, i.e. i-vector,
d-vector and RNN/LSTM based sequence-vector
(s-vector). Classification tasks were designed
to facilitate better understanding of the encoded
speaker representations. Multi-task learning was
also proposed to integrate different speaker em-
beddings and improve speaker verification perfor-
mance.

3 ASR performance prediction system

In (Elloumi et al., 2018), we proposed a new ap-
proach using convolution neural networks (CNNs)
to predict ASR performance from a collection of
heterogeneous broadcast programs (both radio and
TV). We particularly focused on the combina-
tion of text (ASR transcription) and signal (raw
speech) inputs which both proved useful for CNN
prediction. We also observed that our system re-
markably predicts WER distribution on a collec-
tion of speech recordings.

To obtain speech transcripts (ASR outputs) for
the prediction model, we built our own French
ASR system based on the KALDI toolkit (Povey
et al., 2011). A hybrid HMM-DNN system was
trained using 100 hours of broadcast news from
Quaero2, ETAPE (Gravier et al., 2012), ESTER 1
& ESTER 2 (Galliano et al., 2005) and REPERE

2http://www.quaero.org

(Kahn et al., 2012) collections. ASR performance
was evaluated on the held out corpora presented
in table 2 (used to train and evaluate ASR predic-
tion) and its averaged value was 22.29% on the
TRAIN set, 22.35% on the DEV set and 31.20%
on the TEST set (which contains more challenging
broadcast programs).

Figure 1 shows our network architecture. The
network input can be either a pure text in-
put, a pure signal input (raw signal) or a dual
(text+speech) input. To avoid memory issues, sig-
nals are downsampled to 8khz and models are
trained on six-second speech turns (shorter speech
turns are padded with zeros). For text input, the
architecture is inspired from (Kim, 2014) (green
in Figure 1): the input is a matrix of dimen-
sions 296x100 (296 is the longest ASR hypothe-
sis length in our corpus ; 100 is the dimension of
pre-trained word embeddings on a large held out
text corpus of 3.3G words). For speech input, we
use the best architecture (m18) proposed in (Dai
et al., 2017) (colored in red in Figure 1) of dimen-
sions 48000 x 1 (48000 samples correspond to 6s
of speech).

For WER prediction, our best approach (called
CNNSoftmax) used softmax probabilities and an
external fixed WERV ector which corresponds to
a discretization of the WER output space (see
(Elloumi et al., 2018) for more details). The
best performance obtained is 19.24% MAE3 using
text+speech input. Our ASR prediction system is
built using both Keras (Chollet et al., 2015) and
Tensorflow4.

In the next section, we analyze the represen-
tations learnt in the higher layers (3 blocks col-
ored in yellow and dotted in Figure 1) for pure
text (TXT), pure speech (RAW-SIG) and both
(TXT+RAW-SIG).

4 Evaluating learned representations

4.1 Methodology
In this section, we attempt to understand what our
best ASR performance prediction system (Elloumi
et al., 2018) learned. We analyze the text and
speech representations obtained by our architec-
ture. Alike (Belinkov and Glass, 2017), the joint
text+speech model is used to generate utterance

3Mean Absolute Error (MAE) is a common metric to eval-
uate WER prediction ; it computes the absolute deviation be-
tween the true and predicted WERs, averaged over the num-
ber of utterances in the test set.

4https://www.tensorflow.org
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Figure 1: Architecture of our CNN with text (green) and signal (red) inputs for WER prediction

level features (hidden representations of speech
turns colored in yellow in Figure 1) that are given
to a shallow classifier trained to solve secondary
classification tasks such as:

• STYLE: classify the utterances between
(spontaneous and non spontaneous) styles
(see table 1),

• ACCENT: classify the utterances between
native and non native speech (see also table
1, we used the speaker annotations provided
with our datasets in order to label our utter-
ances in native/non native speech),

• SHOW: classify the utterances in different
broadcast programs (as described in table 2,
each utterance of our corpus is labeled with a
broadcast program name).

As a more visual analysis, we also plot an ex-
ample of hidden representations projected to a 2-D
space using t-distributed Stochastic Neighbor Em-
bedding (t-SNE) (Maaten and Hinton, 2008).5

4.2 Shallow classifiers

We built three shallow classifiers (SHOW,
STYLE, ACCENT) with a similar architecture.
The classifier is a feed-forward neural network
with one hidden layer (size of the hidden layer
is set to 128) followed by dropout (rate of 0.5)
and a ReLU non-linearity. Finally, a softmax
layer is used for mapping onto the label set size.
We chose this simple formulation as we are inter-
ested in evaluating the quality of the representa-
tions learned by our ASR prediction model, rather
than optimizing the secondary classification tasks.

5https://lvdmaaten.github.io/tsne/
code/tsne_python.zip

The network input size depends on which layer
to analyze (see figure 1). Training is performed
using Adam (Kingma and Ba, 2014) (using de-
fault parameters) over shuffled mini-batches in or-
der to minimize the cross-entropy loss. The mod-
els are trained for 30 epochs with a batch size of
16 speech utterances. After training, we keep the
model with the best performance on DEV set and
report its performance on the TEST set. The clas-
sifier outputs are evaluated in terms of accuracy.

4.3 Data

A data set from (Elloumi et al., 2018) was em-
ployed in our experiments, divided into three sub-
sets: training (TRAIN), development (DEV) and
test (TEST). Speech utterances come from vari-
ous French broadcast collections gathered during
projects or shared tasks: Quaero, ETAPE, ESTER
1 & ESTER 2 and REPERE.

The TEST set contains unseen broadcast pro-
grams that are different from those present in
TRAIN and DEV (Elloumi et al., 2018).

Category TRAIN DEV TEST

Non Spontaneous 54250 6101 3109
Spontaneous 13277 1403 3728
Native 44487 4945 5298
Non Native 23040 2559 1539

Table 1: Distribution of our utterances between
non spontaneous and spontaneous styles, native
and non native accents

Tables 1 and 2 show the whole data set in terms
of speech turns available for each classification
task. We clearly see that the data is unbalanced for
the three categories (STYLE, ACCENT, SHOW).
Since we are interested in evaluating the discrim-
inative power of our learned representations for
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Show TRAIN DEV

FINTER-DEBATE 7632 833
FRANCE3-DEBATE 928 77
LCP-PileEtFace 4487 525
RFI 25565 2831
RTM 24198 2745
TELSONNE 4717 493
Total 67527 7504

Table 2: Number of utterances for each broadcast
program

these 3 tasks, we extracted a balanced version of
our TRAIN/DEV/TEST sets by filtering among
over-represented labels (final number of kept ut-
terances corresponds to bold numbers in table 1
and 2 ). Table 3 shows the distribution of our final
balanced TRAIN/DEV/TEST sets as well as the
number of categories for each task.6

#Catg Turns of speech per category
TRAIN DEV TEST

SHOW 5 4487×5 493×5 -
STYLE 2 13277×2 1403×2 3109×2

ACCENT 2 23040×2 2559×2 1539×2

Table 3: Description of our balanced data set for
each category

4.4 Results

For each classification task, we build a shallow
classifier using the hidden representations of TXT,
RAW-SIG and TXT+RAW-SIG blocks as input.
The experimental results are presented in table 4
for both DEV and TEST sets separated by two ver-
tical bars (||).

Classification performance is all above a ran-
dom baseline accuracy (>50% for STYLE and
ACCENT and >20% for SHOW). This shows
that training a deep WER prediction system gives
representation layers that contain a meaningful
amount of information about speech style, speech
accent and broadcast program label. Predicting
utterance style (spontaneous/non spontaneous) is
slightly easier than predicting accent (native/non
native) especially from text input. One expla-
nation might be that speech utterances are short
(< 6s) while accent identification needs proba-
bly longer sequences. We also observe that us-
ing both text and speech improves the learned
representations for the STYLE task while it is

6For the SHOW classification task, the FRANCE3-
DEBATE shows were finally removed since they represent a
too small amount of speech turns.

less clear for the ACCENT task (for which im-
provement seen on DEV is not confirmed on
TEST). Finally, text input is significantly better
than speech input whereas we could have expected
better performance from speech for the SHOW
task (speech signals convey information about the
audio characteristics of a broadcast program). It
means that text input contains correlated infor-
mation with broadcast-program type, speech style
and speaker’s accent. In case of SHOW task,
our performance prediction system is able to cap-
ture information (vocabulary, topic, syntax, etc.)
about a specific broadcast program type, based on
textual features and to differ it from others (ra-
dio programs, TV debate programs, phone calls,
broadcast news programs, etc.). Likewise, the
textual information captured is very different be-
tween spontaneous/non-spontaneous speech styles
and native/non-native speaker’s accents.

Among the representations analyzed, the out-
puts of the CNNs (A1,B1) lead to the best classifi-
cation results, in line with previous findings about
convolutions as feature extractors. Performance
then drops using the higher (fully connected) lay-
ers that do not generate better representations for
detecting style, accent or show.

Layer Dim. SHOW STYLE ACCENT

TXT
A1 1280 57.12||- 80.72||68.99 70.75||66.54
A2 256 54.89||- 80.01||69.56 69.30||69.43
A3 128 51.04||- 79.23||68.27 68.25||70.89

RAW-SIG
B1 512 42.35||- 72.92||58.64 64.60||55.85
B2 512 41.22||- 72.20||58.41 64.44||54.84
B3 256 41.22||- 72.38||58.44 64.50||54.65
B4 128 40.77||- 72.38||58.52 64.74||54.87

TXT + RAW-SIG
C1 (A3+B4) 256 57.04||- 81.29||70.36 71.41||65.98
C2 128 53.06||- 79.62||70.55 70.01||65.20
Random - 20.00 50.00 50.00

Table 4: Show/Style/Accent classification accu-
racies using representations from different layers
learned during the training of our ASR WER pre-
diction system.

We visualize an example of utterance represen-
tations from C2(TXT+RAW-SIG) layer in figure
2 using the t-SNE. For a fixed utterance dura-
tion 4s≤D<5s (716 speech turns) and 5s≤D<6s
(489 speech turns), non spontaneous utterances are
plotted in blue while spontaneous ones are in pink.
The C2 layer produces clusters which shows that
spontaneous utterances are in the upper-left part
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(a) 4s≤D<5s (b) 5s≤D<6s

Figure 2: Visualization of utterance representations
from C2 layer for different speech styles (S spon-
taneous - NS non spontaneous) - (a) utt. length is
4s≤D<5s and (b) 5s≤D<6s

of the 2D space. This suggests that C2 hidden rep-
resentation captures a weak signal about speaking
style.

Finally, figure 3 is the confusion matrix pro-
duced using C2(TXT+RAW-SIG) layer. The clas-
sifiers very well predicted TELSONNE category
(Accuracy of 82%), which contains many phone
calls from the radio listeners. This show is rather
different from the 4 other shows in DEV (broad-
cast debates and news).

Figure 3: Confusion matrix for SHOW classifi-
cation using C2(TXT+RAW-SIG) layer as input,
evaluated on DEV

5 Multi-task learning

We have seen in the previous section that, while
training an ASR performance prediction system,
hidden layers convey a clear signal about speech
style, accent and show. This suggests that these
3 types of information might be useful to struc-
ture the deep ASR performance prediction models.
In this section, we investigate the effect of knowl-

edge of these labels (style, accent, show) at train-
ing time on prediction systems qualities. For this,
we perform multi-task learning providing the ad-
ditional information about broadcast type, speech
style and speaker’s accent during training. The ar-
chitecture of the multi-task model is similar to the
single-task WER prediction model of Figure 1 but
we add additional outputs: a softmax function
is added for each new classification task after the
last fully connected layer (C2). The output dimen-
sion depends on the task: 6 for SHOW and 2 for
STYLE and ACCENT tasks.

We use the full (unbalanced) data set described
in tables 1 and 2. Training of the multitask model
uses Adadelta update rule and all parameters are
initialized from scratch (8.70M). Models are per-
formed for 50 epochs with batch size of 32. MAE
is used as the loss function for WER prediction
task while cross-entropy loss is used for the clas-
sification tasks.

In the composite (multitask) loss, we assign a
weight of 1 for MAE loss (main task) and a smaller
weight of 0.3 (tuned using a grid search on DEV
dataset) for cross-entropy (secondary classifica-
tion task) loss(es).

After training, we take the model that lead to the
best MAE on DEV set and report its performance
on TEST. We build several models that simulta-
neously address 1, 2, 3 and 4 tasks. The mod-
els are evaluated with a specific metric for each
task: MAE & Kendall7 for WER prediction task
and Accuracy for classification tasks.

Table 5 summarizes the experimental results on
DEV and TEST sets, separated by two vertical
bars (||). We considered the mono-task model de-
scribed in (Elloumi et al., 2018) (and summarized
in section 3) as a baseline system.

We recall that we evaluated the SHOW classifi-
cation task only on the DEV set (TEST broadcast
programs are new and were unseen in the TRAIN).

First of all, we notice that performance of classi-
fication tasks in muti-task scenarios are very good:
we are able to train efficient ASR performance
prediction systems that simultaneously tag the an-
alyzed utterances according to their speech style,
accent and broadcast program origin. Such multi-
task systems might be useful diagnostic tools to
analyze and predict ASR on large speech collec-
tions. Moreover, our best multi-task systems dis-

7Correlation between true ASR values and predicted ASR
values
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Models Performance prediction task Classification tasks
MAE Kendall SHOW STYLE ACCENT

Baseline: Mono-task
WER (Elloumi et al., 2018) 15.24||19.24 45.00||46.83 - - -

2-task
WER SHOW 14.83||19.15 47.25||47.05 99.29||- - -
WER STYLE 15.07||19.66 45.92||45.49 - 99.01||65.24 -
WER ACCENT 15.05||19.60 46.17||45.60 - - 91.72|| 75.30

3-task
WER STYLE ACCENT 15.12||20.23 45.75||44.09 - 98.63||69.07 88.99|| 77.46
WER SHOW ACCENT 14.94||19.76 46.19||43.61 98.38||- - 89.87||71.44
WER SHOW STYLE 14.90||19.14 45.87||47.28 99.12||- 99.47||81.98 -

4-task
WER SHOW STYLE ACCENT 15.15||19.64 45.59||45.42 99.04||- 99.29||81.55 91.92||73.60
WER ALL COMBINED OUTPUTS 14.50 ||18.87 48.16||48.63 - - -

Table 5: Evaluation of ASR performance prediction with multi-tasks models (DEV ||TEST ) computed
with MAE and Kendall - secondary classification tasks accuracy is also reported

play a better performance (MAE, Kendall) than
the baseline system, which means that the implicit
information given about style, accent and broad-
cast program type can be helpful to structure the
system’s predictions. For example, in 2-task case,
the best model is obtained on WER+SHOW tasks
with a difference of +0.41%, +2.25% for MAE and
Kendall respectively (on DEV) compared to the
baseline on WER prediction task. However, it is
also important to mention that the impact of multi-
task learning on the main task (ASR performance
prediction) is limited: only slight improvements
on the test set are observed for MAE and Kendall
metrics. Anyway, the systems trained seem com-
plementary since their combination (averaging,
over all multi-task systems, predicted WERs at ut-
terance level) leads to significant performance im-
provement (MAE and Kendall).

6 Conclusion

This paper presented an analysis of learned repre-
sentations of our deep ASR performance predic-
tion system. Experiments show that hidden layers
convey a clear signal about speech style, accent,
and broadcast type. We also proposed a multi-task
learning approach to simultaneously predict WER
and classify utterances according to style, accent
and broadcast program origin.
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Nadir Durrani, Fahim Dalvi, and James Glass. 2017.
Evaluating layers of representation in neural ma-
chine translation on part-of-speech and semantic
tagging tasks. In Proceedings of the Eighth Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), volume 1, pages
1–10.

François Chollet et al. 2015. Keras. https://
github.com/fchollet/keras.

Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and
Samarjit Das. 2017. Very deep convolutional neural
networks for raw waveforms. In Acoustics, Speech
and Signal Processing (ICASSP), 2017 IEEE Inter-
national Conference on, pages 421–425. IEEE.

Zied Elloumi, Laurent Besacier, Olivier Galibert, Juli-
ette Kahn, and Benjamin Lecouteux. 2018. Asr per-
formance prediction on unseen broadcast programs
using convolutional neural networks. In IEEE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP).

Sylvain Galliano, Edouard Geoffrois, Djamel Mostefa,
Khalid Choukri, Jean-François Bonastre, and Guil-
laume Gravier. 2005. The ester phase ii evaluation
campaign for the rich transcription of french broad-
cast news. In Interspeech, pages 1149–1152.

Guillaume Gravier, Gilles Adda, Niklas Paulson,
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Abstract

Nonlinear methods such as deep neural net-
works achieve state-of-the-art performances in
several semantic NLP tasks. However episte-
mologically transparent decisions are not pro-
vided as for the limited interpretability of the
underlying acquired neural models. In neural-
based semantic inference tasks epistemologi-
cal transparency corresponds to the ability of
tracing back causal connections between the
linguistic properties of a input instance and the
produced classification output.

In this paper, we propose the use of a method-
ology, called Layerwise Relevance Propaga-
tion, over linguistically motivated neural ar-
chitectures, namely Kernel-based Deep Archi-
tectures (KDA), to guide argumentations and
explanation inferences. In such a way, each
decision provided by a KDA can be linked to
real examples, linguistically related to the in-
put instance: these can be used to motivate the
network output. Quantitative analysis shows
that richer explanations about the semantic and
syntagmatic structures of the examples charac-
terize more convincing arguments in two tasks,
i.e. question classification and semantic role
labeling.

1 Introduction

Nonlinear methods such as deep neural networks
achieve state-of-the-art performances in several
challenging problems, such as image classification
or natural language processing (NLP). However
the traditional AI criticism still holds: they are not
epistemologically transparent, as for the limited
interpretability of the neural inferences.

In a question classification (QC) task, e.g. (Li
and Roth, 2006), this is particularly evident. The
category describing the target of a request is rel-
evant in question answering to optimize the later

stages of search and answer detection, and its in-
terpretation depends on a variety of semantic and
syntactic properties of the question. Epistemolog-
ical transparency corresponds here to the ability
of tracing back the connections between linguistic
properties of the input question and the proposed
question category. An example-driven machine
learning model should be able to provide causal re-
lations between the input semantic aspect and the
properties of the question.
For example, given the prediction ”What is the
capital of Zimbabwe?” refers to a Location, we
would like the system to motivate it with a sen-
tence such as: Since it seems similar to ”What is
the capital of California?” which also refers to a
Location.
Notice how in neural learning, as for exam-
ple in Multilayer Perceptrons, Long Short-Term
Memory Networks, (Hochreiter and Schmidhuber,
1997), or the more recent Attention-based Net-
works (Larochelle and Hinton, 2010), the network
parameters have no clear conceptual counterpart.

Using the Layerwise Relevance Propagation
(LRP) (Bach et al., 2015) approach, the classi-
fication decisions of a multilayer perceptron are
decomposed backward across the network layers,
and evidence about the contribution of individual
input fragments (i.e. layer 0) to the final decision
is gathered. Evaluation against images (i.e. the
MNIST and ILSVRC data sets) suggests that LRP
activates meaningful associations between input
and output fragments, and this corresponds to trac-
ing back meaningful causal connections.

In this paper, we propose the use of a similar
mechanism over the linguistically motivated
network architectures, as they have been recently
proposed in (Croce et al., 2017): Kernel-based
Deep network architectures aim at integrating
syntactic/semantic information derived from the
adoption of Tree Kernels (Collins and Duffy,
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2001) within neural-based learning. Here, we
show that the inferences of such architectures
can be motivated by simply applying the LRP
method, which allows to trace back causal as-
sociations between the semantic classification
and the examples expressed by parse tree-based
metrics. Evaluation of the LRP algorithm to
the problem of explaining the system decisions
allows to demonstrate the meaningful impact of
LRP on semantic transparency: users faced with
explanations are better oriented to accept or reject
the system decisions, thus improving the impact
on the overall application accuracy.

In the rest of the paper, section 2 reports re-
lated works. In section 3 we describe the Kernel-
based Deep Architecture (KDA) while section 4
illustrates the details of LRP and how it connects
to KDAs. In section 5 we propose both a novel
model to generate explanations of a network pre-
diction and an evaluation methodology. In section
6 we provide experimental evidences of the overall
system’s effectiveness against two semantic tasks,
question classification and frame-based argument
classification in the semantic role labeling chain.
Lastly, in section 7 conclusions are derived.

2 Related Work

Linguistically motivated explanatory methods
should provide semantically clear justifications
about a neural network textual inferences.

Methods making the neural learning more read-
able are usually designed to trace back the por-
tions of the network input that mostly contributed
to the output decision. Network propagation tech-
niques are used to identify the patterns of a given
input item (e.g., an image) that are linked to the
particular deep neural network prediction as in
(Erhan et al., 2010; Zeiler and Fergus, 2013). Usu-
ally, these are based on backward algorithms that
layer-wise reuse arc weights to propagate the pre-
diction from the output down to the input, thus
leading to the re-creation of meaningful patterns in
the input space. Typical examples are deconvolu-
tion heatmaps, used to approximate through Tay-
lor series the partial derivatives at each layer (Si-
monyan et al., 2013), or the so-called Layer-wise
Relevance Propagation (LRP), that redistributes
back positive and negative evidence across the lay-
ers (Bach et al., 2015).

Several efforts have been made in the perspec-

tive of providing explanations of a neural classi-
fier, often by focusing into highlighting an handful
of crucial features (Baehrens et al., 2010) or deriv-
ing simpler, more readable models from a complex
one, e.g. a binary decision tree (Frosst and Hinton,
2017), or by local approximation with linear mod-
els (Ribeiro et al., 2016). However, although they
can explicitly show the representations learned in
the specific hidden neurons (Frosst and Hinton,
2017), these approaches base their effectiveness
on the user ability to study the quality of the rea-
soning and of the accountability as a side effect
of the quality of the selected features: this can
be very hard in tasks where boundaries between
classes are not well defined. Sometimes, explana-
tions are associated to vector representations as in
(Ribeiro et al., 2016), i.e. bag-of-word in case of
text classification, which is clearly weak at captur-
ing significant linguistic abstractions, such as the
involved syntactic relations. In this work, we pro-
pose a model which allows to provide explanations
that are easily interpretable even by non-expert
users, as they are expressed in natural language
and are hence a more natural solution. It implicitly
captures lexical, semantic and syntactic general-
izations through the generation of a linguistically
fluent explanation of predictions: as this is exploit
linguistic analogies it provides a more transparent
and epistemologically coherent view on the sys-
tem’s decision.

3 A Kernel-based Deep Architecture

In this section, we will first describe the Nyström
method for generating low dimensional embed-
dings that approximate high dimensional kernel
spaces. Then we will review the Kernel-based
Deep Architecture discussed in (Croce et al.,
2017), that efficiently combines kernel methods
and deep learning by using a Nyström layer into
a neural architecture.

Given an input dataset D, a kernel K(oi, oj)
is a similarity function over D2 that corresponds
to a dot product in the implicit kernel space,
i.e., K(oi, oj) = Φ(oi) · Φ(oj). Kernel func-
tions are used by learning algorithms, such as Sup-
port Vector Machines (Shawe-Taylor and Cristian-
ini, 2004), to operate only implicitly on instances
in the kernel space, by never accessing their ex-
plicit definition. Let us apply the projection func-
tion Φ over all examples from D to derive rep-
resentations, ~x denoting the rows of the matrix
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Figure 1: Kernel-based Deep Architecture.

X . The Gram matrix can always be computed
as G = XX>, with each single element corre-
sponding to Gij = Φ(oi)Φ(oj) = K(oi, oj). The
aim of the Nyström method is to derive a new
low-dimensional embedding x̃ in a l-dimensional
space, with l� n so that G̃ = X̃X̃> and G̃ ≈ G.
This is obtained by generating an approximation
G̃ of G using a subset of l columns of the matrix,
i.e., a selection of a subset L ⊂ D of the avail-
able examples, called landmarks. Suppose we ran-
domly sample l columns of G, and let C ∈ R|D|×l
be the matrix of these sampled columns. Then, we
can rearrange the columns and rows of G and de-
fine X = [X1 X2] such that:

G = XX> =

[
W X>1 X2

X>2 X1 X>2 X2

]

and C =

[
W

X>2 X1

]

where W = X>1 X1, i.e., the subset of G that con-
tains only landmarks. The Nyström approxima-
tion can be defined as:

G ≈ G̃ = CW †C> (1)

where W † denotes the Moore-Penrose inverse of
W . The Singular Value Decomposition (SVD) is
used to obtain W † as it follows. First, W is de-
composed so that W = USV >, where U and
V are both orthogonal matrices, and S is a di-
agonal matrix containing the (non-zero) singular
values of W on its diagonal. Since W is sym-
metric and positive definite, W = USU>. Then
W † = US−1U> = US−

1
2S−

1
2U> and the Equa-

tion 1 can be rewritten as

G ≈ G̃ = CUS−
1
2S−

1
2U>C>

= (CUS−
1
2 )(CUS−

1
2 )> = X̃X̃>

Given an input example o ∈ D, a new low-
dimensional representation ~̃x can be thus deter-
mined by considering the corresponding item of
C as

~̃x = ~cUS−
1
2 (2)

where ~c is the vector whose dimensions contain
the evaluations of the kernel function between o
and each landmark oj ∈ L. Therefore, the method
produces l-dimensional vectors.

Notice that an optimal selection of landmarks
can be expected to reduce the Gram Matrix ap-
proximation error. However, the uniform sam-
pling without replacement policy is adopted: it
is in fact theoretically and empirically shown in
Kumar et al. (2012) to achieve results compara-
ble with alternative but (more complex) selection
policies.

In (Croce et al., 2017), the Nyström represen-
tation ~̃x has been used as input within neural net-
work architectures. In fact, given a labeled dataset
L = {(o, y) | o ∈ D, y ∈ Y }, where o refers
to a generic instance and y is its associated class,
a Multi-Layer Perceptron (MLP) architecture can
be defined, with a specific Nyström layer based
on the Nyström embeddings of Eq. 2. Such
Kernel-based Deep Architecture (KDA) has an in-
put layer, a Nyström layer, a possibly empty se-
quence of non-linear hidden layers and a final
classification layer, which produces the output, as
shown in Figure 1.
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The input layer corresponds to the input vec-
tor ~c, i.e., the row of the C matrix associated to
an example o. The input layer is mapped to the
Nyström layer, through the projection in Equa-
tion 2. Notice that the embedding provides also
the proper weights, defined by US−

1
2 , so that the

mapping can be expressed through the Nyström
matrix HNy = US−

1
2 : it corresponds to a pre-

trained stage derived through SVD. Formally, the
low-dimensional embedding of an input example
o, is ~̃x = ~c HNy = ~c US−

1
2 .

The resulting outcome ~̃x is the input to one or
more non-linear hidden layers. Each t-th hidden
layer is realized through a matrix Ht ∈ Rht−1×ht

and a bias vector ~bt ∈ R1×ht , where ht denotes
the desired hidden layer dimensionality. Clearly,
given that HNy ∈ Rl×l, h0 = l. The first hid-
den layer in fact receives in input ~̃x = ~cHNy,
that corresponds to the t = 0 layer input ~x0 = ~̃x
and its computation is formally expressed by
~x1 = f(~x0H1 +~b1), where f is a non-linear ac-
tivation function. In general, the generic t-th layer
is modeled as:

~xt = f(~xt−1Ht +~bt) (3)

The final layer of KDA is the classification
layer, realized through the output matrix HO and
the output bias vector ~bO. Their dimensionality
depends on the dimensionality of the last hidden
layer (called O−1) and the number |Y | of different
classes, i.e., HO ∈ RhO−1

×|Y | and ~bO ∈ R1×|Y |,
respectively. In particular, this layer computes a
linear classification function with a softmax oper-
ator so that ŷ = softmax(~xO−1HO +~bO).

In addition to standard dropout, a L2 regulariza-
tion is applied to the norm of each layer.

Finally, the KDA is trained by optimizing a loss
function made of the sum of two factors: first, the
cross-entropy function between the gold classes
and the predicted ones; second the L2 regulariza-
tion, whose importance is regulated by a meta-
parameter λ. The final loss function is thus

L(y, ŷ) =
∑

(o,y)∈L
y log(ŷ)+λ

∑

H∈{Ht}∪{HO}
||H||2

where ŷ are the softmax values computed by the
network and y are the true one-hot encoding val-
ues associated with the example from the labeled
training dataset L.

As shown in Figure 1, it is worth noticing that
the network is stimulated with an input vector c

which contains the kernel evaluations K(s, li) be-
tween each example and the landmarks. When
using linguistic kernels (such as Semantic Tree
Kernels) this measure corresponds to a syntac-
tic/semantic similarity between the x and the sub-
set of examples used for the space reconstruction
(made available through the Nyström method).
Once stimulated, the network will provide an out-
put. In order to give an explanation to a network
decision, we will discuss in the following section
how to revert the propagation process connecting
output and input. As a side effect we will be able
to determine those landmarks mostly affecting the
final decision and which are more semantically re-
lated to the input instance.

4 Layer-wise Relevance Propagation in
Kernel-based Deep Architectures

Layer-wise Relevance propagation (LRP, pre-
sented in (Bach et al., 2015)) is a framework which
allows to decompose the prediction of a deep neu-
ral network computed over a sample, e.g. an im-
age, down to relevance scores for the single input
dimensions of the sample such as subpixels of an
image.

More formally, let f : Rd → R+ be a posi-
tive real-valued function taking a vector x ∈ Rd

as input. The function f can quantify, for exam-
ple, the probability of x being in a certain class.
The Layer-wise Relevance Propagation assigns to
each dimension, or feature, xd a relevance score
R

(1)
d such that:

f(x) ≈∑dR
(1)
d (4)

Features whose score is R(1)
d > 0 or R(1)

d < 0
correspond to evidence in favor or against, respec-
tively, the output classification. In other words,
LRP allows to identify fragments of the input play-
ing key roles in the decision, by propagating rele-
vance backwards. Let us suppose to know the rel-
evance scoreR(l+1)

j of a neuron j at network layer
l + 1, then it can be decomposed into messages
R

(l,l+1)
i←j sent to neurons i in layer l:

R
(l+1)
j =

∑

i∈(l)
R

(l,l+1)
i←j (5)

Hence it derives that the relevance of a neuron i at
layer l can be defined as:

R
(l)
i =

∑

j∈(l+1)

R
(l,l+1)
i←j (6)
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Note that 5 and 6 are such that 4 holds. In this
work, we adopted the ε-rule defined in (Bach et al.,
2015) to compute the messages R(l,l+1)

i←j :

R
(l,l+1)
i←j =

zij
zj + ε · sign(zj)

R
(l+1)
j

where zij = xiwij and ε > 0 is a numerical sta-
bilizing term and must be small. The informative
value is justified by the fact that the weights zij
are linked to the activation weights wij of the in-
put neurons.
If we apply it to a KDA processing linguistic ob-
servations, then LRP implicitly traces back the
syntactic, semantic and lexical relations between
the example and the landmarks, thus it selects the
landmarks whose presences were the most influ-
ential to identify the predicted structure in the sen-
tence. Indeed, each landmark is uniquely associ-
ated to an entry of the input vector ~c, as illustrated
in Sec 3.

5 Explanatory Models

Justifications for the KDA emissions can be ob-
tained by explaining the evidence in favour or
against a class using landmarks {`} as examples.
The idea is to select those {`} that the LRP method
produces as the most active elements in layer 0.
Once such active landmarks are detected, an Ex-
planatory Model is a function in charge to com-
pile the linguistically fluent explanation by using
analogies or differences with the input case. The
semantic expressiveness of such analogies makes
the resulting explanation clear and increases the
user confidence on the system reliability. When
a sentence s is classified, LRP assigns activation
scores rs` to each individual landmark `: let L(+)

(or L(−)) denote the set of landmarks with positive
(or negative) activation score.

Formally, every explanation is characterized by
a triple e = 〈s, C, τ〉where s is the input sentence,
C is the predicted label and τ is the modality of the
explanation: τ = +1 for positive (i.e. acceptance)
statements while τ = −1 correspond to rejections
of the decision C.
A landmark ` is positively activated for a given
sentence s if there are not more than k−1 other ac-
tive landmarks `′ whose activation value is higher
than the one for `, i.e.

|{`′ ∈ L(+) : `′ 6= ` ∧ rs`′ ≥ rs` > 0}| < k

Similarly, a landmark is negatively activated
when:

|{`′ ∈ L(−) : `′ 6= ` ∧ rs`′ ≤ rs` < 0}| < k

where k is a parameter used to make explana-
tion depending on not more than k landmarks, de-
noted by Lk. Positively (or negative) active land-
marks in Lk are assigned to an activation value
a(`, s) = +1 (−1), while a(`, s) = 0 for all other
not activated landmarks.

Given the explanation e = 〈s, C, τ〉, a landmark
` whose (known) class is C` is consistent (or in-
consistent) with e according to the fact that the
following function:

δ(C`, C) · a(`, q) · τ

is positive (or negative, respectively), where
δ(C ′, C) = 2δkron(C ′ = C) − 1 and δkron is the
Kronecker delta.

An explanatory model is then a function
M(e,Lk) which maps an explanation e, a sub set
Lk of the active and consistent landmarks L for e
into a sentence f in natural language. Of course
several definitions for M(e,Lk) are possible. A
general explanatory model would be:

M(e,Lk) =





’s is C since it is similar to `’
∀` ∈ L+k if τ > 0

’s is not C since it is different
from ` which is C’
∀` ∈ L−k if τ < 0

’s is C but I don’t know why’
if L ≡ ∅

where L±k are the partition of landmarks with pos-
itive and negative relevance scores in Lk, respec-
tively.
Here we introduce three explanatory models we
used during experimental evaluation:

(Basic Model) The first model is the simplest.
It returns an analogy only with the (unique) con-
sistent landmark with the highest positive score
if τ = 1 and lowest negative score when
τ = −1. In case no active and consistent
landmark can be found, the Basic Model re-
turns a phrase stating only the predicted class,
with no explanation. As an example the ex-
planation of an accepted decision in an argu-
ment classification task, described by the triple
e1 = 〈’Put this plate in the center of the table’,
THEMEPLACING, 1〉, would be mapped by the
model into:
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I think ”this plate” is THEME of PLACING in ”Robot

PUT this plate in the center of the table” since similar to

”the soap” in ”Can you PUT the soap in the washing

machine?”.

(Multiplicative Model) In a second model, de-
noted as multiplicative, the system makes refer-
ence to up to k1 ≤ k analogies with positively
(or negatively) active and consistent landmarks.
Given the above explanation e1, and k1 = 2, it
would return:

I think ”this plate” is THEME of PLACING in ”Robot

PUT this plate in the center of the table” since similar to

”the soap” in ”Can you PUT ”the soap” in the washing

machine?” and it is also similar to ”my coat” in ”HANG my
coat in the closet in the bedroom”.

(Contrastive Model) The last proposed model
is more complex since it returns both a positive
(whether τ = 1) and a negative (τ = −1) analogy
by selecting, respectively, the most positively rel-
evant and the most negatively relevant consistent
landmark: For instance, given e1, it could return:

I think ”this plate” is the THEME of PLACING in ”Robot

PUT this plate in the center of the table” since similar to

”the soap” which is in ”Can you PUT the soap in the

washing machine” and it is not the GOAL of PLACING

since different from ”on the counter” in ”PUT the plate on
the counter”.

5.1 Using information theory for validating
explanations

Let P (C|s) and P (C|s, e) be, respectively, the
prior probability of the classification of s being
correct and the probability of the classification be-
ing correct given an explanation. Note that both
indicate the level of confidence the user has in the
classifier (i.e. the KDA) given the amount of avail-
able information, i.e. with and without explana-
tion. Three explanations are possible:

• Useful explanations: these are explanations
such that C is correct and P (C|s, e) >
P (C|s) or C is not correct and P (C|s, e) <
P (C|s)

• Useless explanations: they are explanations
such that P (C|s, e) = P (C|s)

• Misleading explanations: they are explana-
tions such that C is correct and P (C|s, e) <
P (C|s) or C is not correct and P (C|s, e) >
P (C|s)

The core idea is that semantically coherent and ex-
haustive explanations must indicate correct clas-
sifications whereas incoherent or non-existent ex-
planations must hint towards wrong classifica-
tions.

Given the above probabilities, we can mea-
sure the quality of an explanation by computing
the achieved Information Gain (Kononenko and
Bratko, 1991): the posterior probability is ex-
pected to grow w.r.t. to the prior one for cor-
rect decisions when a good explanation is avail-
able against the input sentence, while decreas-
ing for bad or confusing explanations. The intu-
ition behind Information Gain is that it measures
the amount of information (provided in number
of bits) gained by the explanation about the user
decision of accepting the system classification on
an incoming sentence s. A positive gain indicates
that the probability amplifies towards the right de-
cisions, and declines with errors. We will let users
to judge the quality of the explanation and assign
them a posterior probability that increases along
with better judgments. In this way we have a mea-
sure of how convincing the system is about its de-
cisions as well as how weak it is to clarify erro-
neous cases. To compare the overall performance
of the different explanatory models M , the Infor-
mation Gain is measured against a collection of
explanations generated byM and then normalized
throughout the collection’s entropy E as follows:

Ir =
1

E

1

| Ts |

|Ts|∑

j=1

I(j) =
Ia
E

(7)

where Ts is the explanations collection and I(j) is
the Information Gain of explanation j.

6 Experimental Evaluation

The effectiveness of the proposed approach has
been measured against two different semantic pro-
cessing tasks,i.e. question classification and argu-
ment classification in semantic role labeling. The
Nystrom projection has been implemented in the
KeLP framework (Filice et al., 2018)1, the neural
network and LRP have been implemented in Ten-
sorflow2, with 1 and 2 hidden layers, respectively,
whose dimensionality corresponds to the number
of involved Nystrom landmarks (500 and 200, re-

1http://www.kelp-ml.org
2https://www.tensorflow.org
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Category P (C|s, e) 1− P (C|s, e)
V.Good 0.95 0.05
Good 0.8 0.2
Weak 0.5 0.5
Bad 0.2 0.8

Incoher. 0.05 0.95

Table 1: Posterior probabilities w.r.t. quality categories

Class Incoher. Bad Weak Good V.Good
Incoher. 1.00 0.83 0.50 0.16 0.00

Bad 0.83 1.00 0.66 0.33 0.16
Weak 0.50 0.66 1.00 0.66 0.50
Good 0.16 0.33 0.66 1.00 0.83

V.Good 0.00 0.16 0.50 0.83 1.00

Table 2: Weights for the Cohen’s Kappa κw statistics

spectively, randomly selected3), and the adoption
of dropout regularization in hidden and final lay-
ers. For both tasks, hyper-parameters have been
optimized via grid-search. The Adam optimizer
has been applied to minimize the cross-entropy
loss function, with a multi-epoch (500) training,
each fed with batches of size 256. We adopted
an early stop strategy, where the best model was
selected according to the performance over the de-
velopment set.
For evaluating our explanation method, we de-
fined five quality categories and associated them
to values for the posteriori probability P (C|s, e),
as shown in Table 1. We gathered into explana-
tion datasets hundreds of explanations from the
three models for each task and presented them to
a pool of annotators (further details in related sub-
sections) for independent labeling; annotators had
no information of the correctness of the system
emissions but just knowledge about the dataset en-
tropy. We addressed their consensus by measuring
a weighted Cohen’s Kappa.

6.1 Question Classification

In our first evaluation, we replicated the experi-
ments reported by (Croce et al., 2017) with respect
to the question classification task. We thus used
the UIUC dataset (Li and Roth, 2006), including
a training and test set of 5452 and 500 questions,
respectively, organized in 6 coarse-grained classes
(as ENTITY or HUMAN). We generated Nystrom
representation of the Compositionally Smoothed
Partial Tree Kernel (Annesi et al., 2014) function
with default parameters µ = λ = 0.4. Using 500

3More complex policies have been applied to select land-
marks but statistically significant results have not been mea-
sured (not reported here due to space limitations).

QC SRL-AC
Basic 0.548 0.669

Multiplicative 0.514 0.662
Contrastive 0.576 0.667

κw 0.677 0.783
accuracy 0.926 0.961

Table 3: Information gains for the three Explanatory
Models applied to the SRL-AC and QC datasets. kw is
the weighted Cohen’s Kappa κw.

landmarks, the KDA accuracy was 92.6%.
A group of 3 annotators evaluated an explanation
dataset of 300 explanations (perfectly balanced be-
tween correct and not correct classification), com-
posed of 100 explanations for each model. Perfor-
mances are shown in Table 3.

All three explanatory models were able to gain
more than half the required information in order to
ascertain the correctness of the classification.
Consider:

I think ”What year did Oklahoma become a state ?” refers

to a NUMBER since similar to ”The film Jaws was made in

what year ?”

The model provided an evidently coherent anal-
ogy, but this is a easy case due to the occurrence
in both questions of very discriminative words, i.e
”what year”. However, the system is also able to
capture semantic similarities when both syntactic
and lexical features are different. E.g.:

I think ”Where is the Mall of the America ?” refers to a

LOCATION since similar to ”What town was the setting for

The Music Man ?”.

This is an high-quality explanation since the sys-
tem provided an analogy with a landmark request-
ing the same fine-grained category but with little
sharing of lexical and syntactic information (note,
for example, the absence in the landmark of the
very discriminative word ”where”). Let us now
consider the case of wrong classifications:

I think ”Mexican pesos are worth what in U.S. dollars ?”

refers to a DESCRIPTION since similar to ”What is the

Bernoulli Principle ?”

The system provided an explanation that is not
possible to easily interpret: indeed it was labeled
as [Incoherent] by all the annotators.
However, system effectiveness is limited in case
of negative modality for correct classifications. In
these cases explanations, albeit coherent, can be
trivial and do not actually help in reducing uncer-
tainty about the correct target class. The explana-
tion
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I think ”What is angiotensin ?” does not refer to a NUM

since different from ”What was Einstein ’s IQ ?”.

is correct but obvious. As an alternative, a nega-
tive analogy with a very likely class, i.e. ENTITY
or DESCRIPTION, would have provided more
useful information for disambiguation. A second
challenge is represented by inherently ambiguous
questions. The following explanation

I think ”What is the sales tax in Minnesota ?” refers to a

NUMBER since similar to ”What is the population of

Mozambique ?” and does not refer to a ENTITY since

different from ”What is a fear of slime ?”.

tells why NUMBER is a more likely class than
ENTITY. Although seemingly correct, this is a
mistake, as ENTITY is the proper decision. How-
ever, the explanation is perfectly fine, as it well
expresses the decision’s rationale: lack of contex-
tual information in the question is here the main
cause of the error.

6.2 Argument Classification

Semantic role labeling (SRL (Palmer et al., 2010))
consists in detecting the semantic arguments asso-
ciated with the predicate of a sentence and their
classification into their specific roles (Fillmore
(1985)). For example, given the sentence ”Bring
the fruit onto the dining table”, the task would
be to recognize the verb ”bring” as evoking the
BRINGING frame, with its roles, THEME for ”the
fruit” and GOAL for ”onto the dining table”. Ar-
gument classification corresponds to the subtask
of assigning labels to the sentence fragments span-
ning individual roles.

As proposed in (Moschitti et al., 2008), SRL
can be modeled as a multi classification task over
each parse tree node n, where argument spans re-
flect sub-sentences covered by the tree rooted at
n. Consistently with (Croce et al., 2011), in our
experiments the KDA has been empowered with
a Smoothed Partial Tree Kernel, operating over
Grammatical Relation Centered Tree (GRCT) de-
rived from dependency grammar.

We used the HuRIC dataset (Bastianelli et al.,
2014), including over 650 annotated transcrip-
tions of spoken robotic commands, organized in
18 frames and about 60 arguments4. We extracted
single arguments from each HuRIC example, for a
total of 1, 300 instances. We run experiments with
a methodology similar to the one described in Sec

4http://sag.art.uniroma2.it/lu4r.html

6.1, but due to the limited data size we performed
extensive 10-fold cross-validation, optimizing net-
work hyper-parameters via grid-search for each
test set. We generated Nystrom representation of
a equally-weighted linear combination of SPTK
function with default parameters µ = λ = 0.4 and
of linear kernel function applied to sparse vector
representing the instance frame. With these set-
tings, the KDA accuracy was 96.1%. We sam-
pled 692 explanations almost equally distributed
among the 3 explanatory models. Two annotators
were involved.

Results are shown in Tab 3. In this task, all
models were able to gain more than two thirds of
needed information. The alike scores of the three
models are probably due to the narrow linguistic
domain of the corpus and the well-defined seman-
tic boundaries between the arguments. To show
the capability of such models, let us consider:

I think ”the washer” is the CONTAINING OBJECT of

CLOSURE in ”Robot can you OPEN the washer?” since

similar to ”the jar” in ”CLOSE the jar” and it is not the

THEME of BRINGING since different from ”the jar” in

”TAKE the jar to the table of the kitchen”.

I think ”me” is the BENEFICIARY of BRINGING in ”I

would like some cutlery can you GET me some?” since

similar to ”me” in ”BRING me a fork from the press.” and it

is not the COTHEME of COTHEME since different from

”me” in ”Would you please FOLLOW me to the kitchen?”.

The above commands have very limited lexical
overlap with retrieved landmarks. Nevertheless,
the analogies make explanations quite effective:
explanatory models seems to successfully capture
semantic and syntactic relations among input in-
stances and closely related landmarks.

7 Conclusion

This paper investigated the effectiveness of a novel
method to generate epistemologically transparent
and linguistically fluid explanations for a neural
predictor emissions. The proposed approach ap-
plies LRP to a KDA to backpropagate and redis-
tribute the prediction to input entries. It then pro-
duces a sentence exploiting analogies with land-
marks, according to different explanatory models.
Moreover a novel evaluation methodology based
on Information Theory is provided. Empirical in-
vestigations carried out against the QC and AC
tasks confirm that the explanatory models con-
tribute to increase the user confidence in the ma-
chine correct responses.
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Simone Filice, Giuseppe Castellucci, Giovanni Da San
Martino, Alessandro Moschitti, Danilo Croce, and
Roberto Basili. 2018. Kelp: a kernel-based learning
platform. Journal of Machine Learning Research,
18(191):1–5.

Charles J. Fillmore. 1985. Frames and the semantics of
understanding. Quaderni di Semantica, 6(2):222–
254.

Nicholas Frosst and Geoffrey Hinton. 2017. Distilling
a neural network into a soft decision. CEUR Work-
shop Proceedings, 2071.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Igor Kononenko and Ivan Bratko. 1991. Information-
based evaluation criterion for classifier’s perfor-
mance. Machine Learning, 6(1):67–80.

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar.
2012. Sampling methods for the nyström method.
J. Mach. Learn. Res., 13:981–1006.

Hugo Larochelle and Geoffrey E. Hinton. 2010. Learn-
ing to combine foveal glimpses with a third-order
boltzmann machine. In Proceedings of Neural In-
formation Processing Systems (NIPS), pages 1243–
1251.

Xin Li and Dan Roth. 2006. Learning question clas-
sifiers: the role of semantic information. Natural
Language Engineering, 12(3):229–249.

Alessandro Moschitti, Daniele Pighin, and Roberto
Basili. 2008. Tree kernels for semantic role label-
ing. Computational Linguistics, 34.

M.S. Palmer, D. Gildea, and N. Xue. 2010. Seman-
tic Role Labeling. Online access: IEEE (Institute
of Electrical and Electronics Engineers) IEEE Mor-
gan & Claypool Synthesis eBooks Library. Morgan
& Claypool Publishers.
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Abstract
Punctuation is a strong indicator of syntac-
tic structure, and parsers trained on text with
punctuation often rely heavily on this signal.
Punctuation is a diversion, however, since hu-
man language processing does not rely on
punctuation to the same extent, and in infor-
mal texts, we therefore often leave out punc-
tuation. We also use punctuation ungrammati-
cally for emphatic or creative purposes, or sim-
ply by mistake. We show that (a) dependency
parsers are sensitive to both absence of punctu-
ation and to alternative uses; (b) neural parsers
tend to be more sensitive than vintage parsers;
(c) training neural parsers without punctuation
outperforms all out-of-the-box parsers across
all scenarios where punctuation departs from
standard punctuation. Our main experiments
are on synthetically corrupted data to study the
effect of punctuation in isolation and avoid po-
tential confounds, but we also show effects on
out-of-domain data.

1 Introduction

We study the sensitivity of modern dependency
parsers to punctuation. While punctuation was
originally motivated by reading aloud, serving the
purpose of “breath marks” (Baldwin and Coady,
1978), many modern-day punctuation systems are
designed to facilitate grammatical disambiguation.
This paper aims to show that for this reason,
punctuation can significantly hurt the generaliza-
tion ability of state-of-the-art syntactic parsers. In
other words, syntactic parsers become too reliant
on punctuation and therefore suffer from the ab-
sence or creative uses of punctuation. Such uses
are abundant; see Table 1 for examples from Twit-
ter. Such situations, where highly predictive fea-
tures are absent or distorted at test time, were re-
ferred to in Globerson and Roweis (2006) as night-
mare at test time. Human reading is very robust
to variation in punctuation (Baldwin and Coady,

No punctuation
(1) i have so many questions i dont know where to start

Creative punctuation
(2) What. The. Fuck. Ever. Dot. Com
(3) . . . and then , , , , i start to feel ∼lonely∼

Both
(4) I feel like ... idk ... idk ... idk man. Nvm I’m good.

Table 1: Examples of uses of punctuation

1978); so creative use of punctuation does not hurt
human reading performance. In effect, sensitiv-
ity to punctuation is a major obstacle that prevents
our syntactic parser from achieving human-level
robustness.

The generalization ability of a dependency
parser is usually measured by evaluating its ac-
curacy on held-out data, our yardstick to prevent
over-fitting, i.e. we define the degree to which a
parser has over-fitted to the training data as the
difference between performance on training data
and performance on the held-out data. This prac-
tice is poor when data is not i.i.d., since the held-
out data cannot be assumed to be representative; in
such cases, little or no over-fitting does not guar-
antee our parsers have learned important linguis-
tic generalizations: Rather, the parsers may have
over-fitted to superficial cues that are present in
both the training and test datasets (Jo and Bengio,
2017). We argue that punctuation signs are super-
ficial cues preventing modern parsers from learn-
ing appropriately high-level abstractions from our
datasets.

Contributions We evaluate three neural depen-
dency parsers for English, as well as two older al-
ternatives, on a standard benchmark, before and
after stripping punctuation, as well as after in-
jecting more punctuation signs in the benchmark.
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John , 27 , likes jazz .

nsubj

punct
amod

punct dobj
punct

Figure 1: Punctuation in Stanford dependencies

We show that (a) projective parsers are, unsur-
prisingly, more sensitive to punctuation injection
than non-projective ones, since punctuation injec-
tion may introduce crossing edges, and (b) neu-
ral parsers are more sensitive than vintage parsers.
The latter is our main contribution, but we also
show that training a neural parser without punc-
tuation outperforms all parsers trained in a regu-
lar fashion across all punctuation scenarios. Our
experiments are on semi-synthetic data to control
for confounds, but we also show the parser trained
without punctuation is superior on real data with
non-standard punctuation.

2 Punctuation in Stanford dependencies

Dependency annotation Dependency annota-
tion refers to the manual assignment of syntac-
tic structures to sentences, following one of sev-
eral sets of available annotation guidelines. This
paper focuses exclusively on the Stanford depen-
dencies annotation scheme (de Marneffe and Man-
ning, 2008). This scheme restricts the set of
possible syntactic structures to single-rooted, or-
dered, possibly non-projective trees whose edges
are uniquely labeled by a single dependency label.

Punctuation Punctuation should be distin-
guished from diacritics and logographs. The
two most frequently used punctuation signs are
periods and commas. Periods (“.”), however, are
potentially ambiguous with other uses of dots,
typically indicating omissions or pauses. When
dots are used emphatically and creatively it is
hard to maintain this distinction, and we will
simply refer to dots and commas in this paper. We
ignore other punctuation signs, including dashes,
question and exclamation marks, and colons and
semicolons.

Punctuation is, among other things, used to
mark boundaries between constituents of written
language. Space characters, for example, sepa-
rate words, albeit sometimes inconsistently. Spac-
ing is a fairly recent innovation in writing; classi-
cal Latin and Greek did not leave spaces between

words, and many Asian languages, e.g., Thai and
Lao, still do not. A period is typically used to
mark the end of a grammatical sentence, and com-
mas are often used to separate clauses. Therefore,
punctuation also correlates strongly with proper-
ties of syntactic structures and is therefore very
predictive of dependency structures.

Variation in punctuation is often observed in in-
formal texts, but variation may also be the result
of errors. Punctuation errors are by far the most
frequent error type in scientific writing, for exam-
ple (Remse et al., 2016). Modern parsers should
be robust to such variation, just like humans are
(Baldwin and Coady, 1978).

Punctuation in Stanford dependencies In the
Stanford dependencies (de Marneffe and Man-
ning, 2008), periods attach to root tokens, and
commas attach to their left neighbor or to root to-
kens; see Figure 1.

3 Experiments

This section describes how we remove and inject
punctuation (our perturbation maps), and details
of the parsers used in our experiments.

Perturbation maps Since dots consistently at-
tach to the root token of the sentence, and com-
mas attach to their left neighbour or to the root
token, we can remove and inject additional punc-
tuation in a sentence without affecting the rest of
its syntactic structure and without violating the
wellformedness of dependency trees. Note, how-
ever, that injecting a root-dominated dot or comma
may lead to crossing edges, i.e., turn a projective
dependency tree into a non-projective one. This
may lead to cascading errors for projective de-
pendency parsers (Ng and Curran, 2015). In our
experiments, arc-eager MALTPARSER and STAN-
FORD are the only projective parsers. We there-
fore propose two perturbation maps (Jo and Ben-
gio, 2017): (a) simply removing punctuation, and
(b) a simple injection scheme with two parame-
ters χ and δ. Let a dependency structure be an
ordered tree with n nodes decorated with words
w1, . . . , wn. At any node 1 ≤ i ≤ n, we (a) in-
ject a comma at position i with probability χ and
move nodes i ≤ j ≤ n to positions j + 1, increas-
ing the size of the graph by 1; and (b) inject a dot
at position i+1 with probability δ and move nodes
i < j ≤ n to positions j+1, increasing the size of
the graph by 1. If we follow standard methodology
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Parser Neural Trans.-based Projective

UUPARSER D D

KGRAPHS D

MALTPARSER D D

TURBOPARSER

STANFORD D D D

Table 2: Our dependency parsers

and ignore punctuation when evaluating parsers,
we can compare evaluations before and after ap-
plying the injection scheme. It is equally straight-
forward to remove punctuation without affecting
the rest of the dependency tree. Each element wi

to the right of punctuation nodeswj (i > j) moves
to the left (j − 1) for every punctuation item, de-
creasing the length of the sentence by 1 each time.

Note that both removing punctuation and our in-
jection scheme can be seen as perturbation maps
(Jo and Bengio, 2017) of our dataset, with the
following important properties: (a) grammatical
structure recognizability, i.e., human ability to cor-
rectly process sentences, is preserved (Baldwin
and Coady, 1978), (b) surface statistical regular-
ities are qualitatively different, and (c) there exists
a non-trivial generalization map between the orig-
inal dataset and the perturbed version. These prop-
erties mean we can use our punctuation injection
scheme to evaluate the sensitivity of neural depen-
dency parsers to the surface statistical regularities
involving dots and commas (Jo and Bengio, 2017).
Since human reading is largely unaffected by er-
roneous punctuation, we may expect parsers to be
robust to absence of punctuation and punctuation
injection, as well. Our results clearly show this is
not the case; in fact, recently proposed neural de-
pendency parsers are very sensitive to differences
in punctuation.

Our dependency parsers We use five parsers
in our experiments: the Uppsala parser (UU-
PARSER) (de Lhoneux et al., 2017a,b), the graph-
based parser proposed in (Kiperwasser and Gold-
berg, 2016)(KGRAPHS) , the arc-eager MALT-
PARSER (Nivre et al., 2007), the TURBOPARSER

(Fernández-González and Martins, 2015), and the
STANFORD parser (Chen and Manning, 2014).
UUPARSER is a neural transition-based depen-
dency parser, while KGRAPHS is a neural graph-
based parser. MALTPARSER is a more tradi-
tional transition-based parser, and TURBOPARSER

is a more traditional graph-based parser. Fi-

nally, the STANFORD parser is a projective, neu-
ral transition-based dependency parser. All parsers
rely on predicted part-of-speech tags, except UU-
PARSER (which does not rely on part-of-speech
information at all). We use the TURBOTAGGER

to obtain those. See Table 2 for an overview of our
parsers.

Finally, we also evaluate three non-standard
versions of the UUPARSER, namely, a parser
trained with the same parameters as the off-
the-shelf parser (de Lhoneux et al., 2017b), but
which simply ignores dots and commas com-
pletely (NOPUNCT), and two heavily regularised
versions of the parser trained in the standard fash-
ion: (a) a version trained with the drop-out param-
eter set to 0.8 (zeros out 80% of activations); (b) a
version with the gradient clipping parameter set to
0.075. We do so to answer the question of whether
more heavily regularized dependency parsers are
less sensitive to punctuation (they are not).

4 Results and analysis

We discuss the sensitivity of off-the-shelf depen-
dency parsers to our perturbation maps, comparing
to a parser trained after removing punctuation in
the training data, as well as to heavily regularised
versions of the same parser.

No punctuation We first test our parsers on
a version of the validation set where we strip
away all punctuation. The data thus consists of
newswire (WSJ 22) with punctuation removed.
This is similar to Example (1) in Table 1, but in-
domain. The results are in the second results col-
umn in Table 3, with the relative increases in er-
ror listed in the third results column. The drop in-
duced by removing punctuation is quite dramatic:
The UUPARSER, for example, suffers an absolute
drop of 5.4% LAS or an error increase of 67%.
For every three mistakes, UUPARSER does, strip-
ping away punctuation makes it introduce another
two. Note that, generally, the relative increase in
error is much higher for the three neural parsers,
and that the regularisation strategies (drop-out and
gradient clipping) do not seem to help much.

Comma and dot injection At medium injection
rates, all parsers are sensitive to punctuation in-
jection. With δ = 0.05, γ = 0.05, for example, all
parsers perform worse than in the absence of punc-
tuation. Our main observation is, again, that neu-
ral parsers suffer higher relative increases in errors
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ENGLISH PENN TREEBANK (CORRUPTED) OUT-OF-DOMAIN

δ=0 NO Rel.err. δ=0.01 δ=0.01 δ=0.05 δ=0.05 δ=0.1 Rel.err. GWEB FOSTER

χ=0 PUNCT incr. χ=0.01 χ=0.05 χ=0.01 χ=0.05 χ=0.1 incr. ANSW REV FOOTBALL TWITTER

UUPARSER 0.918 0.869 0.598 0.901 0.867 0.886 0.851 0.794 1.512 0.676 0.662 0.770 0.699
KGRAPHS 0.910 0.865 0.500 0.894 0.861 0.876 0.841 0.779 1.456 0.645 0.609 0.774 0.715
MALTPARSER 0.858 0.805 0.373 0.836 0.791 0.804 0.757 0.675 1.289 0.605 0.566 0.721 0.642
TURBOPARSER 0.894 0.852 0.396 0.883 0.858 0.875 0.851 0.802 0.868 0.640 0.595 0.766 0.722
STANFORD 0.870 0.816 0.415 0.845 0.808 0.806 0.772 0.688 1.400 0.640 0.608 0.735 0.689

NO PUNCT 0.898 0.898 0.000 0.898 0.898 0.000 0.670 0.669 0.792 0.701

DROPOUT α=0.8 0.904 0.847 0.594 0.884 0.845 0.858 0.820 0.748 1.625 0.661 0.652 0.761 0.682
CLIP t=0.075 0.917 0.871 0.554 0.900 0.864 0.887 0.851 0.793 1.494 0.672 0.657 0.792 0.676

Table 3: Labeled attachment scores with punctuation removed. All parsers suffer from absence of or additional
punctuation. The relative increase in error ( 1-BL

1-SYS
− 1; with BL performance on original text; SYS performance

under NO PUNCT and δ = 0.1, κ = 0.1, resp.) for neural parsers is higher than for non-neural parsers. GWEB and
FOSTER scores are on development sentences (of at least five words) with no punctuation.

than vintage parsers. Note that the MALTPARSER

is a projective parser and therefore has a higher
relative increase in error; but TURBOPARSER is
much more robust than the other parsers. That
said, it still does much worse than the UUPARSER

trained without punctuation.

Evaluation on informal text with non-standard
punctuation We also evaluate the models on
sentences with non-standard punctuation in the de-
velopment sections in the Google Web Treebank
with informal text (from Yahoo Answers and user
reviews). Specifically, we evaluate the models on
sentences with more than one dot. Again, we show
that the neural dependency parser trained without
punctuation is superior to the other parsers.

5 Related work

Punctuation in parsing Spitkovsky et al.
(2011) introduced the idea of splitting sentences
at punctuation and imposing parsing restrictions
over the fragments and observed significant im-
provements in the context of unsupervised pars-
ing. Ng and Curran (2015) aim to prevent cascad-
ing errors by enforcing correct punctuation arcs.
They restrict themselves to projective dependency
parsing; erroneous punctuation arcs do not lead
to cascading errors in non-projective dependency
parsing. Ma et al. (2014), motivated by the same
observation, treat punctuation marks as properties
of their neighboring words rather than as individ-
ual tokens, showing improvements on in-domain
data.

Breaking NLP models Jia and Liang (2017)
show how machine reading models can easily
be broken with distractor sentences at test time

and propose an alternative evaluation scheme, and
Belinkov and Bisk (2018) show how susceptible
character-based machine translation models are to
noise. Both papers are similar to ours in evaluat-
ing the performance of state-of-the-art models un-
der corruptions of the data. There was recently a
workshop dedicated to evaluation of NLP models
under human adversarial example selection (Et-
tinger et al., 2017). Historically, NLP models were
rarely evaluated on synthetic or otherwise adver-
sarial data, but we believe this is a fruitful research
direction. This is largely a philosophical ques-
tion, and we believe a philosophical argument is
in order. John Dewey (John Dewey, 1910), the
American philosopher, distinguishes three modes
of thinking: (i) common reasoning, which iden-
tifies pattern in available, historical data, (ii) em-
pirical thinking, which collects new data to vary
the experimental conditions, and (iii) experimental
thinking, which actively modifies the conditions in
controlled experiments to isolate the relevant vari-
ables. We believe recent work on breaking NLP
models is an attempt to introduce experimental
thinking into NLP, which has otherwise been lim-
ited – or handicapped in Dewey’s words – by what
data happens to be available.

6 Conclusions

We evaluate the sensitivity of five dependency
parsers to variations in punctuation, showing that
available neural parsers tend to be more sensitive
to such variation. We also show, however, that
training neural parsers without punctuation pro-
vides a robust model that is better than any off-
the-shelf parsers.
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Abstract

We present a methodology for determining the
quality of textual representations through the
ability to generate images from them. Contin-
uous representations of textual input are ubiq-
uitous in modern Natural Language Process-
ing techniques either at the core of machine
learning algorithms or as the by-product at
any given layer of a neural network. While
current techniques to evaluate such represen-
tations focus on their performance on partic-
ular tasks, they don’t provide a clear under-
standing of the level of informational detail
that is stored within them, especially their abil-
ity to represent spatial information. The cen-
tral premise of this paper is that visual inspec-
tion or analysis is the most convenient method
to quickly and accurately determine informa-
tion content. Through the use of text-to-image
neural networks, we propose a new technique
to compare the quality of textual representa-
tions by visualizing their information content.
The method is illustrated on a medical dataset
where the correct representation of spatial in-
formation and shorthands are of particular im-
portance. For four different well-known tex-
tual representations, we show with a quanti-
tative analysis that some representations are
consistently able to deliver higher quality vi-
sualizations of the information content. Addi-
tionally, we show that the quantitative analy-
sis technique correlates with the judgment of a
human expert evaluator in terms of alignment.

1 Introduction

In this paper, a method is proposed to evaluate the
quality of a textual representation by conditioning
an image generation network on it.

Neural networks implicitly construct represen-
tations of a textual input by learning which fea-
tures are important for the task at hand. It is not
immediately possible however to assess the level

of detail and structure that is retained in such a rep-
resentation. Many systems often complement or
replace the input with pre-trained representations
that have the advantage of being constructed with
a larger unlabeled corpus. Depending on the task,
this practice sometimes significantly improves the
performance of the network (Turian et al., 2010).
On the one hand, this is due to the use of a larger
unlabeled corpus which reduces data sparsity and
thus improves generalization accuracy. On the
other hand, representations often contain higher-
level features that are fundamental for the task
they are trained for. A neural network in a sep-
arate task can thus rely on those features without
having to discover them all over again.

As the field of Natural Language Processing ad-
vances and machine learning models expand to
include multimodal information, the importance
of understanding the level of detail and informa-
tion that is retained in a textual representation only
grows. Obtained representations can be employed
in additional tasks (for example generation, trans-
lation, summarization, etc.) depending on their
ability to capture certain types of information. The
medical domain in particular might benefit from a
better understanding of representations as the in-
dustry moves to adopt deep learning methods in
increasingly intricate applications and researchers
attempt to extract and utilize more complex infor-
mation structures. An example is spatial informa-
tion which is an important quantity in many natu-
ral language applications, yet no explicit method-
ology exists that indicates to what extent that in-
formation is present in textual representations. In
many medical settings, a correct understanding
and representation of such information is crucial.
In thorax radiography, which is the focus of this
paper, textual captions often include detailed find-
ings which relate to specific areas in an X-Ray.
Clinical texts in general, add an extra level of com-
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plexity as they often lack syntactic structure and
employ many shorthands.

Images differ from texts in the sense that the
retained information and generalization of a rep-
resentation are immediately apparent for a human
observer. It is not surprising that the ’human per-
ceptual score’ is a frequently used metric to eval-
uate image generation systems (Borji, 2018). In
this paper we propose a novel method to assess
the quality of textual representations. By creat-
ing images from different textual representations
we show that some representations lack the nec-
essary information to lead to detailed high-quality
images. The textual representations are evaluated
both by comparing the quality of the produced im-
ages compared to the images in the test data, as
well as the alignment between images and cap-
tions. The outcome is determined both by a quali-
tative (human perceptual scores) as well as a quan-
titative (divergence scores) measure. To calculate
the divergence scores, we rely on the methodol-
ogy that estimates distance between two distribu-
tions as introduced by (Danihelka et al., 2017) and
extend it to estimate how well image and text are
aligned in the generated content.

As we show in the results, text-to-image archi-
tectures are indeed suitable to get an immediate
visual estimate of the quality of the representa-
tion and the information contained within. We
will evaluate several common textual represen-
tations that were constructed with unsupervised
learning techniques on both a relatively straight-
forward conditional GAN as well as on a more ad-
vanced StackGan (Zhang et al., 2017) which uses
several stages and a conditioning mechanism that
augments the textual representation.

The contributions of this paper are:

• The formulation of a methodology to visual-
ize and evaluate the information and quality
of different textual representations.

• The extension of a GAN evaluation measure
to evaluate alignment of output with condi-
tional information.

2 Motivation and background

To understand the motivation of this paper, it is
necessary to understand some background on the
different types of textual representations and why
better evaluation methods are necessary. As we

use text-to-image models for evaluation purposes,
we also discuss related research in that area.

2.1 Textual Representations

A textual representation is usually a vector associ-
ated with a piece of text, which may be a charac-
ter, word, sentence, paragraph or document. In its
simplest form, a representation can be a symbolic
ID, such as in a one-hot vector where each dimen-
sion represents an ID. This is essentially a discrete,
symbolic representation that is very sparse in in-
formation as by definition only one dimension is
non-zero. They are also somewhat arbitrary in the
sense that two texts that are near each other in the
code space don’t necessarily share a similar mean-
ing or syntax.

More efficient methods assign particular hand-
engineered or automatically extracted features to
a lower-dimensional vector. One feature can be
stored in exactly one dimension or it could be
shared over many. In this paper we will focus
on the latter, also referred to as distributed rep-
resentations or word embeddings, which is the
traditional method to represent sentences in re-
cent neural network related research. They are
dense, low-dimensional and real-valued (Turian
et al., 2010). Texts that contain similar concepts or
meaning for a typical task end up near each other
in such a distributed representation space which
serves as a proxy for generalized, semantic infor-
mation storage. Word embeddings can be built
with unsupervised training, for example by lever-
aging positional information of texts in a corpus;
with weakly supervised training, for example in an
adversarial setting; or with supervision of output
labels. While this paper focuses on unsupervised
and weakly supervised methods only, the methods
that are described here are applicable to supervised
representations as well.

Well-known methods of creating word embed-
dings are the word2vec algorithms, introduced by
Mikolov et al. (2013a). Word embeddings are usu-
ally constructed with neural networks that predict
the context of a word in a text document. They are
able to scale to large training corpora, thus rep-
resenting large amounts of information and fea-
tures in a relatively small amount of dimensions.
While word2vec word embeddings solely operate
on the word level, extensions have been made that
include information at the level of characters (e.g.
char-CNN-RNN (Kim et al., 2016)), or at higher
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levels such as sentences, paragraphs or documents.
(e.g. skipthought vectors (Kiros et al., 2015) or
doc2vec (Le and Mikolov, 2014)).

While these methods usually are trained on
tasks that reproduce the context of a textual com-
ponent, autoencoders (AE) are trained to recre-
ate the original text in its entirety while implic-
itly learning a compact, distributed representation
as well of the input text along the way. A re-
cent method that builds on the autoencoder ap-
proach is an Adversarially Regularized Autoen-
coder (ARAE) (Kim et al., 2017). Here, the repre-
sentation is built explicitly from an encoder that
is trained as part of an autoencoder as well as
a conventional Generative Adversarial Network
(GAN). Such representations contain semantic in-
formation about the sentence but also discrimina-
tive information that allows the adversarial net-
work to distinguish real samples from fake ones.
As a result, a smoother semantic transition is ap-
parent while traversing the representation space
when compared to an autoencoder. Spinks and
Moens (2018) have applied this technique to cre-
ate textual representations of X-Ray captions and
generate textual output with low perplexity.

The quality of distributed vectors can be as-
sessed with similarity tasks that give a rough
measure of semantic and syntactic information
(Mikolov et al., 2013a,c) but studies by Faruqui
et al. (2016) and Linzen (2016) indeed suggest that
the use of word similarity tasks for the evaluation
of word vectors is problematic and may lead to
incorrect inferences. Schnabel et al. (2015) have
evaluated embeddings with a range of methods,
both intrinsic, such as semantic and syntactic sim-
ilarity, and extrinsic, such as noun phrase chunk-
ing and sentiment classification. For the extrin-
sic tasks, they found that different representations
performed best for different tasks, suggesting that
perhaps there isn’t one optimal representation for
all tasks. Such studies suggest that better method-
ologies and more research is needed into meth-
ods that accurately assess the value of different
continuous representations. This paper addresses
this by focusing on the evaluation of the informa-
tion content of the representation rather than any
task-oriented metric. Lazaridou et al. (2015) also
worked towards a visualization method for text
representations by averaging images of the near-
est neighbors vectors after a cross-modal mapping.
Contrary to this work, their approach did not in-

clude any evaluation mechanism of the outcome
and only focused on individual words.

In this paper, we construct distributed repre-
sentations of sentences with several unsupervised
methods mentioned above. Subsequently, we pro-
pose a new methodology to evaluate the quality of
the learned word embeddings by generating im-
ages from them, thus visualizing the level of detail
and information retained in the different embed-
dings. To understand our methodology, it is use-
ful to discuss some background on text-to-image
models and, more in general, generative models.

2.2 Generative models
Recent text-to-image models rely on advances in
generative models, which are probabilistic mod-
els that estimate a distribution given a certain in-
put. Such generative systems have shown impres-
sive progress in the creation of realistic data, most
notably with Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014). In the origi-
nal formulation, GANs are trained by alternately
improving a generator network, G, which aims to
create realistic samples and a discriminator net-
work, D, which tries to distinguish real samples
from generated ones. As training such an archi-
tecture tends to be unstable, several improvements
have been proposed, for example the Wasserstein
GAN (WGAN) (Arjovsky et al., 2017). In this for-
mulation the discriminator is replaced by a critic,
f , that is trained to approximate the Earth-Mover
distance (EM). The EM is an estimate of the mini-
mum amount of effort that is necessary to displace
one distribution to another (Arjovsky et al., 2017).
The loss function to train a GAN with the Wasser-
stein Distance is presented in Equation 1.

min
G
W (G) =

min
G

max
f

Ex∼Pr [f(x)]− Ex̄∼Pg [f(x̄)] (1)

where G is the generator, f is the critic, W is the
Wasserstein distance, and Pr and Pg are the real
and generated data distributions respectively. To
ensure that the approximation to the earth mover
distance is valid, the critic f should be enforced to
be 1-Lipschitz continuous. (Arjovsky et al., 2017)
achieve this by clipping the critic weights between
[−c, c], where c is typically smaller than 1.

Extensions to the GAN setup have been
proposed, such as conditional adversarial net-
works (Odena et al., 2016), and progressively
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grown GANs (Zhang et al., 2017; Karras et al.,
2017) which have made detailed high resolu-
tion category-dependent image generation possi-
ble. During the training of conditional GANs, the
class or label is passed along to both generator
and discriminator so that the networks implicitly
learn relevant auxiliary information which leads
to more detailed outputs. Progressively grown
GANs rely on low-resolution outputs to learn out-
lines and structures of images that are refined into
smooth visual output at higher resolutions. This
approach is also the essence of cross-modal text-
to-image architectures. Zhang et al. (2017), for
example, have demonstrated how to produce real-
istic images conditioned on textual captions with
a progressive GAN network called StackGAN.

In this paper, we use the StackGAN to visual-
ize textual representations, as well as a simplified
text-to-image architecture based on a GAN. The
information and quality of the produced images al-
low us to evaluate the quality of the different tex-
tual representations. With that goal we will dis-
cuss some methods to evaluate the visual output
of such text-to-image GANs.

2.3 Evaluation measures

As we produce images from text to determine
the quality of the textual representations, accurate
evaluation measures are needed to assess the gen-
erated images. We focus on evaluation measures
for GANs as it is the only type of architecture that
is used to create images in this paper.

Besides human perceptual scores, some recent
advances have been made to assess the quality of
the distribution of the generated output of GANs.
Some of the most widely adopted measures are
the Inception Score (IS) (Salimans et al., 2016)
and the Fréchet Inception Distance (FID) (Heusel
et al., 2017). Both measures have a reasonable
correlation with image quality but also contain un-
desirable properties as explained by Borji (2018).
One large problem is that both use a third-party
network that was trained on a different dataset to
measure the quality of the generated data. It there-
fore assumes that the distribution of the dataset
used in the generation task is similar to the dataset
that the third-party network was trained on. This
assumption is often not fulfilled, particularly if
specialized medical datasets are used.

To solve these issues, Danihelka et al. (2017)
propose using divergence and distance functions

that are normally used for training a GAN. Im et al.
(2018) show that these metrics exhibit consistency
across various models and find that they better
reflect human perceptual scores than the IS and
FID. To calculate how well the generated distribu-
tion has approached the data distribution, an inde-
pendent critic is trained until convergence to dis-
tinguish between generated samples and samples
from the validation set. The WGAN loss is used
and the weights of the original generator are no
longer updated. When applied to output images,
the Wasserstein distance thus can give an estimate
of the divergence between the generated and real
images. This quantity is expressed as Wqual image

in Equation 2.

Wqual image(G,Pr,v) =

max
f1

(Ex∼Pr,v [f1(x)]− Ex̄∼Pg [f1(x̄)]) (2)

where Pr,v refers to the real distribution of the val-
idation data.

Additionally, by evaluating the model that is
trained in Equation 2 on the training and test set,
Danihelka et al. (2017) suggest a method to esti-
mate whether overfitting has occurred. Indeed, if
the model generalizes well to the unseen examples
in the testset, the expected values in Equation 3
should be roughly the same. In this equation Pr,te

and Pr,tr refer to the real distributions of the test
and training set respectively.

E[Wqual image(G,Pr,te)] =

E[Wqual image(G,Pr,tr)] (3)

While this method allows us to judge the output
quality of the images, and by extension the tex-
tual representations, in the following section we
will explain how our methodology extends this ap-
proach in order to evaluate the alignment between
image and text.

3 Method

This paper proposes a methodology that evalu-
ates the quality of textual representations by vi-
sualizing them with text-to-image models. This is
achieved in three separate stages as described in
the following subsections.

3.1 Train and create a textual representation
In this paper 4 different textual representations
are created by training on the captions of the
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Figure 1. Overview of the methodology. A textual representation is first trained and then fed as a con-
ditional input to a text-to-image model, in this figure a StackGAN. The textual representation is fed to
both the first and second stage of an image StackGAN with the goal of creating low- and high-resolution
images x̄1 and x̄2 respectively. From the representation, the augmented conditioning embedding ĉ is
formed. In a final step, the visual output is evaluated.

training set using unsupervised training methods.
As these representations are compared afterwards,
they each need to have the same, fixed dimension.

For the first 2 representations, the typical
word2vec skip-gram word embeddings are used
to build the vectors. A representation for a sen-
tence is built by respectively summing and con-
catenating the individual word embeddings for the
entire sequence. Such a comparison is interesting
as summing (or averaging) word vectors allows
to use high-dimensional word representations, yet
sacrifices word order. Concatenating on the other
hand, requires the use of low-dimensional word
embeddings as the sentence dimension is fixed, but
maintains word order and has been shown to work
well at the input of convolutional networks (Kim,
2014), such as the text-to-image models used in
this paper.

Additionally, the hidden state representation of
an autoencoder is built. The autoencoder, that con-
sists of a 1-layer LSTM encoder and a 1-layer
LSTM decoder, is trained to recreate the input text
with a cross-entropy loss at the word-level.

Finally, we also use the representation produced
by an ARAE, as in section 2.1. The ARAE con-
tains a 1-layer LSTM encoder and 1-layer LSTM
decoder. The generator and discriminator consist
of 3-layer feedforward networks.

3.2 Create images from text
From these representations, images are created
with a text-to-image model, which can be a simple

conditional GAN or a more complex StackGAN.
In the latter, a textual representation t is fed into
a fully-connected net that creates a mean µ and
a variance σ2 from which augmented conditional
representations ĉ are generated. The Kullback-
Leibler divergence (KL-loss) is used to coerce ĉ to
approach a normal distribution N (0, I). This en-
sures smoothness between different input texts and
avoids overfitting when generating images from
captions (Doersch, 2016; Larsen et al., 2015). The
conditional vector ĉ is then concatenated to a noise
vector z′, sampled from a normal distribution, and
fed to the generator.

Such a StackGAN model is trained in two
stages: at a first stage the features of real and
generated images are matched to produce low-
resolution images that lack detail. During the sec-
ond stage, the generator produces larger images,
conditioned on both the augmented conditional
vector ĉ as well as the image output of the first
stage. The training is broken up into the maxi-
mization of the loss of D and the minimization of
the loss ofG as shown in Equations 4 and 5 for the
first stage. Note that a traditional GAN formula-
tion is used in the StackGAN model.

max
D1

LD1 = Ex1∼pd [logD1(x1, t)]+

Ez∼pz ,t∼pd [log(1−D1(G1(z, ĉ), t))] (4)
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min
G1

LG1 =

Ez∼pz ,t∼pd [log(1−D1(G1(z, ĉ), t))]+

λDKL(N (µ1(t),Σ1(t))||N (0, I)) (5)

where pz and pd represent the random normal and
data distribution respectively. t is the textual rep-
resentation and λ is a regularization parameter to
balance the loss between the two terms. Subfix 1
indicates that these equations relate to stage 1.

Note that the StackGAN model is distinct from
more conventional text-to-image architectures not
only in the sense that the former progressively
constructs higher resolution images but also be-
cause of the conditioning augmentation. This
mechanism is particularly important for this exper-
iment, as it essentially augments the different tex-
tual representations. For the simple text-to-image
GAN, which we refer to as TTI-GAN, we use
a GAN architecture without separate stages that
passes the textual representation to both the gen-
erator and discriminator without modifications.

Both generator and discriminator for all text-to-
image architectures (i.e. the TTI-GAN and both
stage-I and stage-II StackGAN) consist of a series
of convolutional up- and down-sampling blocks
respectively. As the text embedding t is passed
to the discriminator it is compressed with a fully-
connected network and replicated to match the di-
mensions of the image.

3.3 Evaluate the output quality

Evaluating the output quality will let us judge the
textual representation quality. In order to do so, we
can rely on Equation 2 to calculate Wqual image.
However, we would also like to have a rough idea
of how well the conditional information is assimi-
lated in the output. We therefore extend the pre-
viously mentioned setup to calculate the diver-
gence between an additional pair of distributions.
Walign im txt in Equation 6 measures the distance
between the aligned image-text distributions by
also feeding the conditional information, in this
case the textual representations, to the critic.

Walign im txt(G,Pr,v) =

max
f2

(Ex∼Pr,v [f2(x, c)]− Ex̄∼Pg [f2(x̄, c)]) (6)

where c is conditional information that corre-
sponds to the current data sample. f2 is distinct
and independent from the critic f1 in Equation 2

but is also trained until convergence on the vali-
dation set. The intuition behind Equation 6 is that
Walign im txt is a measure of the distance between
the real and generated distributions with their con-
ditional information. Thus, Walign im txt should
be smaller for models that take the conditional in-
formation into account when creating the output.

Note that the value of Walign im txt also de-
pends on the chosen textual representation and can
therefore not be used to evaluate alignment of the
TTI-GAN model across different representations.
It can be used in the case of the StackGAN how-
ever as the representations are coerced to approach
a normal distribution with the conditioning aug-
mentation mechanism.

We would also like to get an estimate for the
amount of overfitting that occurs for each textual
representation. For this we rely on the insights of
Equation 3. In Equations 7 and 8 we suggest a
simple method to compare how much overfitting
occurs on both the quality of the images itself, as
well as on the alignment to the captions. By tak-
ing the quotient of the expected values of the eval-
uation of Wqual image and Walign im txt, we can
compare how much overfitting happened for each
entity.

Oqual image = E[Wqual image(G,Pr,te)]/

E[Wqual image(G,Pr,tr)]− 1

(7)

Oalign im txt = E[Walign im txt(G,Pr,te)]/

E[Walign im txt(G,Pr,tr)]− 1

(8)

The entire setup of the methodology is illustrated
in Figure 1 where the StackGAN architecture is
used as the text-to-image architecture.

4 Experiments

The used dataset is the chest X-Ray dataset of
the National Library of Medicine, National Insti-
tutes of Health, Bethesda, MD, USA (Demner-
Fushman et al., 2015). It contains the findings
of the frontal and lateral X-Ray for 3851 patients.
For this work only the frontal X-Rays are retained.
Random crops are performed during training for
data augmentation. As the content in the find-
ings is invariant to the order of the sentences,
up to 4 captions are created for each X-Ray by
selecting different sentences or a different sen-
tence order. Captions that contain less than 30
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Representation Wqual image σ

w2v sum 0.598 0.033
w2v concat 0.239 0.049
AE (*) 0.243 0.032
ARAE (*) 0.219 0.072

Table 1. Quantitative results of 10 runs for the
TTI-GAN visualization method for each of the
representations. A lower Wqual image implies a
better image quality. (*) For both the autoencoder
and ARAE, an outlier was removed.

words are padded to equal length, with a maxi-
mum of 30 words. All words are lowercase and
words with a frequency of less than 5 occurrences
are removed and replaced by an out-of-vocabulary
marker. While the dataset also contains diagnosis
labels for each image, they are not used in this pa-
per. The dataset is divided into training, validation
and test set with 80%, 10% and 10% of the data
respectively.

For the experiments we first create four differ-
ent textual representations on the captions of the
training set, as detailed in section 3.1. Those rep-
resentations are referred to as word2vec (sum),
word2vec (concat), autoencoder and ARAE. To
illustrate the methodology, we set the fixed di-
mension of each representation to 300, which is a
standard dimension for such embeddings, initially
used by Mikolov et al. (2013b) in their analysis of
distributed vectors. For the autoencoder and the
ARAE, training is stopped when the validation er-
ror of the reconstruction is minimal.

To generate images from the text, the TTI-
GAN and StackGAN models are used as explained
in section 3.2. The latter produces images with
higher resolution than the former approach. This
is important as a higher resolution is required to
make an accurate assessment about the alignment
of the X-Ray images to the captions. The expected
outcome is that a textual representation that main-
tains sequential information performs better than
one that does not. Additionally we expect a code
that lies on a regularized smooth space, such as
the code produced by the ARAE, to be more use-
ful than a code that does not.

Finally, we perform two types of experiments,
for which the concrete setup is as follows.

1. As GAN training can be unstable, the TTI-
GAN is trained 10 times for each represen-

Representation Wqual image Walign im txt

w2v sum 2.242 2.239
w2v concat 2.343 2.360
AE 2.360 2.344
ARAE 2.229 2.279

Table 2. Quantitative results for the trained Stage-
2 StackGAN visualization method for each of
the representations. A lower Wqual image and
Walign im txt imply a better image quality and
alignment respectively.

tation. From the evaluation of each, we ob-
tain measures for Wqual image, Oqual image

and Oalign im txt which allow us to compare
the value of the different representations. The
TTI-GAN in our setup produces images with
a resolution of 64x64 pixels.

2. For the StackGAN, we train one model for
each representation, and train an indepen-
dent critic 5 times for each model. As
GAN training can be quite unstable, this
experiment does not allow us to judge the
value of the representations from just one
run. However, we compare our estimates for
Wqual image and Walign im txt to the evalua-
tion of a trained clinician, to confirm that our
methodology correlates with human judg-
ment, both in terms of quality and alignment.
For the first stage of the StackGAN we pro-
duce 64x64 pixel images, while the second
stage outputs higher resolution 256x256 pixel
images. For this experiment, λ was set to
0.05 and c was set to 0.01.

The text-to-image architectures are each trained
during 120 epochs for each of the textual represen-
tations of the captions in the training set. The im-
age quality is then assessed on the images that are
generated from the captions of the validation and
test set. This ensures that we check whether the
learned representations can generalize well to cap-
tions that were never seen during their construc-
tion.

5 Results

In Table 1, the quality of the generated images
of the TTI-GAN model are presented for each of
the representations. Over the ten performed runs,
the TTI-GAN training collapsed once for both the
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Textual Results
Representation #C/#N #U
Ground Truth 20/1=20 4
w2v sum 15/4=3.75 6
w2v concat 12/8=1.5 5
AE 8/8=1.0 9
ARAE 11/7=1.57 7

Table 3. Qualitative assessment by clini-
cians for the produced images of the Stack-
GAN Stage-2 model. Are the caption and the
image congruent? (Congruent(C)/Not congru-
ent(N)/Unclear(U). Higher values of the propor-
tion #C/#N indicate better alignment.

ARAE and autoencoder representations. As those
runs were clear outliers originating from the col-
lapse of GAN training, they were removed from
the results in Table 1. As expected, the ARAE
results do appear to lead to the best overall im-
age quality, followed by the word2vec (concat)
and autoencoder models. The word2vec (sum)
consistently leads to worse solutions. In terms
of Oqual image, the word2vec (concat) model ex-
periences less overfitting in terms of image qual-
ity than the other representations (11.4% versus
15 − 50%), suggesting that such concatenated
word2vec representations, that maintain word or-
der, generalize well.

While the Stage-2 StackGAN results in Table
2 show that the ARAE representations achieve
the highest image quality again, they don’t en-
tirely agree with the TTI-GAN results. This can
be attributed to several causes: 1. The results
for Stage-2 StackGAN only include results for 1
trained model as we would like to compare the
metrics for such a model with the human judg-
ment scores; 2. The Stage-2 StackGAN training
produces more detailed images of higher resolu-
tion so consistent training is more difficult; 3. The
augmented conditioning adds to the original rep-
resentation, likely making the outcome for each
representation more similar. With the exception of
the autoencoder representation, the outcome of the
Stage-2 model, which relies on the outcome of the
first stage, exhibit a lot more overfitting in terms
of both Oqual image and Oalign im txt with values
that range from 126% to 498%.

In order to assess the validity of the quantitative
assessment, a trained clinician carries out a visual
assessment of the produced image samples. We

randomly pick 25 produced images of the Stack-
GAN stage-2 models for each of the textual repre-
sentations. We also selected 25 true caption-image
pairs to compare the models to. The evaluator was
asked to determine for each sample:

• Are the caption and the generated image con-
gruent or conflicting? (Congruent/ Conflict-
ing/ Unclear)

The evaluator was also asked for each image if
it was clearly not a real but generated X-Ray, but
didn’t find that to be the case for any of the images.
This reflects the fact that all Wqual image appear to
be quite similar in Table 2. Note that while our
model produces an output of 256 by 256 pixels,
a higher resolution is still desirable to make accu-
rate judgments about the content of such X-Rays.
In cases where the clinician found that additional
information would be necessary to judge whether
the alignment is correct, the clinician was able to
respond with ”unclear”. Note that this does not
mean that the quality of the image was bad.

The results are shown in Table 3. From the re-
sults, we find that indeed the word2vec summa-
tion model and the ARAE model, that obtained
the best alignment scores Walign im txt according
to our quantitative measures, also appear to be
the best aligned in the human judgment. While
the word2vec concatenation model achieved a
slightly worse Walign im txt score, the clinician
still judged its alignment to be better than the au-
toencoder model for the selected samples, perhaps
reflecting its slightly improved Wqual image over
the autoencoder model.

In Figure 1, a generated image of stage-I and
stage-II is presented along the architecture. While
the Stage-I images capture the structure and main
features of the X-Rays, there is a clear improve-
ment in quality for the stage-II images.

6 Conclusion

In this paper, we have proposed a method to de-
termine the quality of textual representations by
visualizing them with text-to-image models. Af-
ter testing our approach on four different unsuper-
vised text-to-image models, it appears that textual
representations that retain word order and lie on a
smooth representation space, lead to the best qual-
ity of image output. We proposed a method to
judge the alignment of the captions with the vi-
sual output which correlates with the judgment of
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a trained clinician. While only unsupervised rep-
resentations were used in this paper, the method-
ology can be applied to other types of textual rep-
resentations. The results in this paper constitute
a new methodology to evaluate textual represen-
tations through visualization and offer an inter-
esting path for future work. The application of
the method to more complex sentences, different
fields or topics as well as the development of al-
ternative alignment measures are interesting pos-
sibilities for such research.
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Abstract
Text preprocessing is often the first step in
the pipeline of a Natural Language Process-
ing (NLP) system, with potential impact in
its final performance. Despite its importance,
text preprocessing has not received much at-
tention in the deep learning literature. In this
paper we investigate the impact of simple text
preprocessing decisions (particularly tokeniz-
ing, lemmatizing, lowercasing and multiword
grouping) on the performance of a standard
neural text classifier. We perform an extensive
evaluation on standard benchmarks from text
categorization and sentiment analysis. While
our experiments show that a simple tokeniza-
tion of input text is generally adequate, they
also highlight significant degrees of variabil-
ity across preprocessing techniques. This re-
veals the importance of paying attention to this
usually-overlooked step in the pipeline, partic-
ularly when comparing different models. Fi-
nally, our evaluation provides insights into the
best preprocessing practices for training word
embeddings.

1 Introduction

Words are often considered as the basic con-
stituents of texts for many languages, including
English.1 The first module in an NLP pipeline is
a tokenizer which transforms texts to sequences of
words. However, in practise, other preprocessing
techniques can be (and are) further used together
with tokenization. These include lemmatization,
lowercasing and multiword grouping, among oth-
ers. Although these preprocessing decisions have

1Note that although word-based models are mainstream
in NLP in general and text classification in particular, recent
work has also considered other linguistic units, such as char-
acters (Kim et al., 2016; Xiao and Cho, 2016) or word senses
(Li and Jurafsky, 2015; Flekova and Gurevych, 2016; Pile-
hvar et al., 2017). These techniques require a different kind
of preprocessing and, while they have been shown effective
in various settings, in this work we only focus on the main-
stream word-based models.

been studied in the context of conventional text
classification techniques (Leopold and Kinder-
mann, 2002; Uysal and Gunal, 2014), little at-
tention has been paid to them in the more recent
neural-based models. The most similar study to
ours is Zhang and LeCun (2017), which analyzed
different encoding levels for English and Asian
languages such as Chinese, Japanese and Korean.
As opposed to our work, their analysis was fo-
cused on UTF-8 bytes, characters, words, roman-
ized characters and romanized words as encoding
levels, rather than the preprocessing techniques
analyzed in this paper.

Additionally, word embeddings have been
shown to play an important role in boosting
the generalization capabilities of neural systems
(Goldberg, 2016; Camacho-Collados and Pile-
hvar, 2018). However, while some studies have fo-
cused on intrinsically analyzing the role of lemma-
tization in their underlying training corpus (Ebert
et al., 2016; Kuznetsov and Gurevych, 2018), the
impact on their extrinsic performance when inte-
grated into a neural network architecture has re-
mained understudied.2

In this paper we focus on the role of prepro-
cessing the input text, particularly in how it is
split into individual (meaning-bearing) tokens and
how it affects the performance of standard neural
text classification models based on Convolutional
Neural Networks (LeCun et al., 2010; Kim, 2014,
CNN). CNNs have proven to be effective in a wide
range of NLP applications, including text classifi-
cation tasks such as topic categorization (Johnson
and Zhang, 2015; Tang et al., 2015; Xiao and Cho,
2016; Conneau et al., 2017) and polarity detection

2Not only the preprocessing of the corpus may play an im-
portant role but also its nature, domain, etc. Levy et al. (2015)
also showed how small hyperparameter variations may have
an impact on the performance of word embeddings. However,
these considerations remain out of the scope of this paper.
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(Kalchbrenner et al., 2014; Kim, 2014; Dos San-
tos and Gatti, 2014; Yin et al., 2017), which are
the tasks considered in this work. The goal of our
evaluation study is to find answers to the following
two questions:

1. Are neural network architectures (in particu-
lar CNNs) affected by seemingly small pre-
processing decisions in the input text?

2. Does the preprocessing of the embeddings’
underlying training corpus have an impact
on the final performance of a state-of-the-art
neural network text classifier?

According to our experiments in topic catego-
rization and polarity detection, these decisions are
important in certain cases. Moreover, we shed
some light on the motivations of each preprocess-
ing decision and provide some hints on how to nor-
malize the input corpus to better suit each setting.

The accompanying materials of this sub-
mission can be downloaded at the follow-
ing repository: https://github.com/pedrada88/
preproc-textclassification.

2 Text Preprocessing

Given an input text, words are gathered as input
units of classification models through tokeniza-
tion. We refer to the corpus which is only tok-
enized as vanilla. For example, given the sentence
“Apple is asking its manufacturers to move Mac-
Book Air production to the United States.” (run-
ning example), the vanilla tokenized text would be
as follows (white spaces delimiting different word
units):

Apple is asking its manufacturers to move
MacBook Air production to the United States .

We additionally consider three simple prepro-
cessing techniques to be applied to an input text:
lowercasing (Section 2.1), lemmatizing (Section
2.2) and multiword grouping (Section 2.3).

2.1 Lowercasing

This is the simplest preprocessing technique
which consists of lowercasing each single token
of the input text:

apple is asking its manufacturers to move
macbook air production to the united states .

Due to its simplicity, lowercasing has been a
popular practice in modules of deep learning li-
braries and word embedding packages (Penning-
ton et al., 2014; Faruqui et al., 2015). Despite its
desirable property of reducing sparsity and vocab-
ulary size, lowercasing may negatively impact sys-
tem’s performance by increasing ambiguity. For
instance, the Apple company in our example and
the apple fruit would be considered as identical
entities.

2.2 Lemmatizing

The process of lemmatizing consists of replacing
a given token with its corresponding lemma:

Apple be ask its manufacturer to move Mac-
Book Air production to the United States .

Lemmatization has been traditionally a standard
preprocessing technique for linear text classifica-
tion systems (Mullen and Collier, 2004; Toman
et al., 2006; Hassan et al., 2007). However, it
is rarely used as a preprocessing stage in neural-
based systems. The main idea behind lemmati-
zation is to reduce sparsity, as different inflected
forms of the same lemma may occur infrequently
(or not at all) during training. However, this may
come at the cost of neglecting important syntactic
nuances.

2.3 Multiword grouping

This last preprocessing technique consists of
grouping consecutive tokens together into a single
token if found in a given inventory:

Apple is asking its manufacturers to move
MacBook Air production to the United States .

The motivation behind this step lies in the id-
iosyncratic nature of multiword expressions (Sag
et al., 2002), e.g. United States in the exam-
ple. The meaning of these multiword expressions
are often hardly traceable from their individual
tokens. As a result, treating multiwords as sin-
gle units may lead to better training of a given
model. Because of this, word embedding toolkits
such as Word2vec propose statistical approaches
for extracting these multiwords, or directly include
multiwords along with single words in their pre-
trained embedding spaces (Mikolov et al., 2013b).
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3 Evaluation

We considered two tasks for our experiments:
topic categorization, i.e. assigning a topic to a
given document from a pre-defined set of topics,
and polarity detection, i.e. detecting if the senti-
ment of a given piece of text is positive or negative
(Dong et al., 2015). Two different settings were
studied: (1) word embedding’s training corpus and
the evaluation dataset were preprocessed in a simi-
lar manner (Section 3.2); and (2) the two were pre-
processed differently (Section 3.3). In what fol-
lows we describe the common experimental set-
ting as well as the datasets and preprocessing used
for the evaluation.

3.1 Experimental setup

We tried with two classification models. The first
one is a standard CNN model similar to that of
Kim (2014), using ReLU (Nair and Hinton, 2010)
as non-linear activation function. In the second
model, we add a recurrent layer (specifically an
LSTM (Hochreiter and Schmidhuber, 1997)) be-
fore passing the pooled features directly to the
fully connected softmax layer.3 The inclusion
of this LSTM layer has been shown to be able
to effectively replace multiple layers of convolu-
tion and be beneficial particularly for large inputs
(Xiao and Cho, 2016). These models were used
for both topic categorization and polarity detection
tasks, with slight hyperparameter variations given
their different natures (mainly in their text size)
which were fixed across all datasets. The embed-
ding layer was initialized using 300-dimensional
CBOW Word2vec embeddings (Mikolov et al.,
2013a) trained on the 3B-word UMBC WebBase
corpus (Han et al., 2013) with standard hyperpa-
rameters4.

Evaluation datasets. For the topic categoriza-
tion task we used the BBC news dataset5 (Greene
and Cunningham, 2006), 20News (Lang, 1995),
Reuters6 (Lewis et al., 2004) and Ohsumed7.

3The code for this CNN implementation is the same as
in (Pilehvar et al., 2017), which is available at https://github.
com/pilehvar/sensecnn

4Context window of 5 words and hierarchical softmax.
5http://mlg.ucd.ie/datasets/bbc.html
6Due to the large number of labels in the original Reuters

(i.e. 91) and to be consistent with the other datasets, we re-
duce the dataset to its 8 most frequent labels, a reduction al-
ready performed in previous works (Sebastiani, 2002).

7ftp://medir.ohsu.edu/pub/ohsumed

Dataset Type Labels # of docs Eval.

TO
PI

C BBC News 5 2,225 10-cross
20News News 6 18,846 Train-test
Reuters News 8 9,178 10-cross
Ohsumed Medical 23 23,166 Train-test

PO
L

A
R

IT
Y RTC Snippets 2 438,000 Train-test

IMDB Reviews 2 50,000 Train-test
PL05 Snippets 2 10,662 10-cross
PL04 Reviews 2 2,000 10-cross
Stanford Phrases 2 119,783 10-cross

Table 1: Evaluation datasets for topic categoriza-
tion and polarity detection.

PL04 (Pang and Lee, 2004), PL058 (Pang and
Lee, 2005), RTC9, IMDB (Maas et al., 2011) and
the Stanford sentiment dataset10 (Socher et al.,
2013, SF) were considered for polarity detec-
tion. Statistics of the versions of the datasets
used are displayed in Table 1.11 For both tasks
the evaluation was carried out either by 10-fold
cross-validation or using the train-test splits of the
datasets, in case of availability.

Preprocessing. Four different techniques (see
Section 2) were used to preprocess the datasets as
well as the corpus which was used to train word
embeddings (i.e. UMBC). For tokenization and
lemmatization we relied on Stanford CoreNLP
(Manning et al., 2014). As for multiwords, we
used the phrases from the pre-trained Google
News Word2vec vectors, which were obtained us-
ing a simple statistical approach (Mikolov et al.,
2013b).12

3.2 Experiment 1: Preprocessing effect

Table 2 shows the accuracy13 of the classification
models using our four preprocessing techniques.
We observe a certain variability of results depend-
ing on the preprocessing techniques used (aver-

8Both PL04 and PL05 were downloaded from http://
www.cs.cornell.edu/people/pabo/movie-review-data/

9http://www.rottentomatoes.com
10We mapped the numerical value of phrases to either neg-

ative (from 0 to 0.4) or positive (from 0.6 to 1), removing the
neutral phrases according to the scale (from 0.4 to 0.6).

11For the datasets with train-test partitions, the sizes of the
test sets are the following: 7,532 for 20News; 12,733 for
Ohsumed; 25,000 for IMDb; and 1,000 for RTC.

12For future work it would be interesting to explore more
complex methods to learn embeddings for multiword expres-
sions (Yin and Schütze, 2014; Poliak et al., 2017).

13Computed by averaging accuracy of two different runs.
The statistical significance was calculated according to an un-
paired t-test at the 5% significance level.
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Topic categorization Polarity detection

Preprocessing BBC 20News Reuters Ohsumed RTC IMDB PL05 PL04 SF
C

N
N

Vanilla 94.6 89.2 93.7 35.3 83.2 87.5 76.3 58.7† 91.2
Lowercased 94.8 89.8 94.2 36.0 83.0 84.2† 76.1 59.6† 91.1
Lemmatized 95.4 89.4 94.0 35.9 83.1 86.8† 75.8† 64.2 91.2
Multiword 95.5 89.6 93.4† 34.3† 83.2 87.9 77.0 59.1† 91.2

C
N

N
+L

ST
M Vanilla 97.0 90.7 93.1 30.8† 84.8 88.9 79.1 71.4 87.1

Lowercased 96.4 90.9 93.0 37.5 84.0 88.3† 79.5 73.3 87.1
Lemmatized 95.8† 90.5 93.2 37.1 84.4 87.7† 78.7 72.6 86.8†

Multiword 96.2 89.8† 92.7† 29.0† 84.0 88.9 79.2 67.0† 87.3

Table 2: Accuracy on the topic categorization and polarity detection tasks using various preprocessing
techniques for the CNN and CNN+LSTM models. † indicates results that are statistically significant with
respect to the top result.

age variability14 of ±2.4% for the CNN+LSTM
model, including a statistical significance gap in
seven of the nine datasets), which proves the in-
fluence of preprocessing on the final results. It is
perhaps not surprising that the lowest variance of
results is seen in the datasets with the larger train-
ing data (i.e. RTC and Stanford). This suggests
that the preprocessing decisions are not so impor-
tant when the training data is large enough, but
they are indeed relevant in benchmarks where the
training data is limited.

As far as the individual preprocessing tech-
niques are concerned, the vanilla setting (tokeniza-
tion only) proves to be consistent across datasets
and tasks, as it performs in the same ballpark as
the best result in 8 of the 9 datasets for both mod-
els (with no noticeable differences between topic
categorization and polarity detection). The only
topic categorization dataset in which tokenization
does not seem enough is Ohsumed, which, un-
like the more general nature of other categoriza-
tion datasets (news), belongs to a specialized do-
main (medical) for which fine-grained distinctions
are required to classify cardiovascular diseases.
In particular for this dataset, word embeddings
trained on a general-domain corpus like UMBC
may not accurately capture the specialized mean-
ing of medical terms and hence, sparsity becomes
an issue. In fact, lowercasing and lemmatizing,
which are mainly aimed at reducing sparsity, out-
perform the vanilla setting by over six points in

14Average variability was the result of averaging the vari-
ability of each dataset, which was computed as the difference
between the best and the worst preprocessing performances.

the CNN+LSTM setting and clearly outperform
the other preprocessing techniques on the single
CNN model as well.

Nevertheless, the use of more complex pre-
processing techniques such as lemmatization and
multiword grouping does not help in general.
Even though lemmatization has proved useful in
conventional linear models as an effective way
to deal with sparsity (Mullen and Collier, 2004;
Toman et al., 2006), neural network architectures
seem to be more capable of overcoming sparsity
thanks to the generalization power of word embed-
dings.

3.3 Experiment 2: Cross-preprocessing

This experiment aims at studying the impact of
using different word embeddings (with differ-
ently preprocessed training corpora) on tokenized
datasets (vanilla setting). Table 3 shows the re-
sults for this experiment. In this experiment
we observe a different trend, with multiword-
enhanced vectors exhibiting a better performance
both on the single CNN model (best overall per-
formance in seven of the nine datasets) and on
the CNN+LSTM model (best performance in four
datasets and in the same ballpark as the best re-
sults in four of the remaining five datasets). In
this case the same set of words is learnt but sin-
gle tokens inside multiword expressions are not
trained. Instead, these single tokens are consid-
ered in isolation only, without the added noise
when considered inside the multiword expression
as well. For instance, the word Apple has a clearly
different meaning in isolation from the one inside
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Embedding
Preprocessing

Topic categorization Polarity detection

BBC 20News Reuters Ohsumed RTC IMDB PL05 PL04 SF
C

N
N

Vanilla 94.6 89.2 93.7 35.3 83.2 87.5† 76.3 58.7† 91.2
Lowercased 93.9† 84.6† 93.9 36.2 83.2 85.4† 76.3 60.0† 91.1
Lemmatized 94.5 88.7† 93.8 35.4 83.0 86.8† 75.6 62.5 91.2
Multiword 95.6 89.7 93.9 35.2 83.3 88.1 75.9 63.1 91.2

C
N

N
+L

ST
M Vanilla 97.0 90.7† 93.1 30.8† 84.8 88.9 79.1 71.4 87.1†

Lowercased 96.4 91.8 92.5† 30.2† 84.5 88.0† 79.0 74.2 87.4
Lemmatized 96.6 91.5 92.5† 31.7† 83.9 86.6† 78.4† 67.7† 87.3
Multiword 97.3 91.3 92.8 33.6 84.3 87.3† 79.5 71.8 87.5

Table 3: Cross-preprocessing evaluation: accuracy on the topic categorization and polarity detection
tasks using different sets of word embeddings to initialize the embedding layer of the two classifiers.
All datasets were preprocessed similarly according to the vanilla setting. † indicates results that are
statistically significant with respect to the top result.

the multiword expression Big Apple, hence it can
be seen as beneficial not to train the word Ap-
ple when part of this multiword expression. In-
terestingly, using multiword-wise embeddings on
the vanilla setting leads to consistently better re-
sults than using them on the same multiword-
grouped preprocessed dataset in eight of the nine
datasets. This could provide hints on the excellent
results provided by pre-trained Word2vec embed-
dings trained on the Google News corpus, which
learns multiwords similarly to our setting.

Apart from this somewhat surprising finding,
the use of the embeddings trained on a simple to-
kenized corpus (i.e. vanilla) proved again compet-
itive, as different preprocessing techniques such
as lowercasing and lemmatizing do not seem to
help. In fact, the relatively weaker performance
of lemmatization and lowercasing in this cross-
processing experiment is somehow expected as the
coverage of word embeddings in vanilla-tokenized
datasets is limited, e.g., many entities which are
capitalized in the datasets are not covered in the
case of lowercasing, and inflected forms are miss-
ing in the case of lemmatizing.

4 Conclusions

In this paper we analyzed the impact of simple
text preprocessing decisions on the performance
of a standard word-based neural text classifier.
Our evaluations highlight the importance of be-
ing careful in the choice of how to preprocess our
data and to be consistent when comparing differ-
ent systems. In general, a simple tokenization
works equally or better than more complex pre-

processing techniques such as lemmatization or
multiword grouping, except for domain-specific
datasets (such as the medical dataset in our ex-
periments) in which sole tokenization performs
poorly. Additionally, word embeddings trained on
multiword-grouped corpora perform surprisingly
well when applied to simple tokenized datasets.
This property has often been overlooked and,
to the best of our knowledge, we test the hy-
pothesis for the first time. In fact, this finding
could partially explain the long-lasting success of
pre-trained Word2vec embeddings, which specifi-
cally learn multiword embeddings as part of their
pipeline (Mikolov et al., 2013b).

Moreover, our analysis shows that there is a
high variance in the results depending on the pre-
processing choice (±2.4% on average for the best
performing model), especially when the training
data is not large enough to generalize. Further
analysis and experimentation would be required
to fully understand the significance of these re-
sults; but, this work can be viewed as a start-
ing point for studying the impact of text prepro-
cessing in deep learning models. We hope that
our findings will encourage future researchers to
carefully select and report these preprocessing de-
cisions when evaluating or comparing different
models. Finally, as future work, we plan to extend
our analysis to other tasks (e.g. question answer-
ing), languages (particularly morphologically rich
languages for which these results may vary) and
preprocessing techniques (e.g. stopword removal
or part-of-speech tagging).
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Abstract
Lake and Baroni (2018) recently introduced
the SCAN data set, which consists of simple
commands paired with action sequences and is
intended to test the strong generalization abil-
ities of recurrent sequence-to-sequence mod-
els. Their initial experiments suggested that
such models may fail because they lack the
ability to extract systematic rules. Here, we
take a closer look at SCAN and show that it
does not always capture the kind of generaliza-
tion that it was designed for. To mitigate this
we propose a complementary dataset, which
requires mapping actions back to the original
commands, called NACS. We show that mod-
els that do well on SCAN do not necessarily do
well on NACS, and that NACS exhibits prop-
erties more closely aligned with realistic use-
cases for sequence-to-sequence models.

1 Introduction

In a recent paper, Lake and Baroni (2018) (L&B)
investigate if recurrent sequence-to-sequence
models can exhibit the same strong generalization
that humans are capable of, by virtue of our
capacity to infer the meaning of a phrase from
its constituent parts (i.e., compositionality),
providing empirical tests for this long-standing
goal (Fodor and Pylyshyn, 1988). Compositional
generalization might be a fundamental component
in making models drastically less sample-thirsty
than they currently are. L&B introduce the SCAN
data set (§2), meant to study such generaliza-
tion to novel examples. It consists of simple
command-action pairs, in which more complex
commands are composed of simpler ones (see
Figure 1 for examples).

SCAN comprises several tests of generaliza-
tion, namely with respect to (1) a random sub-
set of the data (‘simple’), (2) commands with ac-
tion sequences longer than those seen during train-
ing (‘length’), and (3) commands that compose a

jump
JUMP

turn around left
LTURN LTURN LTURN LTURN

jump thrice and turn left twice
JUMP JUMP JUMP LTURN LTURN

jump opposite left after walk twice
WALK WALK LTURN LTURN JUMP

Figure 1: SCAN maps commands to actions

primitive in novel ways that was only seen in isola-
tion during training (‘primitive’). In the latter case,
the training set would for example only include the
command ‘jump’, after which the test set includes
all other commands containing ‘jump’, e.g. ‘jump
opposite left after walk twice’.

In this paper we take a closer look at SCAN.
We start with the observation (§3) that there are
few target-side dependencies in the data, a conse-
quence of SCAN being generated from a phrase-
structure grammar. We show (§6) that this allows
simple sequence-to-sequence models (§5) to ob-
tain good accuracies e.g. on tasks involving a new
primitive, even without access to previous out-
puts. However, these simple models do not use
composition in any interesting way, and their per-
formance is therefore not a realistic indicator of
their generalization capability. We hence propose
NACS (§4) as a more realistic alternative: SCAN
with commands and actions flipped, i.e., mapping
actions back to their original commands. This is
harder, because different commands may map to
the same action sequence, and it introduces target-
side dependencies, so that previous outputs need
to be remembered. We show in particular that
well-tuned attention-based models do achieve a
certain degree of generalization on SCAN, and, as
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predicted, simpler models do better there. How-
ever, the models still struggle in the more demand-
ing NACS setup, which we offer as a challenge for
future work.

Our contributions can be summarized as fol-
lows:

1. we provide an analysis of SCAN and make
the important observation that it does not test
for target-side dependencies, allowing too
simple models to do well;

2. we propose NACS to introduce target-side
dependencies and remedy the problem;

3. we repeat all experiments in Lake and Ba-
roni (2018) using early-stopping on valida-
tion sets created from the training data.

2 SCAN

SCAN stands for Simplified version of the Com-
mAI Navigation tasks (Mikolov et al., 2016). Each
example in SCAN is constructed by first sam-
pling a command X = (x1, . . . , xT ) from a finite
phrase-structure grammar with start symbol C:

C → S and S | S after S | S
S → V twice | V thrice | V
V → D[1] opposite D[2] | D[1] around D[2] | D | U
D → U left | U right | turn left | turn right

U → walk | look | run | jump

For each command, the corresponding target ac-
tion sequence Y = (y1, . . . , yT ′) then follows by
applying a set of interpretation functions, such as:

JjumpK = JUMP

Ju around left K = LTURN JuK LTURN JuK
LTURN JuK LTURN JuK

Jx1 after x2K = Jx2K Jx1K

of which only the last function requires global
reordering, which occurs at most once per com-
mand. See the supplementary materials for the full
set. Figure 1 shows examples of commands and
their action sequences as obtained by the interpre-
tation functions. The commands can be decoded
compositionally by a learner by discovering the in-
terpretation functions, enabling generalization to
unseen commands. The total data set is finite but
large (20910 unambiguous commands).

3 SCAN prefers simple models

We observe an important property of the data set
generation process for SCAN: temporal depen-
dencies of the action sequence are limited to the
phrasal boundaries of each sub-phrase, which span
at most 24 actions (e.g. jump around left thrice).
Crucially, even rules that require repetition (such
as ‘thrice’) as well as global reordering, can be re-
solved by simple counting and without remember-
ing previously generated outputs, due to the lim-
ited depth of the phrase-structure grammar (see
e.g. Rodriguez and Wiles (1998)).

This observation has two important implica-
tions. First, because SCAN is largely a phrase-to-
phrase conversion problem, any machine learning
method that aims at solving SCAN needs to have
an alignment mechanism between the source and
target sequences. Such an alignment mechanism
could work fairly accurately by simply advanc-
ing a pointer. Somewhat contrary to the observa-
tion by Lake and Baroni (L&B), we therefore hy-
pothesize that an attention mechanism (Bahdanau
et al., 2015) always helps when a neural con-
ditional sequence model (Sutskever et al., 2014;
Cho et al., 2014) is used to tackle any variant of
SCAN. Second, we speculate that any algorithm
with strong long-term dependency modeling ca-
pabilities can be detrimental in terms of gener-
alization, because such an approach might inap-
propriately capture spurious target-side regulari-
ties in the training data. We thus hypothesize
that less powerful decoders generalize better on
to unseen action combinations on SCAN when
equipped with an attention mechanism.

To summarize: good performance on SCAN
does not necessarily indicate the capability of a
model to strongly generalize. SCAN favors sim-
pler models that need not capture target-side de-
pendencies, which might not work well on more
realistic sequence-to-sequence problems, such as
machine translation, where strong auto-regressive
models are needed for good results (Bahdanau
et al., 2015; Kaiser and Bengio, 2016).

4 NACS: actions to commands

By simply flipping the source X and target Y
of each example, we obtain a data-set that sud-
denly features strong target-side dependencies.
Even when the mapping p(Y |X) from the source
to target is simple, the opposite p(X|Y ) ∝
p(Y |X)p(X) is non-trivial due to the complexity
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Figure 2: The decoder of Bahdanau et al. (2015)

of the prior p(X). The inclusion of p(X) naturally
induces strong dependencies among the output to-
kens, while maintaining the original properties of
SCAN that were intended to test various aspects
of systematic generalization.

NACS naturally makes the mapping that needs
to be learned stochastic and multi-modal (sensi-
tive to both commands and actions). For instance,
an action sequence of the form Jx1KJx2K could
be mapped to either Jx1 and x2K or Jx2 after x1K,
both of which are correct. In order for a model to
decide whether to output “and” or “after”, it is nec-
essary for it to remember what has already been
generated (i.e., Jx1K or Jx2K).

Another example is LTURN LTURN LTURN
LTURN, which can be translated into either “turn
around left” or two repetitions of “turn opposite
left”. Deciding whether to output “and” after
the first phrase requires the model to remember
whether “around” was generated previously.

In §6 we experimentally evaluate the proposed
NACS task using the same scenarios as SCAN
(simple, length and primitive). We observe that
NACS prefers more advanced models that could
capture long-term dependencies in the output (now
a command sequence) better. However, we notice
that even these powerful models, equipped with
GRUs and attention, cannot systematically gener-
alize to this task, as was also observed by Lake
and Baroni (2018). Based on this observation, we
believe that NACS (or perhaps a combination of
SCAN and NACS) is better suited for evaluating
any future progress in this direction.

5 Sequence-to-sequence models

In this section, we describe the sequence-to-
sequence models we use for evaluating on SCAN
and its proposed sibling NACS.

We directly model the probability of a tar-
get sequence given a source sequence p(Y |X).

Our encoder-decoder is modeled after Cho et al.
(2014) and our attention-based encoder-decoder
after Bahdanau et al. (2015). The attention-based
decoder is a function that takes as input the previ-
ous target word embedding eyi−1 , the context vec-
tor ci, and the previous hidden state si−1 (see also
Figure 2): si = f(eyi−1 , ci, si−1).

The prediction for the current time step
is then made from a pre-output layer ti:
ti = Weeyi−1 +Wcci +Wssi. We do not apply
a max-out layer and directly obtain the output by
oi = Woti. For the encoder-decoder without at-
tention, the prediction is made directly from de-
coder state si. We vary the recurrent cell, exper-
imenting with simple RNN (Elman, 1990), GRU
(Cho et al., 2014), and LSTM cells (Hochreiter
and Schmidhuber, 1997). For conciseness we only
report results with RNN and GRU cells in the main
text, and LSTM results in the appendix.

In this paper, we investigate the properties
of both SCAN and NACS using RNN-based
sequence-to-sequence models for evaluation. We
leave further investigation of alternative architec-
tures (see, e.g., Vaswani et al., 2017; Gehring
et al., 2017; Chen et al., 2018) for the future.

6 Experiments

6.1 Settings

Our models are implemented in PyTorch and
trained using mini-batch SGD with an initial learn-
ing rate of 0.2, decayed by 0.96 each epoch. We
use a batch size of 32, 256 hidden units (64 for
embeddings), and a dropout rate of 0.2. We test
on all SCAN/NACS tasks1, as well as on the Fr-
En Machine Translation (MT) task that L&B used.
The reported results are averaged over three runs
for each experiment. Models with attention are
marked as such with +Attn, e.g. ‘GRU +Attn’.

Validation Set. L&B split each SCAN subtask
into a training set (80%) and a test set (20%). They
train for a fixed number of updates (100k) and
evaluate on the test set. Because any training run
without early stopping may have missed the op-
timal solution (Caruana et al., 2001), we believe
their results may not reflect the reality as closely
as they could. We thus augment each of the SCAN
variants with a validation set that follows the train-
ing distribution but contains examples that are not
contained in the corresponding training set. This

1github.com/facebookresearch/NACS
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Simple Length Turn left Jump

SCAN NACS SCAN NACS SCAN NACS SCAN NACS

GRU 100.0 ±0.0 99.0 ±0.1 14.4 ±0.8 12.9 ±1.2 53.4 ±11.7 47.5 ±4.7 0.0 ±0.0 0.0 ±0.0

RNN +Attn 100.0 ±0.0 99.8 ±0.1 9.6 ±0.9 19.4 ±0.7 81.1 ±14.7 44.1 ±0.9 1.9 ±1.2 0.3 ±0.3

RNN +Attn -Dep 100.0 ±0.0 61.1 ±0.3 11.7 ±3.2 0.5 ±0.2 92.0 ±5.8 18.6 ±1.0 2.7 ±1.7 0.0 ±0.0

GRU +Attn 100.0 ±0.0 99.8 ±0.1 18.1 ±1.1 17.2 ±1.9 59.1 ±16.8 55.9 ±3.5 12.5 ±6.6 0.0 ±0.0

GRU +Attn -Dep 100.0 ±0.0 51.2 ±1.2 17.8 ±1.7 2.0 ±1.4 90.8 ±3.6 16.9 ±1.2 0.7 ±0.4 0.0 ±0.0

L&B best 99.8 - 20.8 - 90.3 - 1.2 -
L&B best overall 99.7 - 13.8 - 90.0 - 0.1 -

Table 1: Test scores on the simple, length, and primitive (turn left, jump) tasks. +Attn marks attention, -Dep has the
connections from the previous target word embedding removed (es and et in Figure 2). L&Bbest is the best reported
score for each task by L&B, and L&Bbest overall is the score for their best-scoring model all tasks considered.

allows us to incorporate early stopping in our ex-
periments so that they are better benchmarks for
evaluating future progress. For each experiment
we remove 10% of the training examples to be
used as a validation set.

Accuracy. Following L&B we measure perfor-
mance according to sequence-level accuracy, i.e.,
whether the generated sequence entirely matches
the reference. This metric is also used for early
stopping. For NACS, an output (command) is
considered correct if its interpretation (‘back-
mapping’) produces the input action sequence.

Ablations. To validate our analysis, we remove
the connections from the previous target word em-
bedding eyi−1 to the decoder state and the pre-
output layer (es and et in Figure 2), so that the
current prediction is not informed by previous out-
puts. If our analysis in §3 is correct, then these
simpler models should still be able to make the
correct predictions on SCAN, but not on NACS.

6.2 Results and Analysis

Results on the three SCAN and NACS tasks are
listed in Table 1. The full results including mod-
els with LSTM cells and MT experiments may be
found in the supplementary materials. We will
now discuss our observations.

SCAN is not enough. Table 1 shows that all
model variants perform (near) perfectly on the
SCAN simple task. While this is impressive, re-
sults for the severed models (+Attn -Dep) on the
simple task for NACS show that it is possible to
have a perfect accuracy on SCAN, while at the

same time failing to do well on NACS.2 Crucially,
a (near) perfect score on SCAN does not imply
strong generalization. A model can exploit the de-
terminism and lack of target-side dependencies of
SCAN by developing a simple translation strategy
such as advancing a pointer and translating word
by word, and the use of such a simple strategy is
not revealed by SCAN.

NACS is harder. NACS is a harder problem to
solve compared to SCAN, as evidenced by con-
sistently lower accuracies in Table 1 for all tasks.
The discrepancy between SCAN and NACS per-
formance is the most extreme when we look at the
primitive tasks (turn left and jump). For turn left,
the severed models (+Attn -Dep) obtain the high-
est scores on SCAN, but are the worst on NACS.

The ‘turn left’ task benefits from TURNL oc-
curring on the target-side in other contexts dur-
ing training, which is not the case for ‘jump’.3

Since there is no evidence in the training data that
‘jump’ is a verb, Table 2 shows results where addi-
tional (composed) ‘jump’ commands were added
for training. We see that performance quickly goes
up when adding more commands.4 Again here the
simpler models (+Attn -Dep) perform better.

Machine Translation. We repeat L&Bs
English-French MT experiment for both direc-
tions. Table 3 shows that models that perform
well on NACS also perform well here, with the
GRU outperforming the other cells (see appendix

2We made similar observations using LSTM cells, as we
show in the appendix.

3See Lake and Baroni (2018) for a discussion.
4L&B performed this experiment without attention,

which we show has a large positive impact.
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1 2 4 8 16 32

RNN +Attn SCAN 35.0 ±2.8 48.6 ±8.1 77.6 ±2.6 89.2 ±3.8 98.7 ±1.3 99.8 ±0.1

RNN +Attn -Dep SCAN 29.5 ±10.5 53.3 ±10.2 82.4 ±4.7 98.8 ±0.8 99.8 ±0.1 100.0 ±0.0

GRU +Attn SCAN 58.2 ±12.0 67.8 ±3.4 80.3 ±7.0 88.0 ±6.0 98.3 ±1.8 99.6 ±0.2

GRU +Attn -Dep SCAN 70.9 ±11.5 61.3 ±13.5 83.5 ±6.1 99.0 ±0.4 99.7 ±0.2 100.0 ±0.0

RNN +Attn NACS 2.8 ±0.8 9.3 ±7.3 24.7 ±4.2 43.7 ±4.4 57.1 ±5.2 69.1 ±2.1

RNN +Attn -Dep NACS 0.4 ±0.1 0.9 ±0.2 2.4 ±0.3 3.9 ±0.3 9.3 ±0.3 15.9 ±1.4

GRU +Attn NACS 5.5 ±1.8 9.2 ±2.8 11.0 ±1.5 21.9 ±2.4 23.5 ±0.6 42.0 ±1.5

GRU +Attn -Dep NACS 0.1 ±0.1 0.6 ±0.2 2.0 ±0.2 3.2 ±0.2 5.8 ±1.1 10.9 ±0.8

L&B SCAN 0.1 0.1 4.1 15.3 70.2 89.9

Table 2: Test scores on the ‘jump’ task with additional commands. +Attn marks attention, -Dep has the es and et
connections removed (Figure 2). The test set contains all jump commands except the 32 used for training. Columns
indicate how many commands with ‘jump’ were added to the training set, such as ‘jump around left thrice.’

En-Fr Fr-En

GRU +Attn 32.1 ±0.3 37.5 ±0.6

GRU +Attn -Dep 30.2 ±0.3 35.9 ±0.3

Table 3: Results (BLEU) on the Machine Translation
experiment for both directions using a GRU. See ap-
pendix for results using SRN and LSTM cells.

for other cell types). In a setting similar to the
jump task, the sentence pair ‘I am daxy’ (‘je suis
daxiste’) was added to the training set. The goal
is now to test if eight novel sentences that contain
‘daxy’ are correctly translated.

In our setting with mini-batching and early-
stopping, the GRU gets 70.8% (En-Fr) and 54.2%
(Fr-En) of the daxy-sentences right, which is sur-
prisingly good compared to L&B (12.5%).

Other observations. As expected, Table 1
shows that attention always helps. Generalizing
to longer sequences is generally hard, and this re-
mains an open problem.

7 Related Work

Ever since Fodor and Pylyshyn (1988) conjectured
that neural networks are unable to show strong
generalization, many attempts were made to show
that the opposite is true, leading to inconclusive
evidence. For example, Phillips (1998) found that
feed-forward nets and RNNs do not always gen-
eralize to novel 2-tuples on an auto-association
task, while Wong and Wang (2007) and Brakel and
Frank (2009) found that RNNs can show system-
atic behavior in a language modeling task.

In the context of analyzing RNNs, Rodriguez
and Wiles (1998) found that simple RNNs can

develop a symbol-sensitive counting strategy for
accepting a simple (palindrome) context-free lan-
guage. Weiss et al. (2018) show that LSTMs and
simple RNNs with ReLU-activation can learn to
count unboundedly, in contrast to GRUs.

Linzen et al. (2016) probed the sensitivity of
LSTMs to hierarchical structure (not necessarily
in novel constructions). Instead of a binary choice,
with SCAN a sequence-to-sequence model pro-
ductively generates an output string.

Liska et al. (2018) found that a small number
of identical RNNs trained with different initializa-
tions show compositional behavior on a function
composition task, suggesting that more specific ar-
chitectures may not be necessary.

Finally, Lake and Baroni (2018) introduced the
SCAN data set to study systematic compositional-
ity in recurrent sequence-to-sequence models, in-
cluding gating mechanisms and attention. This
work is a direct response to that and aims to facil-
itate future progress by showing that SCAN does
not necessarily test for strong generalization.

8 Conclusion

In the quest for strong generalization, benchmarks
measuring progress are an important component.
The existing SCAN benchmark allows too simple
models to shine, without the need for composi-
tional generalization. We proposed NACS to rem-
edy this. NACS still requires systematicity, while
introducing stochasticity and strong dependencies
on the target side. We argue that a good bench-
mark needs at least those properties, in order not to
fall prey to trivial solutions, which do not work on
more realistic use-cases for sequence-to-sequence
models such as machine translation.
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Supplementary Materials

Jwalk K = WALK
JlookK = LOOK
JrunK = RUN
JjumpK = JUMP

Jturn leftK = LTURN
Jturn rightK = RTURN

Ju leftK = LTURN JuK
Ju rightK = RTURN JuK

Jx twiceK = JxK JxK
Jx thriceK = JxK JxK JxK

Jturn around leftK = LTURN LTURN LTURN LTURN
Jturn around rightK = RTURN RTURN RTURN RTURN
Ju around leftK = LTURN JuK LTURN JuK LTURN JuK LTURN JuK
Ju around rightK = RTURN JuK RTURN JuK RTURN JuK RTURN JuK

Jturn opposite leftK = LTURN LTURN
Jturn opposite rightK = RTURN RTURN
Ju opposite leftK = Jturn opposite leftK JuK
Ju opposite rightK = Jturn opposite rightK JuK

Jx1 and x2K = Jx1K Jx2K
Jx1 after x2K = Jx2K Jx1K

Figure 3: The interpretation functions for translating SCAN commands to actions.

Simple Length Turn left Jump

RNN 75.6 ±5.4 0.2 ±0.0 26.7 ±12.8 0.0 ±0.0

GRU 100.0 ±0.0 14.4 ±0.8 53.4 ±11.7 0.0 ±0.0

LSTM 99.8 ±0.1 10.1 ±2.0 56.5 ±0.8 0.1 ±0.0

RNN +Attn 100.0 ±0.0 9.6 ±0.9 81.1 ±14.7 1.9 ±1.2

RNN +Attn-Dep 100.0 ±0.0 11.7 ±3.2 92.0 ±5.8 2.7 ±1.7

GRU +Attn 100.0 ±0.0 18.1 ±1.1 59.1 ±16.8 12.5 ±6.6

GRU +Attn-Dep 100.0 ±0.0 17.8 ±1.7 90.8 ±3.6 0.7 ±0.4

LSTM +Attn 100.0 ±0.0 15.6 ±1.6 83.8 ±16.8 9.7 ±2.9

LSTM +Attn-Dep 100.0 ±0.0 12.5 ±1.3 57.6 ±3.8 0.8 ±0.5

L&B best 99.8 20.8 90.3 1.2
L&B best overall 99.7 13.8 90.0 0.1

Table 4: SCAN test scores on the simple, length, and primitive (turn left and jump) tasks. For ‘+Attn-Dep’ models
we removed the connections from the previous target word embedding to the decoder state and the pre-output layer.
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Simple Length Turn left Jump

RNN 26.9 ±0.2 0.2 ±0.1 26.4 ±12.0 0.0 ±0.0

GRU 99.0 ±0.1 12.9 ±1.2 47.5 ±4.7 0.0 ±0.0

LSTM 99.1 ±0.1 10.9 ±1.3 42.9 ±2.9 0.0 ±0.0

RNN +Attn 99.8 ±0.1 19.4 ±0.7 44.1 ±0.9 0.3 ±0.3

RNN +Attn-Dep 61.1 ±0.3 0.5 ±0.2 18.6 ±1.0 0.0 ±0.0

GRU +Attn 99.8 ±0.1 17.2 ±1.9 55.9 ±3.5 0.0 ±0.0

GRU +Attn-Dep 51.2 ±1.2 2.0 ±1.4 16.9 ±1.2 0.0 ±0.0

LSTM +Attn 99.1 ±0.2 17.1 ±2.0 48.3 ±1.7 0.0 ±0.0

LSTM +Attn-Dep 38.9 ±0.9 1.0 ±0.5 17.2 ±1.2 0.0 ±0.0

Table 5: NACS test scores on the simple, length, and primitive (turn left and jump) tasks. For ‘+Attn-Dep’ models
we removed the connections from the previous target word embedding to the decoder state and the pre-output layer.

0 1 2 4 8 16 32

RNN 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.1 ±0.0 0.1 ±0.1 0.5 ±0.3 1.4 ±0.3

GRU 0.1 ±0.0 0.2 ±0.1 0.6 ±0.2 2.5 ±1.1 3.3 ±0.9 13.1 ±2.4 42.4 ±2.5

LSTM 0.1 ±0.0 0.3 ±0.2 1.3 ±0.2 3.8 ±1.8 2.5 ±1.1 6.5 ±2.7 21.3 ±1.4

RNN +Attn 3.5 ±3.0 35.0 ±2.8 48.6 ±8.1 77.6 ±2.6 89.2 ±3.8 98.7 ±1.3 99.8 ±0.1

RNN +Attn-Dep 2.7 ±1.7 29.5 ±10.5 53.3 ±10.2 82.4 ±4.7 98.8 ±0.8 99.8 ±0.1 100.0 ±0.0

GRU +Attn 12.5 ±6.6 58.2 ±12.0 67.8 ±3.4 80.3 ±7.0 88.0 ±6.0 98.3 ±1.8 99.6 ±0.2

GRU +Attn-Dep 0.7 ±0.4 70.9 ±11.5 61.3 ±13.5 83.5 ±6.1 99.0 ±0.4 99.7 ±0.2 100.0 ±0.0

LSTM +Attn 7.8 ±0.9 40.2 ±9.3 37.7 ±10.7 50.3 ±13.9 62.2 ±7.7 94.0 ±2.7 98.6 ±1.0

LSTM +Attn-Dep 0.8 ±0.6 39.0 ±6.5 43.6 ±17.6 66.0 ±1.6 86.1 ±2.3 98.7 ±1.6 99.8 ±0.2

L&B 0.1 0.1 0.1 4.1 15.3 70.2 89.9

Table 6: SCAN test scores for jump with additional composed commands.

0 1 2 4 8 16 32

RNN 0.0 ±0.0 0.1 ±0.0 0.1 ±0.1 0.2 ±0.0 0.7 ±0.2 0.4 ±0.0 0.8 ±0.1

GRU 0.0 ±0.0 0.3 ±0.2 0.4 ±0.1 0.3 ±0.2 1.0 ±0.4 5.8 ±0.1 20.8 ±2.2

LSTM 0.0 ±0.0 0.6 ±0.4 0.5 ±0.3 0.7 ±0.0 1.0 ±0.3 3.7 ±0.4 11.4 ±1.2

RNN +Attn 0.3 ±0.3 2.8 ±0.8 9.3 ±7.3 24.7 ±4.2 43.7 ±4.4 57.1 ±5.2 69.1 ±2.1

RNN +Attn-Dep 0.0 ±0.0 0.4 ±0.1 0.9 ±0.2 2.4 ±0.3 3.9 ±0.3 9.3 ±0.3 15.9 ±1.4

GRU +Attn 0.0 ±0.0 5.5 ±1.8 9.2 ±2.8 11.0 ±1.5 21.9 ±2.4 23.5 ±0.6 42.0 ±1.5

GRU +Attn-Dep 0.0 ±0.0 0.1 ±0.1 0.6 ±0.2 2.0 ±0.2 3.2 ±0.2 5.8 ±1.1 10.9 ±0.8

LSTM +Attn 0.0 ±0.0 2.1 ±0.2 3.7 ±0.9 6.6 ±0.5 12.5 ±2.5 21.8 ±2.6 34.2 ±1.7

LSTM +Attn-Dep 0.0 ±0.0 0.4 ±0.2 0.9 ±0.1 1.5 ±0.2 1.9 ±0.3 3.2 ±0.6 7.4 ±0.9

Table 7: NACS test scores for jump with additional composed commands.
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En-Fr Fr-En

RNN +Attn 29.1 ±0.4 34.9 ±0.8

RNN +Attn-Dep 27.5 ±0.7 32.9 ±0.8

GRU +Attn 32.1 ±0.3 37.5 ±0.6

GRU +Attn-Dep 30.2 ±0.3 35.9 ±0.3

LSTM +Attn 31.5 ±0.2 36.9 ±1.1

LSTM +Attn-Dep 28.7 ±0.2 34.0 ±0.1

Table 8: Results (BLEU) on the Machine Translation experiment for both directions.

En-Fr Fr-En

RNN +Attn 79.2 ±15.6 41.7 ±5.9

RNN +Attn-Dep 66.7 ±5.9 41.7 ±5.9

GRU +Attn 70.8 ±11.8 54.2 ±5.9

GRU +Attn-Dep 58.3 ±5.9 45.8 ±11.8

LSTM +Attn 75.0 ±10.2 41.7 ±15.6

LSTM +Attn-Dep 50.0 ±10.2 41.7 ±5.9

Table 9: Machine Translation: accuracy on eight novel sentences containing ‘daxy’ (‘daxiste’).

En-Fr Fr-En

RNN +Attn 66.7 ±5.9 20.8 ±5.9

RNN +Attn-Dep 66.7 ±5.9 29.2 ±15.6

GRU +Attn 62.5 ±0.0 33.3 ±5.9

GRU +Attn-Dep 66.7 ±5.9 25.0 ±20.4

LSTM +Attn 66.7 ±5.9 25.0 ±10.2

LSTM +Attn-Dep 62.5 ±0.0 25.0 ±17.7

Table 10: Machine Translation: accuracy on eight novel sentences containing ‘tired’ (‘fatigué’).
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Abstract

We present an analysis into the inner workings
of Convolutional Neural Networks (CNNs) for
processing text. CNNs used for computer vi-
sion can be interpreted by projecting filters
into image space, but for discrete sequence in-
puts CNNs remain a mystery. We aim to un-
derstand the method by which the networks
process and classify text. We examine com-
mon hypotheses to this problem: that filters,
accompanied by global max-pooling, serve as
ngram detectors. We show that filters may
capture several different semantic classes of
ngrams by using different activation patterns,
and that global max-pooling induces behav-
ior which separates important ngrams from the
rest. Finally, we show practical use cases de-
rived from our findings in the form of model
interpretability (explaining a trained model by
deriving a concrete identity for each filter,
bridging the gap between visualization tools
in vision tasks and NLP) and prediction inter-
pretability (explaining predictions).

1 Introduction

Convolutional Neural Networks (CNNs), origi-
nally invented for computer vision, have been
shown to achieve strong performance on text clas-
sification tasks (Bai et al., 2018; Kalchbrenner
et al., 2014; Wang et al., 2015; Zhang et al.,
2015; Johnson and Zhang, 2015; Iyyer et al.,
2015) as well as other traditional Natural Lan-
guage Processing (NLP) tasks (Collobert et al.,
2011), even when considering relatively simple
one-layer models (Kim, 2014).

As with other architectures of neural networks,
explaining the learned functionality of CNNs is
still an active research area. The ability to inter-
pret neural models can be used to increase trust in
model predictions, analyze errors or improve the
model (Ribeiro et al., 2016). The problem of inter-
pretability in machine learning can be divided into

two concrete tasks: Given a trained model, model
interpretability aims to supply a structured expla-
nation which captures what the model has learned.
Given a trained model and a single example, pre-
diction interpretability aims to explain how the
model arrived at its prediction. These can be fur-
ther divided into white-box and black-box tech-
niques. While recent works have begun to sup-
ply the means of interpreting predictions (Alvarez-
Melis and Jaakkola, 2017; Lei et al., 2016; Guo
et al., 2018), interpreting neural NLP models re-
mains an under-explored area.

Accompanying their rising popularity, CNNs
have seen multiple advances in interpretability
when used for computer vision tasks (Zeiler and
Fergus, 2014). These techniques unfortunately do
not trivially apply to discrete sequences, as they
assume a continuous input space used to represent
images. Intuitions about how CNNs work on an
abstract level also may not carry over from image
inputs to text—for example, pooling in CNNs has
been used to induce deformation invariance (Le-
Cun et al., 1998, 2015), which is likely different
than the role it has when processing text.

In this work, we examine and attempt to under-
stand how CNNs process text, and then use this in-
formation for the more practical goals of improv-
ing model-level and prediction-level explanations.

We identify and refine current intuitions as to
how CNNs work. Specifically, current common
wisdom suggests that CNNs classify text by work-
ing through the following steps (Goldberg, 2016):

1) 1-dimensional convolving filters are used as
ngram detectors, each filter specializing in a
closely-related family of ngrams.

2) Max-pooling over time extracts the relevant
ngrams for making a decision.

3) The rest of the network classifies the text
based on this information.
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We refine items 1 and 2 and show that:

• Max-pooling induces a thresholding behav-
ior, and values below a given threshold are
ignored when (i.e. irrelevant to) making a
prediction. Specifically, we show an exper-
iment for which 40% of the pooled ngrams
on average can be dropped with no loss of
performance (Section 4).

• Filters are not homogeneous, i.e. a single fil-
ter can, and often does, detect multiple dis-
tinctly different families of ngrams (Section
5.3).

• Filters also detect negative items in ngrams—
they not only select for a family of ngrams
but often actively suppress a related family
of negated ngrams (Section 5.4).

We also show that the filters are trained to work
with naturally-occurring ngrams, and can be eas-
ily misled (made to produce values substantially
larger than their expected range) by selected non-
natural ngrams.

These findings can be used for improving
model-level and prediction-level interpretability
(Section 6). Concretely: 1) We improve model
interpretability by deriving a useful summary for
each filter, highlighting the kinds of structures it
is sensitive to. 2) We improve prediction inter-
pretability by focusing on informative ngrams and
taking into account also the negative cues.

2 Background: 1D Text Convolutions

We focus on the task of text classification. We con-
sider the common architecture in which each word
in a document is represented as an embedding vec-
tor, a single convolutional layer with m filters is
applied, producing an m-dimensional vector for
each document ngram. The vectors are combined
using max-pooling followed by a ReLU activation.
The result is then passed to a linear layer for the fi-
nal classification.

For an n-words input text w1, ..., wn we embed
each symbol as d dimensional vector, resulting in
word vectors w1, ...,wn ∈ Rd. The resulting d×n
matrix is then fed into a convolutional layer where
we pass a sliding window over the text. For each
l-words ngram:

ui = [wi, ...,wi+`−1] ∈ Rd×` ; 0 ≤ i ≤ n− `

And for each filter fj ∈ Rd×` we calcu-
late 〈ui, fj〉. The convolution results in matrix

F ∈ Rn×m. Applying max-pooling across the
ngram dimension results in p ∈ Rm which is fed
into ReLU non-linearity. Finally, a linear fully-
connected layer W ∈ Rc×m produces the distri-
bution over classification classes from which the
strongest class is outputted. Formally:

ui = [wi; ...;wi+`−1]

Fij = 〈ui, fj〉
pj = ReLU(max

i
Fij)

o = softmax(Wp)

In practice, we use multiple window sizes ` ∈ L,
L ( N by using multiple convolution layers in
parallel and concatenating the resulting p` vectors.
We note that the methods in this work are applica-
ble for dilated convolutions as well.

3 Datasets and Hyperparameters

For our empirical experiments and results pre-
sented in this work we use three text classifica-
tion datasets for Sentiment Analysis, which in-
volves classifying the input text (user reviews in
all cases) between positive and negative. The spe-
cific datasets were chosen for their relative variety
in size and domain as well as for the relative sim-
plicity and interpretability of the binary sentiment
analysis task.

The three datasets are: a) MR: sentence polarity
dataset v1.0 introduced by Pang and Lee (2005),
containing 10k evenly split short (sentences or
snippets) movie reviews. b) Elec: electronic prod-
uct reviews for sentiment classification introduced
by Johnson and Zhang (2015), assembled from the
Amazon review dataset (McAuley and Leskovec,
2013; McAuley et al., 2015), containing 200k train
and 25k test evenly split reviews. c) Yelp Review
Polarity: introduced by Zhang et al. (2015) from
the Yelp Dataset Challenge 2015, containing 560k
train and 38k test evenly split business reviews.

For word embeddings, we use the pre-trained
GloVe Wikipedia 2014—Gigaword 5 embeddings
(Pennington et al., 2014), which we fine-tune with
the model.

We use embedding dimension of 50, filter sizes
of ` ∈ {2, 3, 4} words, and m ∈ {10, 50} filters.
Models are implemented in PyTorch and trained
with the Adam optimizer.
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4 Identifying Important Features

Current common wisdom posits that filters serve
as ngram detectors: each filter searches for a spe-
cific class of ngrams, which it marks by assigning
them high scores. These highest-scoring detected
ngrams survive the max-pooling operation. The fi-
nal decision is then based on the set of ngrams in
the max-pooled vector (represented by the set of
corresponding filters). Intuitively, ngrams which
any filter scores highly (relative to how it scores
other ngrams) are ngrams which are highly rele-
vant for the classification of the text.

In this section we refine this view by attempting
to answer the questions: what information about
ngrams is captured in the max-pooled vector, and
how is it used for the final classification?1

4.1 Informative vs. Uninformative Ngrams
Consider the pooled vector p ∈ Rm on which
the classification is based. Each value pj =
ReLU(maxi〈ui, fj〉) stems from a filter-ngram in-
teraction, and can be traced back to the ngram
ui = [wi, ...,wi+`−1] that triggered it. Denote the
set of ngrams contributing to p as Sp. Ngrams not
in Sp do not influence the decision of the classifier.
But what about the ngrams that are in Sp? Previ-
ous attempts in prediction-based interpretation of
CNNs for text highlight the ngrams in Sp and their
scores as means of explaining the prediction. We
take here a more refined view. Note that the final
classification does not observe the ngram identi-
ties directly, but only through the scores assigned
to them by the filters. Hence, the information in p
must rely on the assigned scores.

Conceptually, we separate ngrams in Sp into
two classes, deliberate and accidental.
Deliberate ngrams end up in Sp because they
were scored high by their filter, likely because they
are informative regarding the final decision. In
contrast, accidental ngrams end up in Sp despite
having a low score, because no other ngram scored
higher than them. These ngrams are likely not in-
formative for the classification decision. Can we
tease apart the deliberate and accidental ngrams?

1Although this work focuses on text classification, the
findings in this section apply to any neural architecture which
utilizes global max pooling, for both discrete and continuous
domains. To our knowledge this is the first work that exam-
ines the assumption that max-pooling induces classifying be-
havior. Previously, Ruderman et al. (2018) showed that other
assumptions to the functionality of max-pooling as deforma-
tion stabilizers (relevant only in continuous domains) do not
necessarily hold true.

We assume that there is threshold for each filter,
where values above the threshold signal informa-
tive information regarding the classification, while
values below the threshold are uninformative and
can be ignored for the purpose of classification.
We thus search for the threshold that separate the
two classes. However, as we cannot measure di-
rectly which values pj influence the final decision,
we opt instead for measuring correlation between
pj values and the predicted label for the vector p.

The linearity of the decision function Wp al-
lows to measure exactly how much pj is weighted
for the logit of label class k. The class which filter
fj contributes to is cj = argmaxk Wkj

2. We refer
to class cj as the class identity of filter fj .

By assigning each filter a class identity cj and
comparing it to the predicted label we arrive at
a correlation label—whether the filter’s identity
class matches the final decision by the network.
Concretely, we run the classifier over a set of texts,
resulting in pooled vectors pi and network predic-
tions ci. For each filter j we then consider the val-
ues pi

j and whether ci = cj . For each filter, we
obtain a dataset (p1j , c

1 = cj), ..., (p
D
j , c

D = cj),
and we look for a threshold tj that separates pij for
which ci = cj from those where ci 6= cj .

(X,Y )j = {(pij , ci = cj) | j < m & i < D}

In an ideal case, the set is linearly separable
and we can easily separate informative from un-
informative values: if pij > tj then the classifier’s
prediction agrees with the filter’s label, and oth-
erwise they disagree. In practice, the set is not
separable. We instead work with the purity of a
filter-threshold combination, defined as the per-
centage of informative (correlative) ngrams which
were scored above the threshold3. Formally, given
threshold dataset (X,Y ):

purity(f, t) =

|{(x, y) ∈ (X,Y )f | x ≥ t & y = true}|
|{(x, y) ∈ (X,Y )f | x ≥ t}|

We heuristically set the threshold of a filter to
the lowest value that achieves a sufficiently high

2In the case of non-linear fully-connected layers, the
question of how each feature contributes to each class is
significantly harder to answer. Possible methods include
saliency map methods or gradient-based methods. Re-
cently, Guo et al. (2018) has attributed labels to filters using
Bayesian inference and other image annotations.

3The purity metric can be considered as the precision met-
ric for this task.
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purity (we experimentally find that a purity value
of 0.75 works well).

In Figure 2b,c we show examples for threshold
datasets for a model trained on the MR sentiment
analysis task.

Threshold Effectiveness We described a
method for obtaining per-filter threshold values.
But is the threshold assumption—that items
below a given threshold do not participate in the
decision—even correct? To assess the quality of
threshold obtained by our proposal and validate
the thresholding assumption, we discard values
that do not pass the threshold for each filter and
observe the performance of the model. Practi-
cally, we replace the ReLU non-linearity with a
threshold function:

threshold(x, t) =

{
x, if x ≥ t

0, otherwise

Figure 1 presents the results on the MR dataset
(we observed similar results on the Elec dataset).
where the threshold is set for each filter separately,
based on a shared purity value. If the threshold-
ing assumption is correct and our way of deriv-
ing the threshold is effective, we expect to not see
a drop in accuracy. Indeed, for purity value of
0.75, we observe that the model performance im-
proves slightly when replacing the ReLU with a
per-filter threshold, indicating that the threshold-
ing model is indeed a good approximation for the
feature behavior. The percentage of informative
(non-accidental) values in p is roughly a linear
function of the purity (Figure 1c). With a purity
value of 0.754, we discard roughly 44% of the val-
ues in p—and hence 44% of the ngrams in Sp.

Not all filters behave in a similar way, however.
In Figure 2 we show an example for a filter—#6
in the figure—which is especially uninformative:
by applying the lowest threshold which satisfies a
purity of 0.75, we discard 99.99% of activations.
Therefore in the experiments in Figure 1, this filter
is effectively unused, yet it does not cause loss in
performance. In essence, the threshold classifier

4We note that empirically and intuitively, the more filters
we utilize in the network, the less correlation there is between
each filter’s class and the final classification, as the decision is
being made by a greater consensus. This means that demand-
ing a higher purity will be accompanied by lower coverage,
relative to other experiments, and more ngrams will be dis-
carded. The “correct” purity level for a filter then is a func-
tion of the model and dataset used, and should be investigated
using the train or validation datasets.

identified and effectively discarded a filter which
is not useful to the model.

To summarize, we validated our assumptions
and shown empirically that global max-pooling in-
deed induces a functionality of separating impor-
tant and not important activation signals using a
latent (presumably soft) threshold. For the rest of
this work we will assume a known threshold value
for every filter in the model which we can use to
identify important ngrams.

5 What is captured by a filter?

Previous work looked at the top-k scoring ngrams
for each filter. However, focusing on the top-k
does not tell a complete story. We insead look at
the set of deliberate ngrams: those that pass the fil-
ter’s threshold value. Common intuition suggests
that each filter is homogeneous and specializes in
detecting a specific classes of ngrams. For exam-
ple, a filter may specializing in detecting ngrams
such as “had no issues”, “had zero issues”, and
“had no problems”. We challenge this view and
show that filters often specialize in multiple dis-
tinctly different semantic classes by utilizing ac-
tivation patterns which are not necessarily max-
imized. We also show that filters may not only
identify good ngrams, but may also actively su-
press bad ones.

5.1 Slot Activation Vectors

As discussed in Section 2, for each ngram u =
[w1, ...,w`] and for each filter f we calculate the
score 〈u, f〉. The ngram score can be decomposed
as a sum of individual word scores by considering
the inner products between every word embedding
wi in u and every parallel slice in f :

〈u, f〉 =
`−1∑

i=0

〈wi, fid:i(d+1)〉

We refer to slice fid:i(d+1) as slot i of the fil-
ter weights, denoted as f(i). Instead of taking the
sum of these inner products, we can instead inter-
pret them directly—saying that 〈wi, f(i)〉 captures
how much slot i in f is activated by the ith word
in the ngram5.

We can now move from examining the
activation of an ngram-filter pair 〈u :=
[w1; ...;w`], f〉 to examining its slot activation
vector: (〈w1, f(1)〉, ..., 〈w`, f(`)〉). The slot ac-
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Figure 1: Evaluation results for identifying important ngrams on the MR model.
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Figure 2: Visualization of informative and uninformative filters for the MR model and a universal purity of 0.75.
In (a) we show the percentage of pooled ngrams which pass the threshold per filter. The threshold datasets of filters
#0 and #6 are shown in (b) and (c) respectively.

tivation vector captures how much each word in
the ngram contributes to its activation.

5.2 Naturally occurring vs. possible ngrams

We distinguish naturally occurring or observed
ngrams, which are ngrams that are observed in a
large corpus, from possible ngrams which are any
combination of ` words from the vocabulary. The
possible ngrams are a superset of the naturally oc-
curring ones. Given a filter, we can find its top-
scoring naturally occurring ngram by searching
over all ngrams in a corpus. We can find its top-
scoring possible ngram by maximizing each slot
value individually. We observe there is a big and
consistent gap in scores between the top-scoring
natural ngrams and top-scoring possible ngrams.
In our Elec model, when averaging over all filters,
the top naturally-occurring ngrams score 30% less
than the top possible ngrams. Interestingly, the

5 We note that this breakdown does not consider the fil-
ter’s bias, if one is used. This bias is a single number (per
filter) which is added to the sum of slot activations to arrive
at the ngram activation which is passed to the max-pooling
layer. Bias can be accommodated by appending an additional
“bias word” with an embedding vector of [1, ..., 1] to every
ngram. Regardless, as this bias is identical for all ngrams
for the filter in question, it has no role in identifying which
ngrams the filter is most similar to, and we can ignore it in
this context.

top-scoring natural ngrams almost never fully ac-
tivate all slots in a filter.

Table 1 shows the top-scoring naturally occur-
ring and possible ngrams for nine filters in the Elec
model. In each of the top scoring natural ngrams,
at least one slot receives a low activation. Table 2
zooms in on one of the filters and shows its top-
7 naturally occurring ngrams and top-7 most acti-
vated words in each slot. Here, most top-scoring
ngrams maximize slot #3 with words such as in-
valuable and perfect, however some ngrams such
as “works as good” and “still holding strong” max-
imize slots #1 and #2 respectively, instead.

Additionally, most top-scoring words do not ap-
pear to be utilized in high-scoring ngrams at all.
This can be explained with the following: if a
word such as crt rarely or never appears in slot #1
alongside other high-scoring words in other slots,
then crt can score highly with no consequence.
Since an ngram containing crt at slot #1 will rarely
pass the max-pooling layer, its score at that slot is
essentially random.

On naturally occurring ngrams, the filters do not
achieve maximum values in all slots but only on
some of them. Why? We consider two hypotheses
to explain this behavior:
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top ngrams top words by slot
filter ngram score slot scores slot #1 slot #2 slot #3 sum

0 poorly designed junk 7.31 5.47 0.97 0.87 poorly 5.47 displaying 3.06 landfill 1.75 10.28
1 simply would not 5.75 2.16 1.28 2.3 chapters 2.31 avoid 3.07 impossible 3.06 8.44
2 a minor drawback 6.11 0.88 1.85 3.38 workstation 2.06 high-quality 3.82 drawback 3.39 9.27
3 still working perfect 6.42 1.58 1.22 3.62 saves 2.52 delight 2.29 invaluable 4.19 9.0
4 absolutely gorgeous . 5.36 1.09 3.84 0.42 complain 2.57 gorgeous 3.84 expect 1.22 7.63
5 one little hitch 5.72 0.98 3.43 1.31 path 2.81 delight 4.09 everyday 2.64 9.54
6 utterly useless . 6.33 2.03 3.49 0.81 stopped 2.77 refund 3.81 disabled 1.38 7.96
7 deserves four stars 5.56 0.44 1.69 3.44 excelente 1.89 crossover 1.93 incredible 3.96 7.78
8 a mediocre product 6.91 0.35 3.11 3.45 began 1.86 mediocre 3.11 product 3.45 8.42

Table 1: Top ngrams and words by filter from a sample of nine filters from the Elec model. The average difference
between the top natural ngram activation and the top possible ngram activation for this model is 2.5, or a 30%
average reduction.

top ngrams
rank ngram score slot scores

1 still working perfect 6.42 1.58 1.22 3.62
2 works - perfect 5.78 1.91 0.25 3.62
3 isolation proves invaluable 5.61 0.39 1.03 4.19
4 still near perfect 5.6 1.58 0.4 3.62
5 still working great 5.45 1.58 1.22 2.65
6 works as good 5.44 1.91 1.45 2.08
7 still holding strong 5.37 1.58 1.81 1.98

top words by slot
slot #1 slot #2 slot #3

saves 2.52 delight 2.29 invaluable 4.19
crt 2.1 holding 1.81 perfect 3.62
beginner 2.09 welcome 1.8 cm 3.61
mics 2.08 dhcp 1.72 pleasant 3.38
genius 2.07 completely 1.64 simplicity 3.14
final 2.01 cradle 1.56 england 3.09
works 1.91 well-made 1.51 daily 3.04

Table 2: Top-k words by slot scores and top-k ngrams by filter scores from the Elec model. In bold are words from
the top-k ngrams which appear in the top-k slot words - i.e. words which maximize their slot.

(i) Each filter captures multiple semantic classes
of ngrams, and each class has some domi-
nating slots and some non-dominating slots
(which we define as a slot activation pattern).

(ii) A slot may not be maximized because it’s not
used to detect word existence, but rather lack
of existence—ensuring that specific words do
not occur.

We investigate both hypotheses in Sections 5.3 and
5.4 respectively.

Adversarial potential We note in passing that
this discrepancy in scores between naturally oc-
curring and possible ngrams can be used to derive
adversarial examples that cause a trained model
to misclassify. By inserting a few seemingly ran-
dom ngrams, we can cause filters to activate be-
yond their expected range, potentially driving the
model to misclassification. We reserve this area of
exploration for future work.

5.3 Clustering (Hypothesis (i))
We explore hypothesis (i) by clustering threshold-
passing (naturally occurring) ngrams in each fil-
ter according to their activation vectors. We use
Mean Shift Clustering (Fukunaga and Hostetler,

1975; Cheng, 1995), an algorithm that does not
require specifying an a-priori number of clusters,
and does not make assumptions about their shapes.
Mean Shift considers the feature vectors as sam-
pled from an underlying probability density func-
tion6. Each cluster captures a different slot activa-
tion pattern. We use the cluster’s centroid as the
prototypical slot activation for that cluster.

Table 3 shows a sample clustering output. The
clustering algorithm identified two clusters: one
primarily containing ngrams of the pattern DET
INTENSITY-ADVERB POSITIVE-WORD, while
the second contains ngrams that begin with
phrases like go wrong.7

The centroids for these clusters capture the acti-
vation patterns well: low-medium-high and high-
high-low for clusters 1 and 2 respectively.

To summarize, by discarding noisy ngrams
which do not pass the filter’s threshold and then
clustering those that remain according to their slot
activation patterns, we arrived at a clearer image

6Intuitively, we can think of the sampling noise as the
ngram embeddings, and the probability distribution as de-
fined by a function of the filter weights.

7In the Yelp dataset, go wrong overwhelmingly occurs in
a negated context such as “can’t go wrong” and “won’t go
wrong”, which explains why it is detected by a positive filter.
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ngram slot #1 slot #2 slot #3 cluster
centroid 0.75 1.97 2.79 1
was super intriguing 1.01 3.16 5.84 1
am so grateful 2.59 3.27 4.07 1
overall very worth 3.84 1.86 4.22 1
also well worth 1.83 3.06 4.22 1
- super compassionate 0.51 3.17 5.01 1
a well oiled 0.75 3.06 4.84 1
centroid 2.87 2.17 0.12 2
go wrong bringing 3.97 4.12 1.81 2
go wrong pairing 3.97 4.12 1.65 2
go wrong when 3.97 4.12 -0.4 2

Table 3: Example clustering results on the Yelp dataset.
After applying thresholds, the ngrams for this filter
were split into two clusters of sizes 83% and 17% re-
spectively. The table shows top-scoring ngrams for this
filter with their clustering results, sorted by their acti-
vation strength.

of the semantic classes of ngrams that a given fil-
ter specializes in capturing. In particular, we re-
veal that filters are not necessarily homogeneous:
a single filter may detect several different seman-
tic patterns, each one of them relying on a different
slot activation pattern.

5.4 Negative Ngrams (Hypothesis (ii))

Our second theory to explain the discrepancy be-
tween the activations of naturally occurring and
possible ngrams is that certain filter slots are not
used to detect a class of highly activating words,
but rather to rule out a class of highly negative
words. We refer to these as negative ngrams.

For example, Table 3 shows an ngram pattern
for which slot #1 contains determiners and other
“filler” tokens such as hyphens, periods and com-
mas with relatively weak slot activations. Hypoth-
esis (ii) suggests that this slot may receive a strong
negative score for words such as not and n’t, caus-
ing such negated patterns to drop below the thresh-
old. Indeed, ngrams containing not or n’t in slot #1
do not pass the threshold for this filter.

We are interested in a more systematic method
of identifying these cases. Identifying negative
slot activations would be very useful for under-
standing the semantics captured by a filter and the
reasoning behind the dismissal of an ngram, as we
discuss in Sections 6.1 and 6.2 respectively.

We achieve this by searching the below-
threshold ngram space for ngrams which are
“flipped versions” of above-threshold ngrams.
Concretely: Given ngram u which was scored
highly by filter f , we search for low-scoring

ngrams u′ such that the hamming distance be-
tween u and u′ is low. By doing this for the top-
k scoring ngrams per cluster, we arrive at a com-
prehensive set of negative ngrams. In Table 4 we
show a sample output of this algorithm.

Furthermore, we can divide negative ngrams
into two cases: 1) Lowering the ngram score be-
low the threshold by replacing high-scoring words
with low-scoring words. 2) Lowering the ngram
score below the threshold by replacing words with
a low positive score with words with a highly-neg-
ative score. Case 2 is more interesting because
it embodies cases where hypothesis (ii) is rele-
vant. Additionally, it highlights ngrams where a
strongly positive word in one slot was negated
with another strongly negative word in another
slot. Table 4 shows examples in bold.

In order to identify “Case 2” negative ngrams,
we heuristically test whether the “changed”
words’ scores directly influence the status of the
activation relative to the threshold: given an al-
ready identified negative ngram, if the ngram
score—sans the bottom-k negative slot activations
(considering a hamming distance of k and given
that there are k negative slot activations)—passes
the threshold, yet it does not pass the threshold
by including the negative slot activations, then the
ngram is considered a “Case 2” negative ngram.

6 Interpretability

In this section we show two practical implica-
tions of the findings above: improvements in both
model-level and prediction-level interpretability
of 1D CNNs for text classification.

6.1 Model Interpretability

As in computer vision, we can now interpret a
trained CNN model by “visualizing” its filters and
interpreting the visible shapes—in other words,
defining a high-level description of what the filter
detects. We propose to associate each filter with
the following items: 1) The class which this fil-
ter’s strong signals contribute to (in the sentiment
task: positive or negative); 2) The threshold value
for the filter, together with its purity and cover-
ages percentages (which essentially capture how
informative this filter is); 3) A list of semantic pat-
terns identified by this filter. Each list item corre-
sponds to a slot-activations cluster. For each clus-
ter we present the top-k ngrams activating it, and
for each ngram we specify its total activation, its
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ngram slot #1 slot #2 slot #3 sum
’m really pleased 2.59 1.86 5.05 9.5
’m really not -2.49 1.96
’m really upset -1.14 3.31
’m not pleased -3.4 4.24
is extremely useful 2.3 3.24 3.96 9.5
is extremely limited -2.8 2.74
is extremely noisy -2.77 2.8
is not useful -3.4 2.86
is only useful -2.82 3.44
is surprisingly good 2.3 4.32 2.8 9.42
is not good -3.4 1.7
is only good -2.82 2.28
is no good -1.88 3.22
is probably good -1.66 3.44
am very satisfied 2.01 2.17 5.09 9.26
am very dissatisfied -1.9 2.27
am very disappointed -1.87 2.3
am not satisfied -3.4 3.69
not very satisfied -2.6 4.66

Table 4: Top-scoring ngrams from one filter from a
model trained on the Elec dataset, and their accompa-
nying lowest-scoring negative ngrams. We selected a
hamming distance of 1 word. Bold ngrams are Case 2
negative ngrams.

slot-activation vector, and its list of bottom-k neg-
ative ngrams with their activations and slot acti-
vations. In particular, by clustering the activated
ngrams according to their slot activation patterns
and showing the top-k in each clusters, we get a
much more refined coverage of the linguistic pat-
terns that are captured by the filter.

6.2 Prediction Interpretability

Previous prediction-based interpretation attempts
traced back the ngrams from the max-pooling
layer. Here we improve these previous attempts
by considering only ngrams that pass the threshold
for their filter. This results in a more concise and
relevant explanation (Figure 1). Figure 3 shows
two examples. Note that in example #1, many
negative-class filters were “forced” to choose an
ngram in max-pooling despite there not being
strongly negative phrases—but those ngrams do
not pass the threshold and are thus cleaned from
the explanation.

Additionally we can use the individual slot ac-
tivations to tease-apart the contribution of each
word in the ngram. Finally, we can also mark
cases of negative-ngrams (Section 5.4), where an
ngram has high slot activations for some words,
but these are negated by a highly-negative slot and

my UNK fits perfectly . very well made . nice looking and
offers good protection
filter f-class ngram slot scores

0 pos PAD PAD my 0.7 1.65 0.16
1 pos . very well 0.98 2.17 2.63
2 neg PAD my UNK 1.31 -0.07 0.21
3 neg UNK fits perfectly 0.28 0.61 0.03
4 neg looking and offers 0.6 0.12 0.5
5 neg good protection PAD 0.52 1.6 -0.01
6 pos UNK fits perfectly -0.06 2.36 1.82
7 neg fits perfectly . 1.34 -0.71 1.47
8 neg . very well -0.01 1.97 -0.55
9 pos perfectly . very 4.13 0.45 -0.01

this product sucked was not loud at all lights did n’t work
overall a bad product that ’s UNK taking up space
filter f-class ngram slot scores

0 pos product sucked was 0.12 2.05 0.1
1 pos overall a bad 2.53 1.4 -1.16
2 neg lights did n’t -0.33 1.12 1.63
3 neg PAD this product -0.2 1.43 0.51
4 neg did n’t work 1.21 0.97 2.65
5 neg sucked was not 0.98 0.59 1.32
6 pos work overall a -0.25 4.05 -0.21
7 neg was not loud -0.33 2.85 0.52
8 neg a bad product -0.45 3.08 1.32
9 pos PAD PAD this 0.38 0.15 1.66

Figure 3: Examples predicted positive and negative
respectively by a model trained on the Elec dataset,
along with their explanations. Ngrams which passed
the threshold are in bold, and case 2 negative ngrams
are in italics. For clarity’s sake we trained a small
model which uses ten filters.

as a consequence are not selected by max-pooling,
or are selected but do not pass the filter’s thresh-
old.

7 Conclusion

We have refined several common wisdom assump-
tions regarding the way in which CNNs process
and classify text. First, we have shown that max-
pooling over time induces a thresholding behavior
on the convolution layer’s output, essentially sep-
arating between features that are relevant to the
final classification and features that are not. We
used this information to identify which ngrams are
important to the classification. We also associate
each filter with the class it contributes to. We de-
compose the ngram score into word-level scores
by treating the convolution of a filter as a sum
of word-level convolutions, allowing us to exam-
ine the word-level composition of the activation.
Specifically, by maximizing the word-level acti-
vations by iterating over the vocabulary, we ob-
served that filters do not maximize activations at
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the word-level, but instead form slot activation
patterns that give different types of ngrams similar
activation strengths. This provides empirical evi-
dence that filters are not homogeneous. By clus-
tering high-scoring ngrams according to their slot-
activation patterns we can identify the groups of
linguistic patterns captured by a filter. We also
show that filters sometimes opt to assign nega-
tive values to certain word activations in order to
cause the ngrams which contain them to receive a
low score despite having otherwise highly activat-
ing words. Finally, we use these findings to sug-
gest improvements to model-based and prediction-
based interpretability of CNNs for text.
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Abstract

Sluicing resolution is the task of identifying
the antecedent to a question ellipsis. An-
tecedents are often sentential constituents, and
previous work has therefore relied on syntac-
tic parsing, together with complex linguistic
features. A recent model instead used partial
parsing as an auxiliary task in sequential neu-
ral network architectures to inject syntactic in-
formation. We explore the linguistic informa-
tion being brought to bear by such networks,
both by defining subsets of the data exhibit-
ing relevant linguistic characteristics, and by
examining the internal representations of the
network. Both perspectives provide evidence
for substantial linguistic knowledge being de-
ployed by the neural networks.

1 Introduction

Sluices are questions where material beyond the
wh-word is missing and must be retrieved from
context. Consider the following example from
Rønning et al. (2018):

(1) If [this is not practical], explain why.

Here, the antecedent is the complete sentential
constituent, this is not practical.

Anand and Hardt (2016) present a sluice res-
olution system, in which candidate antecedents
are required to be sentential constituents. Fur-
thermore, each candidate is represented by fea-
tures manually defined over syntactic dependency
structures. Anand and Hardt report an accuracy
of antecedent selection of 0.72, and a token-level
F1 score 0.72, applied to a dataset based on news
content (Anand and McCloskey, 2015). Rønning
et al. (2018) show that neural network architec-
tures with multi-task learning are able to achieve
comparable results to Anand and Hardt, without
relying on structured syntactic annotation or hand-
crafted features. On a slightly different version of

the news dataset, Rønning et al. report a token-
level F1 score of 0.70, compared to 0.67 for Anand
and Hardt’s system. Furthermore, it is far superior
to Anand and Hardt’s system at adapting from the
newswire to a dialogue dataset.

This is quite surprising as sluicing is tradition-
ally understood to be constituent-based. Two ex-
planations present themselves; first, the traditional
view might simply be wrong – that is, linguistic
structure is not actually needed for ellipsis resolu-
tion. The second, and perhaps more reasonable,
explanation is that Rønning et al.’s multi-task neu-
ral network architectures have learned to extract
and incorporate the relevant linguistic representa-
tions.

In this paper, we investigate the linguistic
knowledge learned implicitly in the experiments
in Rønning et al. (2018). We take two approaches
to this:

1. We select linguistically-defined subsets of the
data, and examine the output of different sys-
tems on these subsets; and

2. we examine activations of the networks, fo-
cusing in particular on the activations associ-
ated with the wh-word that identifies a sluice,
to assess how well the network notices, re-
members, and classifies them.

2 Systems

The two sluicing resolution systems we compare,
are: The linguistic system (AH) by Anand and
Hardt (2016) and the neural network architectures
introduced by Rønning et al. (2018).

2.1 Linguistic System (AH)

The system presented in Anand and Hardt (2016)
defines a set of linguistically motivated features
over pre-parsed input to determine the most likely
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Figure 1: Task hierarchy of the three networks
considered; the tasks are (Ant)ecedent Selec-
tion, (Chunk)ing, Sentence (Comp)ression, (CCG)
super-tagging and (POS) tagging. Plain denotes a
RNN-layer with no associated task.

antecedent among a set of candidates. The candi-
date set consist of all sentential constituents within
a predefined context window of the sluice. AH pa-
rameterizes a log-linear score akin to Denis and
Baldridge (2008) using hill-climbing. Anand and
Hardt (2016) evaluates AH by the accuracy of cho-
sen constituents, but also report token-level F1
scores. We focus on token-F1 score in this paper
to compare with the neural networks as these do
not operate with predefined constituents.

2.2 Neural Network Architectures

We examine three neural network architectures,
all defined in Rønning et al. (2018), and depicted
in Figure 1. In all three systems, the input is
a sequence of tokens without syntactic annota-
tions. All our neural networks use 50 dimensional
fixed GloVe embeddings, obtained by applying the
model in Pennington et al. (2014) on Wikipedia
and Gigaword 5. The sluice expression is not
specifically marked in the text. Instead, a copy of
the sluice expression is prefixed to the sequence.
The networks assign either a begin, inside or out-
side (BIO) label to each token and the task is to
align these with the span of the antecedent. The
three networks are:

BI: This is a single-task, two-layered long-
short-term memory (LSTM) network, with a pro-
jection layer and a softmax layer.

KSG: This is a cascading, three-layered LSTM,
as described by Klerke et al. (2016). The KSG sys-
tem is trained with the following auxiliary tasks:

Chunking: a partial parsing task, in which
we need to identify the boundaries of the
phrases in a sentence; and

Sentence compression: the task of finding
sentence parts that can be dropped without
losing coherence or important information

During an epoch, k batches of size b are sampled
from each of the three tasks such that kḃ is the
number of examples in the antecedent selection
task. We choose batches from each of the auxil-
iary tasks in the fixed order: sentence compres-
sion, chunking, antecedent selection.

RHS: This system also cascades the auxiliary
tasks. However, it uses a different set of auxil-
iary tasks than KGS, computes label embeddings
that are also passed on to subsequent layers, and
has skip connections from the embedding layer to
all layers in the network. RHS uses the auxiliary
tasks described below:

CCG super-tagging: another form of par-
tial parsing, using a more fine-grained tagset.

Chunking: same task as described for KSG.

POS tagging: determining the syntactic cat-
egory (part of speech) of a word in context.

RHS cycles through all data for each of the aux-
iliary tasks during a epoch, only layers up to and
including the layer associated with the tasks cur-
rently being optimized is active during training of
that task. Over the course of an epoch, the net-
work trains on POS, Chunk, CCG-super tagging
and, then, antecedent selection.

Table 1 gives the token-level F1 score for each
system on the dataset used in Rønning et al.
(2018). It also includes the baseline performance
of choosing a random constituent within the two
sentence window of the sluice site. This is the
same window size AH uses to determine its candi-
date set.

System Score
AH 0.67
Random 0.45
RHS 0.70
KSG 0.64
BI 0.54

Table 1: Token-F1 Score on complete test set.

3 Data Subsets

Below we introduce various linguistic dimensions
of the ellipsis resolution data, which we can use to
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study the models’ behavior on subsets of the data,
indirectly probing what linguistic distinctions they
make.

3.1 Adjacency

It is very common for the correct antecedents to be
sentential constituent immediately preceding the
ellipsis site. Call this constituent the adjacent can-
didate to the sluice. The antecedent in Example 1
is adjacent. However, adjacency is not ubiquitous.
We refer to all other candidates as non-adjacent.
Example 2 from Anand and Hardt (2016) is non-
adjacent:

(2) [S−3 Deliveries would increase as a result
of the acquisition ] , [S−2 he predicted ] ,
but [S−1 he would not say by how much ]

The sluice expression how much has S2 as the
adjacent constituent, while the correct antecedent
is the non-adjacent S3. Table 2 gives token-level
F1 scores for all systems with the dataset parti-
tioned by adjacency.

System Adjacent Non-Adjacent Difference
AH 84.8 56.5 28.3
RHS 84.7 65.5 19.2
KSG 74.5 60.6 13.9
BI 62.3 51.0 11.3

Table 2: F1 score for Adjacent vs. Non-adjacent
Sluice Antecedents

All systems score higher with adjacent candi-
dates than with non-adjacent ones, i.e., when the
true antecedent is adjacent. AH scores marginally
higher on adjacent candidates than RHS, but has
a significantly higher difference between adjacent
and non-adjacent compared to the three neural sys-
tems. Since AH has explicit constituency infor-
mation, it makes sense that it would have a high
token-level F1 score, when the antecedent is adja-
cent. For the MTL systems, RHS and KSG, ad-
jacency also makes a big difference in F1 scores,
albeit less than for AH. The smallest performance
drop is seen with BI, the single-task system.

This is somewhat comparable to the case of
subject-verb agreement studied in Linzen et al.
(2016), where it was found that an LSTM could
learn structural information necessary to identify
the subject, but that performance decreased when
the subject was not the nearest noun phrase to the
verb. In their case, the neural model had learned

a representation that was too dependent on adja-
cency information; in our case, it seems like the
neural architectures have successfully learned a
representation that makes them less dependent on
adjacency than the baseline BI system.

3.2 Punctuation/Boundary Tokens

A major difference between AH and the neural
models is that the neural models do not have ex-
plicit marking of the boundaries of candidate an-
tecedents, as AH does. The neural models may,
however, rely on specific tokens that signal these
boundaries. We hypothesize that punctuation can
play this role. Based on this, we would expect that
the neural networks do better when antecedents
are marked by punctuation, while this should mat-
ter less, if at all, to the AH system.

We define the following subsets of the data:
first, we restrict ourselves to cases where the an-
tecedent is adjacent. Then we define three subsets:

• (L) the correct antecedent has a punctuation
token on its left edge

• (R) the correct antecedent has a punctuation
token on its right edge

• (LR) the correct antecedent has a punctuation
token on both its left edge and its right edge

System LR R L
AH 85.0 84.9 85.8
RHS 85.6 85.5 80.7
KSG 75.2 74.1 71.1
BI 62.3 62.3 58.7

Table 3: F1 score for punctuation as boundary to-
ken for antecedent

The results, which are given in Table 3, partially
support our hypothesis. Focusing on LR (where
punctuation marks both edges of the adjacent an-
tecedent), we observe that RHS and KSG see im-
provements of .9 and .7 respectively, while AH is
improved only by .2. This confirms our expecta-
tion that punctuation marking would help the neu-
ral networks more than AH. However, BI is sur-
prising here, since it is not helped at all. Further-
more, the pattern is much less clear when we look
at the cases of R and L. For the R case, we see
that RHS is helped quite a bit, while AH is not;
this again supports our hypothesis. However, we
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are surprised to see that KSG is worse with R than
adjacency overall, and the pattern with L does not
at all support the hypothesis. Thus while our re-
sults are indeed suggestive that punctuation might
play an important role here, the picture seems to
be complicated by other factors.

3.3 Discontinuity

Since the sluicing antecedent is a constituent, it of-
ten consists of a continuous sequence of tokens, as
in Example 1. This is not always true, however; it
is well known that constituents are sometimes dis-
continuous, and this can in fact be observed in our
sluicing data, as in the following example (Anand
and Hardt, 2016):

(3) [S−2 A major part of the increase in cover-
age , [S−1 though Mitchell ’s aides could
not say just how much , ] would come
from a provision providing insurance for
children and pregnant women . ]

Here, the antecedent is A major part of the
increase in coverage would come from a provi-
sion providing insurance for children and preg-
nant women; the tokens constituting S1 are not
included. However, such cases of discontinuous
antecedents are rare in our data – the vast major-
ity of sluice antecedents consist of a continuous
sequence of tokens.

The AH system nearly always selects contin-
uous antecedents, since the underlying syntac-
tic parser is unable to predict discontinuous con-
stituents. The other systems are under no such
constraint; however, implicit linguistic knowledge
might be expected to result in a higher degree of
continuity, which we measure as follows:

1− |holes|
|inner-span|

where the span is the subsequence starting with
the first begin or inside tag and ending with the
last begin or inside tag; the inner-span is the span
without the boundary tags, and holes is the set of
outside tags within the span.

System Contiguity
RHS 84.5
KSG 82.0
BI 78.4

Table 4: Degree of token continuity

BI has a lower degree of token continuity than
the multi-task systems, RHS and SG. This sug-
gests that the multi-task architectures learn im-
plicit knowledge about linguistic constituency.

3.4 Matching Content
Anand and Hardt (2016) point out that, in sluic-
ing, “the wh-phrase must semantically cohere with
the main predicate of the antecedent”, which they
illustrate with example 4. Here S-3 is a more
likely antecedent than S-2 because increase is
more likely to take an implicit extent than predict.
In other words increase is a better match for how
much than predict is.

(4) . [S−3 Deliveries would increase as a re-
sult of the acquisition ] , [S−2 he predicted
] , but [S−1 he would not say by how much
]

To capture this information, Anand and Hardt
collect data on cooccurrences between wh-phrases
and main predicates, and based on this they calcu-
late a feature WHGOVNPMI, the Pointwise Mu-
tual Information (PMI) of the wh-phrase and the
main verb of each candidate. In general, the ad-
jacent candidate S2 would normally be preferred
by the AH system. But this could be overruled by
the fact that the non-adjacent candidate, S3, has a
higher value for the WHGOVNPMI feature.

We wish to explore whether the neural networks
can also take advantage of this information. While
the networks do not have access to the PMI in-
formation Anand and Hardt computed, they do
have access to embeddings for each input word,
and one might imagine that pairs with high PMI
would also tend to be closer in embedding space.
To see why we would expect that, consider that
Anand and Hardt collected statistics on overt WH-
constructions, where the WH-phrase and associ-
ated main predicate would co-occur in close prox-
imity, as in cases like how much it increased, or
why did they attack. Thus highly related such
pairs would tend to cooccur frequently within a
fairly small context window, while less related
pairs would not. The distances of word embed-
dings (such as Glove, used here), tend to reflect
such differences in cooccurence frequency.

To explore this, we examine cases where the
correct antecedent receives a comparatively high
WHGOVNPMI score, but where it is not adjacent
to the sluice (since adjacent antecedents tend to be
chosen as the default option). We define various
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thresholds for the WHGOVNPMI, and define the
subset of only those examples where the correct
antecedent receives a PMI score above that thresh-
old. These should be examples where the PMI
score provides a strong signal about the correct an-
tecedent, although the antecedent is not adjacent to
the sluice. We examine the F1 scores of the sys-
tems on these subsets. As we raise the threshold,
we would expect F1 scores to increase, if the sys-
tem is indeed making use of this information.

Figure 2 shows F1 scores as a function of PMI
score thresholds. For RHS and BI, we do observe
an increase of F1 scores as thresholds increase,
but this is not consistently the case for either AH
or KSG. It is difficult to draw any firm conclu-
sions here. While the plot does not show a consis-
tent pattern for the AH system, (Anand and Hardt,
2016) give feature ablation results that show that
the WHGOVNPMI does make a positive, although
modest, contribution. The plots here suggest that
the word embedding comparisons of the neural
networks might in fact contain more useful infor-
mation than the PMI statistics.

4 Probing the Networks

We probe the networks by examining particular
network states, posing three specific questions that
are fundamental to the sluice resolution task:

• How well does the network distinguish adja-
cent from non-adjacent antecedents?

• How well does the network notice the sluice
word?

• How well does the network remember the
sluice word, when the antecedent is encoun-
tered?

4.1 Classification of Adjacent vs.
Non-adjacent

We collect the final state activation for the network
for each instance, and divide these states into two
classes: in one class, the correct antecedent is ad-
jacent to the sluice, and in the other class it is not.
We perform logistic regression, using class bal-
ancing, with five-fold cross validation.

The MTL systems, RHS and KSG, score higher
than chance, while the single-task baseline is
a bit below chance. KSG performance signif-
icantly better than RHS; however, all networks
are close to chance. From Table 2, we saw that

System Adjacent
RHS 54.3
KSG 55.9
BI 48.0

Table 5: Accuracy of classifying adjacent an-
tecedents from non-adjacent antecedents.

all networks perform substantially worse on non-
adjacent sluices, which suggests the networks are
treating non-adjacent antecedents as if they were
adjacent.

4.2 Noticing the Sluice Word

The AH system uses input in which the sluice oc-
currence is explicitly marked. This is not the case
for the neural networks. Instead, a copy of the
sluice phrase is prefixed to the example. Ideally,
the neural network would remember this phrase
and locate its copy within the text. Then the sys-
tem would search for the antecedent in proximity
to the sluice phrase. The following example illus-
trates the representation for Example 1:

(5) why If this is not practical , explain why .

We term the first occurrence of why a prefixed
wh-word, and the second occurrence is an in-situ
wh-word. Wh-word occurrences that are neither
prefixed or in-situ, are termed other.

We collect all the activations associated with in-
situ wh-words. This is the positive class in our
classification task. Next we collect all activations
associated with wh-words occurring in the data,
when they are not sluice words. This constitutes
the negative class. We perform logistic regression,
again with class balancing. We want to see if the
network activations clearly distinguish the sluice
wh-words from other wh-words.

System Sluiced Wh-word
RHS 78.0
KSG 80.2
BI 76.6

Table 6: Accuracy of classifying wh-words in
sluiced and non-sluiced positions.

Results in Table 6 show that all three networks
are doing substantially better than chance. This
is interesting, since noticing the sluice wh-word
would seem to be a crucial first step in the sluice
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Figure 2: Minimum pointwise mutual information vs token-F1 score on those examples, only thresholds
with at least one hundred examples included in plot.

resolution task. We note further that the acti-
vations from both multi-task systems (KSG and
RHS) provide a better basis for classification than
the baseline BI. We suggest that the linguistic aux-
iliary tasks might explain this difference, since dis-
tinguishing the sluice word is facilitated by knowl-
edge of linguistic structure. It is, however, some-
what surprising that KSG performs better than
RHS on this task, since RHS does better on the
sluice resolution task, overall.

These classification results provide an indica-
tion that, in some sense, the networks are in-
deed noticing whether the wh-words appear in a
sluice or not. We suggest further that this is re-
flected quite directly in network activations. In
general, we suggest that the distance between a
word embedding and its associated activation pro-
vides a measure of how much the network no-
tices that word. Table 7 supports this idea; here,
we compare embedding and activation distances
for prefixed, in-situ and other wh-words. The re-
sults support the idea that in-situ wh-words are no-
ticed the most, as they are crucial to task of deter-
mining the antecedent. The prefix wh-word has
somewhat larger distances, while other wh-words,
which play no role is sluicing, have the highest dis-
tances. Furthermore, we note that the distances
suggest that the KSG system is “best” at noticing
the in-situ wh-word, while BI is worst. In Table

6 the accuracy of in-situ sluice word classification
follows the same ordering.

System other-wh in-situ prefix all
RHS 5.82 5.16 5.33 5.61
KSG 5.61 5.03 5.29 5.43
BI 6.32 5.31 5.61 6.11

Table 7: Average distance between embedding and
activation for same token.

4.3 Remembering Sluice Word at Antecedent

We have shown that the networks are able to dis-
tinguish adjacent from non-adjacent antecedents,
and they are also able to notice the sluice wh-word.
The next question is: Can the network draw a con-
nection between the sluice wh-word and the an-
tecedent? This is fundamental to the task of sluice
resolution – connecting the sluice occurrence with
the antecedent.

To address this question, we propose to measure
how well the sluice wh-word is “remembered” by
the network when the edge of the antecedent is
encountered. We compute the vector distance be-
tween the word embedding for the sluice wh-word
and the state associated with the token appearing
at the edge of the antecedent. We suggest that
this distance provides a metric of how much the
network remembers the wh-word, when the an-
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Forward Backward
System WH-Ant Dist. Avg. Dist. Normalized WH-Ant Dist. Avg. Dist. Normalized
RHS 6.34 10.72 0.59 6.22 11.52 0.54
KSG 5.07 9.47 0.54 5.33 11.08 0.48

BI 5.88 9.99 0.59 5.71 12.37 0.46

Table 8: Euclidean distance between the antecedent left boundary activation and avg. sluice word vector
representation. Distances compared to average Euclidean norm distance between word representations
and activations separated by the same number of tokens as the antecedent sluice pair.

tecedent is encountered. Table 8 shows the rele-
vant measurements, both for the forward and back-
ward directions of the each of the neural networks.
The column WH-Ant Dist gives the average vector
distance between the wh-word embedding and the
state vector when the antecedent is encountered.
The Avg. Dist. column gives a corresponding av-
erage over all token occurrences. Our intention is
to provide a relevant comparison to see if the wh-
word is remembered more than words are in gen-
eral. So the Avg. Dist. column has a weighted
average of the vector distances for all words, us-
ing the distribution of token distances seen for the
WH-Ant Dist values. Finally, the Normalized col-
umn is the ratio, WH-Ant Dist/Avg.Dist.

Overall, we see a strong effect of the networks
remembering the sluice word at the antecedent
site, to a much higher degree than an average word
is remembered. Furthermore, there is a difference
with directionality. Avg Dist is higher in the Back-
wards direction – in general, words are remem-
bered less when moving backwards. But WH-Ant
Dist. is lower in Backward, which makes sense,
since the system needs to keep track of the wh-
word to help identify the antecedent. There are
also modest differences among the three systems.

We would like to see how this develops over
time. Our hypothesis is that the neural networks
will remember the sluice word more at the point
where it is within the antecedent, and less when it
is outside the antecedent. We define four areas of
interest:

1. Between: tokens between the sluice and the
antecedent (Except the Right token)

2. Right: the token just to the right of the an-
tecedent

3. Ant: tokens within the antecedent

4. Left: the token just to the left of the an-
tecedent

In Figure 3, we can observe a modest effect
of the sort we hypothesized: distances are indeed
lower within the antecedent than in the other re-
gions, suggesting that the neural networks do in
fact have a stronger memory of the wh-word at that
point in the computation.

5 Conclusion

Ellipsis resolution is widely believed to require
sophisticated knowledge of linguistic structure.
Thus, it is interesting that the neural architectures
presented by Rønning et al. (2018), are able to
match and even surpass systems like that of Anand
and Hardt (2016), which rely on pre-parsed input
and linguistically engineered features. In this pa-
per, we investigated the linguistic knowledge im-
plicit in the neural models. We have done so in
two ways: (1) We have defined subsets of the data
based on adjacency, boundary tokens, discontinu-
ity, and matching content. In general, we have ob-
served that these linguistic factors clearly play a
role in the network performance, and there is fur-
ther evidence that the systems with MTL have a
higher degree of linguistic sophistication in their
performance, compared to a single task baseline
network. (2) We then examined the internal states
of the networks. Focusing on the wh-word of the
sluice, we have shown that the networks are sensi-
tive to the occurrence of the sluice wh-word. Fur-
thermore, we find some evidence that the networks
remember the wh-word more at the point where
the antecedent is encountered, compared to other
points in the computation.
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Abstract

Developing a method for understanding the in-
ner workings of black-box neural methods is
an important research endeavor. Convention-
ally, many studies have used an attention ma-
trix to interpret how Encoder-Decoder-based
models translate a given source sentence to the
corresponding target sentence. However, re-
cent studies have empirically revealed that an
attention matrix is not optimal for token-wise
translation analyses. We propose a method
that explicitly models the token-wise align-
ment between the source and target sequences
to provide a better analysis. Experiments show
that our method can acquire token-wise align-
ments that are superior to those of an attention
mechanism1.

1 Introduction

The Encoder-Decoder model with an attention
mechanism (EncDec) (Sutskever et al., 2014; Cho
et al., 2014; Bahdanau et al., 2015; Luong et al.,
2015) has been an epoch-making development that
has led to great progress in many natural language
generation tasks, such as machine translation (Bah-
danau et al., 2015), dialog generation (Shang et al.,
2015), and headline generation (Rush et al., 2015).
An enormous number of studies have attempted to
enhance the ability of EncDec.

Furthermore, several intensive studies have also
attempted to analyze and interpret the inside of
black-box EncDec models, especially how they
translate a given source sentence to the correspond-
ing target sentence (Ding et al., 2017). One typical
approach to this is to visualize an attention matrix,
which is a collection of attention vectors (Bahdanau
et al., 2015; Luong et al., 2015; Tu et al., 2016).

∗ This work is a product of collaborative research pro-
gram of Tohoku University and NTT Communication Science
Laboratories.

1Our code for reproducing the experiments is available at
https://github.com/butsugiri/UAM

The assumption behind this interpretation is that
the attention matrix has a “soft” token-wise align-
ment between the source and target sequences, and
thus we can use EncDec models to skim which to-
kens in the source are converted to which tokens in
the target.

However, recent studies have empirically re-
vealed that an attention model can operate not only
for token-wise alignment but also for other func-
tionalities, such as reordering (Ghader and Monz,
2017; Liu et al., 2016). In addition, Luong et al.
(2015) reported that the quality of attention matrix-
based alignment is quantitatively inferior to that of
the Berkeley aligner (Liang et al., 2006). Koehn
and Knowles (2017) also reported that attention
matrix-based alignment is significantly different
from that acquired from an off-the-shelf aligner
for English-German language pairs. From these re-
cent findings, the goal of this paper is to provide a
method that can offer a better interpretation of how
EncDec models translate a given source sentence
to the corresponding target sentence.

In this paper, we focus exclusively on the head-
line generation task, which is categorized as a lossy-
compression generation (lossy-gen) task (Nallapati
et al., 2016). Compared with a machine translation
task, which is categorized as a loss-less genera-
tion (lossless-gen) task, the headline generation
task additionally requires EncDec models to ap-
propriately select salient ideas in given source sen-
tences (Suzuki and Nagata, 2017). Therefore, the
lossy-gen task seems to make modeling by EncDec
much harder. In fact, our preliminary experiments
revealed that the attention mechanism in EncDec
models largely fails to capture token-wise align-
ments, e.g., less than 10 percent accuracy, even if
we use one of the current state-of-the-art EncDec
models (Table 3).

To obtain a better analysis of how EncDec mod-
els translate a given source sentence to the corre-
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sponding target sentence in the headline generation
task, this paper introduces the Unsupervised token-
wise Alignment Module (UAM), a novel compo-
nent that can be plugged into EncDec models. Un-
like a conventional attention model, the proposed
UAM explicitly captures token-wise alignments
between the source and target sequences on the
final hidden layer. One can plug the UAM into a
EncDec model during a training phase and easily
understand the EncDec model’s behavior by analyz-
ing the UAM’s token-wise alignments. Moreover,
the UAM does not require any gold alignment data.

To demonstrate the effectiveness of the UAM,
we evaluate EncDec models with the UAM in the
headline generation task (Rush et al., 2015), a
widely used benchmark for EncDec models. Our
experiments show that (i) EncDec models with a
UAM achieve comparable (or even superior) per-
formance to the current state-of-the-art headline
generation model, and (ii) the produced token-wise
alignment is practical regardless of the absence of
gold alignment during its training phase.

2 Headline Generation Task

We address the headline generation task introduced
in Rush et al. (2015). The source (input) is the first
sentence of a news article, and the target (output)
is the article’s headline. We say I and J represent
the numbers of tokens in the source and target,
respectively. An important assumption in headline
generation is that the target must be shorter than
the source (I > J).

Here, we denote a source sequence as sequence
X of one-hot vectors. Let xi ∈ {0, 1}Vs repre-
sent the one-hot vector of the i-th token in X ,
where Vs represents the number of tokens in the
source-side vocabulary Vs. We use x1:I to repre-
sent (x1, . . . ,xI); namely, X = x1:I . Similarly,
let yj ∈ {0, 1}Vt represent the one-hot vector of
the j-th token in target sequence Y , where Vt is
the number of tokens in the target-side vocabulary
Vt. Here, we define Y as always containing two
additional one-hot vectors of special tokens 〈bos〉
for y0 and 〈eos〉 for yJ+1, namely, Y = y0:J+1.

3 Encoder-Decoder Model with
Attention Mechanism (EncDec)

This section briefly describes EncDec as the base
model of our method2.

2Our EncDec configuration follows the model described
in Luong et al. (2015).

3.1 Model Definition

EncDec models the following conditional probabil-
ity:

p(Y |X) =
J+1∏

j=1

p(yj |y0:j−1,X). (1)

Encoder EncDec encodes the source one-hot
vector sequence x1:I and generates the hidden state
sequence h1:I , where hi ∈ RH for all i and H is
the size of the hidden state.

We employ bidirectional RNN (BiRNN) as the
encoder of the base model. BiRNN is composed of
two separate RNNs for the forward (

−−−→
RNNsrc) and

backward (
←−−−
RNNsrc) directions. The forward RNN

reads the source sequence X from left to right
and constructs hidden states (~h1:I). Similarly, the
backward RNN reads the input in the reverse order
to obtain another sequence of hidden states ( ~h1:I).
Finally, we take the summation of hidden states in
each direction to construct the final representation
of the source sequence (h1:I).

Concretely, for a given time step i, the represen-
tation hi is constructed as follows:

~hi =
−−−→
RNNsrc(Esxi, ~hi−1), (2)

~hi =
←−−−
RNNsrc(Esxi, ~hi+1), (3)

hi = ~hi + ~hi (4)

where Es ∈ RD×Vs denotes the word embedding
matrix of the source-side and D denotes the size of
word embedding.

Decoder The decoder is the unidirectional RNN
in the input-feeding approach (Luong et al., 2015).
Concretely, decoder RNN takes the output of the
previous time step yj−1, decoder hidden state ~zj−1
and final hidden state zj−1 to derive the hidden
state of current time step zj :

~zj =
−−−→
RNNtrg(Etyj−1, zj−1, ~zj−1), (5)

~z0 = ~hI + ~h1 (6)

where Et ∈ RD×Vt denotes the word embedding
matrix of the decoder. Here, z0 is defined as a zero
vector.

Attention Mechanism The attention architec-
ture of the base model is the same as that of the
Global Attention model proposed by Luong et al.
(2015). Attention is responsible for constructing
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the final hidden state zj from the decoder hidden
state ~zj and encoder hidden states (h1:I).

First, the model computes the attention vector
αj ∈ RI from the decoder hidden state ~zj and
encoder hidden states (h1:I). From among three
attention scoring functions proposed in Luong et al.
(2015), we employ a general function. This func-
tion calculates the attention score in bilinear form.
Specifically, the attention score between the i-th
source hidden state and the j-th decoder hidden
state is computed by the following equation:

αj [i] =
exp(h>i Wα~zj)∑I
i=1 exp(h

>
i Wα~zj)

(7)

where Wα ∈ RH×H is a parameter matrix, and
αj [i] denotes the i-th element of αj .
αj is then used for collecting the source-side

information that is relevant for predicting the target
token. This is done by taking the weighted sum on
the encoder hidden states:

cj =
I∑

i=1

αj [i]hi (8)

Next, the source-side information is mixed with
the decoder hidden state to derive final hidden state
zj . Concretely, the context vector cj is concate-
nated with ~zj to form vector uj ∈ R2H . uj is then
fed into a single fully-connected layer with tanh
nonlinearity:

zj = tanh(Wsuj) (9)

whereWs ∈ RH×2H is a parameter matrix.
Finally, zj is fed into the softmax layer. The

model generates a target-side token based on the
probability distribution oj ∈ RVt as

oj = softmax(Wozj + bo), (10)

where Wo ∈ RVt×H is a parameter matrix and
bo ∈ RVt is a bias term.

3.2 Training of EncDec
To train EncDec, let D be training data for head-
line generation, which consists of source-headline
sentence pairs. Let θ represent all parameters in
EncDec. Our goal is to find the optimal param-
eter set θ̂ that minimizes the following objective
function G0(θ) for the given training data D:

G0(θ) =
1

|D|
∑

(X,Y )∈D
`trg(Y ,X, θ),

`trg(Y ,X, θ) = − log
(
p(Y |X, θ)

)
. (11)

Target Pred.
(𝒐":$)

share prices exchange thursday .

london share <eos> <null> <null>

+ +

+ +

𝒙& 𝒒&

Sentence-wise Loss (Equation 18)

ℓ)*+	

Final Hidden
(𝒛":$)

Source Pred.
(𝒒":$)

Source
(𝑿)

Encoder-Decoder (EncDec)

UAM
Computation

Alignment
Pair

Figure 1: Overview of EncDec with UAM. UAM
predicts the probability distribution over the source
vocabulary qj at each time step j. After predicting
all the time steps, the SPM compares the sum of
the predictions q̃ with the sum of the source-side
tokens x̃ as an objective function `src.

Since oj for each j is a vector representation of the
probabilities of p(ŷ|y0:j−1,X, θ) over the target
vocabularies ŷ ∈ Vt, we can calculate `trg as

`trg(Y ,X, θ) = −
J+1∑

j=1

y>j · log
(
oj
)
. (12)

3.3 Inference of EncDec
In the inference step, we use the trained param-
eters to search for the best target sequence. We
use beam search to find the target sequence that
maximizes the product of the conditional proba-
bilities as described in Equation 1. From among
several stopping criteria for beam search (Huang
et al., 2017), we adopt the widely used “shrink-
ing beam” implemented in RNNsearch (Bahdanau
et al., 2015)3.

4 Proposed Method: Unsupervised
Alignment Module (UAM)

Figure 1 illustrates the proposed method, UAM.
UAM is the module attached on top of the decoder
output layer of an EncDec model, and it explicitly
represents a token-wise alignment by predicting
source tokens simultaneously with target tokens.

Specifically, during the training of EncDec, the
decoder estimates the probability distribution over
the source-side vocabulary, qj ∈ RVs , simulta-
neously with that of the target-side vocabulary,

3https://github.com/lisa-groundhog/
GroundHog
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oj ∈ RVt , for each time step j. In Figure 1, when
the decoder predicts the target-side token “share”,
we want to predict its corresponding source-side
token “share.” If we can correctly predict the cor-
responding source-side token for each target-side
token, we can obtain token-wise alignment. As
shown below, we can train the model for this pre-
diction without gold token-wise alignment signals.

This way of representing alignments can
be extended to 〈null〉 alignments. We first
expand a given target sequence with a se-
quence of 〈null〉s so that its length is the same
as that of the source sequence (in Figure 1,
we extend “london share. . . 〈eos〉” to “london
share. . . 〈eos〉〈null〉. . . 〈null〉”). We then train the
model so that it can predict a discarded source-
side token (e.g., “thursday”) when it predicts 〈null〉
for the target-side. Through the task of predicting
source-side tokens corresponding to 〈null〉s, we
expect the model to effectively learn to identify
unimportant information in the source sequence.

4.1 Model Definition

EncDec with UAM jointly estimates the probabil-
ity distributions over the source and target vocab-
ularies. Specifically, UAM estimates a probability
distribution over the source vocabulary qj ∈ RVs
at each time step j in the decoding process by:

qj = softmax(Wqzj + bq), (13)

where Wq ∈ RVs×H is a parameter matrix, zj ∈
RH is a decoder’s final hidden layer, and bq ∈ RVs
is a bias term. H is the size of the hidden state.
EncDec also calculates a probability distribution
over target vocabulary oj from the same vector zj .

Next, we define Y ′ as a concatenation of the one-
hot vectors of the target-side sequence Y and those
of the special token 〈null〉 of length I − (J + 1).
Here, yJ+1 is a one-hot vector of 〈eos〉, and yj
for each j ∈ {J + 2, . . . , I} is a one-hot vector
of 〈null〉. Note that the length of Y ′ is always no
shorter than that of Y , that is, |Y ′| ≥ |Y | because
headline generation always assumes I > J .

Based on this setting, we train the model in an un-
supervised manner without gold alignment signals.
To this end, we consider a sentence-wise loss func-
tion instead of token-wise loss. Specifically, we
define the sentence-wise loss as the degree of differ-
ence between the sum of all one-hot vectors in the
source sequence and the sum of UAM predictions.
Namely, we take the difference of x̃ =

∑I
i=1 xi

and q̃ =
∑I

j=1 qj . Note that x̃ is a vector rep-
resentation of the occurrences (or bag-of-words
representation) of the source-side tokens. To min-
imize sentence-wise loss, the model must predict
the bag-of-words representation. Through this opti-
mization, the model is expected to eventually find
the token-wise alignment.

EncDec with UAM models the following condi-
tional probability:

p(Y ′, x̃|X) = p(x̃|Y ′,X)p(Y ′|X). (14)

We define p(Y ′|X) as follows:

p(Y ′|X) =
I∏

j=1

p(yj |y0:j−1,X), (15)

which is identical to the conditional probability
modeled by the base EncDec, except for consid-
ering 〈null〉 as part of the probability. Next, we
define p(x̃|Y ′,X) as follows:

p(x̃|Y ′,X) =
1

Z
exp

(−‖q̃ − x̃‖22
C

)
, (16)

where Z is a normalization term and C is a hyper-
parameter that controls the sensitivity of the distri-
bution.

4.2 Training of UAM
We optimize the UAM combined with EncDec by
minimizing the negative log-likelihood of Equation
14 as a loss function. Let γ represent the parameter
set of SPM Then, we define the UAM loss `src as
follows;

`src(x̃,X,Y ′, γ, θ) = − log(p(x̃|Y ′,X, γ, θ))
(17)

From Equation 16, we can derive `src as

`src(x̃,X,Y ′,γ, θ) =
1

C
‖q̃ − x̃‖22 + log(Z).

(18)

We can discard log(Z) from the RHS, since it is
independent of γ and θ.

Here, we regard the sum of `src and `trg as an
objective loss function of multi-task training. For-
mally, we train EncDec with the UAM by minimiz-
ing the following objective function G1:

G1(θ, γ) =
1

|D|
∑

(X,Y )∈D

(
`trg(Y

′,X, θ)

+ `src(x̃,X,Y ′, γ, θ)
)
, (19)

where D is training data for headline generation,
which consists of source-headline sentence pairs.
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4.3 Inference of UAM

In the inference time, the goal is only to search for
the best target sequence. Thus, we do not need to
compute the UAM during the inference. Similarly,
it is unnecessary to produce 〈null〉 after generating
〈eos〉. Thus, we can utilize the beam search proce-
dure described in Section 3.3, and as a result the
actual computation cost for the inference remains
unchanged from the base EncDec.

5 Experiment

5.1 Dataset

The origin of the headline generation dataset used
in our experiments is identical to that used in Rush
et al. (2015). The dataset consists of pairs of the
first sentence of each article and its headline from
the annotated English Gigaword corpus (Napoles
et al., 2012). Rush et al. (2015) defined the train-
ing, validation and test splits, which contain ap-
proximately 3.8M, 200K and 400K source-headline
pairs, respectively

We used the entire training split for training as
in the previous studies. We randomly sampled 8K
instances as validation data and 10K instances as
test data from the validation split. Moreover, we
experimented on the test data provided by Zhou
et al. (2017) and Toutanova et al. (2016) for com-
parison with the reported state-of-the-art perfor-
mance (Zhou et al., 2017). We refer to those test
data sets as Test (Ours), Test (Zhou), and MSR-
ATC respectively. Among these test sets, MSR-
ATC is the only dataset created by a human worker.

5.2 Implementation Details

In the experiment, we selected the hyper-parameter
settings commonly used in previous studies
e.g., (Rush et al., 2015; Nallapati et al., 2016;
Suzuki and Nagata, 2017) We constructed the vo-
cabulary set using byte pair encoding4 (BPE) (Sen-
nrich et al., 2016) to handle low-frequency words,
since this is now a common practice in the field of
neural machine translation. The BPE merge oper-
ations are jointly learned from the source and the
target. We set the number of BPE merge operations
at 5, 000.

4https://github.com/rsennrich/
subword-nmt

Source Vocab. Size Vs 5131
Target Vocab. Size Vt 5131
Word Embed. Size D 200
Hidden State Size H 400

RNN Cell Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997)

Encoder RNN Unit 2-layer bidirectional-LSTM
Decoder RNN Unit 2-layer LSTM with attention (Luong

et al., 2015)

Optimizer Adam (Kingma and Ba, 2015)
Initial Learning Rate 0.001
Learning Rate Decay 0.5 for each epoch (after epoch 9)
Weight C of `src 10
Mini-batch Size 256 (shuffled at each epoch)
Gradient Clipping 5
Stopping Criterion Max 15 epochs with early stopping
Regularization Dropout (rate 0.3)
Beam Search Beam size 20 with the length normal-

ization

Table 1: Configurations used in our experiments

5.3 Evaluation Metric
We evaluated the performance by ROUGE-1 (RG-
1), ROUGE-2 (RG-2) and ROUGE-L (RG-L)5. We
report the F1 value as given in a previous study6.
We computed the ROUGE scores using the official
ROUGE script (version 1.5.5).

5.4 Results
To investigate the effectiveness of the UAM
quantitatively, we chose a very strong baseline,
SEASS (Zhou et al., 2017), which is the cur-
rent state-of-the-art model. We reimplemented
SEASS, hereafter EncDec+sGate, and compared
EncDec+sGate with the model incorporating UAM
into EncDec+sGate.

Table 2 summarizes ROUGE-F1 results
for all test data. The table shows that
EncDec+sGate+UAM achieved a huge gain
particularly for MSR-ATC and a performance
comparable to EncDec+sGate in Test (Ours) and
Test (Zhou). Considering that the MSR-ATC
dataset was created by a human worker, we believe
that the improvement in MSR-ATC is the most
remarkable result among the three test sets, since
it indicates that our model most closely fits the
human-generated summary.

6 Discussion

We investigated whether the UAM improves token-
wise alignment between the source and target se-

5We restored sub-words to the standard token split for the
evaluation.

6 ROUGE script option is: “-n2 -m -w 1.2”
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Test (Ours) Test (Zhou) MSR-ATC

Model RG-1 RG-2 RG-L RG-1 RG-2 RG-L RG-1 RG-2 RG-L

EncDec+sGate 46.80 24.48 43.74 46.79 24.75 43.62 29.73 15.45 27.30
EncDec+sGate+UAM† 46.91 24.86 43.87 46.89 24.93 43.68 32.32 17.02 29.76

SEASS (Zhou et al., 2017) - - - 46.86 24.58 43.53 25.75 10.63 22.90

Table 2: Full-length ROUGE F1 evaluation results. † is the proposed model.

quences. We compared the alignments acquired by
the UAM and the attention model, since attention
has been implicitly considered as alignment (Bah-
danau et al., 2015; Luong et al., 2015; Tu et al.,
2016).

6.1 Visualizing UAM and Attention

We visualized UAM prediction and the attention
matrix to see the acquired token-wise alignment be-
tween the source and target. Specifically, we fed the
source-target pair (X,Y ) to EncDec+sGate and
EncDec+sGate+UAM, and then collected UAM
predictions (q1:I ) of EncDec+sGate+UAM and the
attention vectors (α1:J ) of EncDec+sGate. We
computed the attention vectors using Equation 7.
For UAM prediction, we extracted the probability
of each token xi ∈X from q1:I .

Figure 2 and 3 show an example of the heat map.
We used Test (Ours) as the input. The brackets
in the y-axis represent the source-side tokens that
are aligned with target-side tokens. We obtained
the aligned tokens as follows: For attention (Fig-
ure 2a, 3a), we select the token with the largest
attention value. For the UAM (Figure 2b, 3b), we
select the token with the largest probability over
the vocabulary Vs.

Figure 2a indicates that attention provides poor
token-wise alignment. For example, the target-
side token “kong” is incorrectly aligned with the
source-side sentence period. In contrast, Fig-
ure 2b shows that the UAM captures reasonable
alignments. Here, the source-side token “rose” is
aligned with the target-side token “higher.” UAM
also correctly aligned unimportant tokens such as
“##.##” with 〈null〉.

In Figure 3a, the attention model repeatedly pays
attention to the source-side token “positive.” As a
result, the attention model aligned the target-side
token “egyptian” to “positive.” On the other hand,
in 3b, the UAM correctly aligns “egyptian.” In addi-
tion, the UAM aligned source-side token “foreign”
with target-side token “fm.”
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Figure 2: Visualization of models. The x-axis and
y-axis correspond to the source and the target se-
quence respectively. Tokens in the brackets are
source-side tokens aligned at that time step.

6.2 Alignment Accuracy

In order to quantitatively investigate the quality of
the alignment, we evaluated the alignment accuracy
of both EncDec+sGate and EncDec+sGate+UAM.

We randomly sampled 40, 30 and 30 instances
from Test (Ours), Test (Zhou) and MSR-ATC re-
spectively. We acquired the alignment of the data
by applying the UAM and the attention model, in
the same manner as described in Section 6.1. A
single annotator then evaluated the accuracy of the
alignment by hand.

Table 3 summarizes the results. The alignment
of the UAM is significantly more accurate than
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Model Test (Ours) Test (Zhou) MSR-ATC Overall

EncDec+sGate 8.60 5.97 6.11 6.71
EncDec+sGate+UAM 52.52 50.91 51.07 51.41

Table 3: Alignment Macro Accuracy (%)
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(b) UAM prediction of EncDec+sGate+UAM

Figure 3: Visualization of models. The x-axis and
y-axis correspond to the source and the target se-
quence respectively. Tokens in the brackets are
source-side tokens aligned at that time step.

that of the attention model. This result is consis-
tent with the empirical results reported by Koehn
and Knowles (2017) and Luong et al. (2015). The
attention alignment mistakes are mostly due to pay-
ing attention to either the sentence period or to the
token decoded in the previous time step. It is note-
worthy that the accuracy of the UAM alignment
exceeds 50% even though we trained the model in
an unsupervised manner. The fact that the UAM
prediction acquires reasonable alignment suggests
that the UAM has the potential to provide us a
better understanding of the model’s behavior.

7 Conclusion

In this paper, we introduced the Unsupervised
token-wise Alignment Module (UAM), which
learns to predict the token-wise alignment of to-
kens in the source and the target. Experiments on
the headline generation task showed that the UAM
can achieve comparable performance to the current
state-of-the-art sGate model. In addition, the UAM
obtained token-wise alignment that is superior to
that of the attention model. This finding suggests
we can use the UAM as an alternative to the atten-
tion matrix to attain a better understanding of the
token-wise alignment of EncDec-based model.
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Abstract

Understanding the behavior of a trained net-
work and finding explanations for its outputs
is important for improving the network’s per-
formance and generalization ability, and for
ensuring trust in automated systems. Several
approaches have previously been proposed to
identify and visualize the most important fea-
tures by analyzing a trained network. How-
ever, the relations between different features
and classes are lost in most cases. We pro-
pose a technique to induce sets of if-then-else
rules that capture these relations to globally
explain the predictions of a network. We first
calculate the importance of the features in the
trained network. We then weigh the original
inputs with these feature importance scores,
simplify the transformed input space, and fi-
nally fit a rule induction model to explain the
model predictions. We find that the output
rule-sets can explain the predictions of a neu-
ral network trained for 4-class text classifi-
cation from the 20 newsgroups dataset to a
macro-averaged F-score of 0.80. We make the
code available at https://github.com/
clips/interpret_with_rules.

1 Introduction

Deep, non-linear neural networks are notorious
for being black boxes, because the basis of a net-
work’s decision is unknown. Although some-
times we only care about better performance, un-
derstanding a trained model is important in many
cases. For example, when a statistical system is
used to take decisions regarding a patient’s health,
it is critical to know the underlying reasons. Caru-
ana et al. (2015) have previously discussed a rule-
based system that had associated the history of
asthma in patients suffering from pneumonia with
a lower risk of death due to it. Despite being coun-
terintuitive, it was a predictive pattern in the data
because the patients with asthma were admitted di-

rectly to the ICU and received more intensive care,
which resulted in better outcomes. Model inter-
pretability is also useful to understand the biases
in the data that influence its decision. For exam-
ple, explaining a trained model and its outputs can
bring attention towards a potentially unfair out-
come when a loan or a job opportunity is denied
to an individual due to any societal bias present in
the training data1,2. Another less discussed aspect
of model interpretability is its utility for analyz-
ing a model’s strengths and weaknesses. This un-
derstanding can assist with improving the model’s
performance and generalization ability (Andrews
et al., 1995).

Model interpretability techniques can either
have a global or a local scope. A global explana-
tion refers to the explanation of a complete model,
as opposed to local explanations of individual pre-
dictions. Several existing model-agnostic inter-
pretability techniques provide a list of important
features as explanations. In such a list, the infor-
mation about the interaction between different fea-
tures and their correspondence to the class is lost.
We propose a technique to understand the relations
between the input features and the class labels that
a trained supervised neural network captures. It
is therefore a mechanism for global interpretabil-
ity. We first weigh the input features with their im-
portance in a trained network. We then select the
best features according to the training set, and sim-
plify them to discrete features that represent either
a positive, a negative, or no correlation between
a high feature value and a class label. We per-
form this step to limit the complexity of the out-
put rules and make them easily understandable by

1https://obamawhitehouse.archives.
gov/sites/default/files/microsites/ostp/
2016_0504_data_discrimination.pdf

2http://www.cs.toronto.edu/˜madras/
presentations/fairness-ml-uaig.pdf
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humans. We use this smaller, transformed input
space to induce rules that best explain the model’s
predictions. We evaluate the technique on a sim-
ple text categorization problem to clearly illustrate
its operation and results. We find that the output
rules have a macro-averaged F-score 0.80 when
explaining the predictions of a feedforward neu-
ral network trained to classify a subset of docu-
ments from the 20 newsgroups dataset3 into those
about either ‘Medicine’, ‘Space’, ‘Cryptography’,
or ‘Electronics’.

2 Related Work

There has been a lot of recent interest in mak-
ing machine learning models interpretable. Differ-
ent approaches can be broadly grouped under two
headings—1) the use of interpretable models, and
2) model-agnostic interpretability techniques. In
the first case, the choice of machine learning meth-
ods is limited to the more interpretable models
such as linear models and decision trees (Molnar;
Caruana et al., 2015). The drawback of incorporat-
ing model interpretability through specific model
choices is that these models may not perform well
enough for a given task or a given dataset. To
overcome this, the second set of approaches try to
explain either a complete model, or an individual
prediction by using the input data and the model
output(s). Several approaches involve manipula-
tion of the trained network to identify the most
significant input features. In some cases, the in-
put features are deleted one by one, and the corre-
sponding effect on the output is recorded (Li et al.,
2016b; Avati et al., 2017; Suresh et al., 2017).
The features that cause the maximum change in
the output are ranked the highest. Another com-
putational approach uses gradient ascent to learn
the input vector that maximizes a given output in
a trained network (Erhan et al., 2009; Simonyan
et al., 2013). In some other cases, the gradient of
the output with respect to the input is computed,
which corresponds to the effect of an infinitesimal
change of the input on the output (Engelbrecht and
Cloete, 1998; Simonyan et al., 2013; Aubakirova
and Bansal, 2016; Sushil et al., 2018). Another ap-
proach computes feature importance using layer-
wise relevance propagation (LRP) (Bach et al.,
2015; Montavon et al., 2017; Arras et al., 2017),
which has been shown to be equivalent to the prod-

3http://scikit-learn.org/stable/
datasets/twenty_newsgroups.html

uct of the gradient value and the input (Kinder-
mans et al., 2016). Sometimes the importance of
a feature is analyzed by setting its value to a ref-
erence value, and then backpropagating the dif-
ference (DeepLIFT) (Shrikumar et al., 2017). In
another approach, a separate ‘explanation model’
is trained to fit the predictions of the original
model (Ribeiro et al., 2016; Lundberg and Lee,
2017; Lakkaraju et al., 2017). In an informa-
tion theoretic approach, the mutual information
between feature subsets and the model output is
approximated to identify the most important fea-
tures, similar to feature selection techniques (Chen
et al., 2018). For recurrent neural networks with an
attention mechanism, attention weights are often
used as feature importance scores (Hermann et al.,
2015; Yang et al., 2016; Choi et al., 2016). Poerner
et al. (2018) have investigated several of the pre-
viously discussed techniques and have found LRP
and DeepLIFT to be the most effective approaches
for explaining deep neural networks in NLP.

Most of the above-mentioned techniques output
a ranked list of the most significant features for a
model. Several approaches, especially when the
input is an image, visualize these features as im-
age segments (Erhan et al., 2009; Simonyan et al.,
2013; Olah et al., 2018). These act as visual cues
about the salient objects in an image for the clas-
sifier. However, such visual understanding is lim-
ited when we use either structured or textual input.
Heatmaps are often used to visualize interpreta-
tions of text-based models (Hermann et al., 2015;
Li et al., 2016a,b; Yang et al., 2016; Aubakirova
and Bansal, 2016; Arras et al., 2017). However,
the interaction between different features and their
relative contribution towards class labels remains
unknown in this qualitative representation. To
overcome this limitation, in the same vein as our
work, rule induction for interpreting neural net-
works has been proposed (Andrews et al., 1995;
Lakkaraju et al., 2017). Thrun (1993) have pro-
posed a technique to find disjunctive rules by iden-
tifying valid intervals of input values for the cor-
rect classification. Intervals are expanded start-
ing with the known values for instances. Lakkaraju
et al. (2017) use the input data and the model pre-
dictions to learn decision sets that are optimized to
jointly maximize the interpretability of the expla-
nations and the extent to which the original model
is explained.

In our approach, we aim to generate a set of if-
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then-else rules that approximate the interaction be-
tween the most important features and classes for
a trained model. As opposed to Lakkaraju et al.
(2017), before learning an explanation model, we
modify the input data based on the importance of
the features in the trained network. In doing so, we
already encode some information about the net-
work’s performance within these input features.

3 Methodology

We are interested in identifying the if-then-else
rules between different input features and class la-
bels that are captured by a trained network to an-
alyze the features that are the most important for
classification according to the model. The insight
gained in this manner can facilitate model under-
standing and error analysis. These rules should re-
flect and mimic a network’s behavior for generat-
ing its output and may not correspond to human
intuitions about a task, or expectations about what
a network would learn. We focus on learning the
rules that explain an entire model, as opposed to
a single prediction. Our proposed technique com-
prises of these main steps:

1. Input saliency computation (§ 3.1)

2. Input transformation and selection (§ 3.2)

3. Rule induction (§ 3.3)

The entire pipeline is depicted in Figure 1.

3.1 Input saliency computation
As the first step in the pipeline, we compute the
contribution of the input features towards the pre-
dicted output in a trained network. This gives us
the importance of different features in the network.
For this, we record the change in the predicted
output on modifying the input features infinitesi-
mally; i.e., for every test instance j, we compute
the gradient of the predicted output o(j)m (where m
is the predicted output class for that instance) w.r.t.
all the K input features i

(j)
k , k = 1...K. We get

a saliency map similar to Simonyan et al. (2013),
where the saliency S of the kth input feature for
the jth instance is defined as

S
(j)
k =

∂o
(j)
m

∂i
(j)
k

.

Here, m, which is the predicted output class for
that instance among all possible n output classes,
is computed as

Figure 1: Pipeline for rule induction for global
model interpretability.

m(j) = argmax
n

(o(j)n ).

The higher the absolute value of the gradient
S
(j)
k , the greater the importance of the feature k

in the instance j for the predicted class. Here, a
positive sign of the saliency score indicates that
the feature is positively correlated with the prob-
ability of the output class, a negative sign shows
an inverse correlation, and a value of 0 shows that
there is no effect of the feature on the predicted
output class for that instance.

3.2 Input transformation and selection

Once we have obtained the saliency scores S
in § 3.1, we multiply these scores with the origi-
nal inputs. Hence, we get transformed input data
I ′, where the input values have been reweighed ac-
cording to their importance in the trained network.
This corresponds to step 2 in Figure 1.

We then reduce the transformed input data I ′ to
their sign. This is the 3rd step in the figure. This
gives us a set of discrete features I ′s ∈ {−1, 0, 1}.
The value -1 indicates that the feature is highly
negatively correlated with the class, i.e., a higher
feature value decreases the probability of the out-
put class. The value 1 indicates that the feature
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is highly positively correlated with the class, i.e.,
a higher value of that feature increases the proba-
bility of the output class. 0 may mean either that
the feature is absent for the document, or that it
is not important for the output class4. We perform
this sign reduction step because the rule conditions
with these discrete feature values are more inter-
pretable and readable than those containing con-
tinuous reweighed vector values.

We then keep only the top 1000 features in the
trained network, represented by step 4 in the fig-
ure. We restrict the feature space to reduce the
complexity of the rule induction step. We use ei-
ther an unsupervised technique—sensitivity anal-
ysis, or the mutual information between the inputs
I ′s and the corresponding training labels. The first
technique uses only the gradient values to find the
most important features, whereas the second su-
pervised technique makes use of both the trans-
formed inputs I ′s and the labels for this purpose.

• Sensitivity analysis

For feature selection using sensitivity analy-
sis (Engelbrecht and Cloete, 1998), we first
compute the gradients of all the output nodes
with respect to all the input features for all the
instances. We then aggregate these gradient
values across the instances by taking a root
mean square value. The squaring ensures that
negative and positive effects of a feature are
treated in an equivalent manner. Hence, we
obtain the overall importance scores of all
the features for every output node in the net-
work. Now, we use the maximum importance
of the features across all the output nodes as
the significance of the features in the trained
network. The features with the highest sig-
nificance scores are then selected as the top
features. Hence, the method uses only the
trained network weights and the original in-
put data for feature selection. It does not
make use of the labels for the instances and is
hence an unsupervised technique for select-
ing the most important features in a trained
neural network.

• Mutual information

In this step, we identify the top features using
4We have two interpretations for 0 because we take a

product of the gradients and the input feature values. 0 value
of either of these two terms could transform the final value to
0.

mutual information between the reweighed
features I ′s (computed as the product of gradi-
ents and the original inputs, and then reduced
to the corresponding sign), and the labels in
the training data.

3.3 Rule induction
We train a rule induction model on the transformed
features I ′s obtained as a result of the previous step
(§ 3.2) to fit the output predictions of the origi-
nal model. For multi-class problems, we induce
the rules in a one-vs-rest manner where the rules
for explaining every individual class are found one
at a time. This gives us separate discriminatory
rules for all the classes. Separate rule-sets for in-
dividual classes are more interpretable compared
to an ordered set of rules for multiple classes at
once. In the latter case, we often need to take
into account the rules that have been first learned
for other classes to interpret the rules for the class
we are interested in, which increases its complex-
ity, especially when we have a large number of
classes.

RIPPER-k
We use the implementation of the rule induction
algorithm RIPPER-k (Cohen, 1995) in Weka (Hall
et al., 2009) (JRIP). The algorithm generates a set
of if-then-else rule by first overfitting the condi-
tions on a growing set, and then pruning them
based on their performance on a pruning set.
These rules are learned in one-vs-rest manner in
order of increasing class prevalence, where the fi-
nal else condition covers the majority class.

In the growing phase, starting with an empty set,
the algorithm adds conditions that test the values
of discrete and continuous features in the dataset
to attribute them to the corresponding class. For
example, given two input features f1 and f2, the
algorithm checks if the concerned class is covered
by the rules f1 = d1, f2 ≤ c1 or f2 ≥ c1, where
d1 is a valid value of the nominal feature f1, and
c1 is the value of a continuous feature f2 that oc-
curs in the training data. The conditions are added
repeatedly to maximize an information gain cri-
terion. Next, the final sequence of the obtained
conditions are removed one at a time to increase
the generalization of the rule on the pruning set.
When deleting conditions does not improve the er-
ror rate any more, pruning is terminated. Thereby,
the instances covered by the rule are removed, and
the process is repeated for the rest of the instances,
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until more than half of the instances covered by a
rule in the pruning data are incorrect.

4 Experimental Details

4.1 Data

We use the documents related to ‘Space’,
‘Medicine’, ‘Electronics’ and ‘Cryptography’
from the 20-newsgroups dataset for text classifi-
cation. We limit ourselves to 4 classes under the
‘Science’ category to reduce experimental com-
plexity. There are approximately 535 training in-
stances, 60 development instances, and 395 test in-
stances for every category. The development set
is used for optimizing the model we want to ex-
plain. We featurize the data as a bag-of-words with
TF-IDF values after removing headers, signature
blocks, quotation blocks and stopwords. We get
30,346 input features in this manner.

4.2 Model to be explained

We explain a feedforward neural network that has
been trained for 4-class text classification. The
neural network has 2 hidden layers with 100 units
each, ReLU activation function for these layers,
and a softmax output layer. It has been optimized
using the Adam optimizer (Kingma and Ba, 2014)
for 50 epochs to minimize the cross entropy loss.
We get a macro-averaged F-score of 0.82 on the
test set.

4.3 Metrics

Fidelity refers to the extent to which an inter-
pretability technique explains the original model.
It can be expressed using many different met-
rics. We quantify fidelity as the macro-averaged
F-score of predicting the output of the model that
is being explained using the rules that are induced
by the explanation technique. The F-scores for the
individual classes obtained in the one-vs-rest man-
ner are averaged to compute this overall fidelity.

4.4 Hyperparameter optimization

We found that the rules induced using RIPPER-
k are sensitive to its hyperparameters, especially
to the minimum number of correctly covered in-
stances and the seed value chosen for random-
izing the instances, particularly when the dataset
is small. To account for the variation, we run
RIPPER-k with 50 different seed values, and the
value of the minimum number of instances posi-
tively covered by a rule ranging between 2 and the

number of instances of the class being explained.
For each run, we compute the macro-averaged F-
score for explaining the predictions of the neural
network. In doing so, we obtain a standard de-
viation of around 10%, 18%, 17% and 14% for
the classes ‘Space’, ‘Medicine’, ‘Electronics’, and
‘Cryptography’ respectively. This shows that it is
important to find an optimum performance over
several runs.

We select the rule-set that results in the maxi-
mum score, and hence is the one that explains the
original model predictions the best among the pos-
sible alternatives. We select the rule-set with the
maximum score instead of the most generalizable
RIPPER-k model because we are not interested in
transferring the rules to unknown tasks. If we do
not ensure that the learned rules approximate the
patterns in the original model to the best possi-
ble extent, it remains unclear whether an unintu-
itive rule-set is obtained because of the parame-
ters of RIPPER-k, or because our neural network
has poor explanations. We compare different rule-
sets with high F-scores to verify their consistency,
which has been discussed in § 5.2.

5 Results and Discussion

5.1 Rules as explanations

We obtain a fidelity score of 0.80 using the
proposed technique when the features are pre-
selected using the mutual information (MI) score
between the transformed inputs and the output la-
bels. Hence, the learned set of if-then-else rules
can explain the output of our neural network for
4-class text classification to an F-score of 0.80.
The precision, recall, and F-scores for individual
classes is presented in Table 1. The precision of
the rules is high, which shows that the rules, if in-
duced, are reliable. The largest F-score of 0.90
is obtained for the class space, and the lowest F-
score of 0.75 is obtained for the classes electron-
ics and cryptography. On analyzing the rule-sets
obtained for different classes, we see that the com-
plexity of the rules for the space class is lower than
that of electronics. For space classification, single
terms are often indicative of the correct class. On
the other hand, for electronics and cryptography
classes, the rules often consist of multiple words,
which are jointly used to discriminate between
different classes. This suggests that cryptogra-
phy and electronics are more confusable classes,
which is also reflected in their lower F-scores.
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Text class MI SA
P R F P R F

Space 0.99 0.82 0.90 0.99 0.76 0.86
Medicine 0.94 0.68 0.79 0.92 0.70 0.79
Electronics 0.89 0.64 0.75 0.92 0.63 0.75
Cryptography 0.97 0.61 0.75 0.99 0.61 0.75
Macro-average 0.95 0.69 0.80 0.96 0.68 0.79

Table 1: Precision (P), Recall (R), and F-score (F) when explaining neural network predictions using the
induced rules with features selected using mutual information (MI) and sensitivity analysis (SA).

The results with MI feature selection are com-
parable to those obtained using sensitivity analy-
sis feature selection, presented in Table 1 as well.
The observed patterns in the corresponding rule
sets are also very similar. Hence, we only present
the rules induced using MI feature selection, and
those using sensitivity analysis can be found in the
Appendix.

Now, in Figure 2, we present the rules that ex-
plain the predictions of the neural network for the
electronics class. The coverage of the individual
rules in these sets is also reported in the format
a/b, which means that the rule covers b instances
in the dataset, out of which a instances are cor-
rectly covered. A higher value of b suggests that a
rule is more generalized, especially if it is higher
up in the hierarchy where it has more instances of
the correct class to its disposal. The value of a/b
should be used to assess how trustworthy a rule is,
with lower values indicating less trustworthiness.
On inspecting the gradients, we found that the gra-
dient value was 0 only for one feature for one in-
stance in the test set. This feature is not present in
the induced rules. Hence, in these rules, the fea-
ture value of 0 has only one interpretation—the ab-
sence of the feature. The rules for the other classes
can be found in the Appendix.

There are several rules which associate class-
specific content words with the corresponding
class. In complex rules, we find several terms that
are used to identify the electronics class by exclud-
ing the likelihood of the other classes. For exam-
ple, in the rule:

(1) (people = 0) and (used = 1) and (key = 0)
and (don = 0) and (use = 0) and (edu =
0) and (medication = 0) and (concept = 0)
and (did = 0) =⇒ electronics

the absence of the term medication is used to rule

out the possibility of the medicine class, the ab-
sence of the term key is used to rule out the possi-
bility of the class cryptography. Hence, the model
uses an elimination strategy in combination with
class-relevant features for its predictions.

One of the rules learned for the class space is:

(2) (idea = 1) and (probably = -1) =⇒ space

This rule, which is matched after some other rules5

with higher coverage, covers 3 correct and 0 in-
correct instances. The value of -1 associated with
probably in conjunction with 1 for idea shows that
a low score of probably, combined with a high
score of idea corresponds to the class space. Simi-
larly, in Figure 2, we often see that the presence of
the word just reduces the probability of electronics
class. Similar associations can be observed in the
rule:

(3) (don = -1) and (just = -1) =⇒ medicine

where the presence of don’t6 and just reduces the
probability of the medicine class. This rule covers
4 positive and 0 negative examples. These rules
show that function words, which may hint towards
terms related to modality, are often important for
the network to classify the class of the text docu-
ments.

In Figure 3, we present the most important
features for the same model, as generated by
SHAP (Lundberg and Lee, 2017). This is a
state-of-the-art tool that unifies several popular ap-
proaches for model interpretability. The top fea-
tures presented here overlap with the features we
identify using our technique. However, the inter-
action between these features is not obvious from
the figure. It is possible to generate an interac-

5The complete rule set can be found in the Appendix.
6don’t is tokenized as don and ’t, and the mention of don

is found in the rule.
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if (just = -1) and (use = 1) =⇒ electronics (24/24)
elif (circuit = 1) =⇒ electronics (32/32)
elif (just = -1) and (don = 1) =⇒ electronics (11/11)
elif (people = 0) and (used = 1) and (key = 0) and (don = 0) and (use = 0) and (edu = 0) and (medication
= 0) and (concept = 0) and (did = 0) =⇒ electronics (36/43)
elif (electronics = 1) =⇒ electronics (17/18)
elif (battery = 1) =⇒ electronics (23/23)
elif (radio = 1) and (shack = 1) =⇒ electronics (9/9)
elif (people = 0) and (thanks = 1) and (advance = 1) =⇒ electronics (12/14)
elif (signal = 1) =⇒ electronics (13/15)
elif (people = 0) and (company = 1) and (just = 0) =⇒ electronics (13/18)
elif (pc = 1) =⇒ electronics (16/19)
elif (people = 0) and (use = 1) and (just = 0) and (good = 0) and (clipper = 0) and (probably = 0) and
(center = 0) and (unless = 0) and (18084tm = 0) and (algorithms = 0) =⇒ electronics (29/33)
elif (appreciated = 1) and (time = 0) =⇒ electronics (11/16)
elif (voltage = 1) =⇒ electronics (8/8)
elif (program = -1) =⇒ electronics (10/15)
else: others (1134/1281)

Figure 2: Set of if-then-else rules that explain the predictions of the neural network for the ‘electronics’
class when using mutual information feature selection. Here the discrete test value 1 means a positive
correlation between a feature value (which we can approximate to relative frequency due to the use of
TF-IDF vectors) and the probability of the class, -1 means a negative correlation, and 0 shows an absence
of a feature. The values (a/b) mean that a of b instances covered by the rule are correct. The rules with
lower values of a/b are less trustworthy, and the rules with lower value of b, especially in the first few
conditions, are less generalized.

Figure 3: Feature importance estimation using
SHAP for model interpretability.

tion plot in SHAP, where the interaction between
different features is visualized. However, only a
few features can be compared against each other
in this manner without making the process expen-
sive. These interactions are not understandable
without extensive analysis. The technique we pro-
pose instead manages to capture the associations
between features and classes, alleviating the need
for these complex visualizations to understand the

model.

Next, in Figure 4a, we present the if-then-else
rules that have been induced from the training data
using the original input and the gold labels, to give
an idea about the relations between features and
classes that we would expect the model to pick
up from the data. In Figure 4b, we compare them
with the feature-class associations that are instead
captured by the trained network. These have been
identified by using the transformed input space for
rule induction, also to explain gold labels. Al-
though the rules in these ordered sets are not di-
rectly comparable, we see that there are three ex-
actly matching rules in the two sets (ignoring the
order) and several common feature conditions. In
these cases, the patterns in the training data are
approximated by the network. We find that the
rules fit on the network-transformed training data
have a 2% higher macro averaged F-score com-
pared to those on the original data. This suggests
that the generalization brought about by the net-
work assists in rule induction for this dataset on
these tasks.
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if (circuit = 1) =⇒ electronics (53/55)
elif (people = 0) and (electronics = 1) =⇒ electronics (31/34)
elif (people = 0) and (power = 1) and (time = 0) and (research = 0) and (years = 0) =⇒ electronics
(43/55)
elif (people = 0) and (thanks = 1) and (used = 1) and (particular = 0) =⇒ electronics (12/14)
elif (people = 0) and (space = 0) and (voltage = 1) =⇒ electronics (22/22)
elif (people = 0) and (motorola = 1) =⇒ electronics (16/19)
elif (people = 0) and (space = 0) and (line = 1) and (encryption = 0) and (med = 0) and (doesn = 0)
and (case = 0) =⇒ electronics (28/39)
elif (people = 0) and (space = 0) and (wire = 1) =⇒ electronics (14/18)
elif (space = 0) and (people = 0) and (1174 = 1) =⇒ electronics (9/9)
elif (amp = 1) =⇒ electronics (13/14)
elif (just = 0) and (space = 0) and (8051 = 1) =⇒ electronics (8/8)
else: others (1565/1848)

(a) The rules induced on the original training data that point towards the associations in the data that we would expect the
neural network to capture.

if (circuit = 1) =⇒ electronics (53/53)
elif (people = 0) and (power = 1) and (time = 0) and (national = 0) =⇒ electronics (48/63)
elif (people = 0) and (electronics = 1) =⇒ electronics (27/28)
elif (people = 0) and (voltage = 1) =⇒ electronics (22/23)
elif (people = 0) and (space = 0) and (line = 1) and (want = 0) and (government = 0) and (block = 0)
and (years = 0) and (amateur = 0) and (cell = 0) =⇒ electronics (28/33)
elif (people = 0) and (space = 0) and (advance = 1) =⇒ electronics (18/26)
elif (people = 0) and (motorola = 1) =⇒ electronics (16/16)
elif (people = 0) and (space = 0) and (wire = 1) and (digital = 0) =⇒ electronics (14/14)
elif (think = 0) and (buy = 1) and (government = 0) =⇒ electronics (14/21)
elif (people = 0) and (space = 0) and (uucp = 1) =⇒ electronics (10/12)
elif (space = 0) and (government = 0) and (amp = 1) =⇒ electronics (13/15)
elif (people = 0) and (space = 0) and (8051 = 1) =⇒ electronics (8/8)
else: others (1562/1823)

(b) The rules induced on the training data transformed according to the network weights. These point towards the asso-
ciations that the network actually captures, as opposed to those we expect it to capture. To find these rules, we compute the
gradients of the output of the corresponding gold label class w.r.t. the input features, instead of taking the gradients of the output
predictions.

Figure 4: The rules induced on the training data to fit the gold labels.

5.2 Consistency of the induced rule-sets

As we discussed in § 4.4, it is important to opti-
mize the hyperparameters of RIPPER-k to find an
optimum set of rules because we obtain high stan-
dard deviations of the fidelity scores of explana-
tions across different hyperparameters. Addition-
ally, if several sets of explanations have high fi-
delity scores, they should also be consistent with
each other. To this end, we analyze multiple rule-
sets with high fidelity scores to check whether they
are similar to each other. For this comparison,
we identify all the sets of rules whose F-scores
lie within 1% of the F-score of the best model.
However, a comparison between different sets of

ordered rules is not trivial. We calculate the mean
percentage of the exactly matching rules between
the well-performing models and the final selected
set of rules, when these sets are assumed to be un-
ordered. This score penalizes the rules that match
partially as being a mismatch, which makes it a
strict metric for sets with longer rules. In this
process, we get the scores in the range 50%–79%
using MI, and 48%–90% using sensitivity analy-
sis feature selection techniques. We find that the
classes with high fidelity scores also have high rule
overlap, and vice versa. This suggests that differ-
ent models that explain less confusable classes are
also more consistent across different parameters.
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We additionally calculate the mean percentage of
the instances that have been classified identically
by the well-performing models and the final se-
lected model to facilitate a semantic comparison.
We find that the classification overlap between dif-
ferent models ranges from 94%–97% when using
MI feature selection, and 93%–98% with sensitiv-
ity analysis feature selection. The exact numbers
can be found in the Appendix.

6 Limitations

While the advantage of using a rule inducer like
RIPPER-k lies in gaining insight into feature-class
associations, the approach has its own drawbacks.
RIPPER-k outputs rules according to class preva-
lence. Hence, the majority class only has an ‘else’
clause associated with it. Furthermore, only the
default rule is fired when there is just one class
in the dataset. Hence, this technique is unsuitable
for one-class problems, and when the class we are
interested in is the majority class in the one-vs-
rest binary setup. Moreover, if several features
frequently co-occur and infrequently occur with-
out each other, this technique may find only one
of them.

Next, the proposed technique is a global expla-
nation technique that can be used to identify the
if-then-else rules that explain a model as a whole.
However, using this technique, we can not obtain
such rules for explaining only a single instance.

Finally, the learned rules are sensitive to some
parameters in RIPPER-k. As discussed earlier, we
overcome this limitation by optimizing the perfor-
mance over different parameters. However, this
step reduces the speed of finding explanations.

7 Conclusions and Future work

In this paper, we have proposed a technique to
learn if-then-else rules to explain the predictions
of supervised models. We have first computed the
gradients of the output predictions with respect to
the input features for every instance. We have
then rescaled these gradients to feature weights,
and have multiplied them with the original inputs
to learn reweighed inputs for every instance. We
have then simplified them to a set of 1000 trans-
formed features with discrete values. Finally, we
have induced rules that combine these features
into rule conditions for every class in the data sep-
arately. We have found that the induced rules can
explain the predictions of our classifier to a macro-

averaged F-score of 0.80. We have shown that
these rules can be used to understand a model’s
behavior and output predictions.

In future, we plan to evaluate the proposed tech-
nique on different datasets to compare the fidelity
scores of the explanations across datasets with dif-
ferent complexities. We would also like to com-
pare our work with other techniques for inducing
rules as explanations. It would also be interesting
to investigate other rule induction algorithms that
can support one-class problems, and that are less
sensitive to parameters such as shuffling of data to
overcome the limitations present due to the use of
RIPPER-k.
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A Appendix

In Table 2, we present the mean percentage of
the exact match between different rule-sets out-
put by several good models obtained with differ-
ent RIPPER-k parameters, compared to the rule-
set we finally selected. In the same table, we
also present the mean percentage of instances that
have been classified by different models identi-
cally as the model we finally selected. Further-
more, in Figure 5, we present the rules induced
after performing feature selection using sensitiv-
ity analysis to explain the predictions of the neural
network on the test data. In Figure 6, we present
the rules induced when we instead use mutual in-
formation for feature selection to explain the same
predictions.
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Text class MI SA
Rule match Classification match Rule match Classification match

Space 79% 97% 90% 98%
Medicine 63% 96% 68% 94%
Electronics 52% 94% 57% 93%
Cryptography 50% 97% 48% 97%

Table 2: Mean exact match between unordered set of rules from several good models obtained with
different parameters of RIPPER-k and the selected model for every class, and the mean classification
overlap between them.

if (just = -1) and (use = 1) =⇒ electronics (24/24)
elif (just = -1) and (like = 1) =⇒ electronics (14/14)
elif (circuit = 1) =⇒ electronics (32/32)
elif (electronics = 1) =⇒ electronics (24/25)
elif (battery = 1) =⇒ electronics (22/22)
elif (people = 0) and (used = 1) and (way = 0) and (clipper = 0) and (space = 0) and (good = 0) and
(fairly = 0) and (drug = 0) =⇒ electronics (38/48)
elif (line = 1) and (space = 0) and (encryption = 0) and (clipper = 0) and elif (medical = 0) and (doctor
= 0) =⇒ electronics (20/20)
elif (people = 0) and (thanks = 1) and (advance = 1) and (long = 0) =⇒ electronics (10/10)
elif (people = 0) and (voltage = 1) =⇒ electronics (10/11)
elif (company = 1) and (medical = 0) and (order = 0) and (minutes = 0) and elif (clipper = 0) =⇒
electronics (19/23)
elif (pc = 1) and (security = 0) =⇒ electronics (12/12)
elif (think = -1) and (didn = -1) =⇒ electronics (5/5)
elif (people = 0) and (cheap = 1) =⇒ electronics (10/14)
elif (just = 0) and (motorola = 1) =⇒ electronics (6/6)
elif (just = 0) and (tape = 1) =⇒ electronics (6/7)
elif (end = -1) =⇒ electronics (7/10)
else: others (1144/1296)

(a) Rules for the electronics class
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if (medical = 1) =⇒ medicine (55/55)
elif (doctor = 1) =⇒ medicine (38/38)
elif (cause = 1) and (time = 0) =⇒ medicine (30/35)
elif (disease = 1) =⇒ medicine (17/17)
elif (body = 1) =⇒ medicine (25/31)
elif (med = 1) =⇒ medicine (14/14)
elif (effects = 1) and (space = 0) =⇒ medicine (17/21)
elif (like = -1) and (time = 1) =⇒ medicine (7/7)
elif (don = 0) and (skin = 1) =⇒ medicine (7/7)
elif (photography = 1) =⇒ medicine (13/13)
elif (cancer = 1) =⇒ medicine (8/8)
elif (surgery = 1) =⇒ medicine (8/8)
elif (pain = 1) =⇒ medicine (6/8)
elif (allergic = 1) =⇒ medicine (7/7)
elif (water = 1) and (make = 0) =⇒ medicine (9/13)
elif (left = 1) and (use = 0) =⇒ medicine (7/9)
elif (don = 0) and (blood = 1) =⇒ medicine (5/5)
elif (don = 0) and (experience = 1) =⇒ medicine (7/9)
elif (therapy = 1) =⇒ medicine (4/4)
else: others (1147/1270)

(b) Rules for the medicine class

if (space = 1) =⇒ space (116/118)
elif (orbit = 1) =⇒ space (29/29)
elif (earth = 1) =⇒ space (23/24)
elif (sky = 1) =⇒ space (17/17)
elif (nasa = 1) =⇒ space (12/12)
elif (launch = 1) =⇒ space (14/14)
elif (solar = 1) =⇒ space (9/9)
elif (moon = 1) =⇒ space (7/7)
elif (shuttle = 1) =⇒ space (6/6)
elif (spacecraft = 1) =⇒ space (6/6)
elif (ground = -1) and (secret = 0) =⇒ space (4/4)
elif (plane = 1) =⇒ space (3/3)
elif (materials = 1) and (st = 0) =⇒ space (4/4)
else: others (1245/1326)

(c) Rules for the space class
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if (clipper = 1) and (moon = 0) =⇒ cryptography (90/90)
elif (key = 1) and (care = 0) and (like = 0) =⇒ cryptography (37/38)
elif (government = 1) and (launch = 0) and (medical = 0) and (nasa = 0) =⇒ cryptography (45/46)
elif (encryption = 1) =⇒ cryptography (25/25)
elif (nsa = 1) =⇒ cryptography (13/13)
elif (just = 0) and (david = 1) and (want = 0) and (disease = 0) =⇒ cryptography (13/15)
elif (time = 0) and (algorithm = 1) =⇒ cryptography (8/8)
elif (com = 1) and (metzger = 1) =⇒ cryptography (9/9)
elif (good = 0) and (modem = 1) =⇒ cryptography (6/6)
elif (does = 0) and (crypto = 1) =⇒ cryptography (8/8)
elif (just = 0) and (don = 0) and (security = 1) =⇒ cryptography (7/7)
else: others (1145/1314)

(d) Rules for the cryptography class

Figure 5: Set of if-then-else rules that explain the test predictions of the neural network for the all the
classes when using sensitivity analysis for feature selection. Here the discrete test value 1 means a
positive correlation between a feature value (which we can approximate to relative frequency due to the
use of TF-IDF vectors) and the probability of the class, -1 means a negative correlation, and 0 shows the
absence of a feature. The values (a/b) mean that a of b instances covered by the rule are correct. The
rules with lower values of a/b are less trustworthy, and the rules with lower value of b, especially in the
first few conditions, are less generalized.

if (just = -1) and (use = 1) =⇒ electronics (24/24)
elif (circuit = 1) =⇒ electronics (32/32)
elif (just = -1) and (don = 1) =⇒ electronics (11/11)
elif (people = 0) and (used = 1) and (key = 0) and (don = 0) and (use = 0) and (edu = 0) and (medication
= 0) and (concept = 0) and (did = 0) =⇒ electronics (36/43)
elif (electronics = 1) =⇒ electronics (17/18)
elif (battery = 1) =⇒ electronics (23/23)
elif (radio = 1) and (shack = 1) =⇒ electronics (9/9)
elif (people = 0) and (thanks = 1) and (advance = 1) =⇒ electronics (12/14)
elif (signal = 1) =⇒ electronics (13/15)
elif (people = 0) and (company = 1) and (just = 0) =⇒ electronics (13/18)
elif (pc = 1) =⇒ electronics (16/19)
elif (people = 0) and (use = 1) and (just = 0) and (good = 0) and (clipper = 0) and (probably = 0) and
(center = 0) and (unless = 0) and (18084tm = 0) and (algorithms = 0) =⇒ electronics (29/33)
elif (appreciated = 1) and (time = 0) =⇒ electronics (11/16)
elif (voltage = 1) =⇒ electronics (8/8)
elif (program = -1) =⇒ electronics (10/15)
else: others (1134/1281)

(a) Rules for the electronics class
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if (medical = 1) =⇒ medicine (55/55)
elif (doctor = 1) =⇒ medicine (38/38)
elif (body = 1) =⇒ medicine (28/34)
elif (effects = 1) and (don = 0) and (earth = 0) =⇒ medicine(18/19)
elif (disease = 1) =⇒ medicine (19/19)
elif (photography = 1) =⇒ medicine (13/13)
elif (med = 1) =⇒ medicine (15/15)
elif (cause = 1) and (station = 0) and (enforcement = 0) and (antennas = 0) and (attacks = 0) and
(battery = 0) =⇒ medicine (24/26)
elif (allergic = 1) =⇒ medicine (7/7)
elif (experience = 1) and (data = 0) =⇒ medicine (9/13)
elif (surgery = 1) =⇒ medicine (10/10)
elif (skin = 1) =⇒ medicine (7/7)
elif (blood = 1) =⇒ medicine (6/7)
elif (pain = 1) =⇒ medicine (6/8)
elif (therapy = 1) =⇒ medicine (4/4)
elif (cancer = 1) =⇒ medicine (5/5)
elif (food = 1) =⇒ medicine (4/4)
elif (just = -1) and (don = -1) =⇒ medicine (4/4)
elif (cells = 1) =⇒ medicine (5/7)
else: others (1154/1284)

(b) Rules for the medicine class

if (space = 1) =⇒ space (116/118)
elif (orbit = 1) =⇒ space (29/29)
elif (earth = 1) =⇒ space (23/24)
elif (sky = 1) =⇒ space (17/17)
elif (nasa = 1) =⇒ space (12/12)
elif (launch = 1) =⇒ space (14/14)
elif (moon = 1) =⇒ space (7/7)
elif (solar = 1) =⇒ space (9/9)
elif (shuttle = 1) =⇒ space (6/6)
elif (spacecraft = 1) =⇒ space (6/6)
elif (atmosphere = 1) =⇒ space (4/4)
elif (idea = 1) and (probably = -1) =⇒ space (3/3)
elif (18084tm = 1) =⇒ space (4/4)
elif (gamma = 1) =⇒ space (3/3)
elif (exploration = 1) =⇒ space (3/3)
elif (landing = 1) =⇒ space (3/3)
elif (aircraft = 1) =⇒ space (3/3)
elif (ground = -1) and (accepted = 0) =⇒ space (4/4)
elif (materials = 1) and (aids = 0) =⇒ space (3/3)
elif (rocket = 1) =⇒ space (2/2)
else: others (1245/1305)

(c) Rules for the space class
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if (clipper = 1) and (delta = 0) =⇒ cryptography (90/90)
elif (key = 1) and (care = 0) =⇒ cryptography (49/54)
elif (government = 1) and (money = 0) and (develop = 0) =⇒ cryptography (37/39)
elif (encryption = 1) =⇒ cryptography (23/23)
elif (nsa = 1) =⇒ cryptography (14/14)
elif (com = 1) and (metzger = 1) =⇒ cryptography (9/9)
elif (crypto = 1) =⇒ cryptography (11/11)
elif (time = 0) and (algorithm = 1) =⇒ cryptography (8/8)
elif (used = 0) and (court = 1) =⇒ cryptography (6/6)
elif (security = 1) =⇒ cryptography (8/9)
elif (used = 0) and (modem = 1) =⇒ cryptography (5/5)
else: others (1141/1311)

(d) Rules for the cryptography class

Figure 6: Set of if-then-else rules that explain the test predictions of the neural network for the all the
classes when using mutual information for feature selection. Here the discrete test value 1 means a
positive correlation between a feature value (which we can approximate to relative frequency due to the
use of TF-IDF vectors) and the probability of the class, -1 means a negative correlation, and 0 shows the
absence of a feature. The values (a/b) mean that a of b instances covered by the rule are correct. The
rules with lower values of a/b are less trustworthy, and the rules with lower value of b, especially in the
first few conditions, are less generalized.
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Abstract

Sequential neural networks models are pow-
erful tools in a variety of Natural Language
Processing (NLP) tasks. The sequential nature
of these models raises the questions: to what
extent can these models implicitly learn hier-
archical structures typical to human language,
and what kind of grammatical phenomena can
they acquire?

We focus on the task of agreement predic-
tion in Basque, as a case study for a task
that requires implicit understanding of sen-
tence structure and the acquisition of a com-
plex but consistent morphological system. An-
alyzing experimental results from two syntac-
tic prediction tasks – verb number prediction
and suffix recovery – we find that sequential
models perform worse on agreement predic-
tion in Basque than one might expect on the
basis of a previous agreement prediction work
in English. Tentative findings based on diag-
nostic classifiers suggest the network makes
use of local heuristics as a proxy for the hier-
archical structure of the sentence. We propose
the Basque agreement prediction task as chal-
lenging benchmark for models that attempt to
learn regularities in human language.

1 Introduction

In recent years, recurrent neural network (RNN)
models have emerged as a powerful architec-
ture for a variety of NLP tasks (Goldberg,
2017). In particular, gated versions, such as Long
Short-Term Networks (LSTMs) (Hochreiter and
Schmidhuber, 1997) and Gated Recurrent Units
(GRU) (Cho et al., 2014; Chung et al., 2014)
achieve state-of-the-art results in tasks such as lan-
guage modeling, parsing, and machine translation.

RNNs were shown to be able to capture long-
term dependencies and statistical regularities in in-
put sequences (Karpathy et al., 2015; Linzen et al.,
2016; Shi et al., 2016; Jurafsky et al., 2018; Gu-
lordava et al., 2018). An adequate evaluation of

the ability of RNNs to capture syntactic struc-
ture requires a use of established benchmarks. A
common approach is the use of an annotated cor-
pus to learn an explicit syntax-oriented task, such
as parsing or shallow parsing (Dyer et al., 2015;
Kiperwasser and Goldberg, 2016; Dozat and Man-
ning, 2016) . While such an approach does evalu-
ate the ability of the model to learn syntax, it has
several drawbacks. First, the annotation process
relies on human experts and is thus demanding
in term of resources. Second, by its very nature,
training a model on such a corpus evaluates it on
a human-dictated notion of grammatical structure,
and is tightly coupled to a linguistic theory. Lastly,
the supervised training process on such a corpus
provides the network with explicit grammatical la-
bels (e.g. a parse tree). While this is sometimes
desirable, in some instances we would like to eval-
uate the ability of the model to implicitly acquire
hierarchical representations.

Alternatively, one can train language model
(LM) (Graves, 2013; Józefowicz et al., 2016;
Melis et al., 2017; Yogatama et al., 2018) to model
the probability distribution of a language, and use
common measures for quality such as perplexity
as an indication of the model’s ability to capture
regularities in language. While this approach does
not suffer from the above discussed drawbacks,
it conflates syntactical capacity with other factors
such as world knowledge and frequency of lexi-
cal items. Furthermore, the LM task does not pro-
vide one clear answer: one cannot be “right” or
“wrong” in language modeling, only softly worse
or better than other systems.

A different approach is testing the model on a
grammatical task that does not require an exten-
sive grammatical annotation, but is yet indicative
of syntax comprehension. Specifically, previous
works (Linzen et al., 2016; Bernardy and Lap-
pin, 2017; Gulordava et al., 2018) used the task
of predicting agreement, which requires detecting
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hierarchal relations between sentence constituents.
Labeled data for such a task requires only the col-
lection of sentences that exhibit agreement from
an unannotated corpora. However, those works
have focused on relatively small set of languages:
several Indo-European languages and a Semitic
language (Hebrew). As we show, drawing con-
clusions on the model’s abilities from a relatively
small subset of languages can be misleading.

In this work, we test agreement prediction in
a substantially different language, Basque, which
is a language with ergative–absolutive alignment,
rich morphology, relatively free word order, and
polypersonal agreement (see Section 3). We pro-
pose two tasks, verb-number prediction (Section
6) and suffix prediction (Section 7), and show that
agreement prediction in Basque is indeed harder
for RNNs. We thus propose Basque agreement as
a challenging benchmark for the ability of models
to capture regularities in human language.

2 Background and Previous Work

To shed light on the question of hierarchical struc-
ture learning, a previous work on English (Linzen
et al., 2016) has focused on subject-verb agree-
ment: The form of third-person present-tense
verbs in English is dependent upon the number
of their subject (“They walk” vs. “She walks”).
Agreement prediction is an interesting case study
for implicit learning of the tree structure of the in-
put, as once the arguments of each present-tense
verb in the sentence are found and their grammat-
ical relation to the verb is established, predicting
the verb form is straightforward.

Linzen et al. (2016) tested different variants of
the agreement prediction task: categorical pre-
diction of the verb form based on the left con-
text; grammatical assessment of the validity of the
agreement present in a given sentence; and lan-
guage modeling. Since in many cases the verb
form can be predicted according to number of the
preceding noun, they focused on agreement attrac-
tors: sentences in which the preceding nouns have
the opposite number of the grammatical subject.
Their model achieved very good overall perfor-
mance in the first two tasks of number prediction
and grammatical judgment, while in the third task
of language modeling, weak supervision did not
suffice to learn structural dependencies. With re-
gard to the presence of agreement attractors, they
have shown the performance decays with their
number, to the point of worse-than-random accu-
racy in the presence of 4 attractors; this suggests

the network relies, at least to a certain degree, on
local cues. Bernardy and Lappin (2017) evaluated
agreement prediction on a larger dataset, and ar-
gued that a large vocabulary aids the learning of
structural patterns. Gulordava et al. (2018) fo-
cused on the ability of LM’s to capture agreement
as a marker of syntactic ability, and used nonsen-
sical sentences to control for semantic clues. They
have shown positive results in four languages, as
well as some similarities between their models’
performance and human judgment of grammati-
cality.

3 Properties of the Basque Language

Basque agreement patterns are ostensibly more
complex and very different from those of English.
In particular, nouns inflect for case, and the verb
agrees with all of its core arguments. How well
can a RNN learn such agreement patterns?

We first outline key properties of Basque rele-
vant to this work. We have used the following two
grammars written in English for reference (Laka,
1996; de Rijk, 2007).

Morphological marking of case and number on
NPs The grammatical role of noun phrases is ex-
plicitly marked by nuclear case suffixes that attach
after the determiner in a noun phrase — this is typ-
ically the last element in the phrase.

The nuclear cases are the ergative (ERG), the
absolutive (ABS) and the dative (DAT).1 In ad-
dition to case, the same suffixes also encode for
number (singular or plural) as seen in Table 1.

Ergative-absolutive case system Unlike En-
glish and most other Indo-European languages
that have nominative–accusative morphosyntactic
alignment in which the single argument of intran-
sitive verbs and the agent of transitive verbs be-
have similarly to each other (“subjects”) but dif-
ferently from the object of transitive verbs, Basque
has ergative–absolutive alignment. This means
that the “subject” of an intransitive verb and the
“object” of a transitive verbs behave similarly to
each other and receive the absolutive case, while
the “subject” of a transitive verb receives the erga-
tive case. To illustrate the difference, while in
English we say “she sleeps” and “she sees them”
(treating she the same in both sentences), in an

1Additional cases encode different aspects of the role of
the noun phrase in the sentence. For example, local cases
indicate aspects such as destination and place of occurrence,
possessive/genitive cases indicate possession, causal cases in-
dicate causation, etc. In this work we focus only on the three
mentioned.
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Case Function Suffix Forms
Sg Pl No det

Absolutive S, O -a -ak -
Ergative A -ak -ek -(e)k
Dative IO -ari -ei -(r)i

Table 1: Basque case and their corresponding determined
nuclear case suffixes. Note the case syncretism, resulting in
structural ambiguity between the plural absolutive and the
ergative singular. Under function, S refers to the single ar-
gument of a prototypical intransitive verb, O refers to the
most patient-like argument of a prototypical transitive verb,
and A refers to the most agent-like argument of a prototyp-
ical transitive verb. Subsequently IO refers to the indirect
object, often filling the recipient or experiencer role.

imaginary ergative-absolutive version of English
we would say “she sleeps” and “her sees they”,
inflecting “she” and “they” similarly (the absolu-
tive), and different from “her” (the ergative).

Examples The following sentence (1) demon-
strates the use of case suffixes to encode grammat-
ical function.

(1) Kutxazain-ek
cashier-PL.ERG

bezeroa-ri
customer-SG.DAT

liburu-ak
book-PL.ABS

eman dizkiote
gave they-them-to-her/him

The cashiers gave the books to the cus-
tomer.

In (1), the verb eman ‘give’ is transitive,
the ergative corresponds to English grammati-
cal subject and the absolutive corresponds to En-
glish grammatical object. However, Basque is
absolutive–ergative, namely, the subject of an in-
transitive verb is marked for case like the object of
a transitive verb, and differently from the subject
of a transitive verb (2).

(2) Kutxazain-ak
cashier-PL-ABS

hemen
here

daude
they are-PL.ABS3

The cashiers are here.

Since the verb daude ‘are’ is intransitive, the
word kutxazain- ‘cashier’ accepts the plural abso-
lutive suffix -ak, and not the plural ergative suffix
-ek.

Interestingly, Basque exhibits case syncretism,
namely, nuclear case suffixes are ambiguous: the
suffix -ak marks both plural absolutive and singu-
lar ergative. Compare Example (3) with Exam-
ple (4).

(3) Pertson-ak
person-SG.ERG

zuhaitz-ak
tree-PL.ABS

ikusten ditu
he/she-sees-them

The person sees the trees.

(4) Zuhaitz-ak
tree-SG.ERG

pertson-ak
person-PL.ABS

ikusten ditu
seeing it-is-them

The tree sees the people.

Word-order and Polypersonal Agreement
Basque is often said to have a SOV word order,
although the rules governing word order are
rather complex, and word order is dependent
on the focus and topic of the sentence. While
the case marking system handles most of the
word-order variation, the ambiguity between the
single ergative and plural absolutive — which are
both marked with -ak — results in sentence-level
ambiguity. For instance, Example (3) can also
be interpreted as “it is the tree [SG] that sees
the people [PL]” (with a focus on “the tree”).
Disambiguation in such cases depends on context
and world knowledge.

Unlike English verbs that only agree in num-
ber with their grammatical subject, Basque verbs
agree in number with all their nuclear arguments:
the ergative, the absolutive and the dative (roughly
corresponding to the subject, the object and the
indirect object).2 Verbs are formed in two ways:
aditz trinkoak ‘synthetic verbs’ — such as jakin
‘to know’ — are conjugated according to the as-
pect, tense and agreement patterns, e.g. dakigu
‘We know it’ and genekien ‘We knew it’. There are
only about two dozen such verbs; all other verbs
are composed of a non-finite stem, indicating the
tense or aspect, and an auxiliary verb, that is con-
jugated according to the number of its arguments
— such as ikusi ‘to see’ — e.g. ikusten dugu ‘We
see it’ and ikusi genuen ‘We saw it’. There are
several auxiliary verbs, including izan ‘to be’ and
ukan ‘to have’. The form of an auxiliary verb used
in a sentence also is also dependent on the transi-
tivity of the verb, with izan being the intransitive
auxiliary and ukan being the transitive auxiliary.

To summarize Noun phrases are marked for
case (ergative, absolutive or dative) and number
(singular or plural), and appear in relatively-free
word order relative to the verb to which they are
arguments. The verbs (or their auxiliaries) inflect
for tense, time and number-agreement, and agree
with all their arguments on number. Case syn-

2Note that some arguments, in particular proper-nouns,
are not marked for number. Other arguments, in particular the
ergative, can be omitted and not spelled out. The verb form
still needs to mark the correct number for these arguments.
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cretism results in ambiguity between the singular
ergative and the plural absolutive suffixes.

4 Learning Basque Agreement

To assess the ability of RNNs to learn Basque
agreement we perform two sets of experiments. In
the first set (Section 6), we focus on the ability to
learn to predict the number inflections of verbs,
namely, the number of each of their arguments,
where the model reads the sentence, with one of
the verbs randomly replaced with a 〈verb〉 token.
This is analogous to the agreement task explored
in previous work on English (Linzen et al., 2016)
and other languages (Gulordava et al., 2018), but
in an arguably more challenging settings, as the
Basque task requires the model: (a) to identify
all the verb’s arguments; (b) to learn the ergative–
absolutive distinction; and (c) to cope with a rel-
atively free word order and a rich morphological
inflection system. As we show, the task is indeed
substantially harder than in English, resulting in
much lower accuracies than in Linzen et al. (2016)
while not focusing on the hard cases.

However, we also identify some problems with
the verb number prediction task. The presence of
case suffixes presumably makes the task easier, in
some sense, than in English: the grammatical role
of arguments with respect to the verb is encoded in
grammatical suffixes, potentially making it easier
to capture surface heuristics that do not require the
understanding of the hierarchical structure of the
sentence. In addition, the ergative—whose num-
ber is encoded in the verb form—is often omitted
from sentences, making the task of ergative num-
ber prediction impossible without relying on con-
text or world knowledge. We thus propose an al-
ternative setup (Section 7), in which, rather than
predicting the agreement pattern of the verb, we
remove all nuclear case suffixes from words and
ask the model to recover them (or predict the ab-
sence of a suffix, for unsuffixed words). We argue
that this setup is a better one for assessing mod-
els’ ability to capture Basque sentence structure
and agreement system: it requires the model to ac-
curately identify the role of NPs with respect to a
verb in order to assign them the correct case suffix
(as marked on the verb), while not requiring the
model to make-up information that is not encoded
in the sentence.

5 Experimental Setup

In contrast to more explicit grammatical tasks (e.g.
tagging, parsing), the data needed for training a

model on agreement prediction task does not re-
quire annotated data and can be derived relatively
easily from unannotated sentences. We have used
the text of the Basque Wikipedia. A considerable
number of the articles in Basque Wikipedia ap-
pear to be bot-generated; we have tried to filter
these from the data according to keywords. The
data consists of 1,896,371 sentences; we have used
935,730 sentences for training, 129,375 for valida-
tion and 259,215 for evaluation. We make the data
publicly available3.

We use the Apertium morphological analyzer
(Forcada et al., 2011; Ginest-Rosell et al., 2009) to
extract the parts-of-speech (POS) and morpholog-
ical marking of all words.4 The POS information
was used to detect verbs, nouns and adjectives, but
was not incorporated in the word embeddings.

For section 7.1, grammatical generalization, we
used the Basque Universal Dependencies treebank
(Aranzabe et al., 2015) to extract human-annotated
POS, case, number and dependency edge labels.
We have used their train:dev:test division, result-
ing in 5,173 training sentences, 1,719 develop-
ment sentences and 1,719 test sentences.

Word Representation We represent each word
with an embedding vector. To account for the
rich morphology of Basque, our word embeddings
combine the word identity, its lemma5 as deter-
mined by the morphological analyzer, and charac-
ter ngrams of lengths 1 to 5. Let Et, El and Eng

be token, lemma and n-gram embedding matrices,
and let tw, lw and {ngw} be the word token, the
lemma and the set of all n-grams of lengths 1 to
5, for a given word w. The final vector represen-
tation of w, ew, is given by ew = Et[t] + El[l] +∑

ng∈{ngw}Eng[ng]. We use embedding vectors
of size 150. We recorded the 100,000 most com-
mon words, n-grams and lemmas, and used them
to calculate the vector representation of words.
Out-of-vocabulary words, ngrams and lemmas are
replaced by a 〈unk〉 token.

Model In previous studies, the agreement was
between two elements, and the model was tasked
with predicting a morphological property of the
second one, based on a property encoded on the

3http://nlp.biu.ac.il/data/basque/
4We use the Apertium analyzer instead of other options as

it is freely available online under a free/open-source licence
covering both the lexicon and the source code.

5Most words admit to a single interpretation by the mor-
phological analyzer. For words that had several optional lem-
mas, we chose the first one, after the exclusion of colloquial
or familiar verb forms, which are infrequent in Wikipedia.
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Suffix Closest verb is incorrect Closest verb is correct
Rec Prec F1 Rec Prec F1

-ak 70.2 (2961) 85.2 (2438) 76.9 80.5 (8312) 88.2 (4954) 84.1
-ek 60.8 (758) 98.2 (469) 75.1 64.7 (1976) 95.9 (1333) 77.2

Table 2: Model performance according to closest-verb grammatical connection to the verb, for sentences that contain the verb
da ‘it is’. The number of sentences appears in parentheses.

Verb form Diagnostic classifier Accuracy (%) Majority (%)
Total BiLSTM wrong BiLSTM correct

da ‘is’ Linear model 67.7 56.2 70.2 62.41-layer MLP 74.7 69.3 75.6
zen ‘was’ Linear model 64.4 52.8 66.5 61.91-layer MLP 74.8 71.5 75.4
ziren ‘were’ Linear model 67.4 57.8 70.1 59.81-layer MLP 76.6 72.3 77.8

Table 3: Diagnostic classifier accuracy in predicting whether or not the closest verb is grammatically connected to a word,
according to BiLSTM suffix prediction success on that word. “BiLSTM correct”: success rate on instances in which the BiL-
STM correctly predicted the case suffix. ‘BiLSTM wrong”: success rate on instances in which the BiLSTM failed. “Majority”
signifies the success of majority-classifier.

first. Thus, a uni-directional RNN sufficed. Here,
due to a single verb having to agree with sev-
eral arguments, while following a relatively free
word order, we cannot use a uni-directional model.
We opted instead for a bi-directional RNN.6 In
all tasks, we use a one-layer BiLSTM network
with 150 hidden units, compared with 50 units in
(Linzen et al., 2016) 7. In the verb prediction task,
the BiLSTM encodes the verb in the context of the
entire sentence, and the numbers of the ergative,
absolutive and datives are predicted by 3 indepen-
dent multilayer perceptrons (MLPs) with a single
hidden layer of size 128, that receive as an input
the hidden state of the BiLSTM over the 〈verb〉
token.

In the suffix prediction task, the prediction of
the case suffix is performed by a MLP of size 128,
that receives as an input the hidden state of the
BiLSTM over each word in the sentence.

The whole model, including the embedding,
is trained end-to-end with the Adam optimizer
(Kingma and Ba, 2014).

6 Verb Argument Number Prediction

In this task, the model sees the sentence with one
of the auxiliary verbs replaced by a 〈verb〉 token,
and predicts the number of its ergative, absolutive
and dative. For example, in (1) above, the network
sees the embeddings of the words in the sentence:8

6A unidirectional LSTM baseline achieved accuracy
scores of 86.6%, 91.7% and 98.2% and recall values of
78.9%, 100% and 60.1% for ergative, absolutive and dative
verb arguments prediction, respectively.

7Network size was chosen based on development set per-
formance.

8See:

Kutxazain-ek bezeroa-ri liburu-ak eman 〈verb〉
It is then expected to predict the number of

the arguments of the missing verb, dizkiote: erga-
tive:plural, dative:singular and absolutive:plural.
Each argument can take one of three values, sin-
gular, plural or none. In order to succeed in this
task, the model has to identify the arguments of
the omitted verb, and detect their plurality status
as well as their grammatical relation to the verb.
Note that as discussed above, these relations do
not overlap with the notions of “subject” and “ob-
ject” in English, as the grammatical case is also
dependent on the transitivity of the verb. Since
the model is exposed to the lemma of the auxil-
iary verb and the stem that precedes it, it can, in
principle, learn dividing verbs into transitive and
intransitive.

6.1 Results and Analysis

We conducted a series of experiments, as detailed
below. A summary of all the results in available in
Table 4.

Main results The model achieved moderate suc-
cess in this task, with accuracy of 87.1% and
93.8% and recall of 80.0% and 100%9 in erga-
tive and absolutive prediction, respectively. Da-
tive accuracy was 98.0%, but the recall is low

(1) Kutxazain-ek
cashier-PL.ERG

bezeroa-ri
customer-PL.DAT

liburu-ak
book-SG.ABS

eman
give-PTCP

〈verb〉
〈aux〉

‘The cashiers gave the books to the customers’

9This reflects the fact the absolutive is almost always
present.
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Condition Ergative Absolutive Dative
A / R A / R A / R

Base 87.1 / 80.0 93.8 / 100 98.0 / 54.9

Suffixes only 69.0 / 40.3 83.7 / 100 97.0 / 26.0
No suffixes 83.8 / 80.0 87.8 / 100 97.3 / 34.7
Neutralized case 86.0 / 79.3 93.3 / 100 97.3 / 38.1

Single verb 90.6 / 89.0 96.04 / 100 98.9 / 74.7
No -ak 90.9 / 81.1 96.6 / 100 98.6 / 67.7
Sing. verb, no -ak 92.6 / 83.4 97.2 / 100 99.1 / 75.4

Table 4: Summary of verb number prediction results for ac-
curacy (A) and recall (R).

(54.9%), perhaps due to the relative rarity of dative
nouns in the corpus (only around 3.5% of the sen-
tences contain dative). These relatively low num-
bers are in sharp contrast to previous results on En-
glish in which the accuracy scores on general sen-
tences was above 99%. While English agreement
results drop when considering hard cases where
agreement distractors or intervening constructions
intervene between the verb and its argument, in
Basque the numbers are low already for the com-
mon cases.

This suggests that agreement prediction in
Basque can serve as a valuable benchmark for
evaluating the syntactic abilities of sequential
models such as LSTMs in a relatively challenging
grammatical environment, as well as for assessing
the generality of results across language families.

Ablations: case suffixes vs. word forms The
presence of nuclear case suffixes in Basque can, in
principle, make the task of agreement prediction
easier, as (ambiguous) grammatical annotation is
explicit in the form of the nuclear case suffixes,
that encode the type of grammatical connection
to the verb. How much of the relevant informa-
tion is encoded in the case suffixes? To investigate
the relative importance of these suffixes, we con-
sidered a baseline in which the model is exposed
only to the nuclear suffixes, ignoring the identi-
ties of the words and the character n-grams (Table
4, Suffixes only). This model achieved accuracy
scores of 69.0%, 83.7% and 97.0% and recall val-
ues of 40.3%, 100% and 26% for ergative, absolu-
tive and dative prediction, respectively. While sub-
stantially lower than when considering the word
forms, the absolute numbers are not random, sug-
gesting that agreement can in large part be pre-
dicted based on the presence of the different suf-
fixes and their linear order in the sentence, without
paying attention to specific words.

In a complementary setting the model is ex-

posed to the sentence after the removal of all
nuclear case suffixes (according to the morpho-
logical analyzer output). This setting (Table 4,
No suffixes) yields accuracies of 83.8%, 87.8%
and 97.3% and recall scores of 80.0%, 100% and
34.7% for ergative, absolutive and dative, respec-
tively. Interestingly, in the last setting the model
succeeds to some extent to predict the verb argu-
ments number although the number is not marked
on the arguments. This suggests the model uses
cues such as the existence of certain function
words that imply a number, and the forms of non-
nuclear suffixes to infer the number of the argu-
ments.

Importance of explicit case marking The verb
numbers prediction task requires the model to
identify the arguments, and hence the hierarchical
structure of the sentence. However, the Basque
suffixes encode not only the number but also the
explicit grammatical function of the argument.
This makes the model’s task potentially easier,
as it may make use of the explicit case informa-
tion as an effective heuristic instead of modeling
the sentence’s syntactic structure. To control for
this, we consider a neutralized version (Table 4,
Neutralized case) in which we removed case in-
formation and kept only the number information:
suffixes were replaced by their number, or were
marked as “ambiguous” in case of -ak. For ex-
ample, the word kutxazainek was replaced with
kutxazain〈plural〉, since the suffix -ek encodes plu-
ral ergative. Interestingly, in this settings the per-
formance was only slightly decreased, with accu-
racy scores of 86.0%, 93.3% and 97.3% and recall
values of 79.3%, 100% and 38.1% for ergative,
absolutive and dative, respectively. These results
suggest that the network either makes little use of
explicit grammatical marking in the suffixes, or
compensates for the absence of grammatical anno-
tation using other information present in the sen-
tence.

Performance on simple sentences The pres-
ence of multiple verbs, along with the inherent am-
biguity of the suffix system, can both complicate
the task of number prediction. To assess the rel-
ative importance of these factors, we considered
modified training and test sets that contain only
sentences with a single verb (Table 4, Single verb).
This resulted in a significant improvement, with
accuracy scores of 90.61%, 96.04% and 98.9%
and recall values of 89.0%, 100% and 74.7% for
ergative, absolutive, and dative, respectively; note
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that sentences with a single verb also tend to be
shorter and simpler in their grammatical structure.
To evaluate the influence of the ambiguous suffix,
we removed all sentences that contain the ambigu-
ous suffix -ak from the dataset (Table 4, No -ak).
This resulted in a more moderate improvement to
accuracy values of 90.9%, 96.6% and 98.6% and
recall of 81.1%, 100% and 67.7% for ergative, ab-
solutive and dative. Limiting the dataset to un-
ambiguous sentences with a single verb (Table 4,
Sing. verb, no -ak) yields an additional improve-
ment, with accuracies of 92.6%, 97.2% and 99.1%
and recall values of 83.4%, 100% and 75.4% for
ergative, absolutive and dative, respectively.

7 NP Suffix Prediction

The general trend in the experiments above is a
significantly higher success in absolutive number
prediction, compared with ergative number pre-
diction. This highlights a shortcoming in the verb-
number prediction task: as Basque encodes the
number of the verb arguments in the verb forms,
the subject can — and often is — be omitted from
the sentence. Additionally, the number of proper
nouns is often not marked. These cases are com-
mon for the ergative: 55% of the sentences marked
for ERG.PL3 agreement do not contain words suf-
fixed with -ek. This requires the model to pre-
dict the number of the verb based on information
which is not directly encoded in the sentence.

To counter these limitations, we propose an al-
ternative prediction task that also takes advantage
of the presence of case suffixes, while not requir-
ing the model to guess based on unavailable infor-
mation. In this task, the network reads the input
sentence with all nuclear case suffixes removed,
and has to predict the suffix (or the absence of
thereof) for each word in the sentence. For ex-
ample, in (1) above, the model reads (5).

(5) Kutxazaina bezeroa liburua eman
dizkiote.

It is then expected to predict the omitted case
and determiner suffixes (-ek, -ak, -ari, none,
none). We note that we remove the suffixes
only from NPs, keeping the verbs in their origi-
nal forms. As the verbs encode the numbers of
its argument as well as their roles, the network is
exposed to all relevant information required for
predicting the missing suffixes, assuming it can
recover the sentence structure. In order to suc-
ceed in this task, the model should link each ar-
gument to its verb, evaluate its grammatical re-

Suffix Prec Rec F1

-ek [ergative plural] 82.0 74.7 78.2
-a [absolutive singular] 88.0 83.2 85.5
-ak [abs. pl / erg. sg] 83.2 83.1 83.2
-ari [dative singular] 80.2 77.5 78.8
-ei [dative plural] 65.5 64.5 65.0
Any 95.1 91.7 93.4

Table 5: nuclear case prediction results.

lation to the verb, and choose the case suffix ac-
cordingly. Case suffixes are appended at the end
of the NP. As a result, suffix recovery also re-
quires some degree of POS tagging and NP chunk-
ing, and thus shares some similarities with shallow
parsing in languages such as English. This sug-
gests that the task of case suffix recovery in lan-
guages with complex case system such as Basque
can serve as a proxy task for full parsing, while
requiring a minimal amount of annotated data.

The singular absolutive determiner suffix, -a,
also appears in the base form of some words.
Therefore, for -a suffixed words, we have used the
morphological analyzer to detect whether not the
-a suffix is a part of the lemma. Consider the ex-
amples ur ‘water’—ura ‘the water-ABS’ and uda
‘summer’—uda ‘the summer-ABS’. -a suffixed
words not known to the analyzer were excluded
from the experiment.

7.1 Results and Analysis
The results for the suffix prediction task are pre-
sented in Table 5 and Table 6. The model achieves
F1 scores of 78.2 and 83.2% for the erg. plural -ek
and absolutive singular/ergative singular -ak suf-
fixes, respectively. The F1 score for the ABS sin-
gular suffix -a is higher — 85.5%; This might be
due to the fact this suffix is unambiguous (unlike
-ak), and the fact the absolutive is rarely omitted
(unlike words suffixed with -ek), which implies
that verb forms indicating verb-absolutive singular
agreement also reliably predicts the presence of a
word suffixed with -a in the sentence. Similarly
to the trend in the first task, the model achieved
relatively low F1 scores in the prediction of dative
suffixes, -ari and -ei: 78.8% and 65.0%, respec-
tively.

Importance of verb form Once the grammati-
cal connection between verbs and their arguments
is established, the nuclear suffix of each of the
verb’s arguments is deterministically determined
by the form of the verb. As such, verb forms
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-ak -ek -a -ari -ei

Base 83.2 78.2 85.5 78.8 65.0
Word-only 56.0 49.5 55.2 56.5 24.2
No verb 72.0 65.4 78.1 67.5 47.3

Table 6: Summary of F1 scores for suffix prediction.

are expected to be of importance for suffix pre-
diction. To assess this importance, we have eval-
uated the model in a setting in which the original
verb forms are replaced by a 〈verb〉 token. In this
setting, the model achieved F1 scores of 72.0%,
65.4%, 78.1%, 67.5%, 47.3% and 92.0% for -ak,
-ek, -a, -ari, -ei, and the prediction of the pres-
ence of any nuclear suffix, respectively (Table 6,
No verb). These results, that are far from random,
indicate that factors such as the order of words in
the sentence, the identity of the words (as certain
words tend to accept certain cases irrespective of
context), and the non-nuclear case suffixes (which
are not omitted), all aid the task of nuclear-suffix
prediction.

Word-only baseline Some words tend to appear
more frequently in certain grammatical positions,
regardless of their context. We therefore compared
the model performance with a baseline of a 1-layer
MLP that predicts the case suffix of each word
based only its embedding vector. As expected,
this baseline achieved lower F1 scores of 56.0%,
49.5%, 55.2%, 56.5%, 24.2% and 69.8% for -ak,
-ek, -a, -ari, -ei, and the prediction of the presence
of any suffix, respectively (Table 6, Words only).

Focusing on the harder cases An essential step
in the process of suffix prediction is identifying
the arguments of each verb. To what extent does
the model rely on local cues as a proxy for this
task? A simple heuristics is relating each word
to its closest verb. We compared the model’s per-
formance on “easier” instances where the closest
verb is grammatically connected to the word, ver-
sus “harder” instances in which the closest verb is
not grammatically connected to the word.

This evaluation requires automatically judging
the grammatical connection between words and
verbs in the input sentence. Due to the ambiguous
case suffixes, this is generally not possible in un-
parsed corpora. However, we focus on several spe-
cial cases of sentences containing exactly 2 verbs
of specific types, in which it is possible to unam-
biguously link certain words in the sentences to
certain verbs. Since these instances consists only a
fraction of the dataset, for this evaluation we have

used a larger test set containing 50% of the data.
Table 2 depicts the results for sentences that

contain the verb da ‘is’. The general trend, for
da and for several other verbs (not presented here
) , is higher F1 scores in the “easier” instances. We
note, however, that in these instances there is also
larger absolute distance between the verb and its
argument, which prevents us from drawing causal
conclusions.

Diagnostic classifiers To overcome this diffi-
culty and understand if the model encodes the
grammatical connection between a word to its
closest verb in the BiLSTM hidden state over a
given word, we have trained a diagnostic classifier
(Adi et al., 2016; Hupkes and Zuidema, 2018) that
receives as an input the hidden state of a BiLSTM
over a word, and predicts whether or not the clos-
est verb (which is unseen by the diagnostic classi-
fier) was grammatically connected to the word.

We have compared two diagnostic classifiers: a
linear model, and a 1-layer MLP. A training set
was created by collecting hidden states of the BiL-
STM over words, and labeling each training exam-
ple according to the existence of a verb-argument
connection between the word over which the state
was collected and its closest verb (a binary classi-
fication task). We then compared the success rate
of the diagnostic classifier on instances in which
the BiLSTM correctly predicted a case suffix (Ta-
ble 3, BiLSTM correct), versus the instances on
which the BiLSTM predicted incorrectly (Table 3,
BiLSTM wrong). The results, depicted in Table 3,
demonstrate that in instances in which the model
predicts a wrong case suffix, the diagnostic clas-
sifier tends to inaccurately predict the connection
between the closest verb and the word. For exam-
ple, for sentences that contain the verb form da,
the success rate of the linear model increases from
56.2% to 70.2% in the instances in which the BiL-
STM predicted correctly. This differential success
may imply a causal relation between the inference
of the closest-verb grammatical connection to the
word and the success in suffix prediction.

Grammatical generalization Does training on
suffix recovery induce learning of grammatical
generalizations such as morphosyntactic align-
ment (ergative, absolutive or dative), number
agreement (sg / pl) and POS? To test this question,
We have collected the states of our trained model
over the words in sentences from the Basque Uni-
versal Dependencies dataset. Different diagnostic
classifiers were then trained to predict case, num-
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ber, POS and the type of the dependency edge to
the head of the word. All diagnostic classifiers are
MLPs with two hidden layers of sizes 100 and 50.
For each task, we trained 5 models with different
initializations and report those that achieved high-
est development set accuracy.

For nuclear case and number prediction, we
limit the dataset to words suffixed with a nuclear
case. In this setting, for words on which the BiL-
STM predicted correctly, the MLPs perform well,
predicting the correct number with an accuracy of
95.0% (majority classifier: 67.3%) and the correct
case with an accuracy of 93.5% (majority: 61.7%).
Even when the dataset is limited to words suf-
fixed with the ambiguous suffix -ak, the MLP cor-
rectly distinguishes ergative and absolutive with
91.2% accuracy (majority: 65.4%). Interestingly,
in a complementary setting on which the dataset
is limited to words on which the BiLSTM failed
in nuclear case suffix recovery, a diagnostic classi-
fier can still be trained to achieve 74.7% accuracy
in number prediction and 69.7% accuracy in case
prediction. This indicates that to a large degree,
the required information for correct prediction is
encoded by the state of the model even when it
predicts a wrong suffix.

For the prediction of POS, dependency edge to
the head and any case (not just nuclear cases — 16
cases in total, including the option of an absence of
case), the dataset was not limited to words suffixed
with nuclear cases or to words on which the BiL-
STM predicted correctly. The classifier achieves
accuracies of 87.5% In POS prediction (majority:
23.2%), 85.7% in the prediction of any case (ma-
jority: 64.7%), and 69.0% for the prediction of de-
pendency edge to the head (majority: 19.0%).

These results indicate that during training on
suffix recovery, the model indeed learns, to some
degree, the generalizations of number, alignment
and POS, as well as some structural information
(connection to the head in the dependency tree).
These findings support our hypothesis that a suc-
cess in case recovery entails the acquiring of some
grammatical information.

8 Conclusion

In this work, we have performed of series of con-
trolled experiments to evaluate the performance of
LSTMs in agreement prediction, a task that re-
quires implicit understanding of syntactic struc-
ture. We have focused on Basque, a language that
is characterized by a very different grammar com-
pared with the languages studied for this task so

far. We have proposed two tasks for the evaluation
of agreement prediction: verb number prediction
and suffix recovery.

Both tasks were found to be more challenging
than agreement prediction in other languages stud-
ied so far. We have evaluated different contribut-
ing factors to that difficulty, such as the presence
of ambiguous case suffixes. We have used diag-
nostic classifiers to test hypotheses on the inner
representation the model had acquired, and found
tentative evidence for the use of shallow heuristics
as a proxy of hierarchical structure, as well as for
the acquisition of grammatical information during
case recovery training.

These results suggest that agreement prediction
in Basque could be a challenging benchmark for
the evaluation of the syntactic capabilities of neu-
ral sequence models. The task of case-recovery
can be utilized in other languages with a case sys-
tem, and provide a readily-available benchmark
for the evaluation of implicit learning of syntac-
tic structure, that does not require the creation of
expert-annotated corpora. A future line of work
we suggest is investigating what syntactic repre-
sentations are shared between case recovery and
full parsing, i.e., to what extent does a model
trained on case recovery learn the parse tree of the
sentence, and whether transfer learning from case-
recovery would improve parsing performance.
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F. Sánchez-Martı́nez, G. Ramrez-Sánchez, and F. M.
Tyers. 2011. Apertium: a free/open-source platform
for rule-based machine translation. Machine Trans-
lation, 25(2):127–144.

Mireia Ginest-Rosell, Gema Ramrez-Sánchez, Sergio
Ortiz-Rojas, Francis M Tyers, and Mikel L For-
cada. 2009. Development of a free Basque to Span-
ish machine translation system. Procesamiento del
Lenguaje Natural, 43:187–195.

Yoav Goldberg. 2017. Neural Network Methods for
Natural Language Processing. Synthesis Lectures
on Human Language Technologies. Morgan & Clay-
pool Publishers.

Alex Graves. 2013. Generating sequences with recur-
rent neural networks. CoRR, abs/1308.0850.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2018, New Orleans, Louisiana,
USA, June 1-6, 2018, Volume 1 (Long Papers), pages
1195–1205.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Dieuwke Hupkes and Willem H. Zuidema. 2018. Visu-
alisation and ’diagnostic classifiers’ reveal how re-
current and recursive neural networks process hier-
archical structure (extended abstract). In Proceed-
ings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden., pages 5617–5621.
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Abstract
Systematic compositionality is the ability to
recombine meaningful units with regular and
predictable outcomes, and it’s seen as key
to the human capacity for generalization in
language. Recent work (Lake and Baroni,
2018) has studied systematic compositional-
ity in modern seq2seq models using general-
ization to novel navigation instructions in a
grounded environment as a probing tool. Lake
and Baroni’s main experiment required the
models to quickly bootstrap the meaning of
new words. We extend this framework here
to settings where the model needs only to re-
combine well-trained functional words (such
as “around” and “right”) in novel contexts.
Our findings confirm and strengthen the ear-
lier ones: seq2seq models can be impres-
sively good at generalizing to novel combina-
tions of previously-seen input, but only when
they receive extensive training on the specific
pattern to be generalized (e.g., generalizing
from many examples of “X around right” to
“jump around right”), while failing when gen-
eralization requires novel application of com-
positional rules (e.g., inferring the meaning
of “around right” from those of “right” and
“around”).

1 Introduction

Human language learning enjoys a good kind of
combinatorial explosion — if a person knows the
meaning of “to run” and that of “slowly”, she
can immediately understand what it means “to run
slowly”, even if she has never uttered or heard this
expression before. This is an example of composi-
tionality, the algebraic capacity to understand and
produce novel combinations from known compo-
nents (Montague, 1970). This principle helps to
explain how, when acquiring a language, we can
quickly bootstrap to a potentially infinite num-
ber of expressions from very limited training data
(Chomsky, 1957).

Neural networks have recently been success-
fully applied to many tasks requiring considerable
generalization abilities (LeCun et al., 2015), in-
cluding applications in the domain of natural lan-
guage (Goldberg, 2017). However, it has also
been observed that they require a very large num-
ber of training examples to succeed, which sug-
gests that they lack compositional abilities (Lake
et al., 2017). There has been a substantial ear-
lier debate on the extent to which neural networks
display some degree of compositional generaliza-
tion (e.g., Fodor and Pylyshyn, 1988; Christiansen
and Chater, 1994; Marcus, 1998; Phillips, 1998;
Chang, 2002; Marcus, 2003; van der Velde et al.,
2004; Bowers et al., 2009; Botvinick and Plaut,
2009; Brakel and Frank, 2009; Frank, 2014). Re-
cently, Lake and Baroni (2018) revisited these is-
sues in light of the latest advances in deep neural
networks for natural language processing.

The authors introduced the SCAN dataset
for studying compositionality in sequence-to-
sequence (seq2seq) neural network models
(Sutskever et al., 2014). SCAN is a simple
language-driven navigation environment that
supports one-shot learning experiments, where
the trained agent must execute test commands
that it has never encountered in training, but are
assembled from the same components as the
training commands.

Lake and Baroni found that state-of-the-art re-
current neural networks (RNNs) showed impres-
sive zero-shot generalization capabilities when
commands were arbitrarily split between train and
test set, but they failed in cases that required sys-
tematic compositionality, that is, to extract alge-
braic composition rules from the training exam-
ples. To begin with, RNNs failed when they had
to generalize to commands requiring longer action
sequences to be executed. This is not too surpris-
ing, as longer sequences are notoriously challeng-
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ing for seq2seq models (Cho et al., 2014). More
interestingly, Lake and Baroni found that RNNs
do not correctly generalize the usage of a new ac-
tion verb (shown in isolation during training) to
contexts that are familiar from other verbs. In
other words, RNNs fail the following basic com-
positionality test: Even after they acquired the
meaning of “to run again” and “to dax”, they do
not understand “to dax again” on first encounter.

As Lake and Baroni show, the generalization
problem is linked to the fact that RNNs fail to
learn a representation (an embedding) for the new
verb (“to dax”) that is similar to those of known
verbs (“to run”, “to look”), and consequently it
cannot rely on similarity information to correctly
generalize verb usage. This is arguably more of
an instance of the problem of quickly learning
meaningful new-word embeddings (Herbelot and
Baroni, 2017; Lampinen and McClelland, 2017),
than strictly a failure of compositionality.

In this paper, we repurpose SCAN to test an-
other kind of compositionality, namely one that
requires combining highly familiar words in new
ways to create novel meaning. As illustrated
above, this is what we do when we combine a
functional term such as “slowly” with the verb “to
run” to obtain the phrase “to run slowly”. Or, in
terms of the SCAN commands that we test here,
this is what is required to understand an expression
such as “jump around right” when the meanings of
“jump”, “right” and “around” are known.

Our results confirm and strengthen the conclu-
sions of Lake and Baroni. On the one hand, RNNs
do show a considerable degree of generalization
in our experiments as well. However, their per-
formance dramatically decreases as the difference
between training and testing becomes more sys-
tematic, even though all test examples could be
correctly processed by relying on simple compo-
sition rules amply illustrated in the training data.

2 Generalizing functional terms with
SCAN

The SCAN dataset (Lake and Baroni, 2018)
presents the problem of translating commands
from a simplified natural language to a sequence
of actions, framed as a seq2seq task (Sutskever
et al., 2014). The commands are generated by a
phrase-structure grammar and then converted into
actions by a semantic interpretation function.

By way of illustration, let us take a prototypical

SCAN command like “turn right twice and jump
around left”. This command’s building blocks are
“turn right” and “Primitive around left”, which
are part of SCAN’s 12 templates, a collection of
base expressions that present a great deal of sym-
metry over actions, spatial terms, and manner ad-
verbs (Table 1). Some of these templates can op-
erate over different Primitives (“jump”, “walk”,
“run”, or “look”), mapping them systematically to
their correspondent output [Primitive] (“JUMP”,
“WALK”, “RUN”, and “LOOK”). The templates
can in turn be combined using the conjunctions
“and” and “after” and quantified by “twice” and
“thrice” for a total of 20,910 commands: these
include things like “walk left after look opposite
left”, “turn around right thrice”, “jump right and
run left” etc.

Lake and Baroni (2018) present three experi-
ments based on different train-test splits: a ran-
dom split, a split where the test set contains com-
mands requiring longer action sequences than the
training set, and a split where the test set con-
tains commands with compositions of primitives
of which few examples exist in the training set (in
the limit, the primitives are only presented in iso-
lation). Their main conclusion is that neural net-
works, though surprisingly good at zero-shot gen-
eralization to novel commands, are still far from
systematic compositionality. In the first split, net-
works are able to achieve high accuracy with rel-
atively few training examples. In the second and
third ones, where the training/testing gap is larger
yet there exist systematic rules linking the training
and test sets, the same models fail.

The main contribution of this paper is show-
ing how the SCAN dataset can be repurposed to
analyze compositionality with known functional
terms used in new contexts, where it is not a mat-
ter of quickly learning a new embedding as in the
original primitive generalization experiment, but
rather of adequately recombining familiar words.
The key insight is that manner adverbs in the
dataset, such as “around” and “opposite”, act as
second-order modifiers, operating over the spa-
tial modifiers “left” and “right” and the primitives
“look”, “walk”, “run” and “jump”. This opens up
the possibility of splitting the dataset such that ex-
amples like “walk left”, “walk right”, and “jump
around left” are seen in the training set, and at test
time the network must piece these together to in-
terpret commands like “jump around right”, which
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Template Command Target
1 “turn left” LTURN
2 “turn right” RTURN
3 “Primitive left” LTURN [Primitive]
4 “Primitive right” RTURN [Primitive]
5 “turn opposite left” LTURN LTURN
6 “turn opposite right” RTURN RTURN
7 “Primitive opposite left” LTURN LTURN [Primitive]
8 “Primitive opposite right” RTURN RTURN [Primitive]
9 “turn around left” LTURN LTURN LTURN LTURN
10 “turn around right” RTURN RTURN RTURN RTURN
11 “Primitive around left” LTURN [Primitive] LTURN [Primitive] LTURN [Primi-

tive] LTURN [Primitive]
12 “Primitive around right” RTURN [Primitive] RTURN [Primitive] RTURN [Primi-

tive] RTURN [Primitive]

Table 1: All command templates in the SCAN dataset, along with the target output. Here, “Primitive” can stand
for “jump”, “walk”, “run”, or “look”, with the corresponding output [Primitive] being “JUMP”, “WALK”, “RUN”,
or “LOOK”.

contain only extensively seen words, but presented
in a new context. In other words, the network
must internalize the symmetry between the terms
“left” and “right” that is evident across SCAN (by
comparing templates 1 and 2, templates 3 and 4,
etc. in Table 1), and use it to learn abstract rules
for higher-order modifiers such as “opposite”.

3 Experiments

All reported accuracies correspond to the percent-
age of instances where the model successfully pre-
dicted the entire output sequence. All experi-
ments were run using the overall best neural net-
work from Lake and Baroni (2018): a seq2seq
2-layer, 200-unit LSTM with 50% dropout (Fig-
ure 1). The values of all other hyperparameters
were those specified by Lake and Baroni. This
model was very successful in their basic, random-
split experiment, where it achieved 99.8% accu-
racy. We also tried the best attention-augmented
model from Lake and Baroni, but it was outper-
formed by the overall-best in all experiments, and
is thus omitted here. All test-set accuracies are re-
ported with mean and standard deviation across 5
runs: in experiments where the splits were created
by random sampling, each run corresponds to a
different sample. Though the size of the training
set varies across conditions, the training regime is
always fixed at 100k presentations (approximately
5 epochs for the condition with the largest train-
ing set): in practice, this was sufficient for near-

jump

WALK

twice and walk <EOS>

JUMP JUMP

<SOS> JUMP JUMP WALK

<EOS>

Figure 1: Illustration of the sequence-to-sequence
model operating on the SCAN dataset. The network
takes a command such as “jump twice and walk” and
must convert it to a sequence of actions, in this case
“JUMP”, “JUMP”, “WALK”. Reproduced from Lake
and Baroni (2018) with permission.

perfect training set accuracy in all conditions1.

Experiment 1: Generalizing to novel templates
In order to probe the network’s ability to recom-
bine well-trained words as well as to assess the
factors that render that task easier or harder, we
compared performance across 4 different train-test
splits. In the first one we leave out examples con-
taining the subcommand “jump around right” (a
specific instance of Template 12) whereas in the
other 3 we leave out all instances of different tem-
plates described in-depth in Table 1. In all of
the splits, the network is tasked with generalizing
to novel commands involving “right” by exploit-
ing the “left”/“right” symmetry in the training set
and/or the distributional similarity among primi-
tives. We present the splits in order of conjectured
increasing complexity, in terms of systematic gaps

1All train-test splits are available along with the original
SCAN dataset at: https://github.com/brendenlake/SCAN.
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between training and test sets. Table 2 shows ex-
amples of commands in the training and test set
for the different conditions.

• jump around right: The test set consists of
all commands containing the phrase “jump
around right”, while all remaining com-
mands are in the training set, including uses
of “jump around left” and “Primitive around
right” for the other primitives. The network
is thus exposed to plenty of evidence that
“jump” has the same distribution as the other
primitives (thus, it should easily discover the
similarity of “jump” to the other primitives),
and it sees many instances of the “Primitive
around right” template with all other primi-
tive fillers but “jump”.

• Primitive right: The test set consists of
all commands containing “Primitive right”
(Template 4 in Table 1), with all remain-
ing templates (and their conjunctions and
quantifications) in the training set. In this
case, the network is exposed to “Primi-
tive left” and many examples illustrating the
“left”/“right” symmetry during training, and
it must bootstrap to the simplest usage of
“right” at test time.

• Primitive opposite right: The test set con-
sists of all commands containing templates
of the form “Primitive opposite right” (Tem-
plate 8), with the remaining templates (and
their conjunctions and quantifications) in the
training set. Here, the network is never ex-
posed to the “Primitive opposite right” tem-
plate with any primitive filler, and it has to
bootstrap the combined effect of “opposite”
and “right” based on seeing them applied in-
dependently, plus the “left”/”right” symme-
try.

• Primitive around right: The test set con-
sists of all commands containing templates
of the form “Primitive around right” (Tem-
plate 12), with the remaining templates in
the training set. This is analogous to “Prim-
itive opposite right”, but requires execut-
ing a longer action sequence due to the dif-
ferent SCAN semantics of “opposite” (two
turning+Primitive steps to turn in the op-
posite direction) vs. “around” (four turn-

ing+Primitive steps to perform a full round-
about, refer to Table 1).

Observe that “turn” in SCAN has a different
semantics from the other actions verbs (see Table
1). We found that removing all commands where
“turn” appeared in the target expression (e.g. “turn
around right” in the “Primitive around right” con-
dition, “turn opposite right” in the “Primitive op-
posite right” condition etc.) from both training
and test sets systematically increased accuracy,
and we thus report results in this setup.

Results: A summary of the results is presented
in Table 3. We see that the network had no prob-
lem generalizing to “jump around right” when be-
ing exposed to all commands containing this tem-
plate with all other possible fillers. This confirms
Lake and Baroni’s result that modern RNNs do
to some extent generalize to new combinations.
However, the remaining results also confirm their
finding of a lack of systematicity in generalization.

Interestingly, the poor performance in the
“Primitive right” condition shows that general-
ization is problematic for RNNs not only when
they have to bootstrap to longer constructions, but
also when they have to systematically generalize
to shorter ones (a network exposed to “run left”,
“run opposite right”, “jump left”, “jump around
right” etc. fails to execute “run right” or “jump
right”).

The dramatic difference in accuracy between
training without “around right” commands vs.
training on all templates except “jump around
right” commands (2.46% vs. 98.43%) points to
the network being able to generalize the applica-
tion of “around right” across primitives, but not
being able to directly apply “right” and “around”
to a primitive, without having seen them presented
together. The failure modes in the “Primitive
around right” condition further showcase, quali-
tatively, the lack of systematicity. For instance,
though the network correctly interprets the com-
plex expression “jump right after walk around
right”, it fails to do so for the subcommand “walk
around right”, where it flips one of the four “right”
turns for a “left” one.

Surprisingly, the network, while still far
from perfect, has considerably higher accuracy
(47.62%) when generalizing to “opposite right,”
a simpler command of the same nature as “around
right.” This suggests that memory factors (learn-
ing to repeat the relevant steps 4 times instead of
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Condition Example train commands Example test commands
jump around right “jump left”, “jump around left”,

“walk around right”
“jump around right”, “jump
around right and walk”

Primitive right “jump left”, “walk around right” “jump right”, “walk right”
Primitive opposite right “jump left”, “jump opposite

left”, “walk right”
“jump opposite right”, “walk op-
posite right”

Primitive around right “jump left”, “jump around left”,
“walk right”

“jump around right”, “walk
around right”

Table 2: Example train and test commands for different conditions of Experiment 1. Note that the train commands
are meant to illustrate relevant constructions, but the training set always contains all possible commands not in the
test set.

Condition Acc.
± s.d.

Test
size

jump around right 98.43%
±0.54%

1,173

Primitive right 23.49%
±8.09%

4,476

Primitive opposite right 47.62%
±17.72%

4,476

Primitive around right 2.46%
±2.68%

4,476

Table 3: Experiment 1: test set accuracy mean and
standard deviation for different train-test splits on the
SCAN dataset. Test set sizes are also reported.

2) interact with the network ability to extract the
right patterns.

Experiment 2: Impact of filler variety in
learning a complex template

One interesting result of Experiment 1 is that the
number of distinct primitive fillers of a template
that the network sees in training affects its ability
to generalize the template, as shown by the strik-
ing performance difference between the “Primitive
around right” (0 fillers of the relevant template
seen in training, very low accuracy) and “jump
around right” conditions (3 fillers seen in training,
near-perfect generalization). In Experiment 2, we
take a detailed look at this phenomenon by vary-
ing the number of primitive fillers for this template
(Template 12 in Table 1) that the model observes
during training, with the goal of learning the full
abstract template. We fix the test set across all
conditions by making it consist only of the com-
mands containing the expression “jump around
right” — this allows for more direct comparison
across the conditions. Again, commands contain-
ing the expression “turn around right” were re-

moved to avoid interference. The different condi-
tions for this experiment are, in order of decreas-
ing difficulty:

• 0 fillers: The training set contains no exam-
ples of Template 12, e.g., no command of the
form “Primitive around right”. It does con-
tain all other complete templates (1-11) in Ta-
ble 1.

• 1 filler: The training set has commands con-
taining “look around right” for Template 12
as well as all other complete templates in Ta-
ble 1.2

• 2 fillers: The training set has commands con-
taining “look around right” and “walk around
right” for Template 12 as well as all other
complete templates in Table 1.

• 3 fillers: The training set has commands con-
taining the templates “look around right”,
“walk around right” and “run around right”
for Template 12 as well as all other complete
templates in Table 1.

Each new template corresponds to roughly an
additional 1,100 distinct examples in the training
set.3 Note that the actual primitives chosen for
each condition do not matter, as their distribution
is identical.

Results: A summary of the results is shown in
Figure 2. We observe that the network only needs
examples of 1 primitive filler to start generalizing

2If a command contains both “look around right” and
“Primitive + around right” for another primitive, then that
command is held out. This is true of the other conditions as
well.

3We remind the reader that, though the number of distinct
examples in the training set varies across conditions, the total
number of presentations seen during the training regime is
fixed at 100k
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Figure 2: Experiment 2: accuracy on held-out com-
mands containing “jump around right” after training
on sets including a different number of commands of
the form “Primitive around right”. Error bars are boot-
strapped 95% confidence intervals.

almost perfectly to other fillers of the template. So,
crucially, the network seems able to perform some
analogical generalization from a verb to the other
in the “around right” context, but not to produc-
tively apply the “right” and “around” rules to a
verb, when their combined effect has never been
observed.

Experiment 3: Impact of number of distinct
training examples in learning a complex
template

We consider here a further level of granularity.
Adding one additional primitive filler, as we did
in Experiment 2, corresponds to about 1,100 ad-
ditional distinct training examples. Are they all
needed, or is it sufficient to observe the target
complex template in a smaller number of exam-
ples? This question is the subject of Experiment
3. In order to analyze the sample complexity of
the model’s generalizations, we now take the 0
filler condition from Experiment 2 and progres-
sively add examples from the 1 filler condition.
More precisely, we randomly add 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, or 1,024 commands contain-
ing “look around right”, but no other command of
the form “Primitive around right”, to the training
set of the 0 filler condition. As before, all other
templates (1-11) and their conjunctions and quan-
tifications are also provided during training. Note
that 1,024 is approximately the difference in dis-
tinct examples between the 0 and 1 filler condi-
tions, such that this experiment spans the entire
range from one to the other.

Results: A summary of the results is shown in

Figure 3: Experiment 3: accuracy on held-out com-
mands containing “jump around right” after training
on sets including a different number of commands
containing “walk around right”. Error bars are boot-
strapped 95% confidence intervals.

Figure 3. On the one hand, the sample complex-
ity with which performance ramps up is quite im-
pressive, being at a respectable 70% with 64 ad-
ditional examples and peaking at 512 examples.
On the other hand, the very fact that performance
increases gradually, and that it takes so long for
the network to peak points to a failure to general-
ize systematically: instead of piecing together the
general rule, the network seems to be rather accu-
mulating evidence for some specific cases.

4 Conclusion

Our findings complement those of Lake and Ba-
roni (2018) now in a setting where, instead of
having to learn a new embedding, the network
needs only to recombine well-trained functional
words, such as “right” and “around”. The re-
sults show the impressive generalization capabili-
ties of seq2seq models, correctly interpreting com-
plex new combinations of previously seen com-
mands, but also their lack of systematicity. On the
one hand, as shown in Experiment 2, the fact that
the network is able to correctly generalize to new
constructions of the form “Primitive around right”
after only seeing this template with one filler prim-
itive is quite impressive. On the other hand, Ex-
periment 1 suggests that this generalization is not
based on the network being able to combine sys-
tematic composition rules associated to the func-
tional terms “right” and “around”. Experiment 3
further confirms that generalization is not system-
atic in nature, and that the network still needs to be
shown a wealth of additional examples in the same
context as the test set in order to achieve it, even
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though it has already observed ample evidence for
all the test words in the training set.

Future directions include probing what kind of
training set evidence is crucial for systematic gen-
eralization, and how the ability to generalize in
this manner differs across different kinds of com-
mands (primitives, manner adverbs, spatial ex-
pressions, etc.). Further empirical investigations
might focus on generalization of functional terms
in real-life seq2seq tasks, such as machine transla-
tion. On the modeling side, we need to study what
are the right priors to encode in seq2seq models to
endow them with the ability of systematic gener-
alization without losing their generality.
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Abstract

While long short-term memory (LSTM) neu-
ral net architectures are designed to capture se-
quence information, human language is gener-
ally composed of hierarchical structures. This
raises the question as to whether LSTMs can
learn hierarchical structures. We explore this
question with a well-formed bracket prediction
task using two types of brackets modeled by an
LSTM.

Demonstrating that such a system is learnable
by an LSTM is the first step in demonstrating
that the entire class of CFLs is also learnable.
We observe that the model requires exponen-
tial memory in terms of the number of charac-
ters and embedded depth, where a sub-linear
memory should suffice.

Still, the model does more than memorize the
training input. It learns how to distinguish be-
tween relevant and irrelevant information. On
the other hand, we also observe that the model
does not generalize well.

We conclude that LSTMs do not learn the rele-
vant underlying context-free rules, suggesting
the good overall performance is attained rather
by an efficient way of evaluating nuisance vari-
ables. LSTMs are a way to quickly reach good
results for many natural language tasks, but to
understand and generate natural language one
has to investigate other concepts that can make
more direct use of natural language’s structural
nature.

1 Introduction

Composing hierarchical structure for natural lan-
guage is an extremely powerful tool for human
language generation. These structures are of great
importance in order to extract semantic interpreta-
tion (Berwick and Chomsky, 2016) and enable us
to produce a vast repertoire of sentences via a very
small set of rules. Having acquired such a set of

rules, it is easy to construct new structures without
having previously seen similar examples.

For purposes of external communication, the
syntactic structures generated by grammars must
be “flattened” or linearized into a sequential out-
put form (e.g. written, signed, or spoken). When
reading such a (linearized) text, hearing a spoken
sentence or observing a signed language, the struc-
ture has to be recovered implicitly to recover the
original meaning (i.e., parsing).

In this study, we investigate whether Long
Short-Term Memory (LSTM) models (Hochreiter
and Schmidhuber, 1997) possess this same ability
as humans do: inferring rule-based structure from
a linear representation. Everaert et al. (2015) show
clearly that there are phenomena in human lan-
guage that can only be understood by taking the
underlying hierarchical structure into account. For
neural networks to do the same, it is therefore es-
sential to acquire the underlying structure of sen-
tences.

Recurrent neural networks are often used for
tasks like language modeling (Mikolov et al.,
2010; Sundermeyer et al., 2012), parsing (Vinyals
et al., 2015; Kiperwasser and Goldberg, 2016;
Dyer et al., 2016), machine translation (Bahdanau
et al., 2014), and morphological compositions
(Kim et al., 2016). LSTMs are inherently sequen-
tial models. Since the hierarchical structures ap-
pearing in natural language often correlate with
sequential statistical features, it can be difficult to
evaluate whether an LSTM learns the underlying
rules of the sentence’s syntax or alternatively sim-
ply learns sequential statistical correlations. In this
paper we carry out experiments to determine this.

We set up our experiments by posing the LSTM
with a bracket completion problem having two
possible bracket types, a so-called Dyck Lan-
guage. A model which recognizes this language
has to infer rules of the underlying structure.
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Furthermore, a system that can solve this task
is able to recognize every context-free grammar
(see section 3 regarding Dyck Languages via the
Chomsky-Schützenberger theorem for why this is
so).

By analyzing the intermediate states of the cor-
responding LSTM networks, observing general-
ization behaviours, and evaluating the memory
demands of the model we investigate whether
LSTMs acquire rules as opposed to statistical reg-
ularities.

2 Related work

It has been shown that LSTMs are able to count
and partly acquire for context-free languages like
anbn and simple context-sensitive languages (Gers
and Schmidhuber, 2001; Rodriguez, 2001). We
note that in contrast to the language we investi-
gate here, anbn may be considered the “simplest”
context-free language, since it can be generated by
a grammar with just one transition.

The question as to whether LSTMs can in-
fer rules on a natural language corpus, e.g., for
subject-verb agreement, was initially explored by
others such as (Linzen et al., 2016). Liska et al.
(2018) investigated the memorization vs. general-
ization issue for LSTMs for function composition:
they showed that if an LSTM learns the mapping
from a string-set A to B and from B to C, then the
direct mapping from A to C can partly be learned.
We use the same method and model for a different
task – instead of function composition we evaluate
it for bracket matching.

Since most of the time it is challenging to deter-
mine what is actually going on with respect to the
neural network’s internal state, several attempts
have been made to visualize a neural network’s
intermediate states with the goal of making them
interpretable (Rauber et al., 2017; Karpathy et al.,
2015; Krakovna and Doshi-Velez, 2016). For sev-
eral simple copy and palindrome language tasks,
it has been shown that RNNs learn a fractal en-
coding similar to a binary expansion of the input
(Tabor, 2000; Grüning, 2006; Kirov and Frank,
2012). With the same objective we use another,
recently introduced method to investigate the in-
ternal states.

While here we investigate the ability of how
well structural information can be stored in origi-
nally sequential models, other approaches are cur-
rently being taken to move from sequential mod-

els to structural ones, e.g. to hardwire structural
properties into the model’s architecture (Tai et al.,
2015; Kiperwasser and Goldberg, 2016; Joulin
and Mikolov, 2015); to make a larger external
memory available to the network (Graves et al.,
2014; Sukhbaatar et al., 2015); or to make the net-
work architecture dynamic (Looks et al., 2017).

Finally, we note that thanks to careful review-
ing, we were made aware of Bernardy’s work
(2018), that addresses essentially the same task
as the one we tackle: He investigated also the
generalization behaviour of LSTMs for a Dyck-
language corpus with several bracket types. He
investigated generalization for sentences by con-
catenating several training sentences; or embed-
ding training sentences in a centrally embedded
bracket string. In contrast, we evaluate general-
ization by training sentences on a certain feature
(number of characters, embedded depth) and test-
ing the resulting model on the out-of-sample sen-
tences. By this method, we strive to reduce the
probability of similar sub-strings in the training
versus the test set.

3 Corpus

When dealing with natural language, there are
many side effects or nuisance variables – e.g.
words occurring more often in certain correlative
contexts or clusters than others. These can influ-
ence any classification and experimental result. To
minimize such effects, we conducted all experi-
ments on artificial corpora.

The Chomsky-Schützenberger theorem (Chom-
sky and Schützenberger, 1963; Autebert et al.,
1997) about representing context-free language
(CFL) states the following: “For each context-free
language L, there is a positive integer n, a reg-
ular language R, and a homomorphism h such
that L = h(Dn ∪ R).” where Dn is a Dyck
language with n different bracket pairs. As de-
scribed by Forišek (2018), it follows that the Dyck
language D2 essentially covers the entire class of
CFLs. Every model which recognizes or gener-
ates well-formed Dyck words with two types of
brackets should be powerful enough to handle any
CFL when intersected with a relabeling (homo-
morphism of a constructed regular language).

The synthetic corpus we use consists of such a
Dyck language with two types of brackets ([] and
{}). Sentences are generated according to the fol-
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lowing grammar:

S -> S1 S | S1
S1 -> B | T
B -> [ S ] | { S }
T -> [ ] | { }

The probabilities of the rules are defined in a
way that the entropy – in terms of the number of
characters between an opening and its correspond-
ing closing bracket and the depth of embedding at
which a bracket appears – is larger than if the rules
had all equal probabilities. Formally, the branch-
ing probability Pb = P [S1 -> B] and the con-
catenation probability Pc = P [S -> S1 S] are
defined as follows:

s(l) = min(1,−3 · l
n
+ 3)

Pb = rb · s(l) where rb ∼ U(0.4, 0.8)
Pc = rc · s(l) where rc ∼ U(0.4, 0.8)

(1)

where rb and rc are sampled once per sentence
and l is the number of already generated characters
in the sentence. All 1M generated sentences have
a length n of 100 characters.

In this paper, we check whether an LSTM can
be trained to recognize this grammar.
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Figure 1: Corpus frequencies

4 Model

To check if we can train a neural network to accept
the language generated by the grammar above, an
LSTM is used.

4.1 Long Short-Term Memory

Long-Short-Term-Memory networks (LSTM)
(Hochreiter and Schmidhuber, 1997) are a variant
of recurrent neural networks (RNNs). Both of
them possess a memory state that is updated in
the process of reading a time series. Many RNNs
suffer from the problem of vanishing gradients
(Hochreiter and Schmidhuber, 1997): The recur-
rent activation functions of RNNs are often set
to be tanh or the sigmoid function. Since their
gradients are most of the times smaller than 1 (for
tanh it is upper bounded by 1, and for the sigmoid
function even by 0.25), the gradient cannot be
conserved during extense backpropagation and
approaches 0. LSTMs deal with this issue by
containing three multiplicative gates controlling
what proportion of the input to pass to the memory
cell (input gate), what proportion of the previous
memory cell information to discard (forget gate)
and what proportion of the memory cell to output
(output gate). In the recurrency of the LSTM the
activation function is the identity function, which
has gradient 1.0. This means that if the forget gate
is open, the gradient is fully passed on to previous
time steps, and long term dependencies can be
learned.

The LSTM reads each input xi consecutively
and updates its memory state ci accordingly. Af-
ter each step, an output hi is generated based on
the updated memory state. More specifically, the
LSTM solves the following equations in a forward
pass:

it = σ(Wixxt +Wihht−1 + bi)

ft = σ(Wfxxt +Wfhht−1 + bf )

ct = ft � ct−1
+ it � tanh(Wcxxt +Wchht−1 + bc)

ot = σ(Woxxt +Wohht−1 + bo)

ht = ot � tanh(ct)
(2)

4.2 Basic Model

Now let us turn to the details of the model imple-
mentation. We begin with the basic formulation.

Let Bopen and Bclose be the sets of opening and
closing brackets and B = Bopen ∪ Bclose the set
of all brackets. Given the beginning of a sentence
w1, w2, ..., wk−1, wk with w1, ..., wk−1 ∈ B and
wk ∈ Bclose, the LSTMs tries approximate the
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Figure 2: schematic model of an LSTM-cell.
⊙

stands for element-wise multiplication and
⊕

for
vector addition.

function:

F : Bk−1 → Bclose

w1, w2, ..., wk−1 7→ wk.

The substring (clause) between the corresponding
opening bracket of wi and wi will be referred to
as the relevant clause in the remainder of this pa-
per. Likewise, by distance we denote the number
of characters of the relevant clause. Note that this
distance is always a multiple of 2, since the rele-
vant clause is well-balanced. The depth at a cer-
tain position i is the number of unclosed brackets
in the first i characters. The embedded depth of a
sentence is the maximum depth when processing
the relevant clause.

To read the input characters, an embedding
layer with 5 output dimensions precedes the
LSTM. Together they build the encoder, which
will read the input sequentially. The decoder, map-
ping the internal representation to a probability of
predicting } or ] is a dense layer with one output
variable.

We have compared different initialization meth-
ods. It turns out that the initialization of the
model is crucial to avoid bad local minima. The
following initialization method results in consis-
tently good solutions: To initialize the weights,
the model is trained with sentences of length 50
and only afterwards on the actual corpus with sen-
tence length 100.

For backpropagation, the Adam (Kingma and
Ba, 2014) optimizer was used. Furthermore, to en-

sure faster and more consistent convergence, at the
beginning of the training, the batch size is grad-
ually increased, which has a similar effect as re-
ducing the learning rate (Smith et al., 2017). In
all experiments (and for all models), the corpus
is split into 50% training sentences and 50% test
sentences. The reported results always refer to the
results on the test set.

4.3 Analysis Model

The analysis model is used to analyze what in-
formation is stored in the internal representation
of the LSTM. In a Push-Down-Automaton model,
this internal representation would conceptually
correspond to the entire stack.

To analyze the internal representation [hi, ci] of
the LSTM after having read the input or part of it,
we use a method already developed by Shi et al.
(2016) and Belinkov et al. (2017): After having
trained the basic model, the weights of the encoder
are fixed and the labels (previously y) are replaced
by some feature zi of the input x1, . . . , xi.

This feature zi can either be a scalar or a vector.
If zi is a scalar, a dense layer (scalar analysis
decoder) is trained to predict zi. On the other
hand, if zi is a vector (sequence analysis decoder),
another LSTM is trained to predict zi,1, . . . , zi,j .

Analyzing the performance of the analysis net-
work shows us how accurately a feature zi is pre-
served in [hi, ci]. One can assume that the LSTM
uses its limited memory “efficiently” and therefore
discards irrelevant information. Hence, the perfor-
mance of the analysis decoder shows whether zi is
contained in the information that is relevant for the
original classification task.

To begin, two of the experiments which were
conducted are presented in the following section
to test the trained model performance. For the first
experiment zi is the depth (nesting level) after i
characters.

Example: For the sequence {[{}[[], z is
(1, 2, 3, 2, 3, 4, 3).

For the second experiment we note that theo-
retically, at any time t, no information about a
closed clause in w1, . . . , wt has to be stored, since
it is irrelevant for any eventual future prediction
of wt+1, wt+2, . . .. When reading from left to
right, as soon as a closing bracket is processed, the
corresponding clause becomes irrelevant. There-
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Figure 3: Network architecture of the model. The basic end-to-end model consists of the encoder and the
basic decoder. The analysis model fixes the weights for the encoder and uses the scalar (if zi is a scalar)
or sequence analysis decoder (if zi is a sequence).

fore, the relevant information is simply the list of
bracket types of unclosed clauses. In this experi-
ment we investigate how well the previous charac-
ters are preserved in the intermediate representa-
tion and evaluate if this correlates with the recov-
ered characters being relevant or not.

Example: after having processed {[{}][,
only the first and the last characters are relevant,
since they are the only ones that could matter for
a future classification task. On the other hand, the
sub-string [{}] is irrelevant. In this example we
would evaluate whether the first and last character
are better preserved in the intermediate state than
the irrelevant sub-string.

To set up the experiment, we set zi,k to be equal
to xi−k+1, corresponding to predicting the previ-
ous characters of a given intermediate state.

4.4 Varying hidden units

The basic model is evaluated with 2, 4, 6, ..., 50
hidden units. The error rate with 50 hidden units
is 0.38% and an error rate of 1% is reached around
20 hidden units. Thus, the error seems to con-
verge with increasing hidden units to a fairly small
value. As a result, in all further experiments, the
maximum number of hidden units the models are
tested against was set to 50.

4.5 Memory demand

In this section we evaluate how “difficult” sen-
tences can be with respect to the memory demand
of the model, while still reaching an error toler-
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Figure 4: Overall error rate of the basic model
with respect to the number of hidden units of the
LSTM.

ance of 5%. We have to work with tolerances, be-
cause 100% accuracy is not reached. Since it can
be challenging measuring how difficult a sentence
is to predict, we use the distance and the embedded
depth of a sentence as defined above as metrics.

The resulting values (figure 5) demonstrate that
memory demand grows exponentially with respect
to the distance of sentences that can be predicted.
The same behaviour can be observed with respect
to the embedded depth.

4.6 Generalization

To evaluate the model’s generalization perfor-
mance, training was done only on a systematically
chosen subset of sentences (in-sample). To avoid
adding additional nuisance variables in this selec-
tion, the training sentences are selected according
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Figure 6: Generalization behaviour of a model with
10 hidden units with respect to the distance for 100
runs. Half of the corpus is systematically selected
for training (in-sample) – for testing also the left
out distances are considered (out-of-sample). The
bold dashed line is the minimal out-of-sample er-
ror out of all 100 runs.

to one of the following rules:

regular interpolation: the sentence has distance
2, 6, 10, 14, . . . / odd embedded depth.

random interpolation: the distance / embedded
depth of the relevant clause belongs to a set
D. D is a random subset consisting of half
of all distances / embedded depths present in
the corpus.

extrapolation: the distance / embedded depth of
the relevant clause is smaller than a certain
threshold (11 for distance and 13 for embed-
ded depth).

Running the experiment 100 times – each one
with a different random weight initialization – has
shown (figure 6) that the results are consistent with
respect to the weight initialization. The best out-

of-sample accuracy is still worse than almost all
in-sample accuracies.

The results (figure 7) demonstrate a large dis-
crepancy between the performance on in-sample
(training) and the out-of-sample (testing) accu-
racy. The experiment was evaluated for different
numbers of hidden units. On the one hand, with
a large number of hidden units, the generaliza-
tion error is similarly large (the out-of-sample er-
ror rate for interpolation was already between 8.1
and 14.3 times larger than the in-sample error). On
the other hand, models with a small number of hid-
den units did not even converge. The reason for
no convergence can be reasonably be explained by
the sparse data set, that might lead to more local
minima. The maximum generality – especially for
smaller distances – is observed at around 10 hid-
den units.

Generalization was evaluated with respect to
distance and with respect to the embedded depth.

For regular interpolation the out-of-sample er-
ror for 10 hidden units was on average 5.4 (dis-
tance) and 5.9 (embedded depth) times higher than
the in-sample error. Figure 7 shows also that for
random interpolation and extrapolation, the model
generalizes much worse or not at all.

4.7 Intermediate State Analysis

For the first experiment analyzing intermediate
states, recovering the depth as defined in section
4.2 from intermediate states shows that the depth
is only marginally conserved in the intermediate
state (figure 8). For a small number of units, the
model is only able to distinguish whether a depth
is either close to 0 or close to the mean depth (see
figure 8 with two hidden units). When increas-
ing the number of hidden units, the distribution of
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Figure 7: Test for generalization: The error rate of the model with 10 hidden units if only half of the
corpus is systematically selected for training (in-sample), while during testing also the left out distances
/ embedded depths were considered (out-of-sample).

predictions gets closer to the real distribution of
depths.

While for two hidden units the prediction of the
depth is on average off by 7.04, it decreases until
it reaches a value of 1.34 for 50 hidden units.

Figure 9 shows how accurately a past charac-
ter can be recovered from an intermediate state.
There is a large discrepancy between the accuracy
of relevant and irrelevant characters: If the 4th-
to-last character is an irrelevant one, the model
is only able to recover the type of bracket with a
33% error rate; whereas if it is a relevant charac-
ter, it reaches an error below 1.8%. As the num-
ber of past characters k approaches 10, the irrel-
evant information cannot be recovered anymore.
Note that an error rate of 0.5 amounts to a random
guess, since we evaluate only if it can predict the
type of bracket (square or curly) correctly, and not
whether it was an opening or a closing one.

5 Discussion

We now consider the results of the various experi-
ments, some of which might be considered as con-
troversial on first sight. On the one hand, we see
that the LSTM exhibits an exponential memory
demand as sentences grow longer, while theoret-
ically, a sub-linear memory ought to be sufficient
(Magniez et al., 2014). On the other hand, we see
that the model has successfully sorted out irrele-
vant information: the intermediate state analysis
shows that irrelevant characters are very quickly
forgotten. So, the exponential memory space is
not needed for storing irrelevant information for
the original classification task.

The strength of structural rules is that they gen-
eralize well. In human language this enables hu-
mans to create new sentences which have never
been heard before. But also for the Dyck lan-
guage being used, the 4 rules defining the language
are enough to generate sentences of arbitrary dis-
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Figure 9: Error rate of predicting the previous
characters given an intermediate state of the ba-
sic model with 20 hidden units. Characters are
grouped as being either relevant or irrelevant for
the basic classification task.

tance and (embedded) depth. The only constraint
is the memory to store intermediate results while
streaming the input. Assuming the model had in
fact learned the underlying grammatical rules cor-
rectly, an upper bound for the memory required
is 50 bits. The model we are using has up to 50
hidden units which corresponds to 11,200 train-
able parameters. Collins et al. (2016) showed that
LSTMs can store up to 5 bits of information per
parameter and one real number per hidden unit.
So we can assume that memory to store the values
to process the corpus-defining rules sequentially
is not an issue. To partially answer the question of
whether LSTM can learn rules we follow a proof
by contradiction: if the LSTM learns rules and if
these rules are the correct ones, the model would
generalize. What we observe is that the LSTM

generalizes poorly. Therefore we conclude that the
model is not able to learn the right rules.

Combining the generalization results and the in-
termediate state analysis reveals that the model de-
termines each character’s relevance – but it has
learned this without resorting to hierarchical rules.
As LSTMs are known to have the ability to cap-
ture statistical contingencies, it suggests instead
that rather than the “perfect” rule-based solution,
what the LSTM has in fact acquired is a sequential
statistical approximation to this solution.

The large effect of initialization to a good lo-
cal minimum suggests that the underlying function
may well have many local minima as on reviewers
noted. Indeed, Collins et al. (2016) has already
concluded that the memory in LSTMs is mainly
used for training effectiveness rather than to in-
crease the storage capacity. Therefore, the large
memory demand in our experiments suggests that
the LSTM memory is needed to avoid such local
minima.

6 Conclusion

At heart, neural networks are statistical models,
performing well at capturing and combining cor-
relations of the output variable values and the cor-
responding component values in the training in-
put. In particular, LSTMs are constructed such
that they capture sequential information. Hence,
due to the design of their architecture, LSTMs per-
form very well on statistically-oriented, sequential
tasks.

As a result, in experiments like this one that
examine whether LSTMs can acquire hierarchical
knowledge, one has to pay close attention to nui-
sance variables like sequential statistical correla-
tions that might be hard to detect and confounded
with true hierarchical information.

The bottom line that emerges from this experi-
ment is that the range of rules that an LSTM can
learn is very restricted: even a context-free gram-
mar with four simple rules apparently cannot be
appropriately learned by an LSTM.

According to most linguistic accounts, natu-
ral language syntax relies heavily on hierarchical
rules. It enables humans to compose new sen-
tences with relatively little memory capacity and
training data. Furthermore, there are sentences
that have the same linear representation but differ
in structure – syntactically ambiguous sentences.
From this perspective, it seems not only more ef-
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ficient to directly infer structures and rules, but
also useful to use rules to understand sentences
correctly. The bracket completion task presented
here can be understood by a human after only a
few training sentences, though online processing
of the rules themselves may be difficult. This re-
sult invites the conclusion that it will be very chal-
lenging for LSTMs to understand natural language
as humans do. While LSTMs remain good engi-
neering tools to approximate certain language fea-
tures based on statistical correlations, the explo-
ration of fundamentally new models and architec-
tures seems a valuable direction to explore on the
way to developing methods for understanding hu-
man language in the way that people do.
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Michal Forišek. 2018. What is the significance of the
chomsky-schützenberger theorem about represent-
ing context-free languages?

Felix A Gers and E Schmidhuber. 2001. Lstm recur-
rent networks learn simple context-free and context-
sensitive languages. IEEE Transactions on Neural
Networks, 12(6):1333–1340.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. CoRR, abs/1410.5401.
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Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
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Abstract
How much does “free shipping!” help an ad-
vertisement’s ability to persuade? This paper
presents two methods for performance attri-
bution: finding the degree to which an out-
come can be attributed to parts of a text while
controlling for potential confounders1. Both
algorithms are based on interpreting the be-
haviors and parameters of trained neural net-
works. One method uses a CNN to encode the
text, an adversarial objective function to con-
trol for confounders, and projects its weights
onto its activations to interpret the importance
of each phrase towards each output class. The
other method leverages residualization to con-
trol for confounds and performs interpreta-
tion by aggregating over learned word vec-
tors. We demonstrate these algorithms’ ef-
ficacy on 118,000 internet search advertise-
ments and outcomes, finding language indica-
tive of high and low click through rate (CTR)
regardless of who the ad is by or what it is
for. Our results suggest the proposed algo-
rithms are high performance and data efficient,
able to glean actionable insights from fewer
than 10,000 data points. We find that quick,
easy, and authoritative language is associated
with success, while lackluster embellishment
is related to failure. These findings agree with
the advertising industry’s emperical wisdom,
automatically revealing insights which previ-
ously required manual A/B testing to discover.

1 Introduction

A text’s style can affect our cognitive re-
sponses and attitudes, thereby influencing behav-
ior (Spence, 1983; Van Laer et al., 2013). The pre-
dictive relationship between language and behav-
ior has been well studied in applications of NLP to

∗This work was conducted while the first author was do-
ing internship at Google.

1Our code is available at github.com/rpryzant/
deconfounded_lexicon_induction/tree/
master/text-performance-attribution

tasks like linking text to sales figures (Ho and Wu,
1999; Pryzant et al., 2017) and voter preference
(Luntz, 2007; Ansolabehere and Iyengar, 1995).

In this paper, we are interested in interpret-
ing rather than predicting the relationship between
language and behavior. We focus on a specific in-
stance: the relationship between the way a search
advertisement is written and internet user behav-
ior as measured by click through rate (CTR). In
this study CTR is the ratio of clicks to impres-
sions over a 90-day period, i.e. the probability of
a click, given the person saw the ad. Our goal is
to develop a method for performance attribution
in textual advertisements: identifying lexical fea-
tures (words, phrases, etc.) to which we can at-
tribute the success (or failure) of a search ad, re-
gardless of who created the advertisement or what
it is selling.

Identifying linguistic features that are associ-
ated with various outcomes is a common activity
among machine learning scientists and practition-
ers. Indeed, it is essential for developing trans-
parent and interpretable machine learning NLP
models (Yamamoto, 2012). However, the various
forms of regression and association quantifiers like
mutual information or log-odds ratio that are the
de-facto standard for feature weighting and text
attribution all have known drawbacks, largely re-
lated to problems of multicollinearity (Imai and
Kim, 2016; Gelman and Loken, 2014; Wurm and
Fisicaro, 2014; Estévez et al., 2009; Szumilas,
2010).

Furthermore, these prior methods of text attri-
bution critically fail to disentangle the explanatory
power of the text from that of confounding infor-
mation which could also explain the outcome. For
example, in movie reviews, the actors who star in
a film are the most powerful predictors of box of-
fice success (Joshi et al., 2010). However, these
are words that the film’s marketers can’t change.
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Likewise, the name of a well-known brand in an
ad for shoes might boost its effectiveness, but if
we attribute the ad’s success to the brand terms, we
are actually crediting the power of the brand, not
necessarily an actionable writing strategy (Ghose
and Sundararajan, 2006).

There is an emerging line of work on text un-
derstanding for confound-controlled settings (Jo-
hansson et al., 2016; Egami et al., 2017; Pryzant
et al., 2018; Li et al., 2018), but these methods are
usually concerned with making causal inferences
using text. They are limited to word-features and
can only tell you whether a word is discriminative.
Attribution involves the more fine-grained prob-
lem of identifying discriminative subsequences of
the text and being able to explain which level of
the outcome these subsequences support.

We present a pair of new algorithms for solving
this problem. Based on the Adversarial and Resid-
ualizing models of (Pryzant et al., 2018), these al-
gorithms first train a machine learning model and
then analyze the trained parameters on strategi-
cally chosen inputs to infer the most important fea-
tures for each output class. Our first algorithm
encodes the text with a convolutional neural net-
work (CNN) and proceeds to predict the outcome
and adversarially predict the confounders. We se-
lect attributional n-grams by projecting back the
weights of the output layer onto the encoder’s
convolutional feature maps. Our second algo-
rithm uses a bag-of-words text representation and
is trained to learn the part of the text’s effect that
the confounds cannot explain. We get n-grams
from this method by tracing back the contribution
of each feature towards each outcome class.

We demonstrate these algorithms’ efficacy by
conducting attribution studies on high- and low-
performing search advertisements across three do-
mains: real estate, job listings, and apparel. We
find the proposed algorithms lend importance to
words that are more predictive and less confound-
related than a variety of strong baselines.

2 Text Attribution

We begin by proposing a methodological frame-
work for text attribution and formalizing the activ-
ity into a concrete task.

We have access to a vocabulary V =
{v1, ..., vm}, text T = (w1, ..., wt) that is repre-
sented as a sequence of tokens, where each w is
an element of V , outcome variable Y ∈ {1, ..., k},

and confounding variable(s) C. The data consists
of (T i, Y i, Ci) triples, where the ith data point
includes a passage of text, an outcome, and con-
founding information that could also explain the
outcome. Note that parts of T and C are related
because language reflects circumstance (the text
T is usually authored within a broader pragmatic
context, for example the intent to promote a cer-
tain product at a certain price); T and Y are related
because language influences behavior; C and Y
are related because circumstance also influences
behavior. We are interested in isolating the T -Y
relationship and finding out which parts of the text
act towards each possible outcome. We do so by
choosing a lexicon L1, ..., Lk ⊂ V for each each
outcome class Yi such that the outcome x in obser-
vation (T i, Y i = x, Ci) can be credited to T i∩Lx,
regardless of C. In other words, observing Y i = x
can always be attributed to the tokens in Lx no
matter the circumstances.

Saying that Y i = x can be attributed to Lx

means (1) the words in Lx have a causal effect on
Y and (2) that these words push Y towards class
x, i.e., Lx is associated with class x. Based on
the potential outcomes model of (Holland et al.,
1985; Splawa-Neyman et al., 1990; Rubin, 1974;
Pearl, 1999), Pryzant et al. (2018) developed a
causal informativeness coefficient which measures
the causal effects of a lexicon L on Y :

I(L) = E
[(
Y − E

[
Y
∣∣C, T ∩ L

])2]

− E
[(
Y − E

[
Y
∣∣C
])2]

,
(1)

I(L) measures the ability of T ∩L to explain Y ’s
variability beyond the information already con-
tained in the confounders. One computes I(L) by
(1) regressing C on Y , (2) regressing C + L ∩ T
on Y , and (3) measuring the difference in cross-
entropy error between these models over a test set.

So I(Lx) measures the degree to which Lx in-
fluences Y , but it can’t describe the degree to
which Lx influences Y towards the specific out-
come x. We propose circumventing this issue
with a new directed informativeness coefficient
I ′(L, x) = l̄o(L, x) · I(L), where l̄o is the av-
erage strength of association between the tokens
in Lx and outcome x, as measured by log-odds:

l̄o(L, x) =

∑
v∈L log pxv − log (1− pxv)

|L| (2)

pxv =
count(Y = x ∧ v ∈ T )

count(v ∈ T )
(3)
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Figure 1: A Convolutional Adversarial Selector with f = 2 filters (both of size n = 2). Having filters of size 2
restricts this model to bigram attribution. Best viewed in color. Left: training phase. Right: interpretation phase.

Intuitively, if I ′(Lx, x) is high, then Lx is both
highly influential on Y and strongly associated
with outcome x.

3 Proposed Algorithms

We continue by describing the pair of novel algo-
rithms we are proposing to use for text attribution.
Each algorithm consists of two phases: training,
where we use T , Y , and C to train a machine
learning model, and interpretation, where we
analyze the learned parameters to identify attribu-
tional language.

3.1 Convolutional Adversarial Selector (CA)
Training. We begin by observing that the lan-
guage we want to attribute should be able to ex-
plain the variation in Y and should also be decor-
related from the confounders C. This implies that
the features we want to select should be predictive
of Y , but not C (e.g. brand name). The Convolu-
tional Adversarial Selector (CA) draws inspiration
from this. It adversarially learns encodings of T
which are useful for predicting Y but are not use-
ful for predicting C. The model is depicted on the
left-hand side of Figure 1.

First, we encode T into e ∈ Rf with the fol-
lowing steps:

1. Embed the tokens of T with word vectors of
dimension e. If the input text sequence has
length t, the embedded input is a matrix E ∈
Re×t.

2. Slide convolutional filters of size f ×n along
the time axis of E, where n are the n-gram
size(s) we are interested in attributing during
the interpretation stage. This process trans-
forms text T into a set of n-gram features of

various sizes, n. The input are now trans-
formed into Fn ∈ Rf×(t−n+1), aka f one-
dimensional feature maps of length t−(n−1)
for each n-gram size n.

3. Perform global average pooling (Lin et al.,
2014) on Fn. We now have our encoding
en ∈ Rf , where each enj =

∑
i F

n
j,i.

4. Concatenate all en’s from every filter width
n. This produces the final encoding, e.

Armed with e, we proceed to predict Y and C
with a single linear transformation:

Ŷ = eWY

Ĉ = eWC

The model receives error signals from both of
these “prediction heads” via a cross-entropy loss
term:

L =
∑

i

−pi log p̂i (4)

Where pi and p̂i correspond to the ground truth
and predicted probabilities for class i, respectively.

Last, as gradients backpropagate from the C-
prediction head to the encoder, we pass them
through a gradient reversal layer in the style of
(Ganin et al., 2016; Britz et al., 2017), which
multiplies gradients by -1. If the loss of the Y -
prediction head is LY , and that of the confounders
is LC , then the loss which is implicitly used to
train the encoder is Le = LY − LC . This en-
courages the encoder to match e’s distributions,
regardless of C, thereby learning representations
of the text which are invariant to the confounders
(Xie et al., 2017).
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Figure 2: A Directed Residualization Selector with input embeddings of size f = 2. Best viewed in color. Left:
training phase. Right: interpretation phase.

Interpretation. Once we’ve trained a CA model,
we interpret its behavior in order to determine the
most important n-grams for each level of the out-
come. This stage is depicted in the right-hand side
of Figure 1.

Inspired by the class activation mapping tech-
nique for computer vision (Zhou et al., 2016),
we project the weights of WY , the output layer,
onto Fn, the convolutional feature maps. Since
Ŷk =

∑
i eiW

Y
i,k, each W Y

i,k indicates the impor-
tance of ei for class k. The elements of e are aver-
ages of each feature map, so W Y

i,k also indicates
the importance of the ith feature map for class
k. Each feature map contains one activation per
n-gram feature. This means we can quantify the
importance of the jth n-gram feature vnj towards
each output class k by summing over all feature
maps:

Mk(vnj ) =
∑

i

Fn
i,j W

Y
i,k (5)

Mk is a mapping between input features and
their importance towards class k.

In order to draw lexicons Li from our vocabu-
lary V , we perform interpretation over a dataset
and map each (n-gram, outcome class) tuple to all
of the importance values it was assigned. We then
compute the average importance for each n-gram
and select the top k for inclusion in the outgoing
lexicon.

Note that this algorithm is only interpretable to
the extent that there is a single linear combination
relating e to Ŷ . With multiple layers at the “de-
cision” stage of the network, the relationship be-
tween each dimension of e (and by extension, the
rows of F) and each output class becomes obfus-
cated.

3.2 Directed Residualization Selector (DR)

Training. Recall from Section 2 that I ′(L, x)
measures two quantities: (1) the amount by which
L can further improve predictions of Y compared
to the prediction only made from the confounders
C, and (2) the strength of association between
members of L and outcome class x. The Directed
Residualization method is directly motivated by
this setup. It first predicts Y directly from C as
well as possible, and then seeks to fine-tune these
predictions using T . This two-stage prediction
process lets us control for the confounders C, be-
cause T is being used to predict the part of Y that
the confounders can’t explain. This model is de-
picted in the left-hand side of Figure 2.

First, the confounders C are converted into one-
hot feature vectors that are passed through a feed-
forward neural network (FFNN) to obtain a vector
of preliminary predictions Ŷ′. We then re-predict
the outcome with the following steps:

e = t Win (6)

Ŷ =
[
e Ŷ′

]
Wout (7)

Where t = {0, 1}|V | is a bag-of-words represen-
tation of T , Win ∈ R|V |×f , e ∈ Rf , Wout ∈
R(f+k)×k, and k is the number of classes in Y .
The model receives supervision from both Ŷ′ and
Ŷ. We use the same cross-entropy loss function as
the Convolutional Adversarial Selector of Section
3.1.

Note the similarities between this approach and
the popular residualizing regression (RR) attribu-
tion technique (Jaeger et al., 2009; Baayen et al.,
2010, inter alia). Both use the text to improve
an estimate generated from the confounds. RR
treats this as two separate regression tasks (using
C to predict Y , then T to predict the first model’s

128



residuals). We introduce the capacity for nonlin-
ear interactions by backpropagating between RR’s
steps.
Interpretation. This stage is depicted in the right-
hand side of Figure 2. Once we’ve trained a DR
model, we determine the importance of each fea-
ture vj for each class Yk by tracing all possible
paths between vj and Yk, multiplying the weights
along those paths, then summing across paths. The
resulting importance value, Mk(vj), is how much
Yk’s log-likelihood increases if vj is added to a
text according to the trained model (and thus irre-
spective of the confounders).

We can derive this procedure by considering the
models’ parameters. In equation 7, we produce
log-likelihood estimates for Y by concatenating
e and Ŷ′ and multiplying the result with Wout.
This means the first |e| = f rows of Wout (writ-
ten as Wout,T ) are an output projection transform-
ing e into ŶT , the text’s contribution towardsŶ.
So W out

i,k indicates the importance of ei for output
class k. As per equation 6, e is the sum of all of
the rows of Win that correspond to features in the
text. So we can decompose ŶT into a sum of con-
tributions from each text feature vj :

Ŷ =
[
e Ŷ′

] [ Wout,T

Wout,C

]

ŶT = t Win ·Wout,T

Ŷ T
k =

|V |∑

j

f∑

i

1T (vj)W
in
j,i W

out,T
i,k

And the estimated log-likelihood contribution of
of any vj towards class k is

Mk(vj) =

f∑

i

W in
j,i W

out,T
i,k (8)

For this algorithm, there is no need to run the
model over any data in order to retrieve impor-
tance values – we can directly obtain these values
from the trained parameters. This procedure is de-
picted in the right-hand side of Figure 2.

Last, like the CA algorithm, DR is only inter-
pretable to the extent that there is a single linear
combination between e and Ŷ .

4 Experiments

We demonstrate the efficacy of the proposed algo-
rithms on a dataset of internet advertisements.

4.1 Experimental Set-Up
Data. In this setting our (T , Y , C) data triples
consist of

• T : the header text of sponsored search results
in an internet search engine.

• Y : a binary categorical variable which
indicates whether the corresponding ad-
vertisement was high-performing or low-
performing.

• C: a categorical variable which indicates the
brand of the ad. We use customer id and the
hostname of the landing page the ad points to
as a proxy for this.

We collect advertisements across three do-
mains: apparel (16,000 advertisements), job list-
ings (70,000), and real estate (32,000). See sec-
tion A for more details on these data. We selected
pairs of ads where both had the same landing page
and targeting, but where one ad was in the 97.5th

CTR percentile (high-performing) and its counter-
part was in the 2.5th percentile (low-performing).
This implies that any performance differences may
be attributed to differences in their text.

We tokenized these data with Moses (Koehn
et al., 2007) and joined word-tokens into n-grams
of size 1, 2, 3, and 4 for the n-gram portion of the
study.
Implementation. We implemented nonlinear
models with the Tensorflow framework (Abadi
et al., 2016) and optimized using Adam (Kingma
and Ba, 2014) with a learning rate of 0.001. We
implemented linear models with the scikit learn
package (Pedregosa et al., 2011). We evaluate
each algorithm by selecting lexicons of size |Li| =
50. We optimized the hyperparameters of all algo-
rithms for each dataset. Complete hyperparameter
specifications are provided in the online supple-
mentary materials; for the proposed DR and CA
algorithms we set |e| to 8, 32, and 32 for the ap-
parel, job listing, and real estate data, respectively.
Baselines. Along with the Convolutional
Adversarial Selector (CA) and Directed
Residualization Selector (DR) of Section 3,
we compare the following methods: Regression
(R), Residualized Regressions (RR), Regression
with Confound features (RC), and the Adversarial
Selection (AS) algorithm of (Pryzant et al.,
2018), which selects words that are impor-
tant for a confound-controlled prediction task
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by considering the attentional scores of an
adversarially-trained RNN.

4.2 Experimental results

We begin by investigating whether the proposed
methods successfully discovered features that are
simultaneously indicative of each CTR status and
untangled from the confounding effects of brand
(Tables 1, 2, 3).

High CTR
Unigrams N−grams

l̄o I I ′ l̄o I I ′
DR 0.84 1.19 1.01 2.09 0.81 1.68
CA 1.28 1.19 1.53 1.99 0.78 1.55
AS 0.59 0.35 0.21 0.58 0.61 0.36
R 0.91 0.83 0.76 0.68 0.63 0.43
RC 0.92 0.99 0.90 0.55 0.78 0.43
RR 0.23 0.36 0.08 0.01 0.21 0.00

Low CTR
Unigrams N−grams

l̄o I I ′ l̄o I I ′
DR 0.73 0.78 0.58 1.12 0.88 0.99
CA 1.17 0.81 0.96 1.42 0.88 1.26
AS 0.58 0.20 0.11 0.56 0.42 0.24
R 0.79 0.46 0.37 0.83 0.52 0.43
RC 1.05 0.29 0.31 1.42 0.49 0.70
RR 0.24 0.34 0.08 0.20 0.14 0.03

Table 1: Comparative performance over apparel adver-
tisements. I and I ′ are inflated by an order of magni-
tude for readability.

On the apparel data (Table 1), we find that the
proposed algorithms select words that are often
both the most influential on CTR (highest I) and
are also the most strongly associated with their
target outcome classes (highest l̄o). It is not sur-
prising that the Adversarial Selector of (Pryzant
et al., 2018) (AS) had low l̄o because the method
is only capable of identifying discriminative fea-
tures while controlling for confounds. AS was also
inconsistent in its ability to select words that are
predictive of CTR while being unrelated to brand.
This may be due to the instability of adversarial
learning (Shrivastava et al., 2017) or the complex
nonlinear relationship between the model’s atten-
tion scores and final predictions.

On the job advertisements (Table 2), the pro-
posed DR algorithm performed the best, select-
ing words that were both more influential on CTR
and more strongly associated with its target than

High CTR
Unigrams N−grams

l̄o I I ′ l̄o I I ′
DR 0.67 0.61 0.41 3.63 0.25 0.91
CA 1.33 0.17 0.22 3.35 0.17 0.57
AS 0.43 0.33 0.14 2.42 0.25 0.60
R 0.65 0.13 0.08 2.98 0.17 0.51
RC 0.35 0.71 0.24 3.04 0.16 0.51
RR 0.26 0.40 0.10 1.81 0.18 0.33

Low CTR
Unigrams N−grams

l̄o I I ′ l̄o I I ′
DR 0.89 1.04 0.93 3.43 0.20 0.69
CA 1.20 0.86 1.02 4.62 0.13 0.62
AS 0.12 0.54 0.07 3.12 0.18 0.56
R 0.76 0.85 0.65 1.95 0.13 0.26
RC 0.48 0.97 0.47 1.90 0.13 0.24
RR 0.36 0.82 0.03 0.90 0.12 0.11

Table 2: Comparative performance over job postings.
I and I ′ are inflated by an order of magnitude for the
unigram results only.

any other algorithm. In general, I values were an
order of magnitude larger for n-grams than uni-
grams, indicating that for job postings on the in-
ternet, phrases are more important than the indi-
vidual words they are composed of. This sug-
gests job seekers may read advertisements more
closely than internet shoppers, who are known to
“skim” content and are thus more attuned to in-
dividual keywords (Campbell and Maglio, 2013;
Seda, 2004).

For real estate, Table 3 indicates that except for
the case of weak unigrams, the proposed DR and
CA algorithms can perform best. In many cases,
the regression-based approaches successfully se-
lected words that are strongly related to each target
outcome class (l̄o was relatively high), but failed to
choose words whose explanatory power exceeds
that of the confounds (I was relatively low). For
a plain regression (R) this makes sense; there is
no mechanism to control for confounders. For the
other regression-based approaches (RC & RR),
this may be due to the multicolinearity of con-
founders and text which is described in (Gelman
and Loken, 2014; Wurm and Fisicaro, 2014) as
a fundamental weakness of these attribution algo-
rithms. Again, n-grams performed drastically bet-
ter than unigrams, implying that phraseology may
matter more than vocabulary to prospective home-

130



High CTR
Unigrams N−grams

l̄o I I ′ l̄o I I ′
DR 0.75 0.32 0.25 2.16 0.05 0.12
CA 1.00 0.24 0.24 2.63 0.04 0.11
AS 0.33 0.13 0.04 1.20 0.03 0.03
R 0.56 0.06 0.03 2.32 0.05 0.11
RC 0.68 0.05 0.03 1.76 0.04 0.08
RR 0.21 0.20 0.04 0.74 0.03 0.02

Low CTR
Unigrams N−grams

l̄o I I ′ l̄o I I ′
DR 0.60 0.12 0.07 1.80 0.18 0.32
CA 0.80 0.09 0.08 2.05 0.16 0.33
AS 0.12 0.14 0.01 0.18 0.25 0.04
R 0.63 0.07 0.05 0.49 0.33 0.16
RC 1.39 0.07 0.10 0.57 0.17 0.10
RR 0.22 0.05 0.01 0.14 0.08 0.01

Table 3: Comparative performance over real estate ad-
vertisements. I and I ′ are inflated by an order of mag-
nitude for the unigram results only.

owners.

4.3 Algorithmic Analysis

Ablation Study. We proceed to ablate the mech-
anism by which each proposed algorithm controls
for the confounds. First we toggled the gradient
reversal layer of the Convolutional Adversarial Se-
lector (CA). Doing so reduced the algorithm’s per-
formance by an average of 0.03 l̄o and 0.24 I. For
the Directed Residualization Selector (DR), we re-
moved the part of the model that uses the con-
founds to generate preliminary predictions. Do-
ing so resulted in an average increase of 0.02 l̄o
and a decrease of 0.21 I. For both algorithms,
only the average difference in I was significant
(p < 0.05). From these results, we conclude that
these confound-controlling mechanisms bear little
impact on the degree to which the selected words
are associated with their corresponding outcome
classes. However, the mechanisms are important
for getting the models to avoid confound-related
features.
Visualization. We visualize Mhigh−CTR and
Mlow−CTR as computed by a proposed and base-
line method (Figure 3). We see that the regression
lends high-CTR importance to the name of a popu-
lar real estate company, and low-CTR importance
to an unpopular location (which that company

happens to specialize in). The Adversarial Se-
lector gives confound-related features less impor-
tance. By disabling the reversal layer, we recover
some of the regression’s confound-relatedness.

Figure 3: Feature importance maps for a real estate
ad. high-CTR (top) and low-CTR (bottom) are the out-
come classes. These maps are computed by the Convo-
lutional Adversarial Selector with and without gradi-
ent flipping (CA, CA-) and a regression (R). Note that
the Convolutional Adversarial Selector without gradi-
ent flipping (CA-) has similar weights to a regression
model (R) while CA moves weight away from the
brand-related words.

4.4 Language Analysis
We continue by studying high-scoring words and
phrases from the models we experimented with in
order to glean useful insights about internet adver-
tising. Please note that this is an illustration of
the present algorithm and this study is limited in
scope. These are experimental results, not sugges-
tions for real online advertising campaigns.

When comparing the words selected by the pro-
posed and baseline methods, we observe that many
of the regression-based methods selected brand
names or words that are closely associated with
brands, like locations (areas where real estate and
staffing agencies specialize) or proper nouns (fash-
ion designers, real estate agents, and so on). In-
deed, for apparel, the percent of selected words
and phrases which contained the name of a fashion
retailer was less for DR and CA (6.5% and 8.5%)
than AS (9%), R (23%) RC (19%) and RR (13%).

After clustering words and phrases based on the
cosine similarity of their GloVe embeddings (Pen-
nington et al., 2014), the authors found semantic
classes that include industry best practices (e.g.,
Schwab, 2013). For example:

• Involvement. This includes language which
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creates a dialogue with the reader (“your”,
“you”, “we”) and portrays a personal expe-
rience (“personalized”) at the reader’s dis-
cretion (“compare”, “view”). This aligns
with growing demand for personalized inter-
net services (Meeker, 2018).

• Authority. This includes appeals to the
rhetorical device of ethos, in the form of au-
thoritative framing, such as “official site” and
“®”.

• Logos. These expressions appeal to the sen-
sibilities of the reader, framing the product as
easy (“simple”, “any budget”), cheap (“out-
let”, “xx% off”, “plus free shipping”), or
available (“available”, “shop them at”).

We also find some semantic classes among
weakly performing words and phrases. One no-
table class includes “filler words” consisting of
lackluster embellishment. This aligns with prior
psychological research suggesting that words that
don’t contribute to a topic can have a slightly neg-
ative effect on attitude (Fazio et al., 1986; Grush,
1976).

Finally, we note that popular items or categories
of items were frequently high-scoring. This comes
as no surprise and reflects an important aspect of
the proposed methodology: it only controls for the
confounders it is given, and we controlled for the
brand of an ad, not its content. There are innu-
merable factors which influence clicking behav-
ior (position, demographics, etc.) that we did not
model explicitly in this study; we leave this to fu-
ture work.

5 Related Work

Neural Network Interpretability. A variety of
work has been done on understanding the relation-
ship between input features and the network’s be-
havior. Attention mechanisms (Bahdanau et al.,
2015; Luong et al., 2015) are a popular method for
highlighting parts of the input, but the nonlinear
relationship between attention scores and ouputs
makes it a poor tool for attribution on a per-class
basis (as our Adversarial Selector (AS) baseline
demonstrates). Dosovitskiy and Brox (2015) and
Mahendran and Vedaldi (2015) invert the layers of
a neural network to show which input features are
being used. Zhou et al. (2016) extends this work
to show exactly which parts of the input are be-
ing used. Parts of our Convolutional Adversarial

Selector draw on this, and as far as these authors
know, we are the first to adapt class activation
maps to language data. Sundararajan et al. (2017)
also highlight important parts of the input with a
method that is similar to our Directed Residual-
ization Selector. Their method uses gradients to
trace influence. Because our models’ gradients
are a composite of signals, only some of which
we want to consider while attributing, the method
can’t be applied directly to our setting. Ribeiro
et al. (2016), Biran and McKeown (2017), and Lei
et al. (2016) also use “importance scores” to ex-
plain the predictions of neural network-based clas-
sifiers.
Causal Inference. Our methods have connections
to recent advances in the causal inference liter-
ature. Johansson et al. (2016) and Shalit et al.
(2016) propose an algorithm for causal inference
which bears similarity to our Convolutional Ad-
versarial Selector (CA). Imai et al. (2013) advo-
cate a lasso-based method similar to our Directed
Residualization (DR), and Egami et al. (2018) ex-
plore how to make causal inferences from texts
through careful data splitting. Unlike the present
study, these papaers are largely unconcerned with
the underlying interpretability. Pryzant et al.
(2018) makes a foray into causal interpretability,
developing the informativeness coefficient metric
we use in our evaluations. This work also pro-
posed two algorithms for deconfounded lexicon
induction which inspired our proposed CA and DR
algorithms.

6 Conclusion

In this paper, we presented two new algorithms for
the analysis of persuasive text. These algorithms
are based on interpreting the behaviors and param-
eters of trained machine learning models. They
perform performance attribution, the practice of
finding words that are indicative of particular out-
comes and are unrelated to confounding informa-
tion. We used these algorithms to conduct the first
public investigation into successful writing styles
for internet search advertisements. We find that
the proposed method can automatically identify
successful (and unsuccessful) writing styles of ad-
vertising. These findings are inline with industry
practices built on manual A/B testing and also pre-
vious psychological studies. This is an exciting
new direction for NLP research. There are many
directions for future work, including core algorith-
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mic innovation and applying the proposed algo-
rithms to new and rich social questions.
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A Corpus Statistics

Table 4 shows general statistics of the corpus used
in the present study.

Category N |V | t̄ l̄

Apparel 16,242 4,635 9.3 53.9
Job Postings 70,016 7,312 10.1 54.4
Real Estate 32,398 6,952 9.1 54.2

Table 4: Corpus statistics of advertising text used in
this study. N is the number of documents (advertising
headlines) used in the study. |V | is the vocabulary size
(number of unique tokens in the category corpus). t̄
and l̄ are average number of tokens and average length
per ad respectively.
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Abstract

Local model interpretation methods explain
individual predictions by assigning an impor-
tance value to each input feature. This value is
often determined by measuring the change in
confidence when a feature is removed. How-
ever, the confidence of neural networks is not a
robust measure of model uncertainty. This is-
sue makes reliably judging the importance of
the input features difficult. We address this by
changing the test-time behavior of neural net-
works using Deep k-Nearest Neighbors. With-
out harming text classification accuracy, this
algorithm provides a more robust uncertainty
metric which we use to generate feature im-
portance values. The resulting interpretations
better align with human perception than base-
line methods. Finally, we use our interpreta-
tion method to analyze model predictions on
dataset annotation artifacts.

1 Introduction

The growing use of neural networks in sensitive
domains such as medicine, finance, and security
raises concerns about human trust in these ma-
chine learning systems. A central question is test-
time interpretability: how can humans understand
the reasoning behind model predictions?

A common way to interpret neural network
predictions is to identify the most important in-
put features. For instance, a visual saliency map
that highlights important pixels in an image (Sun-
dararajan et al., 2017) or words in a sentence (Li
et al., 2016). Given a model’s test prediction, the
importance of each input feature is the change in
model confidence when that feature is removed.

However, neural network confidence is not a
proper measure of model uncertainty (Guo et al.,
2017). This issue is emphasized when models
make highly confident predictions on inputs that

∗?Equal contribution

are completely void of information, for example,
images of pure noise (Goodfellow et al., 2015)
or meaningless text snippets (Feng et al., 2018).
Consequently, a model’s confidence may not prop-
erly reflect whether discriminative input features
are present. This issue makes it difficult to re-
liably judge the importance of each input fea-
ture using common confidence-based interpreta-
tion methods (Feng et al., 2018).

To address this, we apply Deep k-Nearest
Neighbors (DKNN) (Papernot and McDaniel,
2018) to neural models for text classification.
Concretely, predictions are no longer made with a
softmax classifier, but using the labels of the train-
ing examples whose representations are most sim-
ilar to the test example (Section 3). This provides
an alternative metric for model uncertainty, con-
formity, which measures how much support a test
prediction has by comparing its hidden represen-
tations to the training data. This representation-
based uncertainty measurement can be used in
combination with existing interpretation methods,
such as leave-one-out (Li et al., 2016), to better
identify important input features.

We combine DKNN with CNN and LSTM
models on six NLP text classification tasks, includ-
ing sentiment analysis and textual entailment, with
no loss in classification accuracy (Section 4). We
compare interpretations generated using DKNN
conformity to baseline interpretation methods,
finding DKNN interpretations rarely assign im-
portance to extraneous words that do not align
with human perception (Section 5). Finally, we
generate interpretations using DKNN conformity
for a dataset with known artifacts (SNLI), helping
to indicate whether a model has learned superficial
patterns. We open source the code for DKNN and
our results.1

1https://github.com/Eric-Wallace/deep-knn

136



2 Interpretation Through Feature
Attribution

Feature attribution methods explain a test predic-
tion by assigning an importance value to each in-
put feature (typically pixels or words).

In the case of text classification, we have an in-
put sequence of n words x = 〈w1, w2, . . . wn〉,
represented as one-hot vectors. The word se-
quence is then converted to a sequence of word
embeddings e = 〈v1,v2, . . .vn〉. A classifier
f outputs a probability distribution over classes.
The class with the highest probability is selected
as the prediction y, with its probability serving as
the model confidence. To create an interpretation,
each input word is assigned an importance value,
g(wi | x, y), which indicates the word’s contri-
bution to the prediction. A saliency map (or heat
map) visually highlights words in a sentence.

2.1 Leave-one-out Attribution
A simple way to define the importance g is via
leave-one-out (Li et al., 2016): individually re-
move a word from the input and see how the con-
fidence changes. The importance of word wi is the
decrease in confidence2 when word i is removed:

g(wi | x, y) = f(y | x)− f(y | x−i), (1)

where x−i is the input sequence with the ith word
removed and f(y | x) is the model confidence for
class y. This can be repeated for all words in the
input. Under this definition, the sign of the impor-
tance value is opposite the sign of the confidence
change: if a word’s removal causes a decrease in
the confidence, it gets a positive importance value.
We refer to this interpretation method as Confi-
dence leave-one-out in our experiments.

2.2 Gradient-Based Feature Attribution
In the case of neural networks, the model f(x) as
a function of word wi is a highly non-linear, dif-
ferentiable function. Rather than leaving one word
out at a time, we can simulate a word’s removal by
approximating f with a function that is linear in wi

through the first-order Taylor expansion. The im-
portance of wi is computed as the derivative of f
with respect to the one-hot vector:

∂f

∂wi
=

∂f

∂vi

∂vi
∂wi

=
∂f

∂vi
· vi (2)

2equivalently the change in class score or cross entropy
loss

Thus, a word’s importance is the dot product be-
tween the gradient of the class prediction with re-
spect to the embedding and the word embedding
itself. This gradient approximation simulates the
change in confidence when an input word is re-
moved and has been used in various interpreta-
tion methods for NLP (Arras et al., 2016; Ebrahimi
et al., 2017). We refer to this interpretation ap-
proach as Gradient in our experiments.

2.3 Interpretation Method Failures

Interpreting neural networks can have unexpected
negative results. Ghorbani et al. (2017) and Kin-
dermans et al. (2017) show how a lack of model
robustness and stability can cause egregious in-
terpretation failures in computer vision settings.
Feng et al. (2018) extend this to NLP and draw con-
nections between interpretation failures and adver-
sarial examples (Szegedy et al., 2014). To counter-
act this, new interpretation methods alone are not
enough—models must be improved. For instance,
Feng et al. (2018) argues that interpretation meth-
ods should not rely on prediction confidence as it
does not reflect a model’s uncertainty.

Following this, we improve interpretations by
replacing neural network confidence with a robust
uncertainty estimate using DKNN (Papernot and
McDaniel, 2018). This algorithm achieves compa-
rable accuracy on image classification tasks while
providing a better uncertainty metric capable of
defending against adversarial examples.

3 Deep k-Nearest Neighbors for
Sequential Inputs

This section describes Deep k-Nearest Neighbors,
its application to sequential inputs, and how we
use it to determine word importance values.

3.1 Deep k-Nearest Neighbors

Papernot and McDaniel (2018) propose Deep k-
Nearest Neighbors (DKNN), a modification to the
test-time behavior of neural networks.

After training completes, the DKNN algorithm
passes every training example through the model
and saves each of the layer’s representations. This
creates a new dataset, whose features are the rep-
resentations and whose labels are the model pre-
dictions. Test-time predictions are made by pass-
ing an example through the model and performing
k-nearest neighbors classification on the resulting
representations. This modification does not de-
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grade the accuracy of image classifiers on several
standard datasets (Papernot and McDaniel, 2018).

For our purposes, the benefit of DKNN is
the algorithm’s uncertainty metric, the conformity
score. This score is the percentage of nearest
neighbors belonging to the predicted class. Con-
formity follows from the framework of conformal
prediction (Shafer and Vovk, 2008) and estimates
how much the training data supports a classifica-
tion decision.

The conformity score is based on the represen-
tations of every layer in the model, and there-
fore, a prediction only receives high conformity
if it largely agrees with neighboring examples at
all representation levels. This mechanism de-
fends against adversarial examples (Szegedy et al.,
2014), as it is difficult to construct a perturbation
which changes the neighbors at every layer. Con-
sequently, conformity is a better uncertainty met-
ric for both regular examples and adversarial ones,
making it suitable for generating interpretations.

3.2 Handling Sequences

The DKNN algorithm requires fixed-size vector
representations. To reach a fixed-size representa-
tion for text classification, we can take the final
hidden state of a recurrent neural network or use
a form of max pooling across time (Collobert and
Weston, 2008). We consider deep architectures of
these two forms, using each of the layers’ repre-
sentations as the features.

3.3 Conformity leave-one-out

Using conformity, we generate interpretations
through a modified version of leave-one-out (Li
et al., 2016). After removing a word, rather than
observing the drop in confidence, we instead mea-
sure the drop in conformity. Formally, we modify
classifier f in Equation 1 to output probabilities
based on conformity scores. We refer to this as
conformity leave-one-out in our experiments.

4 DKNN Maintains Classification
Accuracy

Interpretability should not come at the cost
of performance—before investigating how inter-
pretable DKNN is, we first evaluate its accuracy.
We experiment with six text classification tasks
and two models, verifying that DKNN achieves
accuracy comparable to regular classifiers.

4.1 Datasets and Models

We consider six common text classification tasks:
binary sentiment analysis using Stanford Senti-
ment Treebank (Socher et al., 2013, SST) and Cus-
tomer Reviews (Hu and Liu, 2004, CR), topic clas-
sification using TREC (Li and Roth, 2002), opin-
ion polarity (Wiebe et al., 2005, MPQA), and sub-
jectivity/objectivity (Pang and Lee, 2004, SUBJ).
Additionally, we consider natural language infer-
ence with SNLI (Bowman et al., 2015). We exper-
iment with BILSTM and CNN models.

CNN Our CNN architecture resembles Kim
(2014). We use convolutional filters of size three,
four, and five, with max-pooling over time (Col-
lobert and Weston, 2008). The filters are followed
by three fully-connected layers. We fine-tune
GLOVE embeddings (Pennington et al., 2014) of
each word. For DKNN, we use the activations
from the convolution layer and the three fully-
connected layers.

BILSTM Our architecture uses a bidirectional
LSTM (Graves and Schmidhuber, 2005), with the
final hidden state forming the fixed-size represen-
tation. We use three LSTM layers, followed by
two fully-connected layers. We fine-tune GLOVE

embeddings of each word. For DKNN, we use the
final activations of the three recurrent layers and
the two fully-connected layers.

SNLI Classifier Unlike other tasks with a single
input sentence, SNLI has two inputs, a premise and
hypothesis. Following Conneau et al. (2017), we
use the same model to encode the two inputs, gen-
erating representations u for the premise and v for
the hypothesis. We concatenate the two represen-
tations along with their dot-product and element-
wise absolute difference, arriving at a final repre-
sentation [u; v;u ∗ v; |u− v|]. This vector passes
through two fully-connected layers for classifica-
tion. For DKNN, we use the activations of the two
fully-connected layers.

Nearest Neighbor Search For accurate inter-
pretations, we trade efficiency for accuracy and
replace locally sensitive hashing (Gionis et al.,
1999) used by Papernot and McDaniel (2018) with
a k-d tree (Bentley, 1975). We use k = 75 nearest
neighbors at each layer. The empirical results are
robust to the choice of k.
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4.2 Classification Results
DKNN achieves comparable accuracy on the five
classification tasks (Table 1). On SNLI, the BIL-
STM achieves an accuracy of 81.2% with a soft-
max classifier and 81.0% with DKNN.

5 DKNN is Interpretable

Following past work (Li et al., 2016; Murdoch
et al., 2018), we focus on the SST dataset for gen-
erating interpretations. Due to the lack of standard
interpretation evaluation metrics (Doshi-Velez and
Kim, 2017), we use qualitative interpretation eval-
uations (Smilkov et al., 2017; Sundararajan et al.,
2017; Li et al., 2016), performing quantitative ex-
periments where possible to examine the distinc-
tion between the interpretation methods.

5.1 Interpretation Analysis
We compare our method (Conformity leave-one-
out) against two baselines: leave-one-out using
regular confidence (Confidence leave-one-out, see
Section 2.1), and the gradient with respect to
the input (Gradient, see Section 2.2). To create
saliency maps, we normalize each word’s impor-
tance by dividing it by the total importance of the
words in the sentence. We display unknown words
in angle brackets <>. Table 2 shows SST interpre-
tation examples for the BILSTM model. Further
examples are on a supplementary website.3

Conformity leave-one-out assigns concentrated
importance values to a small number of input
words. In contrast, the baseline methods assign
non-zero importance values to numerous words,
many of which are irrelevant. For instance, in all
three examples of Table 2, both baselines highlight
almost half of the input, including words such as
“about” and “movie”. We suspect model confi-
dence is oversensitive to these unimportant input
changes, causing the baseline interpretations to
highlight unimportant words. On the other hand,
the conformity score better separates word impor-
tance, generating clearer interpretations.

The tendency for confidence-based approaches
to assign importance to many words holds for the
entire test set. We compute the average number
of highlighted words using a threshold of 0.05 (a
normalized importance value corresponding to a
light blue or light red highlight). Out of the av-
erage 20.23 words in SST test set, gradient high-

3https://sites.google.com/view/
language-dknn/

lights 5.32 words, confidence leave-one-out high-
lights 5.79 words, and conformity leave-one-out
highlights 3.65 words.

The second, and related, observation for
confidence-based approaches is a bias towards se-
lecting word importance based on the inherent
sentiment, rather than a word’s meaning in con-
text. For example, see “clash”, “terribly”, and “un-
faithful” in Table 2. The removal of these words
causes a small change in the model confidence.
When using DKNN, the conformity score indi-
cates that the model’s uncertainty has not risen
without these input words and leave-one-out does
not assign them any importance.

We characterize our interpretation method as
significantly higher precision, but slightly lower
recall than confidence-based methods. Confor-
mity leave-one-out rarely assigns high importance
to words that do not align with human perception
of sentiment. However, there are cases when our
method does not assign significant importance to
any word. This occurs when the input has a high
redundancy. For example, a positive movie re-
view that describes the sentiment in four distinct
ways. In these cases, leaving out a single senti-
ment word has little effect on the conformity as the
model’s representation remains supported by the
other redundant features. Confidence-based inter-
pretations, which interpret models using the linear
units that produce class scores, achieve higher re-
call by responding to every change in the input for
a certain direction but may have lower precision.

In the second example of Table 2, the word “ter-
ribly” is assigned a negative importance value, dis-
regarding its positive meaning in context. To ex-
amine if this is a stand-alone example or a more
general pattern of uninterpretable behavior, we
calculate the importance value of the word “ter-
ribly” in other positive examples. For each occur-
rence of the word “great” in positive validation ex-
amples, we paraphrase it to “awesome”, “wonder-
ful”, or “impressive”, and add the word “terribly”
in front of it. This process yields 66 examples.
For each of these examples, we compute the im-
portance value of each input word and rank them
from most negative to most positive (the most neg-
ative word has a rank of 1). We compare the av-
erage ranking of “terribly” from the three meth-
ods: 7.9 from conformity leave-one-out, 1.68 from
confidence leave-one-out, and 1.1 from gradient.
The baseline methods consistently rank “terribly”
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SST CR TREC MPQA SUBJ

LSTM 86.7 82.7 91.5 88.9 94.8
LSTM DKNN 86.6 82.5 91.3 88.6 94.9
CNN 85.7 83.3 92.8 89.1 93.5
CNN DKNN 85.8 83.4 92.4 88.7 93.1

Table 1: Replacing a neural network’s softmax classifier with DKNN maintains classification accuracy
on standard text classification tasks.

Method Saliency Map

Conformity an intelligent fiction about learning through cultural clash.
Confidence an intelligent fiction about learning through cultural clash.
Gradient an intelligent fiction about learning through cultural clash.

Conformity <Schweiger> is talented and terribly charismatic.
Confidence <Schweiger> is talented and terribly charismatic.
Gradient <Schweiger> is talented and terribly charismatic.

Conformity Diane Lane shines in unfaithful.
Confidence Diane Lane shines in unfaithful.
Gradient Diane Lane shines in unfaithful.

Color Legend Positive Impact Negative Impact

Table 2: Comparison of interpretation approaches on SST test examples for the LSTM model. Blue
indicates positive impact and red indicates negative impact. Our method (Conformity leave-one-out) has
higher precision, rarely assigning importance to extraneous words such as “about” or “movie”.

as the most negative word, ignoring its meaning in
context. This echoes our suspicion: DKNN gener-
ates interpretations with higher precision because
conformity is robust to irrelevant changes.

5.2 Analyzing Dataset Annotation Artifacts

Through DKNN, we get a new uncertainty mea-
surement, conformity, that measures how a test ex-
ample’s representation is positioned relative to the
training data representations. In this section, we
use conformity leave-one-out to interpret a model
trained on SNLI. This dataset is known to con-
tain annotation artifacts and we demonstrate that
our interpretation method can help identify when
models exploit these dataset biases.

Recent studies (Gururangan et al., 2018; Poliak
et al., 2018) identified annotation artifacts in the
SNLI dataset. These works identified that super-
ficial patterns exist in the input which strongly
correlate with certain labels, making it possible
for models to “game” the task: obtain high ac-
curacy without true understanding. For instance,
the hypothesis of an entailment example is often

a more general paraphrase of the premise, using
words such as “outside” instead of “playing soccer
in a park”. Contradiction examples often contain
negation words or non-action verbs like “sleep-
ing”. Models trained solely on the hypothesis can
learn these patterns to achieve an accuracy consid-
erably higher than the majority baseline.

These studies indicate that the SNLI task can be
gamed. We look to confirm that some artifacts are
indeed exploited by normally trained models that
use full input pairs. We create saliency maps for
examples in the validation set using conformity
leave-one-out. Table 3 shows samples and more
can be found on the supplementary website.4 We
use the blue highlights to indicate words which
positively support the model’s predicted class, and
the color red to indicate words that support a dif-
ferent class. The first example is a randomly sam-
pled baseline, showing how the words “swims”
and “pool” support the model’s prediction of con-
tradiction. The other examples are selected be-

4https://sites.google.com/view/
language-dknn/
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cause they contain terms identified as artifacts. In
the second example, conformity leave-one-out as-
signs extremely high word importance to “sleep-
ing”, disregarding other words necessary to pre-
dict Contradiction (i.e., the Neutral class is still
possible if “pets” is replaced with “people”). In
the final two hypothesis, the interpretation method
diagnoses the model failure, assigning high impor-
tance to “wearing”, rather than focusing positively
on the shirt color.

To explore this further, we compute the average
importance rank using conformity and confidence
leave-one-out for the top five artifacts in each SNLI

class identified by Gururangan et al. (2018). Ta-
ble 4 compares the average rank assigned by the
two methods, sorting the words by Pointwise Mu-
tual Information as provided by Gururangan et al.
(2018). The word “nobody” particularly stands
out: it is the most important input word every time
it appears in a contradiction example.

For most of the artifacts, conformity leave-one-
out assigns them a high importance, often rank-
ing the artifacts as the most important input word.
Confidence leave-one-out correlates less strongly
with the known artifacts, frequently assigning im-
portance values as low as fifth or sixth most im-
portant. Given the high correlation between con-
formity leave-one-out and the manually identified
artifacts, this interpretation method may serve as
a technique to identify undesirable biases a model
may have learned.

6 Discussion and Related Work

We connect the improvements made by confor-
mity leave-one-out to model confidence issues,
compare alternative interpretation improvements,
and discuss further features of DKNN.

6.1 Issues in Neural Network Confidence

Gradient and leave-one-out both interpret a model
by determining the importance value for each in-
put word. This effectively reduces the problem
of interpretation to one of determining model un-
certainty. Past work relies on model confidence
as a measure of uncertainty. However, a neu-
ral network’s confidence is unreasonably high: on
held-out examples, it far exceeds empirical error
rates (Guo et al., 2017). This is further exempli-
fied by the high confidence predictions produced
on inputs that are adversarial (Szegedy et al.,
2014) or contain solely noise (Goodfellow et al.,

2015). Most importantly for interpretation, the
change in confidence often will not properly re-
flect whether discriminative input features have
been removed (Feng et al., 2018).

6.2 Confidence Calibration is Insufficient
We attribute one interpretation failure to neural
network confidence issues. Guo et al. (2017) study
overconfidence and propose a calibration proce-
dure using Platt scaling. This adds a temperature
to the softmax function to align confidence with
accuracy. However, this is not input dependent.
The confidence is lower for both full-length exam-
ples and ones with words left out. Hence, selecting
influential words will remain difficult.

To verify this, we create an interpretation base-
line using temperature scaling. The results corrob-
orate the intuition: a calibrated leave-one-out does
not fix the interpretation issues. Qualitatively, the
calibrated interpretations are comparable to confi-
dence leave-one-out. Furthermore, calibrating the
DKNN conformity score followingPapernot and
McDaniel (2018) does not improve interpretability
compared to the uncalibrated conformity score.

6.3 Alternative Interpretation Improvements
Recent work improves interpretation methods
through other means. Smilkov et al. (2017) and
Sundararajan et al. (2017) both aggregate gradi-
ent values over multiple backpropagation passes to
eliminate local noise or satisfy interpretation ax-
ioms. This work does not address model confi-
dence and is orthogonal to our DKNN approach.

6.4 Interpretation Through Data Selection
Retrieval-Augmented Neural Networks (Zhao and
Cho, 2018) are similar to DKNN: they augment
model predictions with an information retrieval
system that searches over network activations
from the training data.

Retrieval-Augmented models and DKNN can
both select influential training examples for a test
prediction. In particular, the training data activa-
tions which are closest to the test point’s activa-
tions are influential according to the model. These
training examples can provide interpretations as
a form of analogy (Caruana et al., 1999), an in-
tuitive explanation for both machine learning ex-
perts and non-experts (Klein, 1989; Kim et al.,
2014; Koh and Liang, 2017; Wallace and Boyd-
Graber, 2018). However, unlike in computer vi-
sion where training data selection using DKNN
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Prediction Input Saliency Map

Contradiction
Premise a young boy reaches for and touches the propeller of a vintage

aircraft.
Hypothesis a young boy swims in his pool.

Entailment
Premise a brown a dog and a black dog in the edge of the ocean with a

wave under them boats are on the water in the background.
Hypothesis the pets are sleeping on the grass..

Premise man in a blue shirt standing in front of a structure painted with
geometric designs.

Entailment Hypothesis a man is wearing a blue shirt.
Entailment Hypothesis a man is wearing a black shirt.

Color Legend Positive Impact Negative Impact

Table 3: Interpretations generated with conformity leave-one-out align with annotation biases identified
in SNLI. In the second example, the model puts emphasis on the word “sleeping”, disregarding other
words that could indicate the Neutral class. The final example diagnoses a model’s incorrect Entailment
prediction (shown in red). Green highlights indicate words that support the classification decision made
(shown in parenthesis), pink highlights indicate words that support a different class.

Label Artifact Conformity Confidence

Entailment

outdoors 2.93 3.26
least 2.22 4.41
instrument 3.57 4.47
outside 4.08 4.80
animal 2.00 4.73

Neutral

tall 1.09 2.61
first 2.14 2.99
competition 2.33 5.56
sad 1.39 1.79
favorite 1.69 3.89

Contradiction

nobody 1.00 1.00
sleeping 1.64 2.34
no 2.53 5.74
tv 1.92 3.74
cat 1.42 3.62

Table 4: The top SNLI artifacts identified by Guru-
rangan et al. (2018) are shown on the left. For each
word, we compute the average importance rank
over the validation set using either Conformity or
Confidence leave-one-out. A score of 1.0 indicates
that a word is always ranked as the most important
word in the input. Conformity leave-one-out as-
signs stronger importance to artifacts, suggesting
it better diagnoses model biases.

yielded interpretable examples (Papernot and Mc-
Daniel, 2018), our experiments did not find human
interpretable data points for SST or SNLI.

6.5 Trust in Model Predictions
Model confidence is important for real-world ap-
plications: it signals how much one should trust
a neural network’s predictions. Unfortunately,
users may be misled when a model outputs highly
confident predictions on rubbish examples (Good-
fellow et al., 2015; Nguyen et al., 2015) or ad-
versarial examples (Szegedy et al., 2014). Re-
cent work decides when to trust a neural network
model (Ribeiro et al., 2016; Doshi-Velez and Kim,
2017; Jiang et al., 2018). For instance, analyzing
local linear model approximations (Ribeiro et al.,
2016) or flagging rare network activations us-
ing kernel density estimation (Jiang et al., 2018).
The DKNN conformity score is a trust metric
that helps defend against image adversarial exam-
ples (Papernot and McDaniel, 2018). Future work
should study if this robustness extends to interpre-
tations.

7 Future Work and Conclusion

A robust model uncertainty estimate is critical to
determine feature importance. The DKNN confor-
mity score is one such uncertainty metric which
leads to higher precision interpretations. Al-
though DKNN is only a test-time improvement—
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the model is still trained with maximum likeli-
hood. Combining nearest neighbor and maxi-
mum likelihood objectives during training may
further improve model accuracy and interpretabil-
ity. Moreover, other uncertainty estimators do
not require test-time modifications. For example,
modeling p(x) and p(y | x) using Bayesian Neu-
ral Networks (Gal et al., 2016).

Similar to other NLP interpretation meth-
ods (Sundararajan et al., 2017; Li et al., 2016),
conformity leave-one-out works when a model’s
representation is fixed-sized. For other NLP tasks,
such as structured prediction (e.g., translation and
parsing) or span prediction (e.g., extractive sum-
marization and reading comprehension), models
output a variable number of predictions and our in-
terpretation approach will not suffice. Developing
interpretation techniques for these types of models
is a necessary area for future work.

We apply DKNN to neural models for text
classification. This provides a better estimate of
model uncertainty—conformity—which we com-
bine with leave-one-out. This overcomes issues
stemming from neural network confidence, lead-
ing to higher precision interpretations. Most inter-
estingly, our interpretations are supported by the
training data, providing insights into the represen-
tations learned by a model.
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Abstract

Character language models have access to sur-
face morphological patterns, but it is not clear
whether or how they learn abstract morpho-
logical regularities. We instrument a charac-
ter language model with several probes, find-
ing that it can develop a specific unit to iden-
tify word boundaries and, by extension, mor-
pheme boundaries, which allows it to capture
linguistic properties and regularities of these
units. Our language model proves surpris-
ingly good at identifying the selectional re-
strictions of English derivational morphemes,
a task that requires both morphological and
syntactic awareness. Thus we conclude that,
when morphemes overlap extensively with the
words of a language, a character language
model can perform morphological abstraction.

1 Introduction

Character-level language models (Sutskever et al.,
2011) are appealing because they enable open-
vocabulary generation of language, and condi-
tional character language models have now been
convincingly used in speech recognition (Chan
et al., 2016) and machine translation (Weiss et al.,
2017; Lee et al., 2016; Chung et al., 2016). They
succeed due to parameter-sharing between fre-
quent, rare, and even unobserved training words,
prompting claims that they learn morphosyntac-
tic properties of words. For example, Chung
et al. (2016) claim that character language mod-
els yield “better modelling [of] rare morpholog-
ical variants” while Kim et al. (2016) claim that
“Character-level models obviate the need for mor-
phological tagging or manual feature engineer-
ing.” But these claims of morphological awareness
are backed more by intuition than direct empirical
evidence. What do these models really learn about
morphology? And, to the extent that they learn
about morphology, how do they learn it?

Our goal is to shed light on these questions, and
to that end, we study the behavior of a character-
level language model (hereafter LM) applied to
English. We observe that, when generating text,
the LM applies certain morphological processes
of English productively, i.e. in novel contexts
(§3). This rather surprising finding suggests that
the model can identify the morphemes relevant to
these processes. An analysis of the LM’s hidden
units presents a possible explanation: there ap-
pears to be one particular unit that fires at mor-
pheme and word boundaries (§4). Further experi-
ments reveal that the LM learns morpheme bound-
aries through extrapolation from word boundaries
(§5). In addition to morphology, the LM appears
to encode syntactic information about words, i.e.
their part of speech (§6). With access to both
morphology and syntax, the model should also be
able to learn linguistic phenomena at the intersec-
tion of the two domains, which we indeed find to
be the case: the LM captures the (syntactic) se-
lectional restrictions of English derivational mor-
phemes, albeit with some incorrect generalizations
(§7). The conclusions of this work can thus be
summarized in two main points—a character-level
language model can:

1. learn to identify linguistic units of higher or-
der, such as morphemes and words.

2. learn some underlying linguistic properties
and regularities of said units.

2 Language Modeling

The LM explored in this work is a ‘wordless’ char-
acter RNN with LSTM units (Karpathy, 2015).1

1Karpathy (2015) is a blog post that discusses exactly this
model. We are unaware of scholarly publications that use
this model in isolation, though it is used in several conditional
models (Chan et al., 2016; Weiss et al., 2017; Lee et al., 2016;
Chung et al., 2016), and it is similar to the character RNN
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It is ‘wordless’ in the sense that input is not seg-
mented into words, and spaces are treated just like
any other character. This architecture allows for
experiments on a subword, i.e. morphological
level: we can feed a partial word and ask the model
to complete it or record the probability the model
assigns to an ending of our choice.

2.1 Formulation
At each timestep t, character ct is projected into a
high-dimensional space by a character embedding
matrix E ∈ R|V |×d: xct = ET vct , where |V | is the
vocabulary of characters encountered in the train-
ing data, d is the dimension of the character em-
beddings and vct ∈ R|V | is a one-hot vector with
ctth element set to 1 and all other elements set to
zero.

The hidden state of the neural network is ob-
tained as: ht = LSTM(xct ;ht−1). This hidden
state is followed by a linear transformation and a
softmax function over all elements of V , which re-
sults in a probability distribution.

p(ct+1 = c | ht) = softmax(Woht+bo)i ∀c ∈ V

where i is the index of c in V .

2.2 Training
The model was trained on a continuous stream
of the first 7M character tokens from the English
Wikipedia corpus. Data was not lowercased and
it was randomly split into training (90%) and de-
velopment (10%). Following a grid search over
hyperparameters on a subset of the training data,
we chose to use one layer with a hidden unit size
of 256, a learning rate of 0.003, minibatch size of
50, and dropout rate of 0.2, applied to the input of
the hidden layer.

3 The English dialect of a character LM

In an initial analysis of the learned model we stud-
ied text generated with the LM and found that it
closely resembled English on the word level and,
to some degree, on the level of syntax.

3.1 Words
When sampled, the LM generates real English
words most of the time, and only about 1 in ev-
ery 20 tokens is a nonce word.2 Regular morpho-
of Sutskever et al. (2011), which uses a multiplicative RNN
rather than an LSTM unit.

2As measured by checking whether the word appeared in
the training data or in the pyenchant UK or US English dic-
tionaries.

sinding, fatities, complessed
breaked, indicatement
applie, therapie
knwotator, mindt, ouctromor

Table 1: Nonce words generated with the LM through
sampling.

The novel regarded the modern Laboratory has a
weaken-little director and many of them in 2012
to defeat in 1973 - or eviven of Artitagements.

Table 2: A sentence generated with the LM through
sampling.

logical patterns can be observed within some of
these nonce words (Table 1). The words sinding,
fatities and complessed all seem like well-formed
inflected variants of English-looking words. The
forms breaked and indicatement show productive
morphological patterns of inflection and deriva-
tion being applied to bases of the correct syntactic
class, namely verbs. It happens that break is an ir-
regular verb and indicate forms a noun with suffix
-ion rather than -ment, but these are lexical rules
that block the more regular inflectional and deriva-
tional rules the LM has applied. In addition to
composing morphologically complex words, the
LM also attempts to decompose them, as can be
seen with the forms therapie and applie. Here
the inflectional suffix -s has been dropped, but
the orthographic change associated with it has not
been successfully reversed. Not all nonce words
generated by the LM can be explained in terms
of morphological productivity, however: knwota-
tor, mindt, and ouctromor don’t resemble any real
morphemes and don’t follow English phonotac-
tics. These forms may be highly improbable ac-
cidents of the sampling process.

3.2 Sentences

Consider the sentence in Table 2 generated with
the LM through sampling. The sentence could not
be considered fluent or grammatical: there are no
clear dependencies between verbs, subjects, and
objects; it contains the nonce word eviven and the
novel and unlikely compound weaken-little. Yet,
some short-distance syntactic regularities can be
observed. Articles precede adjectives and nouns
but not verbs, prepositions precede nouns, and par-
ticle to precedes a verb. On an even larger scale,
the clause the novel regarded the modern Labora-
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Unit t−13 . . . t

Punctuation r ( 1936-1939)
chool in 1921.
il 13 , 1813 .
ified in 1901.
( 1993-1998 )

Word ’s predictions
ral relativism
contributions
were contract
at connections

Latinate suffix ered in inform
the concentra
ultural recrea
was accommoda
Reyes introdu

Table 3: Top 5 Contexts for Three Units in the Network
of the LM. The last character in each string marks the
peak in activation.

tory has a weaken-little director is grammatical in
terms of the order between parts of speech3. The
sentence appears unnatural due to its odd seman-
tics, but consider the following alternative choice
of words for the same syntactic structure: the man
thought the modern laboratory has a weaken-little
director. This sentence sounds only marginally
anomalous.

The predominantly well-formed output of the
LM suggests that it is appropriate to further study
the linguistic regularities learned by it.

4 Meaningful hidden units in the LM

The hidden units of the LM were analyzed by
feeding the training data back into the system and
tracking unit activations on each timestep, i.e. af-
ter every character. For each unit, the five inputs
which triggered highest activation (highest abso-
lute value) were recorded (Kadar et al., 2016).
About 40 units exhibited patterns of activation that
could be identified as meaningful with the human
eye. We selected three of the more interesting
units to briefly discuss here. Table 3 shows a list
of the top five triggers for each of these units, to-
gether with up to 13 characters that preceded them,
to put them in context. One unit, which we’ll dub
the punctuation unit, seems to respond to closing
punctuation marks. Another, dubbed the Latinate
suffix unit, appears to recognize contexts that are
likely to precede suffix -ion and its variants, -ation,
-ction and -tion.

3That is, assuming that novel is a noun in this context and
weaken-little is an adjective, by analogy with its second base.

Figure 1: Activation of the word unit. Query: its daily
paper) grew accordingly

4.1 The word unit
The most interesting unit, the word unit, appears
to recognize complete words and sub-word units
within them. Figure 1 shows the activation pat-
tern of the word unit over a partial sentence from
the training data. The dotted lines, which mark
the end of tokens, often coincide with the peaks
in activation. The unit also recognizes the base it
within its and according within accordingly. The
behavior of the unit could be explained either as
a signal for the end of a familiar, repeated pat-
tern, or as a predictor of a following space. The
fact that we don’t see a peak in activation at the
right bracket symbol (which should be a cue for a
following space) suggests that the former explana-
tion is more plausible. Support for this idea comes
from the low correlation coefficient between the
activation of the unit and the probability the model
assigns to a following space: only 0.08 across the
entire training set. It appears that the LM knows
that linguistic units need not occur on their own,
i.e. that in a lot of cases a suffix is very likely to
follow.

5 Morphemes encoded by the LM

Morphological segmentation aims to identify the
boundaries in morphologically complex words,
i.e. words consisting of multiple morphemes. A
morpheme boundary could separate a base from an
inflectional morpheme, e.g. like+s and carrie+s,
a base from a derivational morpheme, e.g. con-
sider+able, or two bases, e.g. air+plane. One ap-
proach to morphological segmentation is to see it
as a sequence-labeling task, where words are pro-
cessed one character at a time and every between-
character position is considered a potential bound-
ary. RNNs are particularly suitable for sequence
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labeling and recent work on supervised morpho-
logical segmentation with RNNs shows promising
results (Wang et al., 2016).

In this experiment we probe the LM using a
model for morphological segmentation to test the
extent to which the LM captures morphological
regularities.

5.1 Formulation
At each timestep t, character ct is projected into
high-dimensional space:

xct = ET vi E ∈ R|Vchar|×dchar

The hidden state of the encoder is obtained as be-
fore: henc

t = LSTM enc(xct ;henc
t−1). The hidden

state of the decoder is then obtained as: hdec
t =

LSTMdec(henc
t ;hdec

t−1) and followed by a linear
transformation and a softmax function over all el-
ements in Vlab, which results in a probability dis-
tribution over labels.

p(lt = l | c, lword) = softmax(Wdec
o hdec

t + bdec
o )i

∀ l ∈ Vlab

where lword refers to all previous labels for the cur-
rent word and i refers to the index of l in Vlab.

The embedding matrix, E and LSTM enc

weights are taken from the LM. Decoder weights
and bias terms are learned during training.

5.2 Data
The model (hereafter referred to as C2M,
character-to-morpheme) was trained on a com-
bined set of gold standard (GS) segmentations
from MorphoChallenge 2010 and Hutmegs 1.0
(free data). The data consisted of 2275 word
forms; 90% were used for training and 10% for
testing. For the purposes of meaningful LM em-
beddings, which are highly contextual, a past con-
text is necessary. Since GS segmentations are
available for words in isolation only, we extract
contexts for every word from the Wiki data, tak-
ing the 15 word tokens that preceded the word on
up to 15 of its appearances in the dump. The oc-
currence of a word in each of its contexts was then
treated as a separate training instance.

5.3 Performance
The system achieved a rather low F1 score: 53.3.
Compared to Ruokolainen et al. (2013), who ob-
tain F1 score 86.5 with a bidirectional CRF model,
C2M is clearly inferior. This is not particularly

Model Precision Recall F1
C2M - WE 76.6 62.6 68.9
C2M - ¬WE 23.1 34.2 27.6
C2M - EOW 98.5 84.4 90.90
C2M - ¬PREF 53.6 59.2 56.3

Table 4: C2M Performance. WE stand for word edge,
EOW for end of word, and PREF for prefix.

surprising given that the CRF makes predictions
conditioned on past and future context, while C2M
only has access to the past context. Recall also that
the encoder of C2M shares the weights of the LM
and is not fine-tuned for morphological segmenta-
tion. But taken as a probe of the LM’s encoding,
the F1 score of 53.3 suggests that this encoding
still contains some information about morpheme
boundaries. A breakdown of morphemic bound-
aries by type provides insights into the source of
performance and limitations of C2M.

Potential word endings as cues for morpheme
boundaries The results labeled C2M - WE and
C2M - ¬WE in Table 4 refer to two types of mor-
pheme boundaries: boundaries that could also be
a word ending (WE), e.g. drink+ing, agree+ment,
and boundaries that could not be a word ending
(¬WE), e.g. dis+like, intens+ify. It becomes ap-
parent that a large portion of the correct segmen-
tations produced by C2M can be attributed to an
ability to recognize word endings. Earlier findings
relating to the word unit of the LM (section 4.1)
align with this line of argument: the unit indeed
detects words, and those morphemes that resem-
ble words. The sample segmentations in A and C
of Table 5 can be straightforwardly explained in
terms of transfer knowledge on word endings: act,
action and ant are all words the LM has encoun-
tered during training. Notice that the morpheme
ant has not been observed by C2M, i.e. it is not in
the training data, but its status as a word is encoded
by the LM.

Actual word endings An interesting result
emerges when C2M’s performance is tested on
word-final characters, which by default should
all be labeled as a morpheme boundary (C2M -
EOW in Table 4). Recall that the rest of the
results exclude these predictions, since morpho-
logical segmentation concerns word-internal mor-
pheme boundaries. C2M performs extremely well
at identifying actual word endings. The margin be-
tween C2M - WE results and C2M - EOW results is
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Input True Segmentation Predicted Segmentation Correct
A. actions act+ion+s act+ion+s X
B. acquisition acquisit+ion acquisit+ion X
C. antenna antenna ant+enna
D. included in+clud+ed in+clude+d X
E. intensely in+tense+ly intense+ly
F. misunderstanding mis+under+stand+ing misunder+stand+ing
G. woodwork wood+work wood+work X

Table 5: Sample predictions of morphological segmentations.

substantial, even though both look at units of the
same type, namely words. The higher accuracy
in the EOW setting shows that the LM prefers to
ends word where they actually end, rather than at
earlier points that would have also allowed it. The
LM thus appears to take into consideration context
and what words would syntactically fit in it. Con-
sider example E in Table 5. This instance of the
word in+tense+ly occurred in the context of the
Himalayan regions of. In this context C2M fails
to predict a morpheme boundary, even though in
is a very frequent word on its own. The LM may
be aware that preposition in would not fit syntacti-
cally in the context, i.e. that the sequence regions
of in is ungrammatical. It thus waits to see a longer
sequence that would better fit the context, such as
intense or intensely. Example D shows that C2M
is indeed capable of segmenting prefix in in other
contexts. The word included is preceded by the
context the English term propaganda. This con-
text allows a following preposition: the English
term propaganda in, so the LM predicted that the
word may end after just in, which allowed C2M to
correctly predict a boundary after the prefix.

6 Parts of speech encoded by the LM

Part-of-speech (POS) tagging is also seen as a se-
quence labeling task because words can take on
different parts of speech in different contexts. Ac-
cess to the subword level can be highly beneficial
to POS tagging, since the shape of words often re-
veals their syntax: words ending in -ed, for exam-
ple, are much more often verbs or adjectives than
nouns. Recent studies in the area of POS tagging
demonstrate that processing input on a subword-
level indeed boosts the performance of such sys-
tems (dos Santos and Zadrozny, 2014). Here we
probe the LM with a POS-tagging model, here-
after C2T (character-to-tag). Its formulation is
identical to that of C2M.

6.1 Data
We used the English UD corpus (with UD POS
tags) with an 80-10-10 train-dev-test split. Train-
ing data for character-level prediction was created
by pairing each character of a word with the POS
tag of that word, e.g. ’likeVERB’ was labeled as as
〈VERB VERB VERB VERB〉. UD doesn’t specify
a POS tag for the space character, so we used the
generic X tag for it. Similarly to C2M, encodings
for C2T were obtained for words in context.

6.2 Performance
C2T obtained an accuracy score of 78.85% on
the character level and 87.06% on the word level,
where word-level accuracy was measured by com-
paring the tag predicted for the last character of a
word to the gold standard tag. The per-character
score is naturally lower by a large margin, as pre-
dictions early on in the word are based on very lit-
tle information about the identity of the word. No-
tice that the per-word score for C2T falls short of
the state-of-the-art in POS tagging due a structural
limitation: the tagger assigns tags based on just
past and present information. The high accuracy
of C2T in spite of this limitation suggests that the
majority of the information concerning the POS
tag of a word is contained within that word and its
past context, and that the LM is particularly good
at encoding this information.

Evolution of Tag Predictions over Time Fig-
ure 6.2 illustrates the evolution of POS tag pre-
dictions over the string and I have already over-
heard youngsters (extract from the UD data) as
processed by C2T. Early into the word already, for
example, C2T identifies the word, recognizes it as
an adverb and maintains this hypothesis through-
out. With respect to the morphologically complex
word youngsters we see C2T making reasonable
predictions, predicting PRON for you-, ADJ for
the next two characters and NOUN for youngster-
and youngsters.
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Figure 2: C2T Evolution of POS Tag Predictions. Red rectangles point to the correct tags of words.

7 Selectional restrictions in the LM

English derivational suffixes have selectional re-
strictions with respect to the syntactic category of
the base they would attach to. Suffixes -al, -ment
and -ance, for example, only attach to verbs, e.g.
betrayal, annoyance, containment, while -hood,
-ous, and -ic only attach to nouns, as in nation-
hood, spacious and metallic.4 The former are thus
known as deverbal, and the latter as denominal.
Certain suffixes are members of more than one
class, e.g. -ful attaches to both verbs and nouns, as
in forgetful and peaceful, respectively. Since our
LM appears to encode information about (some)
morphological units and part of speech, it is natu-
ral to wonder whether it also encodes information
about selectional restrictions of derivational suf-
fixes. If it does, then the probability of a deverbal
suffix should be significantly higher after a verbal
base than after other bases, likewise with denom-
inal suffixes and nominal bases. Our next experi-
ment tests whether this is so.

7.1 Method
Our experiment measures and compares the proba-
bility of suffixes with different selectional restric-
tions across subsets of nominal, verbal, and ad-
jectival bases, as processed by the LM. We use
carefully chosen nonce words as bases in order
to abstract away from previously seen base-suffix
combinations, which the model may have simply
memorized.

Probability We compute the probability of a
suffix given a base as the joint probability of its
characters. For example, the probability of suffix

4All examples are from Fabb (1988).

-ion attaching to base edit is:

p(ion | edit) = p(i | edit)×p(o | editi)×p(n | editio)

Since the LM is a wordless language model,
p(·|base) is approximated from p(·|c) where c is
the entire past. The probability of a suffix in the
context of a particular syntactic category was com-
puted as the average probability over all bases be-
longing to that category.

Nonce Bases Nonce bases were obtained by
sampling complete words from the LM—that is,
sequences delimited by a space or punctuation
on both sides. We discarded all words that ap-
peared in an English dictionary, and imposed sev-
eral restrictions on the remaining candidates: their
probability had to be at most one standard devi-
ation below the mean for real words (to ensure
they weren’t highly unlikely accidents of the sam-
pling procedure), and the probability of a follow-
ing space character had to be at most one stan-
dard deviation below the mean for real words (to
avoid prematurely finished words, such as measu
and experimen). In addition, nonce words had
to be composed entirely of lowercase characters
and couldn’t end in a suffix (as certain suffixes
included in the experiment only attach to base
stems). The candidates that met these conditions
were labeled for POS using C2T. The final nonce
bases used were the ones whose POS tag con-
fidence was at most one standard deviation be-
low the mean confidence with which tags of real
words were assigned. Some examples of nonce
words from the final selection are shown in Table
6. An embedding was recorded for every nonce
word that met these conditions by taking the hid-
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Noun crystale, algoritum, cosmony, landlough
Verb underspire, restruct, actrace
Adjective nucleent, transplet, orthouble

Table 6: Sample Nonce Bases

Noun -ous, -an, -ic, -ate, -ary, -hood, -less, -ish
Verb -ance, -ment, -ant, -ory, -ive, -ion, -able, -ably
Adjective -ness, -ity, -en

Table 7: Syntactically unambiguous derivational suf-
fixes

den state of the language model at the end of the
word in context.

Suffixes The suffixes included in this experi-
ment (listed in Table 7) were taken from Fabb
(1988), one of the most extensive studies of the
selectional restrictions of English derivational suf-
fixes. Fabb discussed 43 suffixes, many of which
attach to a base of two out of three available syn-
tactic categories, e.g. -ize attaches to both nouns,
as in symbolize, and adjectives, as in specialize.
The analysis of such syntactically ambiguous suf-
fixes is complex since the frequency with which
they attach to each base type should be taken into
consideration, but such statistics are not readily
available and require morphological parsing. For
the purposes of the present study ambiguous suf-
fixes were thus excluded and only the remaining
nineteen suffixes were used.

7.2 Results

Figure 3 shows the results from the experiment.
Eleven out of nineteen suffixes exhibit the ex-
pected behavior: suffixes -ment, -ive, -able, -ably,
-an, -ic, -ary, -hood, -less, ness and -ity are more
probable in the context of their corresponding syn-
tactic base than in other contexts. Suffix -ment, for
instance, is more than twice as probable in the con-
text of a verbal base than in the context of a nomi-
nal or an adjectival base. The fact that almost 70%
of suffixes ‘select’ their correct bases, points to a
linguistic awareness within the LM with respect to
the selectional restrictions of suffixes.

Despite the overall success of the LM in this
respect, some suffixes show a definitive prefer-
ence for the wrong base. A further analysis of
some of these cases shows that they don’t neces-
sarily counter the evidence for syntactic awareness
within the LM.

Figure 3: Suffix Probability Following Nominal (blue),
Verbal (green) and Adjectival (red) Bases. Suffixes are
grouped according to their selectional restrictions: (a)
deverbal, (b) denominal and (c) deadjectival. Eleven
out of nineteen suffixes obtained highest probability
following the syntactic category that matched their se-
lectional restrictions.

7.3 Suffix -ion

Deverbal suffix -ion should be most probable
following verbs, but prefers nominal bases.
Notice that -ion is a noun-forming suffix:
communicateV ERB → communicationNOUN ,
regressV ERB → regressionNOUN . It appears that
from the perspective of the LM, the syntactic
category of such morphologically complex forms
extends to their bases, e.g. the LM perceives
the populat substring in population as nominal.
This observation can be explained precisely with
reference to the high frequency of suffix -ion:
the suffix itself occurred in 18,945 words in the
dataset, while the frequency of its various bases
in isolation, e.g. of populate, regress, etc., was
estimated to be only 9,7555. This shows that bases
that can take suffix -ion were seen more often
with it than without it. As a consequence, the LM
is biased to expect a noun when seeing one of
these character sequences and may thus perceive
the base itself as a nominal one.

The tag prediction evolution over population
and renewable in Figure 4, show that this is indeed
the case, by comparing a base suffixed with -ion to
a base suffixed with -able (whose selectional re-
strictions, we know, were learned correctly). For
both words C2T starts off predicting NOUN. For

5To estimate this, we removed the suffix of each word and
then searched for the remainder in isolation, followed by e
and followed by s/ es—e.g. for population we counted the
occurrences of populat, populate, populates and populated.
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Figure 4: C2T Evolution: (a) population and (b) renewable. The red square points to the syntactic category of the
base.

renew it switches to VERB, which is the correct
tag for this base, and only upon seeing the suffix,
progresses to the conclusive ADJ tag for renew-
able. For population, in contrast the prediction
remains constant at NOUN, which is indeed the
category of the word, as determined by the suffix.

8 Conclusion

This work presented an exploratory analysis of
a ‘wordless’ character language model, aiming
to identify the morpho-syntactic regularities cap-
tured by the model.

The first conclusion of this work is that mor-
pheme boundaries are mainly learned by the LM
through analogy with syntactic boundaries. Find-
ings relating to the extremely frequent suffix -ion
illustrate that the LM was able to learn to identify
purely morphological boundaries through general-
ization. But a prerequisite for this generalization
is that a morpho-syntactic boundary was also seen
in the relevant position during training.

The second conclusion is that having recog-
nized certain boundaries and by extension, the
units that lie between them, the model could also
learn the regularities that concern these units, e.g.
the selectional restrictions of most derivational
suffixes included in the study could be captured
accurately.

9 Implications for future research

The above conclusions have strong implications
with respect to the use of character-level LMs for
languages other than English.

English is the perfect candidate for character-

level language modeling, due to its fairly poor in-
flectional morphology. The nature of English is
such that the boundary between a base and a suf-
fix is often also a potential word boundary, which
makes suffixes easily segmentable. This is not
the case for many languages with richer and more
complex morphology. Without access to the units
of verbal morphology, it is less clear how the
model would learn these types of regularities. This
shortcoming should hold not just for the LM but
for any character-level language model that pro-
cesses input as a stream of characters without seg-
mentation on the subword level.

This implication is in line with the results of
Vania and Lopez (2017) showing that for many
languages, language modeling accuracy improves
when the model is provided with explicit morpho-
logical annotations during training, with English
showing relatively small improvements. Our anal-
ysis might explain why this is so; we expect anal-
yses of other languages to yield further insight.

Finally, we should point out that it may not
be the case that a single, highly-specified word
unit should exist in every character-level LM. Qian
et al. (2016) find that different levels of linguistic
knowledge are encoded with different model ar-
chitectures, and Kádár et al. (2018) find that even
a different initialization of an otherwise identi-
cal model can results in very different hierarchi-
cal processing of the input. We consider ourselves
lucky for coming across this particular setup that
produced a model with very interpretable behav-
ior, but we also acknowledge the importance of
evaluating the reliability of the word unit finding
in future work.
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Abstract

Recurrent neural networks (RNNs) are tem-
poral networks and cumulative in nature that
have shown promising results in various nat-
ural language processing tasks. Despite their
success, it still remains a challenge to under-
stand their hidden behavior. In this work,
we analyze and interpret the cumulative na-
ture of RNN via a proposed technique named
as Layer-wIse-Semantic-Accumulation (LISA)
for explaining decisions and detecting the
most likely (i.e., saliency) patterns that the net-
work relies on while decision making. We
demonstrate (1) LISA: “How an RNN accumu-
lates or builds semantics during its sequential
processing for a given text example and ex-
pected response” (2) Example2pattern: “How
the saliency patterns look like for each cate-
gory in the data according to the network in de-
cision making”. We analyse the sensitiveness
of RNNs about different inputs to check the
increase or decrease in prediction scores and
further extract the saliency patterns learned by
the network. We employ two relation classifi-
cation datasets: SemEval 10 Task 8 and TAC
KBP Slot Filling to explain RNN predictions
via the LISA and example2pattern.

1 Introduction

The interpretability of systems based on deep neu-
ral network is required to be able to explain the
reasoning behind the network prediction(s), that
offers to (1) verify that the network works as ex-
pected and identify the cause of incorrect deci-
sion(s) (2) understand the network in order to im-
prove data or model with or without human in-
tervention. There is a long line of research in
techniques of interpretability of Deep Neural net-
works (DNNs) via different aspects, such as ex-
plaining network decisions, data generation, etc.
Erhan et al. (2009); Hinton (2012); Simonyan et al.
(2013) and Nguyen et al. (2016) focused on model

aspects to interpret neural networks via activa-
tion maximization approach by finding inputs that
maximize activations of given neurons. Goodfel-
low et al. (2014) interprets by generating adversar-
ial examples. However, Baehrens et al. (2010) and
Bach et al. (2015); Montavon et al. (2017) explain
neural network predictions by sensitivity analysis
to different input features and decomposition of
decision functions, respectively.

Recurrent neural networks (RNNs) (Elman,
1990) are temporal networks and cumulative in
nature to effectively model sequential data such
as text or speech. RNNs and their variants such
as LSTM (Hochreiter and Schmidhuber, 1997)
have shown success in several natural language
processing (NLP) tasks, such as entity extraction
(Lample et al., 2016; Ma and Hovy, 2016), rela-
tion extraction (Vu et al., 2016a; Miwa and Bansal,
2016; Gupta et al., 2016, 2018c), language mod-
eling (Mikolov et al., 2010; Peters et al., 2018),
slot filling (Mesnil et al., 2015; Vu et al., 2016b),
machine translation (Bahdanau et al., 2014), sen-
timent analysis (Wang et al., 2016; Tang et al.,
2015), semantic textual similarity (Mueller and
Thyagarajan, 2016; Gupta et al., 2018a) and dy-
namic topic modeling (Gupta et al., 2018d).

Past works (Zeiler and Fergus, 2014; Dosovit-
skiy and Brox, 2016) have mostly analyzed deep
neural network, especially CNN in the field of
computer vision to study and visualize the features
learned by neurons. Recent studies have investi-
gated visualization of RNN and its variants. Tang
et al. (2017) visualized the memory vectors to un-
derstand the behavior of LSTM and gated recur-
rent unit (GRU) in speech recognition task. For
given words in a sentence, Li et al. (2016) em-
ployed heat maps to study sensitivity and mean-
ing composition in recurrent networks. Ming et al.
(2017) proposed a tool, RNNVis to visualize hid-
den states based on RNN’s expected response to
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Figure 1: Connectionist Bi-directional Recurrent Neural Network (C-BRNN) (Vu et al., 2016a)

inputs. Peters et al. (2018) studied the inter-
nal states of deep bidirectional language model to
learn contextualized word representations and ob-
served that the higher-level hidden states capture
word semantics, while lower-level states capture
syntactical aspects. Despite the possibility of visu-
alizing hidden state activations and performance-
based analysis, there still remains a challenge for
humans to interpret hidden behavior of the“black
box” networks that raised questions in the NLP
community as to verify that the network behaves
as expected. In this aspect, we address the cu-
mulative nature of RNN with the text input and
computed response to answer “how does it aggre-
gate and build the semantic meaning of a sentence
word by word at each time point in the sequence
for each category in the data”.

Contribution: In this work, we analyze and in-
terpret the cumulative nature of RNN via a pro-
posed technique named as Layer-wIse-Semantic-
Accumulation (LISA) for explaining decisions and
detecting the most likely (i.e., saliency) patterns
that the network relies on while decision making.
We demonstrate (1) LISA: “How an RNN accumu-
lates or builds semantics during its sequential pro-
cessing for a given text example and expected re-
sponse” (2) Example2pattern: “How the saliency
patterns look like for each category in the data ac-
cording to the network in decision making”. We
analyse the sensitiveness of RNNs about different
inputs to check the increase or decrease in predic-
tion scores. For an example sentence that is clas-
sified correctly, we identify and extract a saliency

pattern (N-grams of words in order learned by the
network) that contributes the most in prediction
score. Therefore, the term example2pattern trans-
formation for each category in the data. We em-
ploy two relation classification datasets: SemEval
10 Task 8 and TAC KBP Slot Filling (SF) Shared
Task (ST) to explain RNN predictions via the pro-
posed LISA and example2pattern techniques.

2 Connectionist Bi-directional RNN

We adopt the bi-directional recurrent neural net-
work architecture with ranking loss, proposed by
Vu et al. (2016a). The network consists of three
parts: a forward pass which processes the original
sentence word by word (Equation 1); a backward
pass which processes the reversed sentence word
by word (Equation 2); and a combination of both
(Equation 3). The forward and backward passes
are combined by adding their hidden layers. There
is also a connection to the previous combined hid-
den layer with weight Wbi with a motivation to in-
clude all intermediate hidden layers into the final
decision of the network (see Equation 3). They
named the neural architecture as ‘Connectionist
Bi-directional RNN’ (C-BRNN). Figure 1 shows
the C-BRNN architecture, where all the three parts
are trained jointly.

hft = f(Uf · wt +Wf · hft−1) (1)

hbt = f(Ub · wn−t+1 +Wb · hbt+1) (2)

hbit = f(hft + hbt +Wbi · hbit−1) (3)

where wt is the word vector of dimension d for
a word at time step t in a sentence of length n.
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D is the hidden unit dimension. Uf ∈ Rd×D
and Ub ∈ Rd×D are the weight matrices between
hidden units and input wt in forward and back-
ward networks, respectively; Wf ∈ RD×D and
Wb ∈ RD×D are the weights matrices connect-
ing hidden units in forward and backward net-
works, respectively. Wbi ∈ RD×D is the weight
matrix connecting the hidden vectors of the com-
bined forward and backward network. Following
Gupta et al. (2015) during model training, we use
3-gram and 5-gram representation of each word
wt at timestep t in the word sequence, where a 3-
gram for wt is obtained by concatenating the cor-
responding word embeddings, i.e., wt−1wtwt+1.

Ranking Objective: Similar to Santos et al.
(2015) and Vu et al. (2016a), we applied the rank-
ing loss function to train C-BRNN. The ranking
scheme offers to maximize the distance between
the true label y+ and the best competitive label c−

given a data point x. It is defined as-

L = log(1 + exp(γ(m+ − sθ(x)y+)))
+ log(1 + exp(γ(m− + sθ(x)c−)))

(4)

where sθ(x)y+ and sθ(x)c− being the scores for
the classes y+ and c−, respectively. The param-
eter γ controls the penalization of the prediction
errors and m+ and m are margins for the correct
and incorrect classes. Following Vu et al. (2016a),
we set γ = 2, m+ = 2.5 and m− = 0.5.

Model Training and Features: We represent
each word by the concatenation of its word em-
bedding and position feature vectors. We use
word2vec (Mikolov et al., 2013) embeddings,
that are updated during model training. As po-
sition features in relation classification experi-
ments, we use position indicators (PI) (Zhang and
Wang, 2015) in C-BRNN to annotate target en-
tity/nominals in the word sequence, without neces-
sity to change the input vectors, while it increases
the length of the input word sequences, as four
independent words, as position indicators (<e1>,
</ e1>, <e2>, </e2>) around the relation argu-
ments are introduced.

In our analysis and interpretation of recurrent
neural networks, we use the trained C-BRNN
(Figure 1) (Vu et al., 2016a) model.

3 LISA and Example2Pattern in RNN

There are several aspects in interpreting the neu-
ral network, for instance via (1) Data: “Which di-
mensions of the data are the most relevant for the
task” (2) Prediction or Decision: “Explain why a
certain pattern” is classified in a certain way (3)
Model: “How patterns belonging to each category
in the data look like according to the network”.

In this work, we focus to explain RNN via de-
cision and model aspects by finding the patterns
that explains “why” a model arrives at a particu-
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lar decision for each category in the data and veri-
fies that model behaves as expected. To do so, we
propose a technique named as LISA that interprets
RNN about “how it accumulates and builds mean-
ingful semantics of a sentence word by word” and
“how the saliency patterns look like according to
the network” for each category in the data while
decision making. We extract the saliency patterns
via example2pattern transformation.

LISA Formulation: To explain the cumula-
tive nature of recurrent neural networks, we show
how does it build semantic meaning of a sentence
word by word belonging to a particular category
in the data and compute prediction scores for the
expected category on different inputs, as shown in
Figure 2. The scheme also depicts the contribu-
tion of each word in the sequence towards the final
classification score (prediction probability).

At first, we compute different subsequences
of word(s) for a given sequence of words (i.e.,
sentence). Consider a sequence S of words
[w1, w2, ..., wk, ..., wn] for a given sentence S of
length n. We compute n number of subsequences,
where each subsequence S≤k is a subvector of
words [w1, ...wk], i.e., S≤k consists of words pre-
ceding and including the word wk in the sequence
S. In context of this work, extending a subse-
quence by a word means appending the subse-
quence by the next word in the sequence. Observe
that the number of subsequences, n is equal to the
total number of time steps in the C-BRNN.

Next is to compute RNN prediction score for the
category R associated with sentence S. We com-
pute the score via the autoregressive conditional
P (R|S≤k,M) for each subsequence S≤k, as-

P (R|S≤k,M) = softmax(Why · hbik + by) (5)

using the trained C-BRNN (Figure 1) model
M. For each k ∈ [1, n], we compute the net-
work prediction, P (R|S≤k,M) to demonstrate the
cumulative property of recurrent neural network
that builds meaningful semantics of the sequence
S by extending each subsequence S≤k word by
word. The internal state hbik (attached to softmax
layer as in Figure 1) is involved in decision making
for each input subsequence S≤k with bias vector
by ∈ RC and hidden-to-softmax weights matrix
Why ∈ RD×C for C categories.

The LISA is illustrated in Figure 2, where each
word in the sequence contributes to final classifi-
cation score. It allows us to understand the net-
work decisions via peaks in the prediction score

Algorithm 1 Example2pattern Transformation
Input: sentence S, length n, category R,
threshold τ , C-BRNN M, N-gram size N
Output: N-gram saliency pattern patt

1: for k in 1 to n do
2: compute N-gramk (eqn 8) of words in S
3: for k in 1 to n do
4: compute S≤k (eqn 7) of N-grams
5: compute P (R|S≤k,M) using eqn 5
6: if P (R|S≤k,M) ≥ τ then
7: return patt← S≤k[−1]

over different subsequences. The peaks signify
the saliency patterns (i.e., sequence of words) that
the network has learned in order to make deci-
sion. For instance, the input word ‘of’ following
the subsequence ‘<e1> demolition </e1> was
the cause’ introduces a sudden increase in pre-
diction score for the relation type cause-effect(e1,
e2). It suggests that the C-BRNN collects the se-
mantics layer-wise via temporally organized sub-
sequences. Observe that the subsequence ‘...cause
of’ is salient enough in decision making (i.e., pre-
diction score=0.77), where the next subsequence
‘...cause of <e2>’ adds in the score to get 0.98.

Example2pattern for Saliency Pattern: To
further interpret RNN, we seek to identify and ex-
tract the most likely input pattern (or phrases) for
a given class that is discriminating enough in de-
cision making. Therefore, each example input is
transformed into a saliency pattern that informs us
about the network learning. To do so, we first
compute N-gram for each word wt in the sen-
tence S. For instance, a 3-gram representation
of wt is given by wt−1, wt, wt+1. Therefore, an
N-gram (for N=3) sequence S of words is rep-
resented as [[wt−1, wt, wt+1]

n
t=1], where w0 and

wn+1 are PADDING (zero) vectors of embedding
dimension.

Following Vu et al. (2016a), we use N-grams
(e.g., tri-grams) representation for each word in
each subsequence S≤k that is input to C-BRNN
to compute P (R|S≤k), where the N-gram (N=3)
subsequence S≤k is given by,

S≤k = [[PADDING,w1, w2]1, [w1, w2, w3]2, ...,

[wt−1, wt, wt+1]t, ..., [wk−1, wk, wk+1]k]

(6)

S≤k = [tri1, tri2, ..., trit, ...trik] (7)

for k ∈ [1, n]. Observe that the 3-gram trik con-
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Figure 3: (a-i) Layer-wIse Semantic Accumulation (LISA) by C-BRNN for different relation types in
SemEval10 Task 8 and TAC KBP Slot Filling datasets. The square in red color signifies that the relation
is correctly detected with the input subsequence (enough in decision making). (j-k) t-SNE visualization
of the last combined hidden unit (hbi) of C-BRNN computed using the SemEval10 train and test sets.
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ID Relation/Slot Types Example Sentences Example2Pattern
S1 cause-effect(e1, e2) <e1> demolition </e1> was the cause of <e2> terror </e2> cause of <e2>
S2 cause-effect(e2, e1) <e1> damage </e1> caused by the <e2> bombing </e2> damage </e1> caused
S3 component-whole(e1, e2) <e1> countyard </e1> of the <e2> castle </e2> </e1> of the
S4 entity-destination(e1,e2) <e1> marble </e1> was dropped into the <e2> bowl </e2> dropped into the
S5 entity-origin(e1, e2) <e1> car </e1> left the <e2> plant </e2> left the <e2>
S6 product-produce(e1, e2) <e1> cigarettes </e1> by the major <e2> producer </e2> </e1> by the
S7 instrument-agency(e1, e2) <e1> cigarettes </e1> are used by <e2> women </e2> </e1> are used
S8 per:loc of birth(e1, e2) <e1> person </e1> was born in <e2> location </e2> born in <e2>
S9 per:spouse(e1, e2) <e1> person </e1> married <e2> spouse </e2> </e1> married <e2>

Table 1: Example Sentences for LISA and example2pattern illustrations. The sentences S1-S7 belong to
SemEval10 Task 8 dataset and S8-S9 to TAC KBP Slot Filling (SF) shared task dataset.

sists of the word wk+1, if k 6= n. To generalize for
i ∈ [1, bN/2c], an N-gramk of sizeN for word wk
in C-BRNN is given by-

N-gramk = [wk−i, ..., wk, ..., wk+i]k (8)

Algorithm 1 shows the transformation of an ex-
ample sentence into pattern that is salient in deci-
sion making. For a given example sentence S with
its length n and category R, we extract the most
salient N-gram (N=3, 5 or 7) pattern patt (the last
N-gram in the N-gram subsequence S≤k) that con-
tributes the most in detecting the relation type R.
The threshold parameter τ signifies the probabil-
ity of prediction for the category R by the model
M. For an input N-gram sequence S≤k of sen-
tence S, we extract the last N-gram, e.g., trik that
detects the relation R with prediction score above
τ . By manual inspection of patterns extracted at
different values (0.4, 0.5, 0.6, 0.7) of τ , we found
that τ = 0.5 generates the most salient and inter-
pretable patterns. The saliency pattern detection
follows LISA as demonstrated in Figure 2, except
that we use N-gram (N =3, 5 or 7) input to detect
and extract the key relationship patterns.

4 Analysis: Relation Classification

Given a sentence and two annotated nominals, the
task of binary relation classification is to predict
the semantic relations between the pairs of nom-
inals. In most cases, the context in between the
two nominals define the relationship. However,
Vu et al. (2016a) has shown that the extended con-
text helps. In this work, we focus on the building
semantics for a given sentence using relationship
contexts between the two nominals.

We analyse RNNs for LISA and exam-
ple2pattern using two relation classification dat-
sets: (1) SemEval10 Shared Task 8 (Hendrickx

Input word sequence to C-BRNN pp

<e1> 0.10

<e1> demolition 0.25

<e1> demolition </e1> 0.29

<e1> demolition </e1> was 0.30

<e1> demolition </e1> was the 0.35

<e1> demolition </e1> was the cause 0.39

<e1> demolition </e1> was the cause of 0.77

<e1> demolition </e1> was the cause of <e2> 0.98

<e1> demolition </e1> was the cause of <e2> terror 1.00

<e1> demolition </e1> was the cause of <e2> terror </e2> 1.00

Table 2: Semantic accumulation and sensitivity
of C-BRNN over subsequences for sentence S1.
Bold indicates the last word in the subsequence.
pp: prediction probability in the softmax layer for
the relation type. The underline signifies that the
pp is sufficient enough (τ=0.50) in detecting the
relation. Saliency patterns, i.e., N-grams can be
extracted from the input subsequence that leads to
a sudden peak in pp, where pp ≥ τ .

et al., 2009) (2) TAC KBP Slot Filling (SF) shared
task1 (Adel and Schütze, 2015). We demon-
strate the sensitiveness of RNN for different sub-
sequences (Figure 2), input in the same order as
in the original sentence. We explain its predic-
tions (or judgments) and extract the salient rela-
tionship patterns learned for each category in the
two datasets.

4.1 SemEval10 Shared Task 8 dataset
The relation classification dataset of the Semantic
Evaluation 2010 (SemEval10) shared task 8 (Hen-
drickx et al., 2009) consists of 19 relations (9 di-
rected relations and one artificial class Other),
8,000 training and 2,717 testing sentences. We
split the training data into train (6.5k) and devel-
opment (1.5k) sentences to optimize the C-BRNN

1data from the slot filler classification component of the
slot filling pipeline, treated as relation classification
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Relation 3-gram Patterns 5-gram Patterns 7-gram Patterns
</e1> cause <e2> the leading causes of <e2> is one of the leading causes of

cause- </e1> caused a the main causes of <e2> is one of the main causes of
effect(e1,e2) that cause respiratory </e1> leads to <e2> inspiration </e1> that results in <e2> hardening </e2>

which cause acne </e1> that results in <e2> </e1> resulted in the <e2> loss </e2>
leading causes of </e1> resulted in the <e2> <e1> sadness </e1> leads to <e2> inspiration

caused due to </e1> has been caused by </e1> is caused by a <e2> comet
comes from the </e1> are caused by the </e1> however has been caused by the

cause- arose from an </e1> arose from an <e2> </e1> that has been caused by the
effect(e2,e1) caused by the </e1> caused due to <e2> that has been caused by the <e2>

radiated from a infection </e2> results in an <e1> product </e1> arose from an <e2>
in a <e2> </e1> was contained in a </e1> was contained in a <e2> box

was inside a </e1> was discovered inside a </e1> was in a <e2> suitcase </e2>
content- contained in a </e1> were in a <e2> </e1> were in a <e2> box </e2>
container(e1,e2) hidden in a is hidden in a <e2> </e1> was inside a <e2> box </e2>

stored in a </e1> was contained in a </e1> was hidden in an <e2> envelope
</e1> released by </e1> issued by the <e2> <e1> products </e1> created by an <e2>

product- </e1> issued by </e1> was prepared by <e2> </e1> by an <e2> artist </e2> who
produce(e1,e2) </e1> created by was written by a <e2> </e1> written by most of the <e2>

by the <e2> </e1> built by the <e2> temple </e1> has been built by <e2>
of the <e1> </e1> are made by <e2> </e1> were founded by the <e2> potter
</e1> of the </e1> of the <e2> device the <e1> timer </e1> of the <e2>

whole(e1, e2) of the <e2> </e1> was a part of </e1> was a part of the romulan
component- part of the </e1> is part of the </e1> was the best part of the

</e1> of <e2> is a basic element of </e1> is a basic element of the
</e1> on a </e1> is part of a are core components of the <e2> solutions
put into a have been moving into the </e1> have been moving back into <e2>

released into the was dropped into the <e2> </e1> have been moving into the <e2>
entity- </e1> into the </e1> moved into the <e2> </e1> have been dropped into the <e2>
destination(e1,e2) moved into the were released into the <e2> </e1> have been released back into the

added to the </e1> have been exported to power </e1> is exported to the <e2>
</e1> are used </e1> assists the <e2> eye cigarettes </e1> are used by <e2> women
used by <e2> </e1> are used by <e2> <e1> telescope </e1> assists the <e2> eye

instrument- </e1> is used </e1> were used by some <e1> practices </e1> for <e2> engineers </e2>
agency(e1,e2) set by the </e1> with which the <e2> the best <e1> tools </e1> for <e2>

</e1> set by readily associated with the <e2> <e1> wire </e1> with which the <e2>

Table 3: SemEval10 Task 8 dataset: N-Gram (3, 5 and 7) saliency patterns extracted for different relation
types by C-BRNN with PI

network. For instance, an example sentence with
relation label is given by-

The <e1> demolition </e1> was
the cause of <e2> terror </e2>
and communal divide is just a way
of not letting truth prevail. →
cause-effect(e1,e2)

The terms demolition and terror are
the relation arguments or nominals, where the
phrase was the cause of is the relationship
context between the two arguments. Table 1
shows the examples sentences (shortened to ar-
gument1+relationship context+argument2) drawn
from the development and test sets that we em-
ployed to analyse the C-BRNN for semantic accu-
mulation in our experiments. We use the similar
experimental setup as Vu et al. (2016a).

LISA Analysis: As discussed in Section 3, we
interpret C-BRNN by explaining its predictions
via the semantic accumulation over the subse-
quences S≤k (Figure 2) for each sentence S. We
select the example sentences S1-S7 (Table 1) for
which the network predicts the correct relation
type with high scores. For an example sentence
S1, Table 2 illustrates how different subsequences
are input to C-BRNN in order to compute predic-
tion scores pp in the softmax layer for the relation
cause-effect(e1, e2). We use tri-gram
(section 3) word representation for each word for
the examples S1-S7.

Figures 3a, 3b, 3c, 3d 3e, 3f and 3g demon-
strate the cumulative nature and sensitiveness of
RNN via prediction probability (pp) about differ-
ent inputs for sentences S1-S7, respectively. For

160



Slots N-gram Patterns
</e1> wife of
</e1> , wife

per- </e1> wife
spouse(e1,e2) </e1> married <e2>

</e1> marriages to
was born in

born in <e2>
per- a native of
location of birth(e1,e2) </e1> from <e2>

</e1> ’s hometown

Table 4: TAC KBP SF dataset: Tri-gram saliency
patterns extracted for slots per:spouse(e1, e2) and
per:location of birth(e1,e2)

instance in Figure 3a and Table 2, the C-BRNN
builds meaning of the sentence S1 word by word,
where a sudden increase in pp is observed when
the input subsequence <e1> demolition
</e1> was the cause is extended with the
next term of in the word sequence S. Note that
the relationship context between the arguments
demolition and terror is sufficient enough
in detecting the relationship type. Interestingly,
we also observe that the prepositions (such as of,
by, into, etc.) in combination with verbs are key
features in building the meaningful semantics.

Saliency Patterns via example2pattern Trans-
formation: Following the discussion in Section
3 and Algorithm 1, we transform each correctly
identified example into pattern by extracting the
most likely N-gram in the input subsequence(s).
In each of the Figures 3a, 3b, 3c, 3d 3e, 3f and 3g,
the square box in red color signifies that the rela-
tion type is correctly identified (when τ = 0.5) at
this particular subsequence input (without the re-
maining context in the sentence). We extract the
last N-gram of such a subsequence.

Table 1 shows the example2pattern transforma-
tions for sentences S1-S7 in SemEval10 dataset,
derived from Figures 3a-3g, respectively with N=3
(in the N-grams). Similarly, we extract the salient
patterns (3-gram, 5-gram and 7-gram) (Table 3)
for different relationships. We also observe that
the relation types content-container(e1,
e2) and instrument-agency(e1,
e2) are mostly defined by smaller rela-
tionship contexts (e.g, 3-gram), however
entity-destination(e1,e2) by larger
contexts (7-gram).

4.2 TAC KBP Slot Filling dataset
We investigate another dataset from TAC KBP
Slot Filling (SF) shared task (Surdeanu, 2013),
where we use the relation classification dataset by
Adel et al. (2016) in the context of slot filling. We
have selected the two slots: per:loc of birth and
per:spouse out of 24 types.

LISA Analysis: Following Section 4.1, we anal-
yse the C-BRNN for LISA using sentences S8
and S9 (Table 1). Figures 3h and 3i demonstrate
the cumulative nature of recurrent neural network,
where we observe that the salient patterns born
in <e2> and </e1> married e2 lead to
correct decision making for S8 and S9, respec-
tively. Interestingly for S8, we see a decrease in
prediction score from 0.59 to 0.52 on including
terms in the subsequence, following the term in.

Saliency Patterns via example2pattern Trans-
formation: Following Section 3 and Algorithm 1,
we demonstrate the example2pattern transforma-
tion of sentences S8 and S9 in Table 1 with tir-
grams. In addition, Table 4 shows the tri-gram
salient patterns extracted for the two slots.

5 Visualizing Latent Semantics

In this section, we attempt to visualize the hidden
state of each test (and train) example that has ac-
cumulated (or built) the meaningful semantics dur-
ing sequential processing in C-BRNN. To do this,
we compute the last hidden vector hbi of the com-
bined network (e.g., hbi attached to the softmax
layer in Figure 1) for each test (and train) exam-
ple and visualize (Figure 3k and 3j) using t-SNE
(Maaten and Hinton, 2008). Each color represents
a relation-type. Observe the distinctive clusters of
accumulated semantics in hidden states for each
category in the data (SemEval10 Task 8).

6 Conclusion and Future Work

We have demonstrated the cumulative nature of
recurrent neural networks via sensitivity analysis
over different inputs, i.e., LISA to understand how
they build meaningful semantics and explain pre-
dictions for each category in the data. We have
also detected a salient pattern in each of the exam-
ple sentences, i.e., example2pattern transforma-
tion that the network learns in decision making.
We extract the salient patterns for different cate-
gories in two relation classification datasets.

In future work, it would be interesting to anal-
yse the sensitiveness of RNNs with corruption in
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the salient patterns. One could also investigate
visualizing the dimensions of hidden states (acti-
vation maximization) and word embedding vec-
tors with the network decisions over time. We
forsee to apply LISA and example2pattern on dif-
ferent tasks such as document categorization, sen-
timent analysis, language modeling, etc. An-
other interesting direction would be to analyze
the bag-of-word neural topic models such as Doc-
NADE (Larochelle and Lauly, 2012) and iDoc-
NADE (Gupta et al., 2018b) to interpret their se-
mantic accumulation during autoregressive com-
putations in building document representation(s).
We extract the saliency patterns for each cate-
gory in the data that can be effectively used in
instantiating pattern-based information extraction
systems, such as bootstrapping entity (Gupta and
Manning, 2014) and relation extractors (Gupta
et al., 2018e).
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Abstract

We investigate how encoder-decoder models
trained on a synthetic dataset of task-oriented
dialogues process disfluencies, such as hesita-
tions and self-corrections. We find that, con-
trary to earlier results, disfluencies have very
little impact on the task success of seq-to-seq
models with attention. Using visualisations
and diagnostic classifiers, we analyse the rep-
resentations that are incrementally built by the
model, and discover that models develop little
to no awareness of the structure of disfluen-
cies. However, adding disfluencies to the data
appears to help the model create clearer repre-
sentations overall, as evidenced by the atten-
tion patterns the different models exhibit.

1 Introduction

The use of Recurrent Neural Networks (RNNs) to
tackle sequential language tasks has become stan-
dard in natural language processing, after impres-
sive accomplishments in speech recognition, ma-
chine translation, and entailment (e.g., Sutskever
et al., 2014; Bahdanau et al., 2015b; Kalchbren-
ner et al., 2014). Recently, RNNs have also
been exploited as tools to model dialogue sys-
tems. Inspired by neural machine translation, re-
searchers such as Ritter et al. (2011) and Vinyals
and Le (2015) pioneered an approach to open-
domain chit-chat conversation based on sequence-
to-sequence models (Sutskever et al., 2014). In
this paper, we focus on task-oriented dialogue,
where the conversation serves to fulfil an inde-
pendent goal in a given domain. Current neural
dialogue models for task-oriented dialogue tend
to equip systems with external memory compo-
nents (Bordes et al., 2017), since key information
needs to be stored for potentially long time spans.
One of our goals here is to analyse to what ex-
tent sequence-to-sequence models without exter-
nal memory can deal with this challenge.

In addition, we consider language realisations
that include disfluencies common in dialogue in-
teraction, such as repetitions and self-corrections
(e.g., I’d like to make a reservation for six, I
mean, for eight people). Disfluencies have been
investigated extensively in psycholinguistics, with
a range of studies showing that they affect sen-
tence processing in intricate ways (Levelt, 1983;
Fox Tree, 1995; Bailey and Ferreira, 2003; Fer-
reira and Bailey, 2004; Lau and Ferreira, 2005;
Brennan and Schober, 2001). Most computational
work on disfluencies, however, has focused on de-
tection rather than on disfluency processing and
interpretation (e.g., Stolcke and Shriberg, 1996;
Heeman and Allen, 1999; Zwarts et al., 2010; Qian
and Liu, 2013; ?; ?). In contrast, our aim is to get
a better understanding of how RNNs process dis-
fluent utterances and to analyse the impact of such
disfluencies on a downstream task—in this case,
issuing an API request reflecting the preferences
of the user in a task-oriented dialogue.

For our experiments, we use the synthetic
dataset bAbI (Bordes et al., 2017) and a modified
version of it called bAbI+ which includes disflu-
encies (Shalyminov et al., 2017). The dataset con-
tains simple dialogues between a user and a sys-
tem in the restaurant reservation domain, which
terminate with the system issuing an API call that
encodes the user’s request. In bAbI+, disfluencies
are probabilistically inserted into user turns, fol-
lowing distributions in human data. Thus, while
the data is artificial and certainly simplistic, its
goal-oriented nature offers a rare opportunity: by
assessing whether the system issues the right API
call, we can study, in a controlled way, whether
and how the model builds up a relevant seman-
tic/pragmatic interpretation when processing a dis-
fluent utterance—a key aspect that would not be
available with unannotated natural data.
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2 Data

In this section, we discuss the two datasets we use
for our experiments: bAbI (Bordes et al., 2017)
and bAbI+ (Shalyminov et al., 2017).

2.1 bAbI

The bAbI dataset consists of a series of syn-
thetic dialogues in English, representing human-
computer interactions in the context of restaurant
reservations. The data is broken down into six sub-
tasks that individuate different abilities that dia-
logue systems should have to conduct a successful
conversation with a human. We focus on Task 1,
which tests the capacity of a system to ask the right
questions and integrate the answers of the user to
issue an API call that matches the user’s prefer-
ences regarding four semantic slots: cuisine, loca-
tion, price range, and party size. A sample dia-
logue can be found in example (4), Section 4.1.

Data The training data for Task 1 is delibera-
tively kept simple and small, consisting of 1000
dialogues with on average 5 user and 7 system ut-
terances. An additional 1000 dialogues based on
different user queries are available for validation
and testing, respectively. The overall vocabulary
contains 86 distinct words. There are 7 distinct
system utterances and 300 possible API calls.

Baselines Together with the dataset, Bordes
et al. (2017) present several baseline models for
the task. All the methods proposed are retrieval
based, i.e., the models are trained to select the
best system response from a set of candidate re-
sponses (in contrast to the models we investigate
in the present work, which are generative—see
Section 3). The baseline models include classi-
cal information retrieval (IR) methods such as TF-
IDF and nearest neighbour approaches, as well
as an end-to-end recurrent neural network. Bor-
des et al. demonstrate that the end-to-end recur-
rent architecture—a memory network (Sukhbaatar
et al., 2015)—outperforms the classical IR meth-
ods as well as supervised embeddings, obtaining a
100% accuracy on retrieving the correct API calls.

2.2 bAbI+

Shalyminov et al. (2017) observe that the original
bAbI data lack naturalness and variation common
in actual dialogue interaction. To introduce such
variation while keeping lexical variation constant,
they insert speech disfluencies, using a fixed set

of templates that are probabilistically applied to
the user turns of the original bAbI Task 1 dataset.
In particular, three types of disfluencies are in-
troduced: hesitations (1), restarts (2), and self-
corrections (3), in around 21%, 40% and 5% of
the user’s turns, respectively.1

(1) We will be uhm eight
(2) Good morning uhm yeah good morning
(3) I would like a French uhm sorry a Vietnamese

restaurant

Eshghi et al. (2017) use the bAbI+ dataset to show
that a grammar-based semantic parser specifically
designed to process incremental dialogue phenom-
ena is able to handle the bAbI+ data without hav-
ing been directly exposed to it, achieving 100%
accuracy on API-call prediction. They then in-
vestigate whether the memory network approach
by Bordes et al. (2017) is able to generalise to the
disfluent data, finding that the model obtains very
poor accuracy (28%) on API-call prediction when
trained on the original bAbI dataset and tested on
bAbI+. Shalyminov et al. (2017) further show
that, even when the model is explicitly trained
on bAbI+, its performance decreases significantly,
achieving only 53% accuracy.

This result, together with the high level of con-
trol on types and frequency of disfluencies offered
by the bAbI+ scripts, makes the bAbI+ data an ex-
cellent testbed for studying the processing of dis-
fluencies by recurrent neural networks.

3 Generative bAbI+ Modelling

We start with replicating the results of Shalyminov
et al. (2017) and Eshghi et al. (2017) using a gen-
erative rather than retrieval based model. For this
replication, we use a vanilla one-layer encoder-
decoder model (Sutskever et al., 2014) without
any external memory. We train models with and
without an attention mechanism (Bahdanau et al.,
2015b) and compare their results. We perform a
modest grid search over hidden layer and embed-
ding sizes and find that an embedding size of 128
and a hidden layer size of 500 appear to be mini-
mally required to achieve a good performance on
the task. We therefore fix the embedding and hid-
den layer size to 128 and 500, respectively, for all
further experiments.

1The inserted material is in italics in the examples.
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seq2seq attentive seq2seq MemN2N
train / test utterances API calls utterances API calls API calls

bAbI / bAbI 100 (100) 0.02 (66.4) 100 (100) 100 (100) 100
bAbI+ / bAbI+ 100 (100) 0.2 (80.6) 100 (100) 98.7 (99.7) 53
bAbI / bAbI+ 81.4 (83.3) 0.00 (58.2) 91.5 (92.8) 50.4 (90.1) 28
bAbI+ / bAbI 100 (100) 0.2 (81.4) 100 (100) 99.2 (100) 99

Table 1: Sequence accuracy (word accuracy in brackets) on the test set for utterances (non-API call
responses) and API calls only. The last column shows accuracy on the test set for the retrieval-based
memory-network system, as reported by Shalyminov et al. (2017) .

3.1 Training

All models are trained to predict the system ut-
terances of all of the 1000 training dialogues of
the bAbI and bAbI+ dataset, respectively, includ-
ing the final API call. After each user turn, mod-
els are asked to generate the next system utterance
in the dialogue, given the dialogue history up to
that point, which consists of all human and sys-
tem utterances that previously occurred in that di-
alogue. The model’s parameters are updated using
stochastic gradient descent on a cross-entropy loss
(using mini-batch size 32), with Adam (Kingma
and Ba, 2014) as optimiser (learning rate 0.001).
All models are trained until convergence, which
was reached after ∼20 epochs.

3.2 Evaluation

Following Shalyminov et al. (2017), we use a 2×2
paradigm in which we train models either on bAbI
or bAbI+ data and evaluate their performance on
the test set of the same dataset, as well as across
datasets. We report both the percentage of cor-
rect words in the generated responses (word accu-
racy) and the percentage of responses that were
entirely correct (sequence accuracy). Addition-
ally, we separately report the word and sequence
accuracy of the API calls generated at the end of
each dialogue. Note that these metrics are more
challenging than the retrieval-based ones used by
Bordes et al. (2017) and Eshghi et al. (2017), as
the correct response has to be generated word by
word, rather than merely being selected from a set
of already available candidate utterances.

3.3 Results

Our results can be found in Table 1. The results
obtained with the bAbI/bAbI and bAbI+/bAbI+
conditions indicate that an encoder-decoder model
with attention can achieve near-perfect accuracy
on Task 1 (predicting the right API call), whereas

a model without attention cannot (sequence accu-
racy for API calls is only 0.02% on bAbI/bAbI
and 0.2% on bAbI+/bAbI+). This suggests that, in
line with what was posed by Bordes et al. (2017),
the bAbI Task 1 requires some form of memory
that goes beyond what is available in a vanilla
sequence-to-sequence model. To solve the task,
however, using an attention mechanism suffices—
a more complicated memory such as present in
memory networks is not necessary.

Furthermore, our results confirm that models
trained on data without disfluencies struggle to
generalise when these are introduced at testing
time (bAbI/bAbI+): While the overall accuracy of
the dialogue is still high (91.5% of utterances are
correct), API call accuracy falls back to 50.4%.
Models trained on data containing disfluencies,
however, show near-perfect accuracy on disfluent
test data (98.7% on bAbI+/bAbI+)—a result that
stands in stark contrast with the findings of Eshghi
et al. (2017) and Shalyminov et al. (2017).

4 Generalisation to Disfluent Data

In this section, we analyse the potential for gen-
eralisation of the encoder-decoder model with at-
tention by focusing on the bAbI/bAbI+ condition,
where the model trained on bAbI data is tested on
bAbI+. As shown in Table 1, while the model
performs perfectly on the bAbI corpus, it achieves
only ∼50% accuracy on API call prediction when
it is asked to generalised to bAbI+ data. Here we
aim to shed light on these results by studying the
errors made by the model and visualising the pat-
terns of the attention component of the network.

4.1 Qualitative error analysis

We start by observing that the model faced with
the bAbI/bAbI+ condition encounters new lexical
items at test time, such as filled pauses (uh) or
editing terms (no sorry). These items are all
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Figure 1: Visualisation of the decoder attention when generating the API call (vertical axis) for the dis-
fluent dialogue in example (4) (horizontal axis). Darker colours indicate higher attention values.

mapped to a single token <unk> for ‘unknown’.
In addition, the presence of disfluencies increases
the length of user utterances: The average utter-
ance length in bAbI is 4.8 tokens, while user utter-
ances in bAbI+ have an average length of 7.6.

Since the inventory of system utterances is very
limited (there are 7 types of system outputs), the
model has no difficulty learning their surface form.
The errors we find, therefore, do not concern the
grammaticality of the utterances, but rather when
in the course of a dialogue a particular system ut-
terance is offered. We find that utterance errors
always involve a jump ahead in the expected se-
quence of system utterances. For example, around
83% of the utterance errors occur at the beginning
of the dialogue. If the first user utterance is dis-
fluent (e.g., Good morning <unk> <unk>
good morning) and hence longer than ex-
pected, the model tends to skip the system’s greet-
ing and initial prompt (Hello, what can I
help you with today) and instead outputs
the second system prompt (I’m on it), which
only makes sense once the user has already pro-
vided some task-related information. Utterance
errors of this kind, where the model generates an
utterance that would be appropriate later on in the
dialogue, occur after all disfluency types present
in bAbI+: hesitations, restarts, and self-repairs.

The current evaluation setup does not allow us
to test whether utterance errors by the system lead
to errors in the final API call, since the input se-
quence given to the encoder is the gold dialogue
history and not the dialogue history with system
utterances generated by the model. This, however,
allows us to conclude that the errors made by the
model on around 50% of all API calls are a di-
rect consequence of the disfluencies present in the
user utterances. Not surprisingly, API call errors
are triggered by self-corrections, which in bAbI+
always involve the mention of two different val-
ues for a single semantic slot (see example (4) be-

low). Indeed, the model trained on bAbI achieves
near-perfect accuracy when tested on a corpus that
does not contain self-correction but only hesita-
tions and restarts. This indicates that the lower
accuracy is specifically caused by the presence of
multiple potential values for the same API slot in
self-corrections.

Manual error inspection shows that the model
does not follow a systematic strategy whereby the
first mention of a semantic slot is selected, which
would lead to all self-corrections being processed
incorrectly. As illustrated in (4), the model seems
to randomly select between the first and the sec-
ond mention of a slot in a self-correction struc-
ture, which leads to some self-corrections being
processed correctly:

(4) U:good morning
S:hello what can I help you with

today
U:can you make a reservation for six

oh no eight in a uhm yeah can you
make a reservation for eight in a
moderate price range no in a cheap
price range in madrid

S:i’m on it
U:<silence>
S:any preference on a type of cuisine
U:I love british food
S:ok let me look into some options

for you
U:<silence>
S:<API call british madrid six cheap>

In Figure 1, we visualise the decoder attention of
the bAbI model when it generates the (partly in-
correct) API call for the dialogue in (4). The plot
shows that while generating the different compo-
nents of the API call, the model strongly relies
on its attention mechanism to select the right slot.
Furthermore, it confirms the observation that the
model is not consistent in its strategy to select a
slot after a disfluency: While it incorrectly attends
to six (rather than eight), it correctly selects
cheap (a repair of moderate). In the next sec-
tion, we will have a closer look at the attention pat-
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Figure 2: Alignment of in- and output words via the attention for different models tested on bAbI+ data.
Left: model trained on bAbI. Right: model trained on bAbI+.

terns of both the bAbI and bAbI+ trained model.

4.2 Comparing attention patterns

To evaluate the network’s attention patterns in
a more quantitative way, we store all attention
weights that the model computes while generat-
ing the API calls in the test corpus, and we com-
pute their average for each API-call word. That is,
for all words in an API-call, we compute to which
words in the dialogue history the decoder was on
average attending while it generated that word.

We plot the results in Figure 2, removing for
each API-call word (on the vertical axis in the
plot) the input words (horizontal axis) whose aver-
age attention score was lower 0.2. We observe that
the model trained on bAbI (left) not infrequently
attends to <unk> while generating API calls, in-
dicating that it did not attend to the correct content
word. A striking difference appears comparing the
results for the bAbI model with the bAbI+ trained
model (Figure 2, right), whose attention scores
are much less diffuse. While the bAbI model fre-
quently attends to irrelevant words such as “hello”,
“a” or “in” (first columns in the plot), these words
are not attended at all by the bAbI+ trained model.
This difference suggests that the bAbI+ model de-
veloped a more clear distinction between different
types of words in the input and benefits from the
presence of disfluencies in the training data rather
than being hindered by it.

In the next section, we investigate the rep-
resentations developed by the bAbI+ model
(bAbI+/bAbI+ condition), focussing in particular
on how it incrementally processes disfluencies.

5 Disfluency Processing

In contrast to previous work (Eshghi et al., 2017;
Shalyminov et al., 2017), our seq2seq model with
attention trained on bAbI+ data learns to process
disfluent user utterances remarkably well, achiev-
ing over 98% sequence accuracy on API calls (see
bAbI+/bAbI+ condition in Table 1). In this sec-
tion, we investigate how the model deals with dis-
fluencies, in particular self-corrections, by draw-
ing inspiration from human disfluency processing.

5.1 The structure of disfluencies

It has been often noted that disfluencies follow
regular patterns (Levelt, 1983; Shriberg, 1994).
Example (5) shows the structure of a prototypical
self-correction, where the reparandum (RM) con-
tains the problematic material to be repaired; the
utterance is then interrupted, which can optionally
be signalled with a filled paused and/or an editing
term (ET); the final part is the repair (R) proper,
after which the utterance may continue:

(5) a reservation for six {I mean} eight in a. . .
RM ET R

The presence or relationship between these ele-
ments serves to classify disfluencies into different
types. For example, restarts such as those inserted
in the bAbI+ corpus, are characterised by the fact
that the reparandum and the repair components are
identical (see example (2) in Section 2.2); in con-
trast to self-corrections, where the repair differs
from and is intended to overwrite the material in
the reparandum. In hesitations such as (1), there is
only a filled pause and no reparandum nor repair.
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5.2 Editing terms

The algorithm used to generate the bAbI+ data
systematically adds editing expressions (such as
oh no or sorry) to all restarts and self-
corrections inserted in the data. However, edit-
ing expressions (e.g., I mean, rather, that is, sorry,
oops) are in fact rare in naturally occurring hu-
man conversation. For example, Hough (2015)
finds that only 18.52% of self-corrections in the
Switchboard corpus contain an explicit editing
term. Thus, while psycholinguistic research has
shown that the presence of an explicit editing term
followed by a correction makes the disfluency eas-
ier to handle (Brennan and Schober, 2001), hu-
mans are able to process disfluencies without the
clues offered by such expressions.

Here we test whether the model relies on the
systematic presence of editing expressions in the
bAbI+ data. To this end, we created two new ver-
sions of the dataset using the code by Shalyminov
et al. (2017):2 One with no editing term in any
of the self-corrections or restarts, dubbed “noET”;
and one where there is an editing term in 20% of
self-corrections and restarts, dubbed “realET” as
it reflects a more realistic presence of such ex-
pressions. We refer to the original bAbI+ data,
which has editing terms in all self-corrections and
restarts, as “fullET”.

We test to what extent a model trained on ful-
lET, which could rely on the systematic presence
of an editing term to detect the presence of a self-
correction or restart, is able to process disfluen-
cies in a more natural scenario where editing ex-
pressions are only sparsely available (realET). The
result indicates that the editing term has very lit-
tle effect on the model’s performance: as shown
in Table 2, accuracy goes down slightly, but is
still extremely high (98%). This finding persists
when the editing terms are left out of the test data
entirely (97% accuracy when testing on noET).
When models are trained on data containing fewer
editing terms (realET and noET) and tested on
data with a comparable or smaller percentage of
editing terms, we observe a slightly larger drop
in accuracy (see Table 2). We conclude that, al-
though editing terms may help the model to de-
velop better representations during training, their
presence is not required to correctly process dis-
fluencies at test time.

2https://github.com/ishalyminov/babi_
tools

Tested on
Trained on noET realET fullET

fullET 97 98 100
realET 94 95
noET 94

Table 2: Sequence accuracies of all sequences with
and without editing term, averaged over 5 runs.

5.3 Identification of structural components

Disfluencies have regular patterns. However, iden-
tifying their components online is not trivial. The
comprehender faces what Levelt (1983) calls the
continuation problem: the need to identify (the
beginning and end of the reparandum and the re-
pair onset. Evidence shows that there are no
clues (prosodic or otherwise) present during the
reparandum. Thus the identification of the disflu-
ency takes place at or after the moment of interrup-
tion (typically during the repair). Here there may
be prosodic changes, but such clues are usually
absent (Levelt and Cutler, 1983). Ferreira et al.
(2004) point out that “the language comprehen-
sion system is able to identify a disfluency, likely
through the use of a combination of cues (in some
manner that is as yet not understood).”

We test to what extent our trained encoder-
decoder model distinguishes reparanda and edit-
ing terms and can identify the boundaries of a
repair using diagnostic classifiers (Hupkes et al.,
2018). Diagnostic classifiers were proposed as
a method to qualitatively evaluate whether spe-
cific information is encoded in high-dimensional
representations—typically the hidden states that a
trained neural network goes through while pro-
cessing a sentence. The technique relies on train-
ing simple neural meta-models to predict the infor-
mation of interest from these representations and
then uses the accuracy of the resulting classifiers
as a proxy for the extent to which this information
is encoded in the representations.

In our case, we aim to identify whether the hid-
den layer activations reflect if the model is cur-
rently processing a reparandum, an editing term,
or the repair. To test his, we label each word in the
bAbI+ validation corpus according to which of the
3 categories it belongs to and train 3 binary clas-
sifiers to classify from the hidden layer activation
of the encoder whether the word it just processed
belongs to either one of these 3 classes. For an
example of such a labelling we refer to Figure 3.
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1 2 2 3 0 0 0 1 1 2 2 3 3 0 0
with uhm yeah with british cuisine in a moderate no sorry a cheap price range

Figure 3: A labelled example sentence to evaluate whether models have distinct representations for
reparanda, repairs, and editing terms. For each label, we train a separate binary classifier to predict
whether or not a word belongs to the corresponding class.

We hypothesise that while reparanda will not be
detectable in the hidden layer activations, as they
can only be identified as such a posteriori (Levelt,
1983; Ferreira et al., 2004), editing terms should
be easy to detect, since they belong to a class of
distinct words. The most interesting classifier we
consider is the one identifying repairs, which re-
quires a more structural understanding of the dis-
fluency and the sentence as a whole.

self-corrections restarts
Reparandum 15.0 / 89.4 27.4 / 92.6
Editing term 37.3 / 99.4 55.7 / 99.2
Repair 21.3 / 93.5 35.2 / 94.9

Table 3: Precision / recall of diagnostic classifiers
to identify reparanda, editing terms and repairs.

The general trends in our results (see Table 3
above) are as expected: Editing terms are more
easily recoverable than both reparanda and repairs,
and the reparandum has the lowest scores with
a precision and recall of 0.15 and 0.89, respec-
tively. However, results for editing terms and re-
pairs are lower than expected. The presence of
editing terms is not reliably identifiable given the
hidden layer activations of a model (37.3% and
55.7% precision for self-corrections and restarts,
respectively), which is surprising given the fact
that there is no overlap between editing terms and
the rest of the model’s vocabulary. Taken together
with the results of our previous experiments in
Section 5.2 regarding the effect of editing terms on
the final sequence accuracy, this indicates that the
presence of an editing term causes only minimal
changes in the hidden layer activations, and thus
leaves only a small trace in the hidden state of the
network. The performance of the repair classifier
is also low: 21.3% precision on self-correction and
35.2% on restarts. These results suggest that the
model has no explicit representations of the struc-
ture of disfluencies and instead relies on other cues
to infer the right API call.

5.4 Incremental interpretation
Next we analyse how the model processes disflu-
encies by looking into the interpretation—in terms
of task-related predictions—that the model builds
incrementally, word by word and utterance by ut-
terance.

Word by word First, we probe the representa-
tions of the encoder part of the model while it
processes incoming sentences, for which we use
again diagnostic classifiers. In particular, we test
if information that is given at a particular point in
the dialogue (for instance, the user expresses she
would like to eat Indian food) is remembered by
the encoder throughout the rest of the conversa-
tion. We label the words in a dialogue according
to what slot information was already provided pre-
viously in the dialogue, and test if this information
can be predicted by a diagnostic classifier at later
points in the dialogue. Note that while in the bAbI
data the prediction for a slot changes only once
when the user expresses her preference, due to the
possibilities of corrections, slot information may
change multiple times in the bAbI+ corpus. We
train separate diagnostic classifiers for the differ-
ent slots in the API call: cuisine (10 options), loca-
tion (10 options), party size (4 options), and price
range (3 options).

Our experiments show that the semantic infor-
mation needed to issue an API call is not accu-
rately predictable from the hidden representations
that the encoder builds of the dialogue—see Ta-
ble 4, where accuracy scores are all relatively low.

Cuisine 31.3
Location 25.9
Price range 57.3
Party size 43.0

Table 4: Accuracy per slot type in the word-by-
word experiment.

In Figure 4, we plot the accuracy of the diagnos-
tic classifiers over time, relative to the position at
which information appears in the dialogue (that is,
the accuracy at position 4 represents the accuracy
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Figure 4: Accuracy at position relative to mention
in the dialogue of each type of slot.

4 words after the slot information occurred). The
plot illustrates that the encoder keeps traces of se-
mantic slot information for a few time steps after
this information appears in the dialogue, but then
rapidly ‘forgets’ it when the dialogue continues.3

These results confirm our earlier findings that most
of the burden for correctly issuing API calls falls
on the model’s attention mechanism, which needs
to select the correct hidden states at the moment
an API call should be generated.

Utterance by utterance In a second experi-
ment, we study the incremental development of
the API call made by the model’s generative com-
ponent (the decoder) by prompting it to generate
an API call after every user utterance. To trigger
the API calls, we append the utterances normally
preceding an API call (let me look some
options for you <silence>) to the dia-
logue history that is fed to the decoder. We ap-
ply this trick to elicit an API call after every user
utterance in the dialogue. We evaluate the gener-
ated API calls by considering only the slots that
can already be filled given the current dialogue
history. That is, in a dialogue in which the user
has requested to eat Italian food in London but has
not talked about party size, we exclude the party
size slot from the evaluation, and evaluate only
whether the generated API call correctly predicts
“Italian” and “London”.

For models trained on bAbI data, the described
method reliably prompted an API call, while it

3To exclude the possibility that the low accuracy is a con-
sequence of relocation of information instead of it being for-
gotten, we also trained diagnostic classifiers to only start pre-
dicting a few words after slot information appears, but this
did not result in an increase in accuracy.

bAbI / bAbI 100
bAbI+ / bAbI 100
bAbI / bAbI+ 66.6
bAbI+ / bAbI+ 99.8

Table 5: Accuracy on triggered API calls utterance
by utterance.

was less successful for models trained on bAbI+,
where API calls were evoked only in 86% of the
time (when testing on bAbI+ data) and 54% of the
time (when testing on bAbI data). For our analy-
sis, we consider only cases in which the API call
was prompted and ignore cases in which other sen-
tences were generated

As shown in Table 5, we find that the de-
coders of both the bAbI and bAbI+ models are
able to generate appropriate API calls immedi-
ately after slots are mentioned in the user utterance
(∼100% accuracy in the bAbI/bAbI, bAbI+/bAbI,
and bAbI+/bAbI+ conditions). However, when
confronted with disfluencies, the model trained on
the disfluency-free bAbI data is not able to do so
reliably (66.6% accuracy with bAbI/bAbI+), fol-
lowing the trend we also observed in Table 1.

6 Conclusions

We have investigated how recurrent neural net-
works trained in a synthetic dataset of task-
oriented English dialogues process disfluencies.
Our first conclusion is that, contrary to earlier find-
ings, recurrent networks with attention can learn to
correctly process disfluencies, provided they were
presented to them at training time. In the current
data, they do so without strongly relying on the
presence of editing terms or identifying the repair
component of disfluent structures. When compar-
ing models trained on data with and without dis-
fluencies, we observe that the attention patterns of
the former models are more clear-cut, suggesting
that the disfluencies contribute to a better under-
standing of the input, rather than hindering it.

Furthermore, we find that in an encoder-decoder
model with attention, at least for the current task-
oriented setting, a large burden of the process-
ing falls on the generative part of the model: the
decoder aided by the attention mechanism. The
encoder, on the other hand, does not incremen-
tally develop complex representations of the dia-
logue history, limiting its usefulness as a cognitive
model of language interpretation. We preliminary
conclude that different learning biases are neces-
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sary to obtain a more balanced division of labour
between encoder and decoder.

Here we have exploited synthetic data, taking
advantage of the control this affords regarding
types and frequency of disfluency patterns, as well
as the direct connection between language pro-
cessing and task success present in the dataset. In
the future, we aim at investigating neural models
of disfluency processing applied to more natural-
istic data, possibly leveraging eye-tracking infor-
mation to ground language comprehension (??).
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Abstract

We propose to achieve explainable neural ma-
chine translation (NMT) by changing the out-
put representation to explain itself. We present
a novel approach to NMT which generates
the target sentence by monotonically walking
through the source sentence. Word reorder-
ing is modeled by operations which allow set-
ting markers in the target sentence and move
a target-side write head between those mark-
ers. In contrast to many modern neural mod-
els, our system emits explicit word alignment
information which is often crucial to practi-
cal machine translation as it improves explain-
ability. Our technique can outperform a plain
text system in terms of BLEU score under the
recent Transformer architecture on Japanese-
English and Portuguese-English, and is within
0.5 BLEU difference on Spanish-English.

1 Introduction

Neural machine translation (NMT) mod-
els (Sutskever et al., 2014; Bahdanau et al.,
2015; Gehring et al., 2017; Vaswani et al., 2017)
are remarkably effective in modelling the distri-
bution over target sentences conditioned on the
source sentence, and yield superior translation
performance compared to traditional statistical
machine translation (SMT) on many language
pairs. However, it is often difficult to extract a
comprehensible explanation for the predictions
of these models as information in the network
is represented by real-valued vectors or matri-
ces (Ding et al., 2017). In contrast, the translation
process in SMT is ‘transparent’ as it can identify
the source word which caused a target word
through word alignment. Most NMT models
do not use the concept of word alignment. It is
tempting to interpret encoder-decoder attention
matrices (Bahdanau et al., 2015) in neural models
as (soft) alignments, but previous work has found

that the attention weights in NMT are often
erratic (Cheng et al., 2016) and differ significantly
from traditional word alignments (Koehn and
Knowles, 2017; Ghader and Monz, 2017). We
will discuss the difference between attention and
alignment in detail in Sec. 4. The goal of this
paper is explainable NMT by developing a trans-
parent translation process for neural models. Our
approach does not change the neural architecture,
but represents the translation together with its
alignment as a linear sequence of operations. The
neural model predicts this operation sequence,
and thus simultaneously generates a translation
and an explanation for it in terms of alignments
from the target words to the source words that
generate them. The operation sequence is “self-
explanatory”; it does not explain an underlying
NMT system but is rather a single representation
produced by the NMT system that can be used to
generate translations along with an accompanying
explanatory alignment to the source sentence.
We report competitive results of our method
on Spanish-English, Portuguese-English, and
Japanese-English, with the benefit of producing
hard alignments for better interpretability. We
discuss the theoretical connection between our
approach and hierarchical SMT (Chiang, 2005)
by showing that an operation sequence can be
seen as a derivation in a formal grammar.

2 A Neural Operation Sequence Model

Our operation sequence neural machine transla-
tion (OSNMT) model is inspired by the operation
sequence model for SMT (Durrani et al., 2011),
but changes the set of operations to be more ap-
propriate for neural sequence models. OSNMT is
not restricted to a particular architecture, i.e. any
seq2seq model such as RNN-based, convolutional,
or self-attention-based models (Bahdanau et al.,
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2015; Vaswani et al., 2017; Gehring et al., 2017)
could be used. In this paper, we use the recent
Transformer model architecture (Vaswani et al.,
2017) in all experiments.

In OSNMT, the neural seq2seq model learns
to produce a sequence of operations. An OS-
NMT operation sequence describes a translation
(the ‘compiled’ target sentence) and explains each
target token with a hard link into the source sen-
tence. OSNMT keeps track of the positions of a
source-side read head and a target-side write head.
The read head monotonically walks through the
source sentence, whereas the position of the write
head can be moved from marker to marker in the
target sentence. OSNMT defines the following op-
erations to control head positions and produce out-
put words.

• POP SRC: Move the read head right by one
token.

• SET MARKER: Insert a marker symbol into
the target sentence at the position of the write
head.

• JMP FWD: Move the write head to the nearest
marker right of the current head position in
the target sentence.

• JMP BWD: Move the write head to the nearest
marker left of the current head position in the
target sentence.

• INSERT(t): Insert a target token t into the
target sentence at the position of the write
head.

Tab. 1 illustrates the generation of a Japanese-
English translation in detail. The neural seq2seq
model is trained to produce the sequence of opera-
tions in the first column of Tab. 1. The initial state
of the target sentence is a single marker symbol
X1. Generative operations like SET MARKER or
INSERT(t) insert a single symbol left of the cur-
rent marker (highlighted). The model begins with
a SET MARKER operation, which indicates that
the translation of the first word in the source sen-
tence is not at the beginning of the target sentence.
Indeed, after “translating” the identities ‘2000’
and ‘hr’, in time step 6 the model jumps back
to the marker X2 and continues writing left of
‘2000’. The translation process terminates when
the read head is at the end of the source sentence.
The final translation in plain text can be obtained

by removing all markers from the (compiled) tar-
get sentence.

2.1 OSNMT Represents Alignments
The word alignment can be derived from the
operation sequence by looking up the position
of the read head for each generated target to-
ken. The alignment for the example in Tab. 1 is
shown in Fig. 1. Note that similarly to the IBM
models (Brown et al., 1993) and the OSM for
SMT (Durrani et al., 2011), our OSNMT can only
represent 1:n alignments. Thus, each target token
is aligned to exactly one source token, but a source
token can generate any number of (possibly non-
consecutive) target tokens.

2.2 OSNMT Represents Hierarchical
Structure

We can also derive a tree structure from the op-
eration sequence in Tab. 1 (Fig. 2) in which each
marker is represented by a nonterminal node with
outgoing arcs to symbols inserted at that marker.
The target sentence can be read off the tree by
depth-first search traversal (post-order).

More formally, synchronous context-free gram-
mars (SCFGs) generate pairs of strings by pairing
two context-free grammars. Phrase-based hierar-
chical SMT (Chiang, 2005) uses SCFGs to model
the relation between the source sentence and the
target sentence. Multitext grammars (MTGs) are a
generalization of SCFGs to more than two output
streams (Melamed, 2003; Melamed et al., 2004).
We find that an OSNMT sequence can be inter-
preted as sequence of rules of a tertiary MTG G
which generates 1.) the source sentence, 2.) the
target sentence, and 3.) the position of the target
side write head. The start symbol of G is

[(S), (X1), (P1)]
T (1)

which initializes the source sentence stream with
a single nonterminal S, the target sentence with
the initial marker X1 and the position of the write
head with 1 (P1). Following Melamed et al. (2004)
we denote rules in G as

[(α1), (α2), (α3)]
T → [(β1), (β2), (β3)]

T (2)

where α1, α2, α3 are single nonterminals or
empty, β1, β2, β3 are strings of terminals and non-
terminals, and αi → βi for all i ∈ {1, 2, 3} with
nonempty αi are the rewriting rules for each of
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Operation Source sentence Target sentence (compiled)
2000 hrの安定動作を確認した X1

1 SET MARKER 2000 hrの安定動作を確認した X2 X1

2 2000 2000 hrの安定動作を確認した X2 2000 X1

3 POP SRC 2000 hr の安定動作を確認した X2 2000 X1

4 hr 2000 hr の安定動作を確認した X2 2000 hr X1

5 POP SRC 2000 hr の 安定動作を確認した X2 2000 hr X1

6 JMP BWD 2000 hr の 安定動作を確認した X2 2000 hr X1

7 SET MARKER 2000 hr の 安定動作を確認した X3 X2 2000 hr X1

8 of 2000 hr の 安定動作を確認した X3 of X2 2000 hr X1

9 POP SRC 2000 hrの 安定 動作を確認した X3 of X2 2000 hr X1

10 JMP BWD 2000 hrの 安定 動作を確認した X3 of X2 2000 hr X1

11 stable 2000 hrの 安定 動作を確認した stable X3 of X2 2000 hr X1

12 POP SRC 2000 hrの安定 動作 を確認した stable X3 of X2 2000 hr X1

13 operation 2000 hrの安定 動作 を確認した stable operation X3 of X2 2000 hr X1

14 POP SRC 2000 hrの安定動作 を 確認した stable operation X3 of X2 2000 hr X1

15 JMP FWD 2000 hrの安定動作 を 確認した stable operation X3 of X2 2000 hr X1

16 JMP FWD 2000 hrの安定動作 を 確認した stable operation X3 of X2 2000 hr X1

17 was 2000 hrの安定動作 を 確認した stable operation X3 of X2 2000 hr was X1

18 POP SRC 2000 hrの安定動作を 確認 した stable operation X3 of X2 2000 hr was X1

19 POP SRC 2000 hrの安定動作を確認 し た stable operation X3 of X2 2000 hr was X1

20 confirmed 2000 hrの安定動作を確認 し た stable operation X3 of X2 2000 hr was confirmed X1

21 POP SRC 2000 hrの安定動作を確認し た stable operation X3 of X2 2000 hr was confirmed X1

Table 1: Generation of the target sentence “stable operation of 2000 hr was confirmed” from the source
sentence “2000 hr の 安定 動作 を 確認 し た”. The neural model produces the linear sequence
of operations in the first column. The positions of the source-side read head and the target-side write
head are highlighted. The marker in the target sentence produced by the i-th SET MARKER operation is
denoted with ‘Xi+1’;X1 is the initial marker. We denote INSERT(t) operations as t to simplify notation.

Figure 1: The translation and the alignment derived
from the operation sequence in Tab. 1.

the three individual components which need to
be applied simultaneously. POP SRC extends the
source sentence prefix in the first stream by one
token.

POP SRC : ∀s ∈ Vsrc :



(S)
()
()


→



(sS)
()
()


 (3)

where Vsrc is the source language vocabulary. A
jump from marker Xi to Xj is realized by replac-

Figure 2: Target-side tree representation of the op-
eration sequence in Tab. 1.

ing Pi with Pj in the third grammar component:

JMP : ∀i, j ∈ N : [(), (), Pi]
T → [(), (), (iPj)]

T

(4)
where N = {k ∈ N|k ≤ n} is the set of
the first n natural numbers for a sufficiently large
n. The generative operations (SET MARKER and

177



Derivation OSNMT
[(S), (X1), P1]

T

Eq. 3→ [(2000 S), (X1), P1]
T SET MARKER

Eq. 5→ [(2000 S), (X2X1), (P1)]
T 2000

Eq. 6→ [(2000 S), (X2 2000 X1), (P1)]
T POP SRC

Eq. 3→




(2000 hr S)
(X2 2000 X1)

(P1)


 hr

Eq. 6→




(2000 hr S)
(X2 2000 hr X1)

(P1)


 POP SRC

Eq. 3→




(2000 hrの S)
(X2 2000 hr X1)

(P1)


 JMP BWD

Eq. 4→




(2000 hrの S)
(X2 2000 hr X1)

(1 P2)


 SET MARKER

Eq. 5→




(2000 hrの S)
(X3X2 2000 hr X1)

(1 P2)


 of

Eq. 6→




(2000 hrの S)
(X3 of X2 2000 hr X1)

(1 P2)


 ...

...

Table 2: Derivation in G for the example of Tab. 1.

INSERT(t)) insert symbols into the second com-
ponent.

SET MARKER : ∀i ∈ N :




()
(Xi)
(Pi)


→




()
(Xi+1Xi)

(Pi)




(5)

INSERT : ∀i ∈ N , t ∈ Vtrg :




()
(Xi)
(Pi)


→




()
(tXi)
(Pi)




(6)

where Vtrg is the target language vocabulary. The
identity mapping Pi → Pi in the third component
enforces that the write head is at marker Xi. We
note that G is not only context-free but also reg-
ular in the first and third components (but not in
the second component due to Eq. 5). Rules of
the form in Eq. 6 are directly related to alignment
links (cf. Fig. 1) as they represent the fact that tar-
get token t is aligned to the last terminal symbol
in the first stream. We formalize removing mark-
ers/nonterminals at the end by introducing a spe-
cial nonterminal T which is eventually mapped to
the end-of-sentence symbol EOS:

[(S), (), ()]T → [(T ), (), ()]T (7)

[(T ), (), ()]T → [(EOS), (), ()]T (8)

∀i ∈ N : [(T ), (Xi), ()]
T → [(T ), (ε), ()]T (9)

∀i ∈ N : [(T ), (), (Pi)]
T → [(T ), (), (ε)]T (10)

Tab. 2 illustrates that there is a 1:1 correspon-
dence between a derivation in G and an OSNMT
operation sequence. The target-side derivation
(the second component in G) is structurally sim-
ilar to a binarized version of the tree in Fig. 2.
However, we assign scores to the structure via the
corresponding OSNMT sequence which does not
need to obey the usual conditional independence
assumptions in hierarchical SMT. Therefore, even
though G is context-free in the second component,
our scoring model for G is more powerful as it con-
ditions on the OSNMT history which potentially
contains context information. Note that OSNMT
is deficient (Brown et al., 1993) as it assigns non-
zero probability mass to any operation sequence,
not only those with derivation in G.

We further note that subword-based OSNMT
can potentially represent any alignment to any tar-
get sentence as long as the alignment does not
violate the 1:n restriction. This is in contrast to
phrase-based SMT where reference translations
often do not have a derivation in the SMT system
due to coverage problems (Auli et al., 2009).

2.3 Comparison to the OSM for SMT
Our OSNMT set of operations (POP SRC,
SET MARKER, JMP FWD, JMP BWD, and
INSERT(t)) is inspired by the original OSM
for SMT (Durrani et al., 2011) as it also repre-
sents the translation process as linear sequence
of operations. However, there are significant
differences which make OSNMT more suitable
for neural models. First, OSNMT is monotone on
the source side, and allows jumps on the target
side. SMT-OSM operations jump in the source
sentence. We argue that source side monotonicity
potentially mitigates coverage issues of neural
models (over- and under-translation (Tu et al.,
2016)) as the attention can learn to scan the
source sentence from left to right. Another major
difference is that we use markers rather than gaps,
and do not close a gap/marker after jumping to it.
This is an implication of OSNMT jumps being
defined on the target side since the size of a span
is unknown at inference time.
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Algorithm 1 Align2OSNMT(a, x, y)

1: holes← {(0,∞)}
2: ops← 〈〉 {Initialize with empty list}
3: head← 0
4: for i← 1 to |x| do
5: for all j ∈ {j|aj = i} do
6: hole idx← holes.find(j)
7: d← hole idx− head
8: if d < 0 then
9: ops.extend(JMP BWD.repeat(−d))

10: end if
11: if d > 0 then
12: ops.extend(JMP FWD.repeat(d))
13: end if
14: head← hole idx
15: (s, t)← holes[head]
16: if s 6= j then
17: holes.append((s, j − 1))
18: head← head+ 1
19: ops.append(SET MARKER)
20: end if
21: ops.append(yj)
22: holes[head]← (j + 1, t)
23: end for
24: ops.append(SRC POP)
25: end for
26: return ops

3 Training

We train our Transformer model as usual by
minimising the negative log-likelihood of the tar-
get sequence. However, in contrast to plain text
NMT, the target sequence is not a plain sequence
of subword or word tokens but a sequence of op-
erations. Consequently, we need to map the target
sentences in the training corpus to OSNMT repre-
sentations. We first run a statistical word aligner
like Giza++ (Och and Ney, 2003) to obtain an
aligned training corpus. We delete all alignment
links which violate the 1:n restriction of OSNMT
(cf. Sec. 2). The alignments together with the tar-
get sentences are then used to generate the refer-
ence operation sequences for training. The algo-
rithm for this conversion is shown in Alg. 1.1 Note
that an operation sequence represents one specific
alignment, which means that the only way for an
OSNMT sequence to be generated correctly is if

1A Python implementation is available at https:
//github.com/fstahlberg/ucam-scripts/
blob/master/t2t/align2osm.py.

Corpus Language pair # Sentences
Scielo Spanish-English 587K
Scielo Portuguese-English 513K
WAT Japanese-English 1M

Table 3: Training set sizes.

both the word alignment and the target sentence
are also correct. Thereby, the neural model learns
to align and translate at the same time. However,
there is spurious ambiguity as one alignment can
be represented by different OSNMT sequences.
For instance, simply adding a SET MARKER op-
eration at the end of an OSNMT sequence does
not change the alignment represented by it.

4 Results

We evaluate on three language pairs: Japanese-
English (ja-en), Spanish-English (es-en), and
Portuguese-English (pt-en). We use the ASPEC
corpus (Nakazawa et al., 2016) for ja-en and the
health science portion of the Scielo corpus (Neves
and Névéol, 2016) for es-en and pt-en. Train-
ing set sizes are summarized in Tab. 3. We
use byte pair encoding (Sennrich et al., 2016)
with 32K merge operations for all systems (joint
encoding models for es-en and pt-en and sepa-
rate source/target models for ja-en). We trained
Transformer models (Vaswani et al., 2017)2 un-
til convergence (250K steps for plain text, 350K
steps for OSNMT) on a single GPU using Ten-
sor2Tensor (Vaswani et al., 2018) after removing
sentences with more than 250 tokens. Batches
contain around 4K source and 4K target tokens.
Transformer training is very sensitive to the batch
size and the number of GPUs (Popel and Bojar,
2018). Therefore, we delay SGD updates (Saun-
ders et al., 2018) to every 8 steps to simulate 8
GPU training as recommended by Vaswani et al.
(2017). Based on the performance on the ja-en dev
set we decode the plain text systems with a beam
size of 4 and OSNMT with a beam size of 8 using
our SGNMT decoder (Stahlberg et al., 2017). We
use length normalization for ja-en but not for es-
en or pt-en. We report cased multi-bleu.pl
BLEU scores on the tokenized text to be compara-
ble with the WAT evaluation campaign on ja-en.3.

2We follow the transformer base configuration and
use 6 layers, 512 hidden units, and 8 attention heads in both
the encoder and decoder.

3http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/list.php?t=2&o=4
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BLEU
Method es-en pt-en
Align on subword level 36.7 38.1
Convert word level alignments 37.1 38.4

Table 4: Generating training alignments on the
subword level.

Type Frequency
Valid 92.49%
Not enough SRC POP 7.28%
Too many SRC POP 0.22%
Write head out of range 0.06%

Table 5: Frequency of invalid OSNMT sequences
produced by an unconstrained decoder on the ja-
en test set.

Generating training alignments As outlined in
Sec. 3 we use Giza++ (Och and Ney, 2003) to gen-
erate alignments for training OSNMT. We experi-
mented with two different methods to obtain align-
ments on the subword level. First, Giza++ can di-
rectly align the source-side subword sequences to
target-side subword sequences. Alternatively, we
can run Giza++ on the word level, and convert the
word alignments to subword alignments in a post-
processing step by linking subwords if the words
they belong to are aligned with each other. Tab. 4
compares both methods and shows that converting
word alignments is marginally better. Thus, we
use this method in all other experiments.

Constrained beam search Unconstrained neu-
ral decoding can yield invalid OSNMT sequences.
For example, the JMP FWD and JMP BWD opera-
tions are undefined if the write head is currently
at the position of the last or first marker, respec-
tively. The number of SRC POP operations must
be equal to the number of source tokens in or-
der for the read head to scan the entire source
sentence. Therefore, we constrain these opera-
tions during decoding. We have implemented the
constraints in our publicly available SGNMT de-
coding platform (Stahlberg et al., 2017). How-
ever, these constraints are only needed for a small
fraction of the sentences. Tab. 5 shows that even
unconstrained decoding yields valid OSNMT se-
quences in 92.49% of the cases.

Comparison with plain text NMT Tab. 6 com-
pares our OSNMT systems with standard plain
text models on all three language pairs. OSNMT
performs better on the pt-en and ja-en test sets, but

BLEU
es-en pt-en ja-en

Representation dev test
Plain 37.6 37.5 28.3 28.1
OSNMT 37.1 38.4 28.1 28.8

Table 6: Comparison between plain text and
OSNMT on Spanish-English (es-en), Portuguese-
English (pt-en), and Japanese-English (ja-en).

slightly worse on es-en. We think that more engi-
neering work such as optimizing the set of oper-
ations or improving the training alignments could
lead to more consistent gains from using OSNMT.
However, we leave this to future work since the
main motivation for this paper is explainable NMT
and not primarily improving translation quality.

Alignment quality Tab. 7 contains example
translations and subword-alignments generated
from our Portuguese-English OSNMT model.
Alignment links from source words consisting of
multiple subwords are mapped to the final sub-
word, visible for the words ‘temperamento’ in
the first example and ‘pennisetum’ in the second
one. The length of the operation sequences in-
creases with alignment complexity as operation
sequences for monotone alignments consist only
of INSERT(t) and SRC POP operations (example
1). However, even complex mappings are cap-
tured very well by OSNMT as demonstrated by the
third example. Note that OSNMT can represent
long-range reorderings very efficiently: the move-
ment from ‘para’ in the first position to ‘to’ in the
tenth position is simply achieved by starting the
operation sequence with ‘SET MARKER to’ and a
JMP BWD operation later. The first example in par-
ticular demonstrates the usefulness of such align-
ments as the wrong lexical choice (‘abroad’ rather
than ‘body shape’) can be traced back to the source
word ‘exterior‘.

For a qualitative assessment of the alignments
produced by OSNMT we ran Giza++ to align the
generated translations to the source sentences, en-
forced the 1:n restriction of OSNMT, and used
the resulting alignments as reference for comput-
ing the alignment error rate (Och and Ney, 2003,
AER). Fig. 3 shows that as training proceeds, OS-
NMT learns to both produce high quality transla-
tions (increasing BLEU score) and accurate align-
ments (decreasing AER).

As mentioned in the introduction, a light-weight
way to extract 1:n alignments from a vanilla atten-
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Operation sequence: SRC POP ab road SRC POP as SRC POP an indicator SRC POP of SRC POP performance
SRC POP and SRC POP SRC POP temper ament SRC POP
Reference: the body shape as an indicative of performance and temperament

Operation sequence: behavior SRC POP of SRC POP SET MARKER clones SRC POP SRC POP SRC POP
SRC POP SRC POP JMP BWD pen n is et um SRC POP JMP FWD subjected SRC POP to SRC POP SET MARKER
periods SRC POP SRC POP JMP BWD SET MARKER restriction SRC POP JMP BWD SET MARKER water
SRC POP JMP BWD controlled SRC POP
Reference: response of pennisetum clons to periods of controlled hidric restriction

Operation sequence: SET MARKER to SRC POP analyze SRC POP these SRC POP data SRC POP JMP BWD
SET MARKER should be SRC POP used SRC POP JMP BWD SET MARKER methodologies SRC POP¿ JMP BWD
appropriate SRC POP JMP FWD JMP FWD JMP FWD . SRC POP
Reference: to analyze these data suitable methods should be used .

Table 7: Examples of Portuguese-English translations together with their (subword-)alignments induced
by the operation sequence. Alignment links from source words consisting of multiple subwords were
mapped to the final subword in the training data, visible for ‘temperamento’ and ‘pennisetum’.

AER (in %)
Representation Alignment extraction dev test
Plain LSTM forced decoding 63.9 63.7
Plain LSTM forced decoding with supervised attention (Liu et al., 2016, Cross Entropy loss) 54.9 54.7
OSNMT OSNMT 24.2 21.5

Table 8: Comparison between OSNMT and using the attention matrix from forced decoding with a
recurrent model.
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Figure 3: AER and BLEU training curves for OS-
NMT on the Japanese-English dev set.

tional LSTM-based seq2seq model is to take the
maximum over attention weights for each target
token. This is possible because, unlike the Trans-
former, LSTM-based models usually only have
a single soft attention matrix. However, in our
experiments, LSTM-based NMT was more than
4.5 BLEU points worse than the Transformer on
Japanese-English. Therefore, to compare AERs
under comparable BLEU scores, we used the
LSTM-based models in forced decoding mode on
the output of our plain text Transformer model
from Tab. 6. We trained two different LSTM mod-
els: one standard model by optimizing the like-
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(a) Layer 4, head 1; attending to the source side read
head.

(b) Layer 2, head 3; attending to the right trigram context
of the read head.

Figure 4: Encoder-decoder attention weights.

lihood of the training set, and a second one with
supervised attention following Liu et al. (2016).
Tab. 8 shows that the supervised attention loss
of Liu et al. (2016) improves the AER of the
LSTM model. However, OSNMT is able to pro-
duce much better alignments since it generates the
alignment along with the translation in a single de-
coding run.

OSNMT sequences contain target words in
source sentence order An OSNMT sequence
can be seen as a sequence of target words in
source sentence order, interspersed with instruc-
tions on how to put them together to form a flu-
ent target sentence. For example, if we strip
out all SRC POP, SET MARKER, JMP FWD, and
JMP BWD operations in the OSNMT sequence in
the second example of Tab. 7 we get:

behavior of clones pennisetum sub-
jected to periods restriction water con-
trolled

The word-by-word translation back to Por-
tugese is:

comportamento de clones pennisetum
submetidos a perı́odos restrição hı́drica
controlada

This restores the original source sentence (cf.
Tab. 7) up to unaligned source words. There-
fore, we can view the operations for control-
ling the write head (SET MARKER, JMP FWD, and
JMP BWD) as reordering instructions for the target
words which appear in source sentence word order
within the OSNMT sequence.

Role of multi-head attention In this paper, we
use a standard seq2seq model (the Transformer ar-
chitecture (Vaswani et al., 2017)) to generate OS-
NMT sequences from the source sentence. This
means that our neural model is representation-
agnostic: we do not explicitly incorporate the no-
tion of read and write heads into the neural archi-
tecture. In particular, neither in training nor in de-
coding do we explicitly bias the Transformer’s at-
tention layers towards consistency with the align-
ment represented by the OSNMT sequence. Our
Transformer model has 48 encoder-decoder atten-
tion matrices due to multi-head attention (8 heads
in each of the 6 layers). We have found that many
of these attention matrices have strong and in-
terpretable links to the translation process repre-
sented by the OSNMT sequence. For example,
Fig. 4a shows that the first head in layer 4 follows
the source-side read head position very closely:
at each SRC POP operation the attention shifts by
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one to the next source token. Other attention heads
have learned to take other responsibilities. For in-
stance, head 3 in layer 2 (Fig. 4b) attends to the
trigram right of the source head.

5 Related Work

Explainable and interpretable machine learning is
attracting more and more attention in the research
community (Ribeiro et al., 2016; Doshi-Velez and
Kim, 2017), particularly in the context of natu-
ral language processing (Karpathy et al., 2015; Li
et al., 2016; Alvarez-Melis and Jaakkola, 2017;
Ding et al., 2017; Feng et al., 2018). These ap-
proaches aim to explain (the predictions of) an ex-
isting model. In contrast, we change the target
representation such that the generated sequences
themselves convey important information about
the translation process such as the word align-
ments.

Despite considerable consensus about the im-
portance of word alignments in practice (Koehn
and Knowles, 2017), e.g. to enforce constraints
on the output (Hasler et al., 2018) or to preserve
text formatting, introducing explicit alignment in-
formation to NMT is still an open research prob-
lem. Word alignments have been used as supervi-
sion signal for the NMT attention model (Mi et al.,
2016; Chen et al., 2016; Liu et al., 2016; Alkhouli
and Ney, 2017). Cohn et al. (2016) showed how to
reintroduce concepts known from traditional sta-
tistical alignment models (Brown et al., 1993) like
fertility and agreement over translation direction
to NMT. Some approaches to simultaneous trans-
lation explicitly control for reading source tokens
and writing target tokens and thereby generate
monotonic alignments on the segment level (Yu
et al., 2016, 2017; Gu et al., 2017). Alkhouli et al.
(2016) used separate alignment and lexical models
and thus were able to hypothesize explicit align-
ment links during decoding. While our motivation
is very similar to Alkhouli et al. (2016), our ap-
proach is very different as we represent the align-
ment as operation sequence, and we do not use
separate models for reordering and lexical trans-
lation.

The operation sequence model for SMT (Dur-
rani et al., 2011, 2015) has been used in a number
of MT evaluation systems (Durrani et al., 2014;
Peter et al., 2016; Durrani et al., 2016) and for
post-editing (Pal et al., 2016), often in combina-
tion with a phrase-based model. The main differ-

ence to our OSNMT is that we have adapted the
set of operations for neural models and are able to
use it as stand-alone system, and not on top of a
phrase-based system.

Our operation sequence model has some simi-
larities with transition-based models used in other
areas of NLP (Stenetorp, 2013; Dyer et al., 2015;
Aharoni and Goldberg, 2017). In particular, our
POP SRC operation is very similar to the step ac-
tion of the hard alignment model of Aharoni and
Goldberg (2017). However, Aharoni and Gold-
berg (2017) investigated monotonic alignments for
morphological inflections whereas we use a larger
operation/action set to model complex word re-
orderings in machine translation.

6 Conclusion

We have presented a way to use standard seq2seq
models to generate a translation together with
an alignment as linear sequence of operations.
This greatly improves the interpretability of the
model output as it establishes explicit alignment
links between source and target tokens. However,
the neural architecture we used in this paper is
representation-agnostic, i.e. we did not explicitly
incorporate the alignments induced by an opera-
tion sequence into the neural model. For future
work we are planning to adapt the Transformer
model, for example by using positional embed-
dings of the source read head and the target write
head in the Transformer attention layers.

Acknowledgments

This work was supported in part by the U.K. En-
gineering and Physical Sciences Research Council
(EPSRC grant EP/L027623/1). We thank Joanna
Stadnik who produced the recurrent translation
and alignment models during her 4th year project.

References
Roee Aharoni and Yoav Goldberg. 2017. Morphologi-

cal inflection generation with hard monotonic atten-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2004–2015, Vancouver,
Canada. Association for Computational Linguistics.

Tamer Alkhouli, Gabriel Bretschner, Jan-Thorsten Pe-
ter, Mohammed Hethnawi, Andreas Guta, and Her-
mann Ney. 2016. Alignment-based neural machine
translation. In Proceedings of the First Conference
on Machine Translation, pages 54–65, Berlin, Ger-
many. Association for Computational Linguistics.

183



Tamer Alkhouli and Hermann Ney. 2017. Biasing
attention-based recurrent neural networks using ex-
ternal alignment information. In Proceedings of the
Second Conference on Machine Translation, pages
108–117, Copenhagen, Denmark. Association for
Computational Linguistics.

David Alvarez-Melis and Tommi Jaakkola. 2017. A
causal framework for explaining the predictions of
black-box sequence-to-sequence models. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 412–
421. Association for Computational Linguistics.

Michael Auli, Adam Lopez, Hieu Hoang, and Philipp
Koehn. 2009. A systematic analysis of translation
model search spaces. In Proceedings of the Fourth
Workshop on Statistical Machine Translation, pages
224–232. Association for Computational Linguis-
tics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR, Toulon,
France.

Peter E. Brown, Stephen A. Della Pietra, Vincent
J. Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation: Pa-
rameter estimation. Computational Linguistics,
19(2).

Wenhu Chen, Evgeny Matusov, Shahram Khadivi,
and Jan-Thorsten Peter. 2016. Guided alignment
training for topic-aware neural machine translation.
arXiv preprint arXiv:1607.01628.

Yong Cheng, Shiqi Shen, Zhongjun He, Wei He,
Hua Wu, Maosong Sun, and Yang Liu. 2016.
Agreement-based joint training for bidirectional
attention-based neural machine translation. In Pro-
ceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI’16,
pages 2761–2767. AAAI Press.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of the 43rd Annual Meeting of the As-
sociation for Computational Linguistics (ACL’05),
pages 263–270, Ann Arbor, Michigan. Association
for Computational Linguistics.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy-
molova, Kaisheng Yao, Chris Dyer, and Gholamreza
Haffari. 2016. Incorporating structural alignment
biases into an attentional neural translation model.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 876–885, San Diego, California. Association
for Computational Linguistics.

Yanzhuo Ding, Yang Liu, Huanbo Luan, and Maosong
Sun. 2017. Visualizing and understanding neural
machine translation. In Proceedings of the 55th An-
nual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1150–
1159. Association for Computational Linguistics.

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.

Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and
Stephan Vogel. 2016. QCRI machine translation
systems for IWSLT 16. In International Workshop
on Spoken Language Translation. Seattle, WA, USA.

Nadir Durrani, Barry Haddow, Philipp Koehn, and
Kenneth Heafield. 2014. Edinburgh’s phrase-based
machine translation systems for WMT-14. In Pro-
ceedings of the Ninth Workshop on Statistical Ma-
chine Translation, pages 97–104, Baltimore, Mary-
land, USA. Association for Computational Linguis-
tics.

Nadir Durrani, Helmut Schmid, and Alexander Fraser.
2011. A joint sequence translation model with in-
tegrated reordering. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
1045–1054, Portland, Oregon, USA. Association for
Computational Linguistics.

Nadir Durrani, Helmut Schmid, Alexander Fraser,
Philipp Koehn, and Hinrich Schütze. 2015. The op-
eration sequence model—combining n-gram-based
and phrase-based statistical machine translation.
Computational Linguistics, 41(2):157–186.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334–343, Beijing, China. Associa-
tion for Computational Linguistics.

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer,
Pedro Rodriguez, and Jordan Boyd-Graber. 2018.
Pathologies of neural models make interpretations
difficult. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing. Association for Computational Linguistics.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. ArXiv e-prints.

Hamidreza Ghader and Christof Monz. 2017. What
does attention in neural machine translation pay at-
tention to? In Proceedings of the Eighth Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 30–39.
Asian Federation of Natural Language Processing.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O.K. Li. 2017. Learning to translate in real-time
with neural machine translation. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume

184



1, Long Papers, pages 1053–1062. Association for
Computational Linguistics.
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Abstract

Artificial Neural Networks (ANNs) have expe-
rienced great success in the past few years. The
increasing complexity of these models leads to
less understanding about their decision processes.
Therefore, introspection techniques have been
proposed, mostly for images as input data.
Patterns or relevant regions in images can be
intuitively interpreted by a human observer. This
is not the case for more complex data like speech
recordings. In this work, we investigate the appli-
cation of common introspection techniques from
computer vision to an Automatic Speech Recog-
nition (ASR) task. To this end, we use a model
similar to image classification, which predicts let-
ters from spectrograms. We show difficulties in
applying image introspection to ASR. To tackle
these problems, we propose normalized aver-
aging of aligned inputs (NAvAI): a data-driven
method to reveal learned patterns for prediction
of specific classes. Our method integrates
information from many data examples through
local introspection techniques for Convolutional
Neural Networks (CNNs). We demonstrate that
our method provides better interpretability of
letter-specific patterns than existing methods.

1 Introduction

Artificial Neural Networks (ANNs) perform
incredibly well in many fields of application, even out-
performing humans. In particular, deep learning (DL)
has been used with great success in a variety of
tasks. The most successful applications of DL are in
computer vision, like image classification (Krizhevsky
et al., 2012) or segmentation (Chen et al., 2014).
Moreover, DL performs well in audio processing, like
automatic speech recognition (Bahdanau et al., 2016)
or machine translation (Wu et al., 2016). One reason
for the success of these models is the increase in their
complexity by implementing deeper or wider network
layers (Szegedy et al., 2015). While this allows the
model to learn more complex patterns for solving its

task, it is becoming more difficult to interpret how
it accomplishes it (Yosinski et al., 2015). Several
introspection techniques were proposed to shed light
on the decision processes in ANNs (Zeiler and Fergus
2014, Springenberg et al. 2014, Selvaraju et al. 2016).
However, most of them come with restrictions on the
network architecture or the type of task that is solved.
In particular, most methods focus on interpretability of
ANNs in computer vision. The reason for this is that
evaluating the results from introspection techniques
on images is intuitive for a person. This is not the case
for more complex data like audio waveforms or multi-
channel data like Electroencephalography (EEG)
recordings. Applying introspection techniques from
computer vision to this kind of data is possible, but
evaluating the results is hard, as a human expert
cannot easily interpret the input data in the first place.

In this work, we investigate the application of
several introspection techniques to the domain of
Automatic Speech Recognition (ASR). To make the
task of ASR similar to image classification, we use
a fully-convolutional ANN for letter-wise prediction
from audio spectrograms. We identify problems in
applying introspection techniques from computer
vision to the ASR domain. To overcome these
difficulties, we propose normalized averaging of
aligned inputs (NAvAI): a data-driven introspection
method for interpreting speech recognition.

2 Related Work

In computer vision, Convolutional Neural Net-
works (CNNs) are the most common choice of
network architecture (Szegedy et al., 2015). As we
want to adapt techniques from this domain, we focus
on introspection methods developed for CNNs.

Introspection techniques for classification tasks
in deep learning can roughly be divided into two
categories. Firstly, there are local introspection
methods, which trace the classification result back to
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the original input, for example the deconvolutional
network approach by Zeiler and Fergus 2014
or layer-wise relevance propagation (Bach et al.,
2015). The second category are global introspection
techniques that infer input patterns or characteristics
which activate particular neurons, like activation
maximization (Erhan et al. 2009, Yosinski et al. 2015).

2.1 Local introspection

Local introspection traces back signals to a particular
input source. This means inferring, which parts of
an input sample were important for the prediction.
The backpropagated signal comes either from
pre-softmax activations or the softmax-logits of an
ANN classifier’s output layer. The common way
is to trace back the result of the output layer as a
one-hot vector, so only class-specific information are
retained (Springenberg et al., 2014). This means that
the position of highest activation is set to 1, while all
other positions are set to 0.

A simple and fast way to infer the contribution of in-
put values to the classification score is to perform sen-
sitivity analysis. This method computes the (squared)
partial derivatives of output scores with respect to
the values of a particular input sample (Gevrey et al.,
2003). Another method is to use deconvolutional net-
works, which invert the data flow of a convolutional
classifier network to reconstruct the input (Zeiler
and Fergus, 2014). The backward pass also includes
units that revert max-pooling operations. This is done
by storing the maximum positions before pooling in
so-called switches (Zeiler and Fergus, 2014).

Another local introspection method is guided
backpropagation (Springenberg et al., 2014). This
technique is based on gradient backpropagation but
integrates information about the forward pass. For
a network which uses Rectified Linear Unit (ReLU)
activation, the authors propose to only backpropagate
positive gradients, where the corresponding forward
activation is positive as well (Springenberg et al.,
2014). The authors also report that introspection
using the deconvolutional network approach by Zeiler
and Fergus 2014 performs poorly for higher layers,
where neurons can be maximally activated by a wider
variety of input signals. Their method does not show
this drop in performance for higher layers. Guided
backpropagation reveals detailed features in the input
which are important for the prediction, but is not
strongly class-discriminative.

Selvaraju et al. 2016 introduced the class-
discriminative Gradient-weighted Class Activa-

tion Mapping (Grad-CAM), which identifies low-
resolution regions of importance in the input.
Grad-CAM first computes importance weights for
each feature map in one layer. This is done by global
average pooling gradients of the prediction score with
respect to the feature maps. These importance weights
are used to compute a weighted sum of forward activa-
tions, which represent the influence on the predicted
class. The authors use a ReLU on the weighted sums,
to only show positive influences on the prediction.
By using their method to mask the result of guided
backpropagation, which they call guided Grad-CAM,
they get both class-specificity and high resolution in
relevant input values (Selvaraju et al., 2016).

All of those local introspection methods only
reveal information about a single input sample. This
could help understanding particular decisions, for
example wrong classifications. For revealing decision
processes of an ANN as a whole, global introspection
is essential.

2.2 Global introspection
The most common global introspection technique is
activation maximization (AM) (Erhan et al., 2009).
AM is independent of the input and can be used to
find patterns which activate particular features. This
method optimizes the input, such that the activation
of a particular feature is maximized. Such a feature
could be a single neuron at any position of the
network. For classifiers, the most interesting feature
is the output neuron of the predicted class. The op-
timization target can be the corresponding activation
either before or after applying the softmax. It is also
possible to visualize optimal inputs for a whole layer,
as in Google DeepDream (Mordvintsev et al., 2015).
However, the input optimization approach has some
drawbacks. Optimal inputs tend to be unnatural and
noisy, thus cannot be interpreted (Nguyen et al., 2015).
Therefore, it is crucial to regularize, for example by
total variation (Mahendran and Vedaldi, 2015) or a
Generative Adversarial Network (GAN) objective
(Nguyen et al., 2016) to penalize unnatural data. Even
with regularized optimization, the optimal input needs
to be interpretable. This means a human has to be
able to assess, whether patterns in the optimized input
are related to a certain class.

2.3 Introspection for audio
The aforementioned local and global introspection
techniques are almost exclusively applied to tasks
which use images as input. This is due to the intuitive
interpretability of relevance mappings onto images for
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a human observer. Whether an introspection technique
performs well is mostly measured by how plausible
the result is for a person. This is not an objective quan-
tification, but it indicates how similar the ANN deci-
sions are to the human perception. However, this is not
possible for all types of data. For example, when using
waveforms as input to an audio-classification task like
ASR, it is not intuitive to assess the meaningfulness
of important regions or optimal inputs. To our knowl-
edge there are no comparable introspection techniques
for ANN in speech recognition tasks. However, this
is not the first attempt to understand ANNs for speech
recognition. Several studies explored representations
of speech in ANNs for acoustic modelling, for ex-
ample multi-layer perceptrons (Nagamine et al. 2015,
Nagamine et al. 2016, Nagamine and Mesgarani 2017)
or Deep Belief Networks (Mohamed et al., 2012).

3 Methods

3.1 Automatic Speech Recognition

The use of CNNs for speech is not uncommon.
However, they are often used as part of complex
hybrid models, for example involving Hidden Markov
Models (Abdel-Hamid et al., 2014) or Recurrent Neu-
ral Networks (Trigeorgis et al., 2016). Such complex
models are much harder to introspect than fully-
convolutional ones. CNNs are also used for speech-
related tasks different from ASR, like learning spec-
trum feature representations (Cummins et al., 2017).

For ASR, we implement a fully-convolutional
architecture to apply introspection techniques from
computer vision. To this end, we are using an archi-
tecture based on Wav2Letter (Collobert et al., 2016).
This model is a fully-convolutional neural network,
which predicts letters from spectrograms. We train
the network on z-normalized spectrograms, scaled
to 128 mel-frequency bins. Each letter prediction can
use 206 time steps due to the receptive field of the
convolutions. We use whole-sequence audio record-
ings from the LibriSpeech corpus (Panayotov et al.,
2015). Training and architecture are described in
detail in (Kunze et al., 2017). Different to Kunze et al.
we slightly changed the number of neurons per layer
to powers of two (250 to 256 neurons and 2000 to
2048 neurons). Moreover, we used a vocabulary with
repetition characters like Collobert et al. 2016 used
with their Auto Segmentation Criterion (ASG) loss.

3.2 Activation Maximization

We visualize important features by computing the
optimal input for activating a particular neuron. We

used L1- and L2-regularization to avoid unnatural
noisy results, both with a scale of 0.001. The
optimization was initialized with a 206×128 input
(the receptive field size) using a Xavier uniform
initializer (Glorot and Bengio, 2010). Training was
performed to maximize the activation of a particular
neuron, using an Adam optimizer (Kingma and Ba,
2014) with learning rate 0.05 for 250 steps. We
applied AM for neurons of different layers to show
differences in the complexity of optimal patterns.

3.3 Preparing the data for introspection
Our ASR model predicts all letters for a given speech
recording at once, but we are interested in determining
the important regions for single predicted letters.
Therefore, we perform our analyses on spectrogram
frames, which are predicted as only one letter. Based
on the receptive field size, we perform introspection
on spectrogram frames of width 206. Moreover, we
only investigate spectrogram frames predicted as
letters ’a’ to ’z’, because blank and repetition charac-
ters would not be interpretable for a human observer.
For training and evaluation, our neural network
uses same-padding with zeros. To avoid biasing our
introspection results due to padding, we only analyze
spectrogram frames without padding. Because we are
training with whole sentences, most of the letters are
predicted from spectrogram frames without padding.

3.4 Local introspection
For a spectrogram frame of interest, we first perform
a forward pass through the network, while storing
all layers’ activations and the output scores. To find
important positions in the input data, we perform
different methods for propagating back the prediction
score. In particular, we are using sensitivity analysis
(Gevrey et al., 2003) and layer-wise relevance
propagation (LRP) (Montavon et al., 2017). As initial
value for the backward pass, we use a vector which
is set to 1 for the predicted class and 0 for all other
positions. We call this vectorR(out).

We did not investigate guided backpropagation,
because we rely on getting class-discriminative
introspection results. We also did not use Grad-CAM,
because of the 1D-convolutions in our network. As
our input data is treated as 128 one-dimensional
channels, applying Grad-CAM to our network
would only identify important regions over the time
dimension. This means, we would not be able to
identify which frequencies are important.

Sensitivity analysis was performed by computing
the partial derivative of R(out) with respect to the
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input spectrogram frame, as shown in Equation 1.
The resulting gradient-based relevances R(0) can be
interpreted as positions in the input x, which increase
or decrease the prediction score upon change.

R
(0)
i =

∂R(out)

∂xi
(1)

Different to sensitivity, LRP aims to map high
relevances to input positions that have causedR(out).
We performed non-Taylor-type LRP, which we
adapted from Equation 56 in Bach et al. 2015:

R
(l,l+1)
i←j =

zij
zj
·R(l+1)

j (2)

where i refers to the neuron in the lower layer l
and j to the neuron in the higher layer l+1. This
original rule means, that relevances are propagated
back based on the ratio of local (zij) and global (zj)
pre-activations. The pre-activations are outputs of the
convolution for a neuron j either masking all lower
layer neurons but neuron i (local) or not masking any
neurons (global). Hence, the ratio zij

zj
is the relative

influence of a neuron i on the pre-activation of neuron
j. This allows to distribute the relevance from neuron
j to the lower layer neurons while conserving the
sum of relevance values (compare Equation 5).

Computing these ratios is computationally ex-
pensive for more complex neural networks, as it is
necessary to compute the contribution of every value
i of the lower layer to every value j of the higher
layer through the convolutions. For example, in the
input layer of our network, it is necessary to compute
local pre-activations from 128 × 206 input values
to 256×80 output values. This corresponds to 500
million local pre-activations in the first layer.

Applying Equation 2 is not straightforward in
our speech recognizer network. This is due to two
major differences to the image classification networks
that Bach et al. 2015 used. Firstly, our network
involves negative input values from z-normalized
mel-spectrograms. Secondly, after each convolution,
batch normalization is applied before the ReLU
activation. This allows convolution outputs to change
their sign before entering the ReLU activation. In
order to account for negative values and the effects of
batch normalization, we adapt Equation 2 as follows.
We compute the ratio between local and global
pre-activations using the absolute value of the global
pre-activation. This preserves the sign of local pre-
activations for comparison to the convolution output
after applying batch normalization. The magnitude

of the neuron influence is not changed. For avoiding
division by zero, we add a small value ε=1e-21 to
the absolute value of global pre-activation. This ratio
is multiplied with the sign of the output value after
applying batch normalization (bn), shown in Equation
3. With this approach, a positive ratio indicates that
a local pre-activation supports the output after batch
normalization, because they have the same sign. We
backpropagate the relevance as shown in Equation 4.

rij=
zij
|zj|+ε

·sgn(bn(zj)) (3)

R
(l,l+1)
i←j =rij ·R(l+1)

j (4)

The original rule in Equation 2 is satisfying the
conservation law

∑

i

R
(l,l+1)
i←j =R

(l+1)
j (5)

where no relevance may be lost by distributing the
value to lower layer neurons. In our adaptation, this
conservation law is not satisfied, because we change
the sign of some ratios to correct for batch normal-
ization. As this procedure does not change absolute
values, we do not lose any information about the rel-
evances. Furthermore, using the original rule, rel-
evances can become unbounded for negative ratios
zij
zj

. To avoid absolute relevances to become very
large, we scale the values by the maximum absolute
relevance value in each step of LRP. Scaling the
relevances is also violating the conservation law in
Equation 5. However, the relevances still contain the
same information, as the ratio between all relevances
is conserved.

3.5 Normalized averaging of aligned inputs

We perform global introspection by analyzing the
training data set, in which we want to find common
letter-specific patterns. To this end, we propose a
novel approach for global introspection, called nor-
malized averaging of aligned inputs (NAvAI). We
describe NAvAI for ASR, but applying it to other
domains is straight-forward. Our method averages
all spectrogram frames predicted as the same letter.
This mean spectrogram input should retain informa-
tion related to the letter and average out values which
are related to the context. Averaging only produces
meaningful results, if the predicted letter is properly
aligned to the spectrogram frame. This means that the
position of the predicted letter needs to be the same in
all frames. Otherwise, even letter-specific information
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would get averaged out. Therefore, before comput-
ing average frames, NAvAI aligns the spectrogram
frames as described below. Computing the average
over (aligned) letter-specific spectrogram frames re-
tains information about what is common to all frames.
However, this is not necessarily exclusive to spectro-
gram frames of this particular letter. There might be in-
formation, which is contained for all predicted letters.
Therefore, our method normalizes the letter-averaged
spectrogram frames by subtracting the mean over spec-
trogram frames predicted as any letter ’a’ to ’z’.

3.6 Alignment of spectrogram frames

For proper alignment between predicted letter and
spectrogram, we facilitate the introspection techniques
from Section 3.4. We follow the hypothesis, that the
time step, where a predicted letter actually occurs, is
the one that is most important for the prediction score.
We infer this position from local introspection results
using sensitivity analysis and LRP. Positive rele-
vances from LRP identify values, which have caused
the prediction score. Therefore, we use the maximum
position from LRP. In contrast, sensitivity can be
meaningful both at the maximum and minimum
value position. Positive values imply importance of
positions, because increasing them would make the
prediction more certain. Negative gradients are of
interest as well, because they show where a change
in input value causes the prediction certainty to drop.
Most of the predictions are already very close to
being a one-hot vector as softmax-output. Then, there
might be no or only a small gradient for increasing the
prediction certainty. In this case, the minimum value
position from sensitivity might be more appropriate
than the maximum value position. The alignment
procedure crops the spectrogram frames on one side,
such that the determined positions are in the center.

4 Results & Discussion

4.1 Optimal inputs by activation maximization

We performed AM for neurons of different layers. For
visualization, we chose neurons which are maximally
activated for the prediction of letter ’a’ in a randomly
chosen spectrogram frame. In the output layer, this
neuron corresponds to the predicted letter (here it is
the ’a’-neuron). As the outputs of the three topmost
layers are one-dimensional, we use the neuron of
highest activation. In all other layers, we chose
neurons with highest average activation over the time
dimension. We only show optimization of strongly
activated neurons, because they are evidently sensitive

to some pattern and potentially letter-specific. In
Figure 1, we representatively show four different
layers of the network. The top row shows optimal
inputs for a neuron in the first and second layer. In
those layers, AM reveals patterns, which can be in-
terpreted as features in the spectrogram. For example,
the input layer neuron detects a shift of intensity
towards higher frequencies. The second-layer neuron
combines low-level features, so it is sensitive to
different changes in frequency intensities, particularly
of lower frequencies. In contrast, optimizing neuron

layer 1 layer 2

layer 8 output layer

Figure 1: Optimal inputs for neurons in different layers
of the network. Each shown neuron has highest activation
for predicting letter ’a’ in the respective layer. Optimal
inputs to bottom layers (top row) are still interpretable as
features in the spectrogram. The higher layers (bottom
row), in particular the output neuron for ’a’ (bottom right),
do not look like spectrograms and cannot be interpreted
as particular features which the neuron is sensitive to. The
axes are equal to the spectrogram frames in Figure 2.

output in higher layers (bottom row) does not reveal
any interpretable patterns. Those neurons are sensitive
to a large variety of different patterns, so that a
single optimal input is not natural anymore. This is
a common problem for AM. Still, it is easier to detect
unnatural but related patterns in real-world images
than in audio spectrograms.

To obtain more natural results, one possibility
would be using stronger regularization techniques like
a GAN penalty. On the other hand, using stronger
regularization interferes with determining the actual
learned patterns. Regularizing is therefore favoring
results similar to data over actual insight in the model.
For our speech recognizer, we can conclude that the
model did not learn a single abstract representation
for the letters. This is not surprising, as the same letter
is not pronounced equally in every context.

In addition, in the output layer, we observed zero-
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Figure 2: Local introspection using sensitivity analysis and LRP. Left: Two spectrogram frames, both predicted as letter
’a’. By propagating the prediction score back through the network, important regions are identified. Center: Sensitivity
analysis results. Right: Relevances using LRP. The results of both methods are visualized as an overlay on top of the
original spectrogram. Blue values indicate negative sensitivity/relevance, red indicates positive values.

areas in the beginning and end of the optimal input.
This implies that the network capacity is not fully uti-
lized for the prediction and could still be compressed.

4.2 Sensitivity analysis and LRP
We performed sensitivity analysis and LRP for all
spectrogram frames. Here, we show characteristics
of these methods based on two spectrogram frames
predicted as letter ’a’. Figure 2 shows those two
spectrogram frames (left) and the local introspection
results. The sensitivity values (center) and LRP-based
relevances (right) are visualized superimposed on the
input spectrogram. Both methods differ strongly in
what they identify as important for the prediction.

Sensitivity analysis identifies relevant positions in
a larger area and includes more data points than LRP.
As we assumed, if the prediction already was certain,
sensitivity analysis is resulting in mostly negative
values, as in the top example. In the bottom example,
there are more positive gradients, indicating a less
certain prediction. Moreover, sensitivity analysis
identifies important regions close to center of the
spectrogram frame.

The relevances backpropagated with LRP are
much more position-specific than sensitivity values.
The top example shows fewer relevant positions. In
the bottom example, relevance is assigned to only
two small regions. This indicates that LRP identifies
important positions, but emphasizes the most relevant
ones. We assume, this is due to having negative

input values. As mentioned above, relevances can
become unbounded for negative input values, which
we prevented by scaling them. However, this does
not reduce possible large differences between weak
and strong relevances. We also observe that LRP
identifies regions as relevant, which are further away
from the center of the spectrogram frame.

Neither sensitivity analysis nor LRP reveal patterns,
which can be interpreted as typical letters for the
network. Furthermore, different spectrogram frames
predicted as the same letter do rarely show common
patterns. We would expect that in most cases impor-
tant regions for predicting letter ’a’ are formants in the
spectrogram, which are characteristic for vowels. The
second example in Figure 2 is one of many examples,
where this expectation is not met. Sensitivity analysis
shows that the beginning of the utterance is important,
because highly sensitive positions are distributed over
all frequencies in one time point. This can be ex-
plained for the model, since it could have learned the
context around the formant pattern. The LRP result is
identifying two small regions in the spectrogram both
of negative values in the spectrogram. Although this
might be valid for what is important for the model,
this cannot be interpreted as features of an ’a’.

4.3 Global introspection
We perform global introspection with our novel
method NAvAI. We compute letter-specific spectro-
grams as average over aligned spectrogram frames
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Figure 3: Averaging and normalizing letter-specific spectrogram frames. Top two rows: Mean inputs over spectrograms
predicted as letter ’a’ and ’t’, respectively. Middle row: Average spectrogram frame over all letters, which is used
for normalization. Bottom two rows: By subtracting the mean over all letters from the letter-averaged spectrograms,
we obtain patterns specific to the prediction of certain letters. Each analysis was performed with different alignment
methods, of which each is visualized in a column. The second to fourth column correspond to aligning the spectrograms
frames to the predicted letter based on local introspection. As comparison, the first column presents the averaging results
for the unaligned spectrogram frames. The axes are equal to the spectrograms in Figure 2. Values in each frame are
normalized, such that the absolute maximum is 1.

and normalize them. The alignment procedure crops
the frames, so they are centered to the most important
position. Because of this, the beginning and end of
the averaged frame implicitly has lower values.

Mean spectrogram frames over letters Figure 3
exemplifies the mean spectrogram frames for letters
’a’ and ’t’ (top two rows). It is not possible to see
interpretable differences between particular letters.
Therefore, we cannot tell anything about the quality
of the alignment methods as well. Interestingly, for
all letters there are higher mean values in the center of
unaligned mean spectrogram frames where only the
position is slightly shifted comparing the letters. This

indicates that the network learned to align the center
of the snippet with sounds that have a high value for
all frequencies. For example, this could mean that the
network can detect release bursts of plosives easily
and uses them as a center point the prediction of letters
in their context. Alignment by minimum or maximum
sensitivity is causing this effect to be less pronounced.
With using maximum LRP for alignment this effect
vanishes. This is due to LRP identifying important
regions further away from the center than sensitivity.
The middle row of Figure 3 shows the mean over
all letters. If there was nothing in common between
the letters, all information would have been averaged
out. On the contrary, we can observe that the overall
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mean is very similar to the letter-specific means.
This shows that there is information common to all
letters, which overshadows the spectrogram features
that are relevant for prediction. More precisely, this
information is not only common to the letters, but
to spectrograms in general. For example, in speech,
there is higher intensity of low frequencies than
of high frequencies. This is reflected in the mean
spectrograms, where the mean value decreases with
higher frequency.

Mean spectrogram frame normalization To re-
veal where the differences between the letter-specific
patterns are, we normalized each letter-averaged
spectrogram frame with the mean over all letters.
Figure 3 visualizes this procedure, where the mean
over all letters (middle row) is subtracted from the
exemplary mean frames over letters ’a’ and ’t’ (top
two rows). The resulting average spectrogram frames
after normalization are shown in the bottom two
rows of Figure 3. With normalization, we obtain the
final result of our NAvAI method and we are able to
observe letter-specific patterns.

Patterns in normalized mean spectrogram frames
We emphasize that the normalized frames (bottom
two rows of Figure 3) are not spectrograms anymore.
Positive (red) and negative (blue) values indicate,
where the average over one letter is higher or lower
than the mean over all letters, respectively. This
can lead to positive values where the (average)
spectrogram was negative, and vice versa. Moreover,
our method is not identifying which particular features
are used by the network for prediction. For example,
if NAvAI reveals two formants for a particular letter,
it is not certain that both are used for the prediction.

First of all, we averaged spectrogram frames
without alignment (first column in Figure 3). There
are no letter-specific patterns visible in the resulting
frames. For all letters, the normalized frame only
shows a transition from positive to negative values
(or the other way round) in the center. This simply
reflects the above mentioned high intensities in the
center, which are slightly shifted for different letters.

With all investigated alignment methods, we can
observe a clear difference between the patterns for
different letters. For predicting letter ’a’, the network
is detecting a stronger signal at the center and right
of it for sensitivity-based and LRP alignments. Also
for all alignments, two formants are clearly visible
at around 700 Hz and 2700 Hz. This pattern makes
sense, as vowels are combinations of different

formants. While all alignment methods show this
pattern, it is more wide-spread across time using LRP.

Similarly, we can observe a letter-specific pattern
for the letter ’t’. For sensitivity-based alignments,
there is a quick change from lower to higher signal
and back in the center. This transition occurs in
all frequencies, while it is more pronounced in the
higher ones. This corresponds to the typical pattern of
plosives. Their release burst is characterized by a high
intensity of all frequencies in a very short time span.
With LRP-based alignment, we did not observe this
pattern. From the observations for letter ’a’, we know
that the signal is more wide-spread for LRP. This is
not affecting the observed formant pattern of letter
’a’, but it affects the plosive pattern. Here, the signal
of interest spans the frequency dimension. Spreading
the strong signal wider in the time dimension causes
averaging out the interesting pattern. The weaker
signal of low frequencies is detected with both
sensitivity and LRP, because this is more consistent
in the time dimension. The wide spread of signals
when aligning by maximum LRP indicates that the
letters were not properly aligned to the spectrogram.

The alignment by minimum or maximum sen-
sitivity both revealed letter-specific patterns which
also are specific in the time dimension. There is only
slight difference between minimum and maximum
sensitivity alignment, but the resulting normalized
mean spectrogram frames seem to be more specific
when aligning at the minimum sensitivity. We cannot
guarantee that the alignment centers the spectrograms
at the real occurrence of the letter. This can be
seen in the typical patterns for ’a’, which are right
of the center. However, as long as the alignment
is consistent, we still get meaningful results. We
suspected that the network learns to facilitate release
bursts of plosives in the center of prediction frames. If
this was true, alignment should not change the center
position much for letters that are mostly pronounced
as plosives. This idea is supported by the shown
results, as there is a much smaller difference between
aligned and unaligned mean spectrogram frames for
’t’ compared to ’a’. Patterns of all letters are provided
in Supplemental Material A.

5 Conclusion

Applying local and global introspection methods
for image classification CNNs to an ASR task is not
straight-forward. There are difficulties due to the
real-value space of input data, architectural limitations
and interpretability of audio data. We showed that
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local introspection with sensitivity analysis and LRP
does not give much insight into the network. Global
introspection with weakly regularized AM was only
producing interpretable patterns for lower layers.

We introduced NAvAI as a novel introspection
method, which determines class-specific features by
averaging over examples for each class. This approach
adapts simple averaging to specific properties of the
ASR task, by aligning letters to spectrograms through
local introspection techniques and normalization. We
showed that our method is capable of revealing in-
terpretable patterns, which are common to predicting
particular letters. Although demonstrated for ASR,
NAvAI is generally applicable to other domains.

This work did not cover, whether there are different
patterns corresponding to particular contexts or
pronunciation of letters. In future work, the classes
will be separated into different pronunciations, for
example by facilitating information about phonemes.
Although the patterns are interpretable, some
knowledge about features in spectrograms is needed.
Evaluating the introspection as a sound example
would be far more intuitive. Therefore, future work
will cover synthesizing sound samples from the intro-
spection results or working with waveforms directly.
This work pinpointed several issues, where common
introspection techniques fail for CNN-based ASR.
Following our results, we will further develop or adapt
introspection techniques and optimize the architecture
towards better applicability of introspection.
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A Supplemental Material

A.1 NAvAI results for letters ’a’ to ’i’
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A.2 NAvAI results for letters ’j’ to ’r’
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A.3 NAvAI results for letters ’s’ to ’z’
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Abstract

Previous research on word embeddings has
shown that sparse representations, which can
be either learned on top of existing dense
embeddings or obtained through model con-
straints during training time, have the bene-
fit of increased interpretability properties: to
some degree, each dimension can be under-
stood by a human and associated with a rec-
ognizable feature in the data. In this paper, we
transfer this idea to sentence embeddings and
explore several approaches to obtain a sparse
representation. We further introduce a novel,
quantitative and automated evaluation metric
for sentence embedding interpretability, based
on topic coherence methods. We observe an
increase in interpretability compared to dense
models, on a dataset of movie dialogs and on
the scene descriptions from the MS COCO
dataset.

1 Introduction

In the word embeddings literature, it has previ-
ously been of interest to find interpretable repre-
sentations: individual dimensions should capture
a distinct semantic meaning, such that humans are
able to understand why a word is encoded in a par-
ticular vector. With a cognitive plausibility argu-
ment from Murphy et al. (2012), the interpretabil-
ity can be linked to sparse representations: they
argue that the representation should model a wide
range of features in the data and that every sample
should be characterized by the presence of a small
number of key features. Arora et al. (2016) use
this idea to recover and disentangle the different
meanings of polysemous words.

The above-named approaches, as well as those
by Subramanian et al. (2017); Faruqui et al.
(2015), recover an interpretable sparse represen-
tation in a separate, post-processing step on top of
∗Work done during an internship at ETH Zürich.

the uninterpretable, dense embeddings of the orig-
inal model (often word2vec or GloVe). This is
commonly done using sparse coding or a down-
stream model. Additionally to understanding
a model’s intermediate representation, there has
been work on constructing models that inherently
use a sparse embedded representation by learning
it during the training process (Sun et al., 2016;
Chen et al., 2017). This is motivated by the
idea that the model should include the prior that
each word is a sparse combination of disentan-
gled features from the very beginning. In contrast,
when computing dense embeddings first, it is less
likely that this representation will be easily disen-
tanglable in the post-processing step.

Goh (2016) argues that sparse representations
can be used to explain image and sentence embed-
dings as well. To be precise, the author focuses on
encoder-decoder neural networks and uses sparse
coding to recover interpretable features in the la-
tent spaces of a variational autoencoder (Kingma
and Welling, 2013) and an image captioning sys-
tem based on (Vinyals et al., 2015).

In this paper, we aim to use sparse meth-
ods to disentangle sentence embeddings’ dimen-
sions. We focus on a simple sentence autoencoder
model, and apply both a sparse-coding-based post-
processing technique, as well as model constraints
during training time, to obtain sparse vector rep-
resentations of sentences. We aim to increase the
understanding of the latent space, which helps us
gain insight into how the inference and learning
process works by identifying the patterns in the
data that the model learns to recognize and encode
in this representation.

To compare our different approaches, as well as
measure the improvement compared to the base-
line of a dense autoencoder model, we introduce
a novel, quantitative and automated metric of the
mentioned interpretability properties. It is based
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on the notion of topic coherence and further devel-
ops it for the case of sentences. We observe that
the new measure reflects our manual judgment on
the interpretability of the embeddings. Addition-
ally, we track reconstruction quality and perfor-
mance in downstream tasks, showing that sparse
approaches can obtain a remarkable increase in in-
terpretability at a moderate cost in quality.

2 Models

Our models are based on a standard re-
current neural network autoencoder following
the Sequence-to-Sequence architecture (seq2seq;
Sutskever et al., 2014). This architecture is based
on the encoder-decoder scheme, where an encoder
network maps the input to a dense, embedded rep-
resentation z, and a decoder net reconstructs the
input from z. In Section 3, we give a more de-
tailed description of our experimental setup.

2.1 Enforcing Sparsity by Post-Processing
Dense Embeddings

Consider a dataset x1, . . . , xN of N sentences.
We train a dense autoencoder net with a hidden
state size D′ = 500 to convergence, and compute
Z = [z1, . . . , zN ]T ∈ RN×D′ , the vector repre-
sentations of the data arranged as the rows of a
matrix. We follow the approaches by Arora et al.
(2016); Goh (2016) and compute a sparse repre-
sentation of size D = 2000 on top of Z, where all
but k values have to be zero. We do this by solving
the following sparse dictionary learning problem:

E,U = arg min
E,U
||EU− Z||2F ,

s.t. ||ei||0 ≤ k, ||uj ||2 = 1, ∀i, j,
(1)

whereby we obtain E = [e1, . . . , eN ]T ∈ RN×D,
a set of new, sparse vector representations, and
U = [u1, . . . ,uD]T ∈ RD×D′ , a dictionary of
atoms found in Z. We solve this problem with the
k-SVD algorithm (Aharon et al., 2006, we use an
open source implementation called pyksvd1).

The intuition behind this sparse coding ap-
proach is as follows. The atoms U are intended
to represent a wide range of the 2000 most im-
portant features that explain the data in the dense
latent space of the model. By solving this prob-
lem we decompose the intermediate representation
zi of a sample xi into a linear combination ei of

1https://github.com/hoytak/pyksvd

atoms. By constraining ei to a fixed and low spar-
sity level k we aim to disentangle this represen-
tation and therefore increase interpretability. We
refer to this representation as the k-SVD model.

2.2 Enforcing Sparsity during Embedding
Learning

The k-SVD model proposed in the previous sec-
tion obtains sparse representations through solving
two independent problems: finding a fixed-size
vector representation for sentences with a neural
model and, in a separate step, mapping it to an
interpretable, sparse representation. As we men-
tion in the introduction, we conjecture that inter-
pretability can be further increased with an end-to-
end approach. In this section, we introduce mod-
ifications to the model architecture that will force
the neural nets to encode and understand sparse
representations of the data during training time.

We propose an additional layer that is inserted
between the encoder and decoder net. We map the
vector representation z to a vector e of the same
size in a sparsity transformation. The only re-
quirements for this mapping are that the output
e is sparse and differentiable (or that we can de-
fine a custom gradient) to allow backpropagation
through it. We then feed e through the decoder net
instead of z and train the whole net end-to-end. In
the rest of this section, we propose two mappings
for such a sparsity transformation.

k-Sparse.

For this model, we draw inspiration from the
k-Sparse Autoencoder by Makhzani and Frey
(2013). We again introduce a hyperparameter k
and define e by keeping the k largest activations
in z, the support set, and setting all other units to
zero. We backpropagate only through the support
set. This is a simple way of enforcing a hard spec-
ification for the sparsity level as an integral part of
the model.

Sparsemax.

The k-Sparse approach has the drawback of re-
quiring a fixed sparsity level for all samples. To
allow for a variable, per-sample sparsity level, we
use the Sparsemax layer, introduced by Martins
and Astudillo (2016). Sparsemax is an alternative
to Softmax—however, unlike Softmax, it is able to
return sparse probability distributions. It is defined
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as:

Sparsemax(z) = arg min
p∈∆D−1

||z− p||22, (2)

where D is the dimensionality of z and ∆D−1

is the (D − 1)-dimensional simplex = {p ∈
RD |1Tp = 1,p ≥ 0}.

Similar to Softmax, Sparsemax supports a tem-
perature mechanism, where a hyperparameter τ
trades off the “confidence” in the output prob-
ability of the largest input unit. To be pre-
cise, as τ approaches 0, the probability distri-
bution Sparsemax

(
z
τ

)
approaches the distribution

peaked on the maximum components of z. Addi-
tionally to Softmax, Sparsemax has the property
that this output distribution becomes increasingly
sparse.

Putting this together, we introduce a hyperpa-
rameter τ and define a sparsity transformation by
defining e = Sparsemax

(
z
τ

)
.

3 Experiments

3.1 Training Details
In our experiments, we use a vocabulary size
of 20,000, with the symbolic words <person>,
<unk>, and <eos> for names and out-of-
vocabulary (OOV) words in the dataset, and the
end-of-sentence marker, respectively. We convert
words to 100-dimensional word embeddings by
looking them up in a trainable matrix V (note
that, in general, this matrix is not sparse—sparsity
is only imposed on the latent space of the sen-
tences2).

Our encoder and decoder nets are recurrent neu-
ral networks that use a single GRU (Cho et al.,
2014) layer. They have the same hidden dimen-
sionality but share no parameters. We obtain the
model predictions as the Softmax of a learned,
affine transformation to 20,000-dimensional space
at every time step of the decoder net. We minimize
the mean cross-entropy loss over all timesteps. We
use a batch size of 64 and the Adam optimization
algorithm.

3.2 Data
We train our models on the Cornell Movie-Dialogs
Corpus and MS Common Objects in Context
datasets (respectively Danescu-Niculescu-Mizil
and Lee, 2011; Lin et al., 2014).

2On a side note, sparsity can be imposed on the word em-
beddings by adding an L1-regularizer to V (Sun et al., 2016;
Chen et al., 2017).

The Movie-Dialogs Corpus is a collection of
movie lines, therefore it contains a wide variety
of different utterences and allows us to explore
general-purpose sentence embeddings. We pre-
process this data by splitting the movie lines into
separate sentences, thereby obtaining more than
500,000 samples. This dataset has no predefined
split; we define a validation and test set by setting
aside 50,000 samples each.

The MS COCO dataset contains images show-
ing scenes with objects in numerous configura-
tions. Every image contains 5 human-annotated
variations of a caption that describe the scene. In
our experiments, we use only these captions and
refer to this as the COCO Captions data. They
total over 600,000 samples and allow us to ex-
plore sentence embeddings of a more narrow lan-
guage: since they merely describe objects and
scenes, they tend to follow the same, simple sen-
tence structure. The dataset comes with a prede-
fined training/validation split.

For tokenizing and splitting movie lines into
sentences we use the NLP library SpaCy3. All our
models are implemented in TensorFlow (Abadi
et al., 2015).

4 A Quantitative and Automated
Evaluation Metric

The most common quantitative interpretability
measure for embeddings (in particular word em-
beddings) is the intrusion test, first introduced in
(Chang et al., 2009). This test involves generat-
ing 5-tuples of samples, where according to the
embeddings model four are related and one stands
out. The better human judges identify the intruder,
the more interpretable the model is considered.

This evaluation method has the drawback of re-
quiring human attention, thereby it is expensive
and slow to evaluate. For our evaluation, we in-
troduce an automated interpretability test, based
on topic coherence, that does not require human
attention. We describe our method in this section.

A topic model defines a set of topics in a cor-
pus of documents and allows us to find the top n
most likely words that belong to each topic. Topic
coherence is an automated evaluation method of
the interpretability of topic models, which has
been shown to correlate well with human as-
sessments (Newman et al., 2010; Mimno et al.,
2011). Given a symmetric similarity measure of

3https://spacy.io
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original a room with blue walls and a white sink and door .
reconstruction a room with blue walls and a white sink and windows .
original two cars parked on the sidewalk on the street
reconstruction two buses parked on the curb on the street
original two women waiting at a bench next to a street .
reconstruction two women sit at a park next to a street .
original a car that seems to be parked illegally behind a legally parked car
reconstruction a car that seems to be parked close to a police officer and talking
original a bathroom sink and various personal hygiene items .
reconstruction a bathroom sink and various other hygiene items .
original this is an open box containing four cucumbers .
reconstruction this is an open box makes delicious doughnuts .

Table 1: Typical sentence reconstruction errors by the k-Sparse, k = 15 model, trained on the COCO
Captions data.

two words (e.g. pointwise mutual information),
the coherence of a topic is defined as the mean
pairwise similarity of all pairs of words. The total
topic coherence of the model is the mean coher-
ence over all topics.

We devise an evaluation scheme based on topic
coherence. Instead of looking at words in topics,
we consider the highest-ranked sentences in the di-
mensions of our embeddings and replace the word
similarity measure with a sentence similarity mea-
sure. Let x(p)

d be the sample that has rank p in the
order given by the d-th dimension in the embed-
ding. For a similarity measure sim∗, the coher-
ence of a single dimension d is defined as:

coh∗(d) =
2

n · (n− 1)

n−1∑

p=1

n∑

q=p+1

sim∗(x
(p)
d , x

(q)
d ).

(3)
The coherence of the model is defined as the mean
coherence over all dimensions:

coh∗(1, . . . , D) =
1

D

∑

d

coh∗(d). (4)

In addition, to determine how much the coherence
deteriorates when looking beyond the top ranks,
we consider all non-zero samples of a dimen-
sion and we evaluate Equation 3 on n sentences
sampled at random and without replacement from
{xi | ei,d 6= 0} instead of x(1)

d , . . . , x
(n)
d .

We compute this on the validation set of our
data. We strip all stop words from all sentences.
We consider n = 10 sentences per dimension, un-
less a dimension has a non-zero value for less than
n samples, in which case we compute Equation 3
on all pairs of sentences. In the following, we de-
fine three choices for a sentence similarity mea-
sure sim∗.

Jaccard Similarity. We regard the sentences as
sets of words and compute the Jaccard similarity:

simJ(xi, xj) =
|xi ∩ xj |
|xi ∪ xj |

. (5)

BoW Similarity. We consider the Bag-of-Words
(BoW) vectors bi,bj of the two sentences, i.e. the
vectors with the number of occurrences of each
vocabulary word in xi, xj , respectively. The simi-
larity is defined as the cosine of the angle between
these vectors:

simBoW(xi, xj) =
bT
i bj

||bi||2 ||bj ||2
. (6)

WMD Similarity. The Jaccard and BoW simi-
larity measures have a drawback in that they do
not take semantic relatedness of different words
into account. The Word Mover’s Distance (WMD;
Kusner et al., 2015) remedies this problem: the au-
thors define a document distance measure that re-
lies on the word2vec latent space to make a better
assessment of the semantic distance of sentences,
based on the distance of the words they consist of.
We use the negative WMD to obtain a similarity
measure:

simWMD(xi, xj) = −WMD(xi, xj). (7)

5 Results

5.1 Reconstruction Quality
We start off by looking at the amount of informa-
tion lost by our models due to sparsity constraints.

In general, we observe that as the sparsity level
is decreased, the reconstructions start to dete-
riorate. At low values of k, our sparse mod-
els often fail to restore the exact meaning or
phrasing, but still generate sentences with cor-
rect grammar and related topics. For example,
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ei,d1 xi
1.00 a person laying on a couch with a laying on him
1.00 a cat laying on top of a suitcase laying on the floor .
1.00 a man laying on top of a sandy beach laying next to a surfboard .
1.00 a person laying on a couch with a cat laying in their arms, covering part of

the face .
1.00 a woman is laying on a couch with a boy laying his head on her belly, and a

cat between her legs .
1.00 some cats laying on a dock with their chins laying over the end
1.00 a man laying in bed with a gray cat laying on top of him .
1.00 a number of cows laying in a lot near cars
1.00 a number of items laying on a surface near one another
1.00 two cows laying out together underneath a tree .

(a) This dimension clearly corresponds to sentences that describe a configuration of an object laying on another, whether that
be people on the couch or items on a surface. Coherence score: cohWMD(d1) = −2.32.

ei,d2 xi
0.94 a motorcycle parked outside the doors of a building
0.94 a blue motorcycle parked outside of a building .
0.94 traffic lights on the road showing the street
0.93 food in a bowl sitting on a table
0.92 a yellow train in an outside train station .
0.92 a motorcycle sits on a sidewalk near a building
0.92 a car that is outside in the dirt .
0.92 a red truck parked outside in the snow .
0.91 a boy sitting on a bench at the park
0.91 a black motorcycle is parked on a sidewalk

(b) This dimension seems to capture, with some false positives, different kinds of motor vehicles (motorcycle, train,
car, truck) that are parked (sit, sitting, is outside) somewhere. Coherence score: cohWMD(d2) = −2.83.

ei,d3 xi
0.79 herd of goats in grassy area with herder .
0.64 herd of five zebras grazing in a field
0.63 people are sitting in lounge chairs on the beach .
0.63 a close up of many large kites near the ground
0.63 cows lounge in a field with a mountain backdrop .
0.62 close up of the flower extending from a banana tree stalk
0.61 a group of object on top of a muddy river .
0.61 many plants and umbrellas on the side of the street .
0.58 a close up view of sheets that are on a bed
0.58 room with cramped quarters holding dining table set and extra chairs .

(c) It is not clear which features this dimension captures. Coherence score: cohWMD(d3) = −3.12.

Table 2: Examples of selected dimensions d1, d2, d3 of our k-Sparse, k = 15 model, trained on the
COCO Captions data. We show the 10 highest-ranked samples xi and the coherence cohWMD(d) of each
dimension d. We give more examples of high-coherence dimensions in the appendix, in Table 5.

they turn “waiting at a bench” into “sit
at a park”, “sidewalk” into “curb”, “two
cars” into “two buses”, and similar. The k-
SVD model generally does this less than the other
models but in some cases it fails as well. See ex-
amples of typical reconstruction errors by our k-
Sparse, k = 15 model in Table 1.

5.2 Highest-Ranked Samples

We examine the top samples in the dimensions
of our embedding models and observe that sparse
models often group sentences s.t. they have a com-
mon syntactic element or talk about a common
concept. For example, in our k-Sparse, k = 15

model trained on the COCO Captions dataset,
we identify dimensions that represent sentences
about objects in water, people holding things,
horse (and occasionally bicycle) riders,
sentences starting with common prefixes such as
there is a [...], etc. We give examples in
Table 2 and in the appendix in Table 5. For some
dimensions, this pattern is not only recognizable in
the top ranks but for all samples xi with ei,d 6= 0.

We are able to find such patterns in all sparse
models, but the lower the sparsity level, the more
apparent these patterns become. k-SVD based
models exhibit these properties to a lesser extent.
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Embeddings model Jaccard BoW WMD
COCO Captions 0.05 0.10 −3.12
Movie-Dialogs 0.08 0.16 −2.06

(a) Mean similarity of random sentences

Top 10 samples Random 10 samples
Embeddings model Jaccard BoW WMD Jaccard BoW WMD
dense, 500 dim. AE 0.08 0.14 −3.00 0.06 0.10 −3.12
k-SVD, k = 100 0.07 0.12 −3.08 0.06 0.10 −3.11
k-SVD, k = 50 0.08 0.13 −3.03 0.06 0.11 −3.10
k-SVD, k = 20 0.11 0.18 −2.88 0.06 0.11 −3.08
k-SVD, k = 15 0.11 0.19 −2.86 0.07 0.12 −3.06
k-Sparse, k = 100 0.08 0.14 −3.02 0.06 0.11 −3.09
k-Sparse, k = 50 0.09 0.15 −2.96 0.07 0.12 −3.06
k-Sparse, k = 20 0.11 0.17 −2.85 0.08 0.14 −3.00
k-Sparse, k = 15 0.11 0.18 −2.86 0.08 0.14 −3.01
Sparsemax, τ = 50 0.04 0.07 −3.25 0.03 0.06 −3.27
Sparsemax, τ = 20 0.04 0.06 −3.29 0.03 0.05 −3.35
Sparsemax, τ = 10 0.04 0.07 −3.25 0.03 0.06 −3.31

(b) COCO Captions dataset

Top 10 samples Random 10 samples
Embeddings model Jaccard BoW WMD Jaccard BoW WMD
dense, 500 dim. AE 0.20 0.31 −1.85 0.09 0.16 −2.02
k-SVD, k = 100 0.17 0.24 −1.99 0.09 0.16 −2.01
k-SVD, k = 50 0.17 0.24 −2.01 0.10 0.16 −2.01
k-SVD, k = 20 0.20 0.28 −1.91 0.11 0.18 −2.01
k-SVD, k = 15 0.20 0.29 −1.88 0.12 0.19 −1.98
k-Sparse, k = 100 0.16 0.25 −2.01 0.10 0.18 −2.08
k-Sparse, k = 50 0.16 0.25 −1.95 0.11 0.19 −2.05
k-Sparse, k = 20 0.19 0.30 −1.82 0.13 0.22 −1.99
k-Sparse, k = 15 0.22 0.33 −1.76 0.14 0.23 −1.98
Sparsemax, τ = 50 0.12 0.19 −2.13 0.12 0.19 −2.02
Sparsemax, τ = 20 0.13 0.21 −2.02 0.16 0.23 −1.89
Sparsemax, τ = 10 0.15 0.22 −2.01 0.15 0.22 −1.96

(c) Movie-Dialogs dataset

Table 3: Interpretability of our models, as measured by our topic-coherence-based metric in Equation 4.
We evaluate this equation using three different notions of sentence similarity sim∗. In Equation 3, we
consider 10 random non-zero samples in addition to the 10 highest-ranked samples.

5.3 Quantitative Evaluation

In Table 2 we additionally report the coherence
cohWMD(d) of the presented dimensions d (see
Equations 3, 7). We observe that this score cor-
relates with our empirical assessment of the in-
terpretability of the dimension. For example, we
observe on the COCO dataset that, while unre-
lated groups of sentences usually have a coher-
ence score of < −3, sentences with common
or semantically related subjects and objects have
higher coherence scores (usually between −2.8
and −2.2). Groups of sentences with very close
semantic meaning or large common prefixes have
coherence scores around −2 or higher.

We report the topic coherence of our models
(Equation 4) in Table 3. As rough reference val-
ues for the metrics, we include the mean similar-

ity of pairs of random sentences from the dataset
(estimated on 500 randomly sampled pairs), and
the topic coherence of a 500-dimensional dense
autoencoder model.

In accordance with our empirical observations,
we see an increase in interpretability in the sparse
models. For example, on the COCO Captions
data, a random pair of sentences has a WMD-
based similarity of -3.12, and the WMD-based co-
herence score of a dense autoencoder model is -3.
With the additional sparse coding step on top of
that, we can increase the coherence to -2.86.

5.4 Downstream Tasks

Additionally to the interpretability properties of
sparse sentence embeddings, it is of interest
whether sparsity decreases their usefulness in
downstream tasks. To evaluate this, we use the
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Embeddings model CR MR SUBJ MPQA SST2 SST5 TREC SICK-E SICK-R STS14 MRPC
dense, 500 dim. AE 65.99 59.37 76.24 73.01 60.63 28.96 77.60 75.50 0.61 0.42 67.25
k-SVD, k = 100 60.48 54.63 69.61 70.73 59.58 25.07 68.20 56.36 0.34 0.18 59.65
k-SVD, k = 50 62.54 55.01 70.47 70.70 57.66 25.84 69.80 58.09 0.34 0.17 60.58
k-SVD, k = 20 62.41 55.53 70.60 71.16 58.76 25.20 70.40 60.26 0.33 0.17 59.94
k-SVD, k = 15 62.91 55.48 70.63 71.25 57.33 23.89 70.20 59.71 0.33 0.16 61.04
k-Sparse, k = 100 65.22 56.09 76.47 72.04 58.98 27.69 72.80 70.33 0.56 0.37 66.72
k-Sparse, k = 50 64.64 57.13 74.74 71.51 59.86 27.42 73.80 71.36 0.55 0.32 66.38
k-Sparse, k = 20 64.53 55.98 73.00 71.65 58.43 26.24 75.60 68.20 0.50 0.25 67.48
k-Sparse, k = 15 67.63 58.24 75.52 71.87 62.16 30.14 76.80 72.50 0.55 0.23 65.45
Sparsemax, τ = 50 64.58 54.60 66.33 69.13 55.46 27.69 65.80 64.28 0.53 0.19 67.88
Sparsemax, τ = 20 63.58 54.58 66.45 70.21 52.94 26.92 64.20 63.95 0.49 0.19 66.90
Sparsemax, τ = 10 63.44 54.60 63.07 69.29 54.53 26.92 61.40 63.02 0.48 0.17 66.49

Table 4: Evaluation of the embeddings from Movie-Dialogs models on various downstream tasks. The
values measure classification accuracy or spearman correlation with human-labeled ground truth (see
Section 5.4); larger values are better.

SentEval framework (Conneau and Kiela, 2018),
which learns downstream models on top of the
provided sentence embeddings to solve a variety
of transfer tasks.

We report the accuracy on the standard classifi-
cation problems the framework provides, namely
binary sentiment of movie reviews (MR), movie
lines (SST2) and product reviews (CR), five-
class sentiment of movie lines (SST5), subjec-
tivity/objectivity (SUBJ), binary opinion polar-
ity (MPQA), and six-class question type (TREC)
classification. To look at semantic entail-
ment/similarity of pairs of sentences, we re-
port Spearman correlation with human-labelled
ground truth on the five-class semantic relatedness
(STS14, SICK-R), and three-class semantic entail-
ment (SICK-E) tasks, and accuracy on the binary
paraphrase detection (MRPC) task.

We configure the framework to use Logistic Re-
gression for downstream models. More details on
the tasks and evaluation methods can be found in
the SentEval paper. We evaluate these tasks on the
Movie-Dialogs models only, because COCO is un-
suited for general-purpose sentence embeddings.

We show the results of this evaluation in Ta-
ble 4. We again observe that sparse representa-
tions perform, in many cases, worse than their
dense equivalent, therefore, trading quality for in-
terpretability4. However, this does not occur on all

4On a side note, we address the noticeable fact that the
transfer tasks are solved with low accuracy in general. For
numbers comparable to the state of the art literature, more
powerful sentence embedding models (such as self-attentive
networks, InferSent, SkipThought etc., see Conneau et al.,
2017; Kiros et al., 2015) with a higher latent dimensionality,
more layers, and a larger and more diverse dataset are re-
quired. Further, SentEval provides slower but more powerful
MLP downstream models instead of Logistic Regression.

tasks: for example, SST2 and SST5 clearly benefit
from a sparse representation.

5.5 Discussion
The results of our quantitative evaluation method
confirm the tendencies we observed in our empir-
ical evaluation. It appears that embedding dimen-
sions generated by sparse models are coherent to a
higher extent—in particular, the lower the sparsity
level, the more apparent topics can be found in the
embedding dimensions.

The price of good interpretability is a higher re-
construction error. As we impose more sparsity in
the representation, the model is forced to “cut cor-
ners” and single slots in the embedding are desig-
nated broader collections of traits in the data. This
results in more coherent topics, however, the nar-
row information bandwidth reduces the decoder
net’s ability to reconstruct the exact sentence. The
fact that sparse representations carry less informa-
tion may also explain the lower utility in some
of the downstream tasks. Other tasks (e.g. sen-
timent classification) can be solved with greater
accuracy, which suggests that a sparse and inter-
pretable representation discovers more useful fea-
tures for a simple downstream model like Logistic
Regression.

As we force a model to deal with a sparse rep-
resentation already during the training phase, find-
ing sensible atoms gets incorporated into the en-
coding and decoding mechanism. We found that,
in comparison to extracting this information from
a dense model’s intermediate representation, this
results in an observable and measurable boost in
interpretability. We can explain this by the fact
that this architecture makes it part of the model’s
task to find a sparse and accurate representation
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of the data, whereas in a post-processing approach
the model focuses on reconstruction only.

On the other side of the coin, this modification
interferes with the training process. To be more
precise, the model follows a more complex objec-
tive, and the sparse layer is limited in the amount
of information that can be forward and backpropa-
gated through it at a time—hence we observe con-
vergence at a higher loss value and bigger recon-
struction errors.

We note that our Sparsemax-based approach
does not perform particularly well in our evalua-
tion, although in some cases it outperforms other
approaches when we consider samples beyond the
10 highest-ranked. This can be explained by the
fact that the sparsity level is not fixed, and that
due to the Sparsemax layer, the embeddings ei are
valid probability distributions. A high value ei,d
does, therefore, not necessarily indicate a strong
presence of feature d in sample i, but also a lack
of other features. On the other hand, Sparsemax
is better at determining feature presence/absence
in general, due to not being constrained to find an
exact number of features.

6 Related Work

As aforesaid, there has been work in the NLP liter-
ature on the interpretability of word embeddings.
Murphy et al. (2012) suggest that sparse embed-
dings can be linked to a disentangled, and thus in-
terpretable, representations. This idea is also ap-
plied in (Arora et al., 2016; Faruqui et al., 2015;
Subramanian et al., 2017), commonly by solving a
sparse dictionary learning problem on top of dense
embeddings. In the papers (Sun et al., 2016; Chen
et al., 2017; Luo et al., 2015), the authors learn
sparse word embeddings during the training phase.
Goh (2016) applies above-named approaches to
image embeddings, and the intermediate represen-
tation of an image captioning model.

Makhzani and Frey (2013) define the k-Sparse
autoencoder. They use a k-Sparse layer in a
shallow autoencoder trained on the MNIST and
NORB datasets, focusing on unsupervised feature
learning, improvement in classification accuracy,
and a fast alternative to sparse coding. Martins
and Astudillo (2016) develop Sparsemax as an al-
ternative to the Softmax layer that is able to output
exactly zero probabilities, their work is focused on
classification problems and attention mechanisms.

Interpretability metrics are usually of inter-

est for word embeddings, where the predom-
inant evaluation method is the word intrusion
test (Chang et al., 2009). Our interpretability met-
ric is based on topic coherence (Newman et al.,
2010), a comparison of different variants of this
method can be found in (Röder et al., 2015).

7 Conclusion

Being able to understand the intermediate repre-
sentation of a neural net increases our model un-
derstanding. In this paper we have taken a step
towards this goal by introducing several sparse
methods for a sentence autoencoder, inspired by
previous work on word embeddings. The evalua-
tion of our proposed models supports our hypoth-
esis that sparse methods benefit the interpretabil-
ity of the embedding. It is intuitive that a vector
restricted to many zero values inevitably carries
less information, and indeed we have found that
this increase in interpretability comes at a cost in
reconstruction quality and, in some cases, utility
in downstream tasks. It is, however, possible to
strike a balance and achieve good interpretability
without a large penalty.

We have devised a novel, automated method
of quantifying said interpretability, based on topic
coherence. In our experiments, we observe that
this evaluation corresponds to our manual assess-
ment of interpretability. It is fully automated, and
therefore cheap and fast to run. It can easily be ex-
tended by using different sentence similarity met-
rics or other topic coherence variants.

An interpretable sentence representation has
further applications beyond model understanding:
for example, it allows us to develop a sentence
similarity measure, that can justify why two sen-
tences are similar. It can also help us under-
stand downstream models on top of sentence em-
beddings. For example, consider the case of a
linear classification model: we can inspect the
largest positive and negative weights and under-
stand which features in a source sentence influence
the model’s decision.

For future work, it suggests itself to apply spar-
sity constraints to more sophisticated sentence
embedding models such as SkipThought or In-
ferSent (respectively Kiros et al., 2015; Conneau
et al., 2017). Our methods can also be used to con-
struct sparse encoder-decoder models for further
tasks, such as image captioning, machine transla-
tion, or recommender systems.
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Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.

Michal Aharon, Michael Elad, and Alfred Bruck-
stein. 2006. rmk-svd: An algorithm for design-
ing overcomplete dictionaries for sparse represen-
tation. IEEE Transactions on signal processing,
54(11):4311–4322.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2016. Linear algebraic struc-
ture of word senses, with applications to polysemy.
arXiv preprint arXiv:1601.03764.

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L
Boyd-Graber, and David M Blei. 2009. Reading
tea leaves: How humans interpret topic models. In
Advances in neural information processing systems,
pages 288–296.

Yunchuan Chen, Ge Li, and Zhi Jin. 2017. Learn-
ing sparse overcomplete word vectors without in-
termediate dense representations. In International
Conference on Knowledge Science, Engineering and
Management, pages 3–15. Springer.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. arXiv preprint arXiv:1803.05449.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Cristian Danescu-Niculescu-Mizil and Lillian Lee.
2011. Chameleons in imagined conversations: A
new approach to understanding coordination of lin-
guistic style in dialogs. In Proceedings of the Work-
shop on Cognitive Modeling and Computational
Linguistics, ACL 2011.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah Smith. 2015. Sparse overcom-
plete word vector representations. arXiv preprint
arXiv:1506.02004.

Gabriel Goh. 2016. Decoding the thought vector.
http://gabgoh.github.io/ThoughtVectors/.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From word embeddings to docu-
ment distances. In International Conference on Ma-
chine Learning, pages 957–966.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Hongyin Luo, Zhiyuan Liu, Huanbo Luan, and
Maosong Sun. 2015. Online learning of inter-
pretable word embeddings. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1687–1692.

Alireza Makhzani and Brendan Frey. 2013. K-sparse
autoencoders. arXiv preprint arXiv:1312.5663.

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In International Confer-
ence on Machine Learning, pages 1614–1623.

David Mimno, Hanna M Wallach, Edmund Talley,
Miriam Leenders, and Andrew McCallum. 2011.
Optimizing semantic coherence in topic models. In
Proceedings of the conference on empirical methods
in natural language processing, pages 262–272. As-
sociation for Computational Linguistics.

Brian Murphy, Partha Talukdar, and Tom Mitchell.
2012. Learning effective and interpretable semantic
models using non-negative sparse embedding. Pro-
ceedings of COLING 2012, pages 1933–1950.

David Newman, Jey Han Lau, Karl Grieser, and Tim-
othy Baldwin. 2010. Automatic evaluation of topic
coherence. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 100–108. Association for Computa-
tional Linguistics.
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ei,d4 xi
0.98 a black cat drinking water out of a water faucet .
0.98 the boats are outside on the water sailing .
0.98 several cows drinking water from a water receptacle .
0.98 a boat speeds down open water spraying water behind it .
0.98 two elephants drink water out of a body of water
0.98 a large body of water covered with boats .
0.98 a person stands on water skis in the water .
0.98 a woman is on the water on water skis .
0.98 small boats on water with setting sun behind distant hills .
0.98 a power boat on a body of water with a large water spray behind .

(a) cohWMD(d4) = −2.21

ei,d5 xi
0.99 white vase holding holding an assortment of flowers
0.99 a man holding holding a tennis racquet on a tennis court .
0.99 a man holding holding a giant remote control .
0.99 two bears holding each other outside the surroundings .
0.99 snowboarder holding a pink board being hugged by man in costume .
0.99 baby holding a teething toy in his hand
0.99 a countertop holding a <unk> bowl across from a shelf holding stemware .
0.99 a bird holding a fish in it’s mouth .
0.99 a oven holding two trays of food baking .
0.99 two glasses holding red wine sit on a piece of paper on a wooden surface .

(b) cohWMD(d5) = −2.77

ei,d6 xi
0.97 person riding their skateboard on the street with the cars .
0.94 person riding a skateboard while pushing a stroller
0.94 person riding a horse while the sun sets
0.93 person riding a horse while another horse stands in a field .
0.92 person riding a bicycle while walking two dogs .
0.92 person riding a four wheeler on a beach towards a bridge .
0.91 person riding an elephant as it crosses through a river .
0.91 person riding a horse along shore of a body of water .
0.91 a person riding their bike down a path to a gate with a stop sign .
0.91 person riding down snowy hill on a pair of skis

(c) cohWMD(d6) = −2.21

ei,d7 xi
0.99 there is a brown box on the toilet
0.99 there is a blender with a green mixture in it
0.99 there is a brown bear walking through the woods alone
0.99 there is a clock that is above the building doors
0.99 there is a clock inside of a curvy blue sculpture .
0.99 there is a truck that has something mounted on the top
0.99 there is a boy playing with a tie
0.99 there is a person playing a nintendo wii
0.99 there is a boy playing baseball at the base ball field
0.99 there is a clock on the wall between the two arches .

(d) cohWMD(d7) = −3.47. Note that this dimension has low coherence because the common feature it brings out (there is
a) consists of stop words, which are not considered in our metrics.

ei,d8 xi
1.00 a person is surfing on a shallow wave .
1.00 a person is surfing on a medium sized wave .
1.00 a person is surfing in a on a wave
1.00 a person is surfing on a wave in the ocean .
1.00 a person is surfing a huge wave while staying upright .
1.00 a person is surfing on the waves of an empty ocean .
1.00 a person is surfing on a board at the beach
1.00 a person is surfing in a wave pool .
1.00 a person is surfing on a wave at the beach
1.00 a person is surfing a wave on a surfboard .

(e) cohWMD(d8) = −1.47

Table 5: Highest-ranked samples in a selection of dimensions of our k-Sparse, k = 15 model, trained on
the COCO Captions data, along with the coherence of the dimension.
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Abstract
RNN language models have achieved state-
of-the-art perplexity results and have proven
useful in a suite of NLP tasks, but it is as
yet unclear what syntactic generalizations they
learn. Here we investigate whether state-of-
the-art RNN language models represent long-
distance filler–gap dependencies and con-
straints on them. Examining RNN behavior
on experimentally controlled sentences de-
signed to expose filler–gap dependencies, we
show that RNNs can represent the relation-
ship in multiple syntactic positions and over
large spans of text. Furthermore, we show that
RNNs learn a subset of the known restric-
tions on filler–gap dependencies, known as is-
land constraints: RNNs show evidence for
wh-islands, adjunct islands, and complex NP
islands. These studies demonstrates that state-
of-the-art RNN models are able to learn and
generalize about empty syntactic positions.

1 Introduction

Many recent advancements in Natural Language
Processing have come from the introduction of
Recurrent Neural Networks (RNN) (Elman, 1990;
Goldberg, 2017). One class of RNNs, the Long
Short-Term Memory RNN (LSTM) (Hochreiter
and Schmidhuber, 1997) has been able to achieve
impressive results on a suite of NLP tasks, includ-
ing machine translation, language modeling, and
syntactic parsing (Sutskever et al., 2014; Vinyals
et al., 2015; Jozefowicz et al., 2016). But the na-
ture of the representations learned by these mod-
els is not properly understood. As these models
are being deployed with increasing frequency, this
poses both engineering, accountability, and theo-
retical problems.

One promising line of research aims to crack
open these ‘black boxes’ by investigating how
LSTM language models perform on specially con-
trolled sentences designed to draw out behavior

that indicates representation of a syntactic depen-
dency. Using this method, Linzen et al. (2016) and
Gulordava et al. (2018) demonstrated that these
models are able to successfully learn the number
agreement dependency between a subject and its
verb, even when there are intervening elements,
and McCoy et al. (2018) found that RNNs learn
the hierarchical rules of English auxiliary inver-
sion. In this paper, we broaden and deepen this line
of inquiry by examining what LSTMs learn about
an unexplored syntactic relationship: the filler–gap
dependency. The filler–gap dependency is novel,
insofar as learning it requires the network to gen-
eralize about the absence of material.

For our purposes, filler–gap dependency refers
to a relationship between a filler, which is a wh-
complementizer such as ‘what’ or ‘who’, and a
gap, which is an empty syntactic position licensed
by the filler. In example (1a), the filler is ‘what’
and the gap appears after ‘devoured’, indicated
with underscores. If the filler were not present, the
gap would be ungrammatical, as in (1b).

(1) a. I know what the lion devoured at sunrise.
b.*I know that the lion devoured at sunrise.

There is also a semantic relationship between the
filler and the gap, in the sense that “what” is se-
mantically the direct object of “devoured”. In this
work, we study the behavior of language models,
and so we treat the filler–gap dependency purely
as a licensing relationship.

Elman (1991) found that simple distributed
models have some success predicting post-verbal
gaps in sentences containing object-extracted rel-
ative clauses. However, correct representation
of filler–gap dependencies and the constraints
on them has proven challenging even in hand-
engineered symbolic models. Furthermore, they
are subject to numerous complex island con-
straints (Ross, 1967). Because of their complex-
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ity and ubiquity, these dependencies have fig-
ured prominently in arguments that natural lan-
guage would be unlearnable by children without
a great deal of innate knowledge (Phillips, 2013)
(cf. Pearl and Sprouse, 2013; Ellefson and Chris-
tiansen, 2000)

The remainder of the paper is structured as fol-
lows. Section 2 presents our methods in more
detail. Section 3 gives evidence that LSTM lan-
guage models represent the basic filler–gap depen-
dency in multiple syntactic positions despite in-
tervening material. Section 4 investigates whether
LSTM language models are sensitive to various
constraints: wh-islands, adjunct islands, complex
NP islands, and subject islands. We find that the
language models are sensitive to some but not all
of these constraints. Section 5 concludes.

2 Methods

2.1 Language models
We study the behavior of two pre-existing LSTMs
trained on a language modeling objective over En-
glish text. Our first model is presented in Jozefow-
icz et al. (2016) under the name BIG LSTM+CNN
Inputs; we call it the Google model. It was trained
on the One Billion Word Benchmark (Chelba
et al., 2013) and has two hidden layers with 8196
units each. It uses the output of a character-level
Convolutional Neural Network (CNN) as input to
the LSTM. This model has the best published per-
plexity for English text. Our second model is the
one presented in the supplementary materials of
Gulordava et al. (2018), which we call the Gulor-
dava model. Trained on 90 million tokens of En-
glish Wikipedia, it has two hidden layers of 650
units each. Our goal in using these models is to
provide two samples of the state-of-the-art. As a
baseline, we also study an n-gram model trained
on the One Billion Word Benchmark (a 5-gram
model with modified Kneser-Ney interpolation,
fit by KenLM with default parameters) (Heafield
et al., 2013).

2.2 Dependent variable: Surprisal
We investigate RNN behavior primarily by study-
ing the surprisal values that an RNN assigns to
words and sentences. Surprisal is log inverse prob-
ability:

S(xi) =− log2 p(xi|hi−1),

where xi is the current word or character, hi−1 is
the RNN’s hidden state before consuming xi, and

the probability is calculated from the RNN’s soft-
max activation. The logarithm is taken in base 2,
so that surprisal is measured in bits.

The degree of surprisal for a word or sentence
tells us the extent to which that word or sentence
is unexpected under the language model’s proba-
bility distribution. It is known to correlate directly
with human sentence processing difficulty (Hale,
2001; Levy, 2008; Smith and Levy, 2013). In this
paper, we look for cases where the surprisal asso-
ciated with an an unusual construction—such as a
gap—is ameliorated by the presence of a licensor,
such as a wh-word. If the models learn that syn-
tactic gaps require licensing, then sentences with
licensors should exhibit lower surprisal than mini-
mally different pairs that lack a proper licensor.

2.3 Experimental design
We test whether the LSTM language models have
learned filler–gap dependencies by looking for a
2x2 interaction between the presence of a gap and
the presence of a wh-licensor. This interaction in-
dicates the extent to which a wh-licensor reduces
the surprisal associated with a gap, so we call
it the wh-licensing interaction. In studying con-
straints on filler–gap dependencies, we look for
interactions between the wh-licensing interaction
and other factors: for example, whether the wh-
licensing interaction decreases when a gap is in a
syntactic island position as opposed to a syntacti-
cally licit position (Section 4).

We use experimental items where the gap is lo-
cated in an obligatory argument position, e.g. in
subject position or as the direct object of a tran-
sitive verb, as judged by the authors. The phrase
with the gap is embedded inside a complement
clause. We chose this paradigm over bare wh-
questions because it eliminates do-support and
tense manipulation of the main verb, resulting in
higher similarity across conditions. Each item ap-
pears in four conditions, reflecting a 2× 2 exper-
imental design manipulating presence of a wh-
licensor and presence of a gap. For example:1

(2) a. I know that the lion devoured a gazelle at
sunrise. [no wh-licensor, no gap]

b.*I know what the lion devoured a gazelle at
sunrise. [wh-licensor, no gap]

c.*I know that the lion devoured at sunrise.
[no wh-licensor, gap]

1We indicate the gap position with underscores for expos-
itory purposes, but these underscores were not included in
experimental items.
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d. I know what the lion devoured at sunrise.
[wh-licensor, gap]

We measure surprisal in two places: at the word
immediately following a (filled) gap and summed
over the whole region from the gap to the end
of the embedded clause. We look at immediate-
word surprisal because a gap’s licitness should
have local effects on network expectation. We look
at whole-region surprisal because the presence of
a filler also changes expectations about overall
well-formedness of the sentence—a global phe-
nomenon. Until the final punctuation is reached
in (2b) there are potential gap-containing contin-
uations that render the sentence syntactically licit
(e.g. ‘with .’). Therefore, we might expect no
large spike in surprisal at any one point, but small
increases in surprisal when the network encoun-
ters filled argument-structure roles and at the end
of the sentence. Measuring summed surprisal cap-
tures these distributed, global effects.

If the network is learning the licensing rela-
tionship between fillers and gaps then two things
should be true: First, if a wh-licensor sets up
a global expectation for the presence of a gap,
then in sentences containing a wh-licensor but no
gap we expect higher surprisal in syntactic po-
sitions where a gap is likely to occur resulting
in higher summed surprisal. That is, S((2b))−
S((2a)) should be a large positive number. Sec-
ond, the presence of a gap in the absence of a wh-
licensor should also result in higher surprisal than
when the wh-licensor is present, that is S((2d))−
S((2c)) should be a large negative number. Given
the four sentences in (2), the full wh-licensing
interaction is: (S(2b) - S(2a)) - (S(2d) - S(2c))
This represents how well the network learns both
parts of the licensing relationship. A positive wh-
licensing interaction means the model represents
a filler-gap dependency between the wh-word and
the gap site; a licensing interaction indistinguish-
able from zero indicates no such dependency. For
the purposes of brevity, we will give examples that
mirror item (2d), above, but items of type (2a)–
(2c) were also constructed in order to calculate the
full licensing interaction.

Following standard practice in psycholinguis-
tics, we derive the statistical significance of the
interaction from a mixed-effects linear regression
model predicting surprisal given sum-coded con-
ditions (Baayen et al., 2008). We include random
intercepts by item; random slopes are not neces-

sary because we do not have repeated observations
within items and conditions (Barr et al., 2013). In
our figures, error bars represent 95% confidence
intervals of the contrasts between conditions, com-
puted by subtracting out the by-item means before
calculating the intervals as advocated in Masson
and Loftus (2003). 2

Although our method can indicate whether
there is a link between fillers and gaps, the rela-
tionship between language model probability and
grammaticality is complex (Lau et al., 2017) and
interpreting our patterns in terms of grammatical-
ity judgments would require auxiliary assumptions
that we don’t pursue here. To be clear: our goal
is to investigate whether RNNs model the proba-
bilistic dependencies between fillers and gaps at
all, not whether the outputs of such models can be
used to classify sentences as ‘grammatical’ or not.

3 Representation of filler–gap
dependencies

The filler–gap dependency has three basic char-
acteristics. First, the relationship is flexible: wh-
phrases can license gaps in diverse syntactic po-
sitions. Second, the relationship is robust to in-
tervening material: syntactic position, not linear
distance, determines grammaticality. Third, the re-
lationship is one-to-one: except in certain special
cases, one wh-phrase licenses one gap. In this sec-
tion, we demonstrate that the RNNs have learned
these three properties of filler–gap dependencies
by comparing their performance to a simple n-
gram baseline model.

3.1 Flexibility of Wh-Licensing

If the RNN has learned the flexibility of the filler–
gap dependency, then we predict to find a wh-
licensing interaction when the gap appears in sub-
ject, object, and indirect object positions:
(3) a. I know who showed the presentation to

the visitors yesterday. [subj]
b. I know what the businessman showed to

the visitors yesterday. [obj]
c. I know who the businessman showed the

presentation to yesterday. [pp]
To test the flexibility of the model’s filler–gap de-
pendency representation, we created 21 test items
containing either an obligatorily ditransitive verb,

2Our studies were preregistered on aspredicted.org:
To see the preregistrations go to aspredicted.org/X.pdf
where X ∈ {md5ax,hd2df,mp9dv,uu8b5,rj2sk}.
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or a transitive verb with an obligatorily argument-
taking preposition, as in (3). The obligatoriness of
verb and preposition transitivity was judged by the
authors. To control for the infrequent wh-licensor–
verb bigram when the gap is in subject position,
in all cases the embedded clause was separated
from the wh-phrase by either an adverbial (e.g.
“despite protocol”) or by words introducing a sec-
ondary embedded clause (e.g. “my brother said”).
For each item, we created three variants: subj, obj,
and pp, corresponding to the items in Example (3).

The top row of Figure 1 demonstrates how the
wh-licensing interaction was calculated for this
experiment. The two panels at left show the main
effect of wh-licensing, with surprisal in post-gap
material shown in (a) and summed whole-clause
surprisal in (b). The red bars indicate the effect of a
wh-licensor on surprisal in the non-gapped condi-
tion, or S(2b)–S(2a), to use the example from 2.3.
The blue bars show the effect of a wh-licensor on
surprisal in the gapped conditions, or S(2d)–S(2c),
to use the same example. The difference between
the red bars and the blue bars in each condition is
the licensing interaction, which is shown directly
in (c) and (d). Not pictured are results from the
n-gram baseline model, which yielded exactly 0
licensing interaction in all positions.

The bottom row of Figure 1 shows a region-by-
region visualization of wh-licensing interaction.
Region-by-region behavior is consistent across
conditions: The licensing interaction spikes in the
immediate post-gap material and returns to near
zero levels for the rest of the sentence. The height
of the licensing ‘spike’ in each condition is equiv-
alent to the size of the wh-licensing interaction
in (c), and the difference between the bars in
(a). Meanwhile, the area under the ‘wh-licensing
curve’ is equivalent to the summed wh-licensing
interaction shown in (d) and the difference be-
tween the bars in (b). All of these wh-licensing in-
teractions are significant (p < 0.001 in all cases).

This experiment was designed to test whether li-
censing interaction exists in multiple syntactic po-
sitions, which we turn to now. In the post-gap ma-
terial, there is no significant difference in licensing
interaction between conditions. But when we sum
wh-licensing interaction across the entire embed-
ded clause model behavior does diverge. For the
Gulordava model, there is no significant difference
between the three variants. For the Google model
there is a significant reduction in licensing effect

between the subj and obj variants (p < 0.01) and
the subj and pp variants (p < 0.001). The stronger
licensing effects for subject gaps indicates that the
networks have a stronger expectation for gaps in
this position. This matches human online process-
ing results, in so far as gap expectation may be
one reason why subject-extracted clauses are eas-
ier to process than other clauses (King and Just,
1991). Overall, these experiments provide strong
evidence that both models are learning the filler–
gap dependency. Furthermore, both RNN models
are learning the flexibility of the dependency, as
they exhibit similar wh-licensing effects for all
three argument roles tested.

3.2 Robustness of Wh-Licensing to
Intervening Material

All syntactic dependencies are robust to interven-
ing material. In (4), the dependency is determined
by the syntactic relationship between the comple-
mentizer ‘what’ and the position of the gap; mod-
ifying the subject doesn’t change the relationship,
and thus has no effect on filler–gap licensing:

(4) a. I know what your friend gave to Sam dur-
ing the picnic yesterday.

b. I know what your new friend from the south
of France who only just arrived last week
gave to Sam during the picnic yesterday.

Having shown previously that RNNs have expec-
tations for filler–gap dependencies, in this sec-
tion we ask how well they are able to maintain
those expectations over intervening material. We
designed 21 sentences, like those in (4), with an
obligatorily transitive verb and either an indirect
object or a PP modifier. For each sentence we
produced four variants, a short-modified version
with 3-5 extra intervening words between the wh-
licensor and the gap site, a medium version with
6-8 additional words and a long version, with 8-
12 additional words. In all cases the extra mate-
rial modified the subject of the embedded clause.
For each length gradation we produced two fur-
ther variants: one in which the direct object was
extracted (obj, as in (4)) and one variant in which
the indirect object or prepositional object was ex-
tracted (goal, where ‘Sam’ is in (4)). For each
variant, we measured the wh-licensing interaction
in the post-gap material and across the embedded
clause. Treating the number of intervening words
as a continuous variable, we calculated the corre-
lation between the length of the intervener and the
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Figure 1: Wh-licensing by syntactic position. Charts (a) and (b) show the effect of wh-licensors on surprisal; (c) and
(d) show the wh-licensing interaction by syntactic position. The difference between the non-gapped and gapped
conditions (red and blue bars) in (a) and (b) correspond to the total licensing interaction, or the height of the bars
in (c) and (d). The bottom chart displays wh-licensing interaction summed across all words within each region.

strength of the wh-licensing interaction. Optimally
we would find zero correlation; a negative correla-
tion indicates that the strength of the interaction
decays with increasing intervening words.

Results of this study can be seen in Figure 2.
First, as a baseline, across the eight experiments
shown below, the average number of positive li-
censing interaction measurements was 86.4%. The
vast majority of the time, the presence of both a
filler and a gap reduced surprisal superadditively,
producing a positive licensing interaction. Moving
on to the effect of intervener length itself: For the
Google model, intervener length was not a signif-
icant predictor of wh-licensing interaction in any
of the conditions. For the Gulordava model, in-
tervener length was not a significant predictor of
wh-licensing interaction size when measurements
were taken across the entire embedded clause. But
length did correlate with wh-licensing interaction
size when measured in the post-gap material for
the object position (β = 0.0289, p = 0.0219) and
goal position (β = 0.0047, p = 0.0432). These ex-
tremely small effect sizes, combined with the oth-
erwise mixed results from both models, indicate

that interveners do not consistently attenuate the
size of the licensing interaction.

While inconsistent with the formal linguistic lit-
erature on filler–gap dependencies, the negative
values of all but one of the correlations are con-
sistent with known effects in human sentence pro-
cessing, where increasing distance between fillers
and gaps usually causes processing slowdown
(Grodner and Gibson, 2005; Bartek et al., 2011).
In the n-gram baseline, all licensing effects are ex-
actly zero, indicating the n-gram model has no rep-
resentation of the filler–gap dependency.

3.3 Multiple Gaps

Except for a few special cases, such as with across-
the-board (ATB) movement and parasitic gaps, a
one-to-one relationship must be maintained be-
tween the wh-phrase and the gap it licenses. The
presence of two gaps in (5c) violates this one-to-
one relationship, accounting for its relative bad-
ness compared to (5a) and (5b).

(5) a. I know what the lion devoured at sunrise.
b. I know what devoured a mouse at sunrise.
c.*I know what devoured at sunrise.
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Figure 2: Wh-licensing interaction as a function of in-
tervener length. Zero is marked with a red line.

To test whether RNNs have learned this one-to-
one feature of wh-licensing, we created 21 items
all with gaps in object position like those in (5),
with two variants: one without a subject gap like
(5a) (no-subj-gap) and one with a subject gap, as
in (5c) (subj-gap). We took special care to use only
obligatorily transitive verbs. Half of the test items
contained ‘what’ and half ‘who’ as wh-licensors.
We measured the wh-licensing interaction for the
two RNN models and the n-gram model, in both
the post-gap PP and across the embedded phrase.

Figure 3 shows the results of this experiment.
First, the relatively high bars in the grammati-
cal no-subject-gap condition is another example
of the RNN learning the filler–gap dependency;
the n-gram baseline (not shown) exhibits no wh-
licensing interaction under this condition. For the
two LSTMs, the presence of an upstream gap in-
creases surprisal in the target region, resulting in
a significantly lower licensing effect across the
board (p < 0.001 in all conditions). Meanwhile,
the presence of a gap in the baseline condition re-
sults in no significant change in wh-licensing in-
teraction. Overall these experiments demonstrate
that the LSTMs have learned the last of the three
main filler–gap dependency characteristics, and—
for the typical object position—expect wh-phrases
to be paired with only one gap.

4 Syntactic islands

Even though the filler–gap dependency is flexible
and potentially unbounded, it is not entirely un-
constrained. Ross (1967) identified five syntactic
positions in which gaps are illicit, dubbing them
syntactic islands. It remains an open question
whether these “island constraints” are true gram-
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Figure 3: Wh-Licensing Interaction as a function of
Double Gapping: Singly-gapped sentences are shown
in red, doubly-gapped sentences in blue. Prepositional
Phrases following the gap constitute post-gap material.

matical constraints, or whether they are effects of
processing difficulty or discourse-structural fac-
tors (Ambridge and Goldberg, 2008; Hofmeister
and Sag, 2010; Sprouse and Hornstein, 2014).

In the following experiments, we examine
whether RNN language models have learned con-
straints on filler–gap dependencies by comparing
the wh-licensing interaction in non-islands to that
within islands. The strongest evidence for an is-
land constraint would be if the wh-licensing in-
teraction goes to zero for a gap in island posi-
tion, implying that, in the distribution over strings
implied by the network, the appearance of a wh-
licensor is totally unrelated to the appearance of a
gap in the island position. More generally, we can
look for a weakened wh-licensing interaction for
island vs. non-island positions, which would mean
that the network believes a relationship between
the wh-licensor and the island gap is less likely.
A positive but nonzero wh-licensing interaction
would be in line with human acceptability judg-
ments, which do not always categorically rule out
gaps in island positions (Ambridge and Goldberg,
2008), and with human online processing experi-
ments, which have shown that gap expectation is
attenuated during processing of areas where gaps
cannot occur licitly, but does not always disap-
pear entirely (Stowe, 1986; Traxler and Pickering,
1996; Phillips, 2006). Therefore, in this section we
take a significant reduction in the island relative to
the non-island case to constitute evidence that the
model has ‘learned’ the constraint.

4.1 Wh-Island Constraint

A gap cannot appear inside doubly nested
clauses headed by wh-complementizers. This phe-
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nomenon is called the Wh-Island Constraint
(WHC). (6) gives three sentences that demonstrate
this phenomenon. As these three sentence vari-
ants will serve as the basis for our experiment
we give each variant a condition name, on the
top, and a brief description below. We will use
this three-row expository technique—name, ex-
ample, description—for each of the island condi-
tions tested in this section and use condition names
to label graphs and figures.

(6) a.

null-comp
I know what Alex said your friend devoured at
the party.
Extraction from the object position of an embedded
clause with a null complementizer. No island viola-
tions.

b.

that-comp
I know what Alex said that your friend devoured

at the party.
Extraction from an embedded clause headed with
the complementizer “that.” No island violations.

c.

wh-comp
*I know what Alex said whether your friend de-
voured at the party.
Extraction from an embedded clause headed with
the complementizer “whether.” WHC violation.

To test whether our LSTM language models have
learned this constraint, we constructed 24 items
following the conditions in (6). We measured the
wh-licensing interactions at the sentence final PP,
as well as across the entire embedded clause for
both conditions.

Figure 4 shows the wh-licensing interaction
for both LSTMs, with non-island conditions in
red and green and island conditions in blue. In
all conditions, extraction out of a wh-island re-
sulted in a significantly lower licensing interac-
tion than extraction out of a null-headed embed-
ded clause (p < 0.01). For the Google model, ex-
traction out of an island resulted in significantly
lower wh-licensing interaction than extraction out
of a that-headed embedded clause (p < 0.001),
and while the Gulordava model showed similar
behavior, none of the reductions were significant
(p= 0.071 for the post gap material and p= 0.052
for the whole clause measurement). In all cases
there was no significant difference between extrac-
tion out of the two non-island conditions, except
for in the Gulordava model whole-clause condi-
tion, where licensing interaction for the that-comp
condition was significantly lower than the null-
comp condition (p < 0.001). These results indi-
cate that the Google model has learned the wh-
island constraint insofar as it has relatively sim-
ilar expectations for extraction from null-headed

google gulordava

nu
ll−

co
m

p

th
at

−c
om

p

w
h−

co
m

p

nu
ll−

co
m

p

th
at

−c
om

p

w
h−

co
m

p

0

1

2

3

4

Presence of wh−complementizer

L
ic

e
n
s
in

g
 I
n
te

ra
c
ti
o
n
, 
P

o
s
t−

G
a
p
 M

a
te

ri
a
l

Post−Gap Material

google gulordava

nu
ll−

co
m

p

w
h−

co
m

p

th
at

−c
om

p

nu
ll−

co
m

p

w
h−

co
m

p

th
at

−c
om

p

0.0

2.5

5.0

7.5

10.0

Presence of wh−complementizer

L
ic

e
n
s
in

g
 I
n
te

ra
c
ti
o
n
, 
W

h
o
le

 C
la

u
s
e

Entire Clause

Figure 4: Effect of embedded clause complementizer
on wh-licensing interaction. Post-gap material effect is
in the left panel, whole-clause effect on the right panel.

and that-headed clauses, which differ from from
its expectations about wh-headed clauses. The Gu-
lordava model has learned wh-islands, but gradi-
ently, treating that-headed embedded clauses as a
semi-island condition.

4.2 Adjunct Island Constraint
Gaps cannot be licensed in an adjunct clause, as
demonstrated by the relative unacceptability of
(7b) and (7c), compared to (7a). We will refer to
this constraint as the Adjunct Constraint (AC).

(7) a.

object
I know what the librarian in the dark blue
glasses placed on the wrong shelf.
Material is extracted from the object position of the
embedded verb. No island violations.

b.

adjunct-back
*I know what the patron got mad after the li-
brarian placed on the wrong shelf.
Material is moved from the object position of an
embedded sentential adjunct. AC violation.

c.

adjunct-front
*I know what, after the librarian placed on the
wrong shelf, the patron got mad.
Material is moved from an embedded sentential ad-
junct that has been fronted to before the main verb
of the embedded clause. AC violation.

To test whether RNNs were sensitive to the AC
we devised 20 items following the variants in (7).
Filler material was added to the object condition
to control for sentence length across variants. We
used three different prepositions to construct tem-
poral adjuncts: ‘while’, ‘after’ and ‘before’. We
measured the wh-licensing interaction in the post-
gap PP and across the entire embedded clause.

Figure 5 shows the wh-licensing interaction for
both models. For the Google model there is a sig-
nificant (p < 0.001) reduction in wh-licensing in-
teraction between the object condition and the two
adjunct conditions when measurement is taken in
the post-gap material. The difference in licensing
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Figure 5: Effect of extraction site on wh-licensing in-
teraction for adjunct islands. Post-gap material effect is
in the left panel, whole-clause effect on the right panel.

is also significant when measurements are taken
across the embedded clause (p < 0.05 for the ob-
ject–adj-front difference and p < 0.01 for the ob-
ject–adj-back difference). The Gulordava model
shows similar results. In the post gap material,
there is a significant difference when wh-licensing
interaction is measured in the post-gap material
(p < 0.05 for the object–adj-front difference; p <
0.01 for the object–adj-back difference). Results
are also significant when the whole embedded
clause is measured (p< 0.01 for both differences).
To sum up: In all cases, the placement of a gap
within an adjunct results in a significantly lower
licensing interaction. This difference in licensing
interaction suggests that the models have learned
the AC inasmuch as they have attenuated expecta-
tions for wh-licensing within sentential adjuncts.

4.3 Complex NP and Subject Islands

The Complex NP Constraint (CNPC) holds that
a gap cannot be hosted in a sentential clause dom-
inated by a noun phrase with a lexical head noun.
This constraint accounts for the unacceptability of
(8b), (8c), (8f) and (8g) below. The CNPC does
not apply to other NP modifiers, such as PPs, un-
less the modified NP occurs in subject position
(Huang, 1982). This ban, called the Subject Con-
straint (SC), accounts for the unacceptability of
(8h) compared to (8d).

(8) a.
object
I know what the family bought last year.
Extraction of embedded clause object.

b.

that-rc/obj
*I know who the family bought the painting that
depicted last year.
Extraction from ‘that’-headed relative clause modi-
fying embedded object. CNPC violation.
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Figure 6: Effect of extraction site location in complex
np islands on wh-licensing interaction, measurement
taken across the whole embedded clause. Object po-
sition is at left, subject position at right.

c.

wh-rc/obj
*I know who the family bought the painting
which depicted last year.
Extraction from ‘wh’-headed relative clause modi-
fying embedded object. CNPC violation

d.

prep/obj
I know who the family bought the painting by
last year.
Extraction from PP attached to embedded object.

e.
subject
I know what fetched a high price at auction.
Extraction of embedded clause subject.

f.

that-rc/subj
*I know who the painting that depicted
fetched a high price at auction.
Extraction from ‘that’-headed relative clause modi-
fying embedded subject. CNPC violation

g.

wh-rc/subj
*I know who the painting which depicted
fetched a high price at auction.
Extraction from ‘wh’-headed relative clause modi-
fying embedded subject. CNPC violation.

h.

prep/subj
*I know who the painting by fetched a high
price at auction.
Extraction from PP attached to embedded subject.
SC violation.

To test whether RNNs were sensitive to the CNPC
and SC, we constructed 21 items for the vari-
ants shown in (8), which resulted in 8 conditions.
For prep/obj and prep/subj special care was taken
to use prepositions that unambiguously attach to
the object and subject NP, respectively. As post
gap material varied between variants, only whole-
clause wh-licensing interaction measurement is
given for this experiment.

Results for object variants can be seen in the
left panel of Figure 6, and results for the sub-
ject variants on the right. In all cases the com-
paratively large licensing interaction in non-island
conditions (object and subject) shrinks when the
extracted material occurs inside a complex NP
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(the middle bars in each chart). For the Google
model the difference is significant for both CNP
islands when extraction occurs in object position
(p < 0.001). For subject position, the difference is
significant when the RC is headed by a wh-word
(wh-rc/subj) (p < 0.05), but there is no significant
difference when the RC is headed by ‘that’, as in
wh-that/subj. For the Gulordava model, both dif-
ferences are significant in subject (p < 0.05) and
object position (p < 0.01). Of the eight compar-
isons in 6 between CNPC islands and their non-
island counterparts, seven show significant reduc-
tion in wh-licensing interaction. These differences
indicate that both LSTMs do not generally expect
extraction to occur from within complex NPs.

However, the LSTMs demonstrate divergent li-
censing behavior when extraction occurs from out
of a prepositional phrase. If the models were learn-
ing the SC, we would expect no significant dif-
ference between object and prep/obj, but a island-
like reduction in licensing interaction between the
subject and prep/subj conditions. However, for the
Google model there is no significant difference
in licensing interaction in any condition, and for
the Gulordava model the difference is significant
(p < 0.05) in all cases. These results demonstrate
that neither model has learned the subject con-
straint, categorizing PPs as either licit extraction
domains in all positions (the Google model) or
treating them like islands (the Gulordava model).

5 Conclusion

We have provided evidence that state-of-the-art
LSTM language models have learned to repre-
sent filler–gap dependencies and some of the con-
straints on them. These results capture the bi-
directional nature of the dependency, due to the
fact that our measure—wh-licensing interaction—
measures both the salutary effect of a gap given the
presence of an upstream filler, as well as the salu-
tary effect of a filler given a gap. We found strong
licensing effects in both subject, object and indi-
rect object locations, as well as an expectation that
the filler–gap relationship was one-to-one and rel-
atively unaffected by grammatically-irrelevant in-
terveners. The models also learned constraints on
the dependency, insofar as licensing effect shrank
when gaps were located in wh-islands, adjunct
islands and most complex NP islands, although
the subject constraint was not clearly learned and
some trace licensing interaction remained.

While the Google model was trained on ten
times more data, contained ten times as many
hidden units and uses character CNN embed-
dings, its performance was not qualitatively more
human-like than the Gulordava model. Both mod-
els failed to correctly generalize island constraints
in two conditions: The Google model failed to
learn that-headed Complex-NP Islands, the Gulor-
dava model to learn Wh-Islands, and both failed to
learn Subject Islands. These results indicate that—
beyond a certain point—increased model size and
training regimen give diminishing returns.

In other recent work, Chowdhury and Zampar-
elli (2018) tested the ability of neural networks
to separate grammatical from ungrammatical ex-
tractions using similar metrics to ours, finding that
their neural networks do not represent the un-
boundedness of filler–gap dependencies nor cer-
tain strong island constraints. We believe the dif-
ference between our results and theirs is due to
experimental design: They choose to measure the
probability of the question mark punctuation as a
proxy for the RNNs gap expectation, and use sen-
tence schemata instead of hand-engineered exper-
imental items. While Chowdhury and Zamparelli
(2018) conclude that the networks are not learn-
ing island-like constraints, but rather displaying
sensitivity to syntactic complexity plus order, we
demonstrate island-like effects where both the is-
land and the non-island item are equally complex
(in e.g. wh-islands). Note also that our work is fo-
cused on finding evidence that networks represent
the probabilistic contingencies implied by island
constraints, without attempting to directly model
grammaticality judgments.

Our work shows these dependencies and their
constraints can be learned to some extent by a
generic sequence model with no obvious inductive
bias for hierarchical structures. This is evidence
against the idea that such an inductive bias is nec-
essary for language learning, although the amount
of data these models are trained on is much larger
than the typical input to a child learner.
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Abstract

In this paper, we attempt to link the inner
workings of a neural language model to lin-
guistic theory, focusing on a complex phe-
nomenon well discussed in formal linguis-
tics: (negative) polarity items. We briefly dis-
cuss the leading hypotheses about the licens-
ing contexts that allow negative polarity items
and evaluate to what extent a neural language
model has the ability to correctly process a
subset of such constructions. We show that the
model finds a relation between the licensing
context and the negative polarity item and ap-
pears to be aware of the scope of this context,
which we extract from a parse tree of the sen-
tence. With this research, we hope to pave the
way for other studies linking formal linguistics
to deep learning.

1 Introduction

In the past decade, we have seen a surge in the de-
velopment of neural language models (LMs). As
they are more capable of detecting long distance
dependencies than traditional n-gram models, they
serve as a stronger model for natural language.
However, it is unclear what kind of properties of
language these models encode. This does not only
hinder further progress in the development of new
models, but also prevents us from using models
as explanatory models and relating them to formal
linguistic knowledge of natural language, an as-
pect we are particularly interested in in the current
paper.

Recently, there has been an increasing interest
in investigating what kind of linguistic informa-
tion is represented by neural models, (see, e.g.,
Conneau et al., 2018; Linzen et al., 2016; Tran
et al., 2018), with a strong focus on their syntac-
tic abilities. In particular, (Gulordava et al., 2018)
used the ability of neural LMs to detect noun-verb
congruence pairs as a proxy for their awareness of

syntactic structure, yielding promising results. In
this paper, we follow up on this research by study-
ing a phenomenon that has received much atten-
tion by linguists and for which the model requires
– besides knowledge of syntactic structure – also a
semantic understanding of the sentence: negative
polarity items (NPIs).

In short, NPIs are a class of words that bear the
special feature that they need to be licensed by a
specific licensing context (LC) (a more elaborate
linguistic account of NPIs can be found in the next
section). A common example of an NPI and LC
in English are any and not, respectively: The sen-
tence He didn’t buy any books is correct, whereas
He did buy any books is not. To properly process
an NPI construction, a language model must be
able to detect a relationship between a licensing
context and an NPI.

Following Linzen et al. (2016); Gulordava et al.
(2018), we devise several tasks to assess whether
neural LMs (focusing in particular on LSTMs) can
handle NPI constructions, and obtain initial posi-
tive results. Additionally, we use diagnostic clas-
sifiers (Hupkes et al., 2018) to increase our insight
in how NPIs are processed by neural LMs, where
we look in particular at their understanding of the
scope of an LCs, an aspect which is also relevant
for many other natural language related phenom-
ena.

We obtain positive results focusing on a subset
of NPIs that is easily extractable from a parsed cor-
pus but also argue that a more extensive investiga-
tion is needed to get a complete view on how NPIs
– whose distribution is highly diverse – are pro-
cessed by neural LMs. With this research and the
methods presented in this paper, we hope to pave
the way for other studies linking neural language
models to linguistic theory.

In the next section, we will first briefly discuss
NPIs from a linguistic perspective. Then, in Sec-
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tion 3, we provide the setup of our experiments
and describe how we extracted NPI sentences from
a parsed corpus. In Section 4 we describe the
setup and results of an experiment in which we
compare the grammaticality of NPI sentences with
and without a licensing context, using the prob-
abilities assigned by the LM. Our second experi-
ment is outlined in Section 5, in which we describe
a method for scope detection on the basis of the
intermediate sentence embeddings. We conclude
our findings in Section 6.

2 Negative Polarity Items

NPIs are a complex yet very common linguis-
tic phenomenon, reported to be found in at least
40 different languages (Haspelmath, 1997). The
complexity of NPIs lies mostly in the highly id-
iosyncratic nature of the different types of items
and licensing contexts. Commonly, NPIs occur in
contexts that are related to negation and modali-
ties, but they can also appear in imperatives, ques-
tions and other types of contexts and sentences.
This broad range of context types makes it chal-
lenging to find a common feature of these con-
texts, and no overarching theory that describes
when NPIs can or cannot occur yet exists (Barker,
2018). In this section, we provide a brief overview
of several hypotheses about the different contexts
in which NPIs can occur, as well as examples
that illustrate that none of these theories are com-
plete in their own regard. An extensive description
of these theories can be found in (Giannakidou,
2008), (Hoeksema, 2012), and (Barker, 2018),
from which most of the example sentences were
taken. These sentences are also collected in Table
1.

Entailment A downward entailing context is a
context that licenses entailment to a subset of the
initial clause. For example, Every is downward
entailing, as Every [ student ] left entails that Ev-
ery [ tall student ] left. In (Ladusaw, 1980), it is
hypothesized that NPIs are licensed by downward
entailing contexts. Rewriting the previous exam-
ple to Every [ student with any sense ] left yields
a valid expression, contrary to the same sentence
with the upward entailing context some: Some
[student with any sense ] left. An example of a
non-downward entailing context that is a valid NPI
licensor is most.

Non-veridicality A context is non-veridical
when the truth value of a proposition (veridical-
ity) that occurs inside its scope cannot be inferred.
An example is the word doubt: the sentence Ann
doubts that Bill ate some fish does not entail Bill
ate some fish. (Giannakidou, 1994) hypothesizes
that NPIs are licensed only in non-veridical con-
texts, which correctly predicts that doubt is a valid
licensing context: Ann doubts that Bill ate any
fish. A counterexample to this hypothesis is the
context that is raised by the veridical operator
only: Only Bob ate fish entails Bob ate fish, but
also licenses Only Bob ate any fish (Barker, 2018).

2.1 Related constructions

Two grammatical constructions that are closely re-
lated to NPIs are Free Choice Items (FCIs) and
Positive Polarity Items (PPIs).

Free Choice Items FCIs inhibit a property
called freedom of choice (Vendler, 1967), and are
licensed in contexts of generic or habitual sen-
tences and modal verbs. An example of such a
construction is the generic sentence Any cat hunts
mice, in which any is an FCI. Note that any in this
case is not licensed by negation, modality, or any
of the other licensing contexts for NPIs. English
is one of several languages in which a word can be
both an FCI and NPI, such as the most common
example any. Although this research does not fo-
cus on FCIs, it is important to note that the some-
what similar distributions of NPIs and FCIs can
severely complicate the diagnosis whether we are
dealing with an NPI or an FCI.

Positive Polarity Items PPIs are a class of
words that are thought to bear the property
of scoping above negation (Giannakidou, 2008).
Similar to NPIs their contexts are highly idiosyn-
cratic, and the exact nature of their distribution is
hard to define. PPIs need to be situated in a veridi-
cal (often affirmative) context, and can therefore
be considered a counterpart to the class of NPIs. A
common example of a PPI is some, and the varia-
tions thereon. It is shown in (Giannakidou, 2008)
that there exist multiple interpretations of some,
influenced by its intonation. The emphatic variant
is considered to be a PPI that scopes above nega-
tion, while the non-emphatic some is interpreted
as a regular indefinite article (such as a).
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Context type
1. Every [ student with any sense ] left Downward entailing
2. Ann doubts that [ Bill ever ate any fish ] Non-veridical
3. I don’t [ have any potatoes ] Downward entailing
4. [ Did you see anybody ] ? Questions

Table 1: Various example sentences containing NPI constructions. The licensing context scope is denoted by
square brackets, the NPI itself in boldface, and the licensing operator is underlined. In our experiments we focus
mostly on sentences that are similar to sentence 3.

3 Experimental Setup

Our experimental setup consists of 2 phases: first
we extract the relevant sentences and NPI con-
structions from a corpus, and then, after passing
the sentences through an LM, we apply several di-
agnostic tasks to them.

3.1 NPI extraction

For extraction we used the parsed Google Books
corpus (Michel et al., 2011).

We focus on the most common NPI pairs, in
which the NPI any (or any variation thereon) is li-
censed by a negative operator (not, n't, never, or
nobody), as they can reliably be extracted from
a parsed corpus. As variations of any we con-
sider anybody, anyone, anymore, anything, any-
time, and anywhere (7 in total including any).

We first identify candidate NPI-LC relations
looking only at the surface form of the sentence,
by selecting sentences that contain the appropriate
lexical items. We use this as a pre-filtering step
for our second method, in which we extract spe-
cific subtrees given the parse tree of the sentence.
We consider 6 different subtrees, that are shown in
Table 2.

An example of such a subtree that licenses an
NPI is the following:

VP

VP

· · · any · · ·

RB

not

VBD

did

which could, for instance, be a subtree of the parse
tree of Bill did not buy any books. In this subtree,
the scope of the licensor not encompasses the VP
of the sentence. We use this scope to pinpoint the
exact range in which an NPI can reside.

Once all NPI constructions have been extracted,
we are able to gain more insight in the distance

Figure 1: Distribution of distances between NPI and
licensing context. Note the log scale on the y-axis.

between the licensing operator and an NPI, which
we plot in Figure 1. Note the use of a log scale
on the y-axis: in the majority of the constructions
(47.2%) the LC and NPI are situated only 2 posi-
tions from each other.

3.2 Model

For all our experiments, we use a pretrained 2-
layer LSTM language model with 650 hidden
units made available by Gulordava et al. (2018).1

For all tests we used an average hidden final state
as initialization, which is computed by passing all
sentences in our corpus to the LM, and averaging
the hidden states that are returned at the end of
each sentence.

We use two different methods to assess the
LSTMs ability to handle NPI constructions, which
we will discuss in the next two sections: one that
is based on the probabilities that are returned by
the LM, and one based on its internal activations.

4 Sentence Grammaticality

In our first series of experiments, we focus on the
probabilities that are assigned by the model to dif-

1github.com/facebookresearch/
colorlessgreenRNNs/tree/master/data
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Construction # (% / corpus)
All corpus sentences 11.213.916
Containing any variation of any 301.836 (2.69%)
Licensed by negative operator 123.683 (1.10%)
Detected by subtree extractor 112.299 (1.00%)
1. (VP (VP RB [VP])) 70.017
He did n’t [ have any trouble going along ] .

2. (VP (MD RB [VP])) 27.698
I could not [ let anything happen to either of them ] .

3. (VP (VP RB [NP/PP/ADJP])) 8708
”There was n’t [ any doubt in his mind who was preeminent ] .”

4. (VP (NP RB [VP])) 3564
Those words never [ lead to anything good ] .

5. (S (RB [S/SBAR])) 1347
The trick is not [ to process any of the information I encounter ] .

6. (RB [NP/PP ADVP]) 930
There was not [ a trace of water anywhere ] .

Table 2: Various sentence constructions and their counts that were extracted from the corpus. Similar verb POS
tags are grouped under VP, except for modal verbs (MD). LC scope is denoted by square brackets.

ferent sequences. More specifically, we compare
the exponent of the normalized negative log prob-
ability (also referred to as perplexity) of different
sentences. The lower the perplexity score of a sen-
tence is, the better a model was able to predict its
tokens.

4.1 Rewriting sentences

While studying perplexity scores of individual
sentences is not very informative, comparing per-
plexity scores of similar sentences can provide in-
formation about which sentence is preferred by the
model. We exploit this by comparing the negative
polarity sentences in our corpus with an ungram-
matical counterpart, that is created by removing or
rewriting the licensing context.2

To account for the potential effect of rewriting
the sentence, we also consider the sentences that
originate from replacing the NPI in the original
and rewritten sentence with its positive counter-
part. In other words, we replace the variations of
any by those of some: anything becomes some-
thing, anywhere becomes somewhere, etc. We re-
fer to these 4 conditions with the terms NPIneg ,
NPIpos, PPIneg and PPIpos:

2Not and never are removed, nobody is rewritten to every-
body.

NPIneg : Bill did not buy any books
NPIpos: * Bill did buy any books
PPIneg : # Bill did not buy some books
PPIpos: Bill did buy some books

PPIneg would be correct when interpreting some
as indefinite article (non-emphatic some). In our
setup, NPIneg always refers to the original sen-
tence, as we always use a sentence containing an
NPI in a negative context as starting point. Of the
7 any variations, anymore is the only one without a
PPI counterpart, and these sentences are therefore
not considered for this comparison.

4.2 Comparing sentences

For all sentences, we compute the perplexity of the
original sentence, as well as the perplexity of the
3 rewritten versions of it. To discard any influence
that the removal of the licensing operator might
have on its continuation after the occurrence of the
NPI, we compute the perplexity of the sentence
up to and including the position of the NPI. I.e.,
in the example of Bill did not buy any books the
word books would not be taken into account when
computing the perplexity.

In addition to perplexity, we also consider the
conditional probabilities of the PPIs and NPIs,
given the preceding sentence.3 For example, for

3We also considered the SLOR score (Pauls and Klein,
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NPIneg we would then compute P(any | Bill did
not buy).

4.3 Expectations

We posit the following hypotheses about the out-
come of the experiments.

• PP (NPIneg) < PP (NPIpos): We expect
an NPI construction to have a lower perplex-
ity than the rewritten sentence in which the
licensing operator has been removed.

• PP (PPIpos) < PP (PPIneg): Similarly, we
expect a PPI to be preferred in the positive
counterpart of the sentence, in which no li-
censing operator occurs.

• PP (NPIneg) < PP (PPIneg): We expect
an NPI to be preferred to a PPI inside a nega-
tive context.

• PP (PPIpos) < PP (NPIpos): We expect
the opposite once the licensor for this context
has been removed.

4.4 Results

In Figure 2, we plot the distribution of the perplex-
ity scores for each sentence type. The perplexi-
ties of the original and rewritten sentence without
the NPI are indicated by SENneg and SENpos,
respectively. This figure shows that the original
sentences have the lowest perplexity, whereas the
NPIs in a positive context are deemed most im-
probable by the model.

More insightful we consider Figure 3, in which
we plot the distribution of the relative differences
of the perplexity scores and conditional proba-
bilities for each of the above mentioned compar-
isons, and we report the percentage of sentences
that complied with our hypotheses. The relative
difference between two values a and b, given by
(a − b)/((a + b)/2), neatly maps each value pair
in a window between -2 (a � b) and 2 (a � b),
thereby providing a better insight in the difference
between two arrays of scores. We highlight some
of the previously mentioned comparisons below.

2012), that was shown in (Lau et al., 2017) to have a strong
correlation with human grammaticality judgments. The SLOR
score can be seen as a perplexity score that is normalized by
the average unigram probability of the sentence. It turned
out, however, that this score had such a strong correlation
with the perplexity scores (Spearman’s ρ of -0.66, Kendall’s
τ of -0.54), that we omitted a further analysis of the outcome.

Figure 2: Distribution of perplexity scores for all the
sentences.

PP (NPIneg) < PP (NPIpos) From Figure 3 it
is clear that the model has a very strong prefer-
ence for NPIs to reside inside the negative scope,
an observation that is supported by both the per-
plexity and probability scores. While observable
in both plots, this preference is most clearly vis-
ible when considering conditional probabilities:
the high peak shows that the difference between
the probabilities is the most defined of all compar-
isons that we made.

PP (NPIneg) < PP (PPIneg) The model has a
strong preference for NPIs over PPIs inside neg-
ative scope, although this effect is slightly less
prevalent in the perplexity scores. This might be
partly due to the fact that there exist interpretations
for some inside negative scope that are correct (the
non-emphatic some, as described in Section 2).
When looking solely at the conditional probabili-
ties the preference becomes clearer, showing simi-
lar behavior to the difference betweenNPIneg and
NPIpos.

PP (NPIneg) < PP (PPIpos) The original sen-
tences with NPIs are strongly preferred over the
rewritten sentences with PPIs, which indicates that
the rewriting in general leads to less probable sen-
tences. This finding is confirmed by comparing
the perplexities of the original and rewritten sen-
tence without the NPI or PPI (dotted line in the left
plot in Figure 3): the original sentence containing
the licensing context has a lower perplexity than
the rewritten sentence in 92.7% of the cases. The
profile of the differences between the 2 sentences
is somewhat similar to the other comparisons in
which the negative context is preferred. Given that
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PERPLEXITY

< NPIpos PPIneg PPIpos
NPIneg 99.2% 88.7% 95.8%
NPIpos - 3.6% 17.3%
PPIneg - - 91.0%

P (w|c)
> NPIpos PPIneg PPIpos

NPIneg 99.3% 94.8% 93.4%
NPIpos - 34.0% 19.1%
PPIneg - - 30.1%

Figure 3: Results of perplexity and conditional probability tests. For perplexity a lower score is better, for proba-
bility a higher score is better. The plots denote the distribution of the relative differences between the scores of the
6 sentence pairs that are considered.

the considered sentences were taken from natural
data, it is not entirely unsurprising that removing
or rewriting a scope operator has a negative im-
pact on the probability of the rest of the sentence.
This observation, however, does urge care when
running experiments like this.

PP (PPIpos) < PP (NPIpos) When comparing
NPIs and PPIs in the rewritten sentences, it turns
out that the model does show a clear preference
that is not entirely due to a less probable rewriting
step. Both the perplexity (17.3%) and probability
(19.1%) show that the NPI did in fact strongly de-
pend on the presence of the licensing operator, and
not on other words that it was surrounded with.
The model is thus able to pick up a signal that
makes it prefer a PPI to an NPI in a positive con-
text, even if that positive context was obtained by
rewriting it from a negative context.

PP (PPIneg) < PP (NPIpos) PPIs in a nega-
tive context are strongly preferred to NPIs in a
faulty positive context: a lower perplexity was as-
signed to NPIpos in only 3.6% of the cases. This
shows that the model is less strict on the allowed
context for PPIs, which might be related to the
non-emphatic variant of some, as mentioned be-
fore.

PP (PPIneg) < PP (PPIpos) A surprising re-
sult is the higher perplexity that is assigned to
PPIs inside the original negative context compared
to PPIs in the rewritten sentence, which is oppo-
site to what we hypothesized. It is especially re-
markable considering the fact that the conditional
probability indicates an opposite result (at only
30.1% preference for the original sentence). Once
more the outcome of the perplexity comparison
might partly be due to the rewriting resulting in
a less probable sentence. When solely looking at
the conditional probability score, however, we can
conclude that the model has a preference for PPIs
to reside in positive contexts.

Long distances As shown in Figure 1, most dis-
tances between the LC and the NPI are rather
short. It might therefore be useful to look at the
performance of the model on sentences that con-
tain longer distance dependencies. In Figure 4 the
outcomes of the conditional probability task are
split out on the distance between the LC and the
NPI.

From this plot it follows that the shorter depen-
dencies were mostly responsible for the outcome
of our hypotheses. The significant differences be-
tween the original sentence and the rewritten sen-
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Figure 4: Outcomes for the conditional probability task, split out on the distance between licensing context and
NPI. The averages that are reported in Figure 3 are denoted by the dotted lines.

tences NPIpos and PPIneg becomes less defined
when the distance is increased.

This might be partly due to the lower occurrence
of these constructions: 47.2% of the sentences in
our corpus are situated only 2 positions from each
other. Moreover, it would be interesting to see how
this behavior matches with that of human judg-
ments.

Conclusion We conclude that the LM is able
to detect a signal that indicates a strong relation-
ship between an NPI and its licensing context. By
comparing the scores between equivalent sentence
constructions we were able to account for possible
biases of the model, and showed that the output of
the model complied with our own hypotheses in
almost all cases.

5 Scope detection

In the previous section, we assessed the ability of
a neural LM to handle NPI constructions, based on
the probabilities returned by the LM. In the current
section, we focus on the hidden states that the LM
uses to arrive at a probability distribution over the
vocabulary. In particular, we focus on the scope of
the licensing operator, which determines where an
NPI can occur.

Setup
Using the parse tree extraction method described
in Section 3, we annotate all sentences in our
corpus with the scope of the licensing operator.
Following Hupkes et al. (2018), we then train

diagnostic classifiers to predict for each word
in the sentence whether it is inside the licensing
scope. This is done on the basis of the hidden
representation of the LM that is obtained after it
just processed this word. We differentiate between
5 different labels: pre-licensing scope words (1),
the licensing operator (2), words inside the scope
(3), the NPI itself (4), and post-licensing scope
words (5). The sentence The man that died didn’t
have any relatives, but he died peacefully., for
example, is annotated as follows:

The1 man1 that1 died1 did1 n’t2 have3 any4
relatives3 ,5 but5 he5 died5 peacefully5 .5

The main positions of interest are the transi-
tion from within the licensing scope to the post-
scope range, and the actual classification of the
NPI and LC. Of lesser interest are the pre- and
post-licensing scope, as these are both diverse em-
beddings that do not depend directly on the licens-
ing context itself.

We train our model on the intermediate hidden
states of the final layer of the LSTM, using a lo-
gistic regression classifier. The decoder of the LM
computes the probability distribution over the vo-
cabulary by a linear projection layer from the final
hidden state. By using a linear model for classifi-
cation (such as logistic regression) we can investi-
gate the expressiveness of the hidden state: if the
linear model is able to fulfill a classification task,
it could be done by the linear decoding layer too.

As a baseline test, we also train a logistic regres-
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sion model on representations that were acquired
by an additive model using GloVe word embed-
dings (Pennington et al., 2014). Using these em-
beddings as a baseline we are able to determine
the importance of the language model: if it turns
out that the LM does not outperform a simple ad-
ditive model, this indicates that the LM did not
add much syntactic information to the word em-
beddings themselves (or that no syntactic informa-
tion is required to solve this task). We used 300-
dimensional word embeddings that were trained
on the English Wikipedia corpus (as is our own
LM).

For both tasks (LM and GloVe) we use a subset
of 32k NPI sentences which resulted in a total of
250k data points. We use a split of 90% of the data
for training, and the other 10% for testing classifi-
cation accuracy.

Results
The classifier trained on the hidden states of the
LM achieved an accuracy of 89.7% on the test set.
The model that was trained on the same dataset
using the GloVe baseline scored 72.5%, show-
ing that the information that is encoded by the
LM does in fact contribute significantly to this
task. To provide a more qualitative insight into
the power of this classifier, we provide 3 remark-
able sentences that were classified accurately by
the model. Note the correct transition from licens-
ing scope to post-scope, and the correct classifica-
tion of the NPI and LC in all sentences here.

1. I1 ’d1 never2 seen3 anything4 like3 it3 and5
it5 ...5 was5 ...5 beautiful5 .5

2. “1 I1 do1 n’t2 think3 I3 ’m3 going3 to3 come3
to3 you3 for3 reassurance3 anymore4 ,5 ”5
Sibyl5 grumbled5 .5

3. But1 when1 it1 comes1 to1 you1 ,1 I1 ’m1

not2 taking3 any4 more3 risks3 than3 we3
have3 to3 .5

We ran a small evaluation on a set of 3000 sen-
tences (47020 tokens), of which 56.8% were clas-
sified completely correctly. Using the GloVe clas-
sifier only 22.1% of the sentences are classified
flawlessly. We describe the classification results in
the confusion matrices that are displayed in Figure
5.

Looking at the results on the LSTM embed-
dings, it appears that the post-licensing scope to-
kens (5) were misclassified most frequently: only

75.2% of those data points were classified cor-
rectly. The most common misclassification for
this class is class 3: an item inside the licens-
ing scope. This shows that for some sentences it
is hard to distinguish the actual border of the li-
censing scope, although 90.3% of the first post-
scope embeddings (i.e. the first embedding after
the scope has ended) were classified correctly. The
lower performance of the model on this class is
mostly due to longer sentences in which a large
part of the post-licensing scope was classified in-
correctly. This causes the model to pick up a noisy
signal that trips up the predictions for these tokens.
It is promising, however, that the NPIs (4) and li-
censing operator items (2) themselves are classi-
fied with a very high accuracy, as well as the to-
kens inside the licensing scope (3). When compar-
ing this to the performance on the GloVe embed-
dings, it turns out that that classifier has a strong
bias towards the licensing scope class (3). This
highlights the power of the LSTM embeddings, re-
vealing that is not a trivial task at all to correctly
classify the boundaries of the context scope. We
therefore conclude that the information that is rel-
evant to NPI constructions can be accurately ex-
tracted from the sentence representations, and fur-
thermore that our neural LM has a significant posi-
tive influence on encoding that structural informa-
tion.

6 Conclusion

We ran several diagnostic tasks to investigate the
ability of a neural language model to handle NPIs.
From the results on the perplexity task we con-
clude that the model is capable to detect the re-
lationship between an NPI and the licensing con-
texts that we considered. We showed that the lan-
guage model is able to pick up a distinct signal
that indicates a strong relationship between a neg-
ative polarity item and its licensing context. By
comparing the perplexities of the NPI construc-
tions to those of the equivalent PPIs, it follows that
removing the licensing operator has a remarkably
different effect on the NPIs than on the PPIs. This
effect, however, does seem to vanish when the dis-
tance between the NPI and licensing context is in-
creased. From our scope detection task it followed
that the licensing signal that the LM detects can
in fact be extracted from the hidden representa-
tions, providing further evidence of the ability of
the model in handling NPIs. There are many other
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LSTM Embeddings
Correct label

Pred. 1 2 3 4 5
1 14891 83 408 2 760
2 203 2870 42 0 59
3 850 42 14555 15 1286
4 13 1 32 3005 44
5 520 11 821 0 6507

Total 16477 3007 15858 3022 8656

GloVe embeddings
Correct label

Pred. 1 2 3 4 5
1 11166 87 1077 0 249
2 178 1847 82 0 0
3 4708 1072 14166 353 4003
4 17 0 84 2669 36
5 408 1 449 0 4368

Total 16477 3007 15858 3022 8656

Figure 5: Confusion matrices for the scope detection task trained on the embeddings of an LSTM and the averages
of GloVe embeddings.

natural language phenomena related to language
scope, and we hope that our methods presented
here can provide an inspiration for future research,
trying to link linguistics theory to neural models.

The setup of our second experiment, for exam-
ple, would translate easily to the detection of the
nuclear scope of quantifiers. In particular, we be-
lieve it would be interesting to look at a wider ty-
pological range of NPI constructions, and inves-
tigate how our diagnostic tasks translate to other
types of such constructions. Furthermore, the find-
ings of our experiments could be compared to
those of human judgments syntactic gap filling
task. These judgments could also provide more in-
sight into the grammaticality of the rewritten sen-
tences.

The hypotheses that are described in Section 2
and several others that are mentioned in the litera-
ture on NPIs are strongly based on a specific kind
of entailment relation that should hold for the con-
texts in which NPIs reside. An interesting follow-
up experiment that would provide a stronger link
with the literature in formal linguistics on the sub-
ject matter, would be based on devising several
entailment tasks that are based on the various hy-
potheses that exists for NPI licensing contexts. It
would be interesting to see whether the model is
able to detect whether a context is downward en-
tailing, for example, or if it has more difficulty
identifying non-veridical contexts. This would
then also create a stronger insight in the seman-
tic information that is stored in the encodings of
the model. Such experiments would, however, re-
quire the creation of a rich artificial dataset, which
would give much more control in determining the
inner workings of the LSTM, and is perhaps a nec-
essary step to gain a thorough insight in the LM
encodings from a linguistic perspective.
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Abstract

Many natural and formal languages contain
words or symbols that require a matching
counterpart for making an expression well-
formed. The combination of opening and clos-
ing brackets is a typical example of such a
construction. Due to their commonness, the
ability to follow such rules is important for
language modeling. Currently, recurrent neu-
ral networks (RNNs) are extensively used for
this task. We investigate whether they are
capable of learning the rules of opening and
closing brackets by applying them to syn-
thetic Dyck languages that consist of differ-
ent types of brackets. We provide an anal-
ysis of the statistical properties of these lan-
guages as a baseline and show strengths and
limits of Elman-RNNs, GRUs and LSTMs in
experiments on random samples of these lan-
guages. In terms of perplexity and prediction
accuracy, the RNNs get close to the theoretical
baseline in most cases.

1 Introduction

Brackets are a challenge for language models.
They regularly appear in texts, they typically pro-
duce long-range dependencies, and a failure to
properly close them is readily recognized by a hu-
man evaluator as a severe error (Shen et al., 2017).
Beyond the syntactical level, many natural lan-
guages exhibit brackets-like structures. For ex-
ample, the German language is infamous for its
convoluted sentences with verb-particle construc-
tions, in which words from the beginning have
to be properly closed at the end (Dewell, 2011;
Müller et al., 2015).

In this paper we present a dedicated study of
the capability of Elman-RNNs, GRUs and LSTMs
to model expressions with brackets and properly

∗Both authors contributed equally.

close them. Towards this end, we conduct exper-
iments on Dyck languages, which consist of bal-
anced bracket expressions.

1.1 Related Work
Synthetic datasets and formal languages have long
been used for checking the ability of RNNs to
capture a particular feature. For example, Elman
(1990), Das et al. (1992), or Gers and Schmidhu-
ber (2001) already did such investigations. Recent
work in this direction was done by Weiss et al.
(2017, 2018).

More specifically, the interplay of RNNs with
certain grammatical constructs, brackets and Dyck
languages has been the subject of several studies.
Karpathy et al. (2016) show that RNNs are capa-
ble of capturing bracket structures on real-world
datasets. Linzen et al. (2016) study the applica-
tion of LSTMs to certain grammatical phenomena.
RNNs and their variants have been used for recog-
nizing Dyck words (Kalinke and Lehmann, 1998;
Deleu and Dureau, 2016). Li et al. (2017) evaluate
their nonlinear weighted finite automata model on
a Dyck language. Most recently, Bernardy (2018)
conducted a very similar study to ours on Dyck
languages with a slightly different focus.

1.2 Contributions
In this work, we sample Dyck words in such a way
that we can give theoretical lower bounds for the
perplexity of a respective language model. This
way, we can compare the performance of RNNs
with a theoretical baseline and not just with the
performance of other architectures.

2 Dyck Languages

We use artificially generated data in order to have a
completely controlled environment for the experi-
ments. In particular, the training and test datasets
consist of balanced sequences of n different types
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of brackets, (1, )1, (2, )2, ... , where n depends on
the specific experiment. The set of such sequences
forms the so-called Dyck language Dn (Duchon,
2000). Elements of Dn are called Dyck words.
Each Dn is a context-free but not regular formal
language (Chomsky, 1956) and can be described
by the grammar:

S → ε (1a)

S → SS (1b)

S → (iS)i ∀i ∈ {1, ..., n} (1c)

Some examples of such Dyck words are:

(1 (1 )1 )1
(2 )2 (1 )1 (3 (1 )1 )3

(1 (1 )1 (1 )1 (1 )1 (1 )1 )1

It is well-known that there are Cm := 1
m+1

(
2m
m

)

words of length 2m in D1, where Cm is the m-th
Catalan number (Chung and Feller, 1949). As the
type of each pair of brackets can independently be
chosen, it follows that there are nmCm words of
length 2m in Dn. There are obviously no Dyck
words with odd length.

2.1 Generation of Dyck Words
Each “sentence” in the datasets is a randomly gen-
erated non-empty Dyck word. The first symbol of
a word is always an open bracket. From there, the
generation proceeds in a sequential manner: With
probability p an open bracket is emitted. Other-
wise and thus with probability p − 1, a matching
closed bracket is emitted or the generation termi-
nates if all open brackets already have a match-
ing partner. If not stated otherwise, we assume
0 < p < 1 in all calculations because the edge
cases usually have to be treated differently but do
not add significant value to our discussion. The
type of bracket is chosen randomly from a uniform
distribution but might follow some other distribu-
tion for future studies.

2.2 Statistical Properties of Dyck Words
We quickly review some statistical properties of
such sequences for explaining choices in the se-
tups and in order to get a baseline for the experi-
ments. It can readily be seen that the sequences of
length 2m all have the same probability:

1

nm
pm−1(1− p)m+1 (2)

The asymmetry in the exponents is due to leaving
out empty sequences. The factor n−m accounts
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Figure 1: Average length of generated sequences,
based on Eq. (4).

for the equally probable choices of brackets types.
We can check consistency by considering the nor-
malization condition:

∞∑

k=1

Ckp
k−1(1− p)k+1 =

{
1 for p ≤ 1

2
(1−p)2

p2
for p > 1

2

(3)
While the result for p ≤ 1

2 is expected, the case
p > 1

2 might appear curious at first. The rea-
son for this behaviour is that the sum only takes
finite sequences into account, while there is a non-
zero probability for getting infinite sequences for
p > 1

2 . This is easily seen for the case p = 1,
where brackets are never closed so that the overall
probability of obtaining a finite sequence is indeed
zero.

2.2.1 Average Length
This naturally leads to the question what the aver-
age length L̄ of the sequences is, depending on p.
For p < 1

2 , we find

L̄ = 2

∞∑

k=1

kCkp
k−1(1− p)k+1 =

2

1− 2p
. (4)

The graph of this function can be seen in Fig. 1. In
line with our previous findings, problems with in-
finite sequences arise for p ≥ 1

2 , as the expression
(4) diverges for p = 1

2 . For these reasons, we only
consider the case p < 1

2 in the experiments.

2.2.2 Baseline for Perplexity
A prediction system for the next symbol emit-
ted by the generator will not be able to perform
arbitrarily well due to the random nature of the
process. In order to get a baseline for the per-
formance, we consider the perplexity per symbol
PP of the probability distribution of the generated
Dyck languages. For a sequence of symbols w
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Figure 2: Perplexity PP1 of distribution of D1,
cf. (7). As a reference, the graph of 1+2p is given.

with length |w| it is defined as

PP := 2
− 1
|w|

∑|w|
i=1 log2 P (wi|w1,...,wi−1), (5)

where P (wi|w1, ..., wi−1) is the probability of the
i-th symbol under the model, given the previous
i − 1 symbols. Eq. (5) corresponds to the way in
which perplexity is calculated by the software that
we use for our experiments (cf. Sec. 3).

We estimate the baseline for the perplexity PPn

for the language Dn by considering (5) under the
true probability model in the limit of an infinite
amount of samples from the corresponding proba-
bility distribution. Under these conditions and for
our case, (5) can be transformed into:

log2 PPn = − lim
L→∞

lim
N→∞

∑L
`=1

N`
N log2 P`∑L

`=1
N`
N (2`+ 1)

(6)
The numerator contains the sum of the log-
probabilities, where P` is the probability of a Dyck
word with 2` brackets. The denominator repre-
sents the total number of symbols. Adding one to
the length in the term (2` + 1) accounts for the
end-of-sentence symbols that are counted by the
software. The limit L → ∞ for the maximum
length of a word is taken at the end because the
normalization by the number of symbols has to be
carried out for a finite value. Finally, N represents
the number of samples and N` stands for the num-
ber of words with 2` brackets in the dataset, so
that N`

N converges to the probability of generating
a word of this length.

All these quantities are known, so that we can
obtain the following result:

PPn = n
1

3−2p
1√

p(1− p)

(
p3

1− p

) 1−2p
6−4p

(7)

While the expression (7) with its singularity at
zero does not readily reveal the characteristics of
the perplexity, its graph (Fig. 2) shows that it is
close to a simple affine function. In the edge cases
it behaves just like expected: p = 0 means that
there is no randomness at all and there is just one
possible next symbol. For p = 1

2 however, open-
ing and closing brackets are equally likely, so that
there are always two symbols to choose from with-
out any way to tell which to prefer. The depen-
dence on n must be sublinear because for closing
brackets the type is uniquely predictable.

3 Neural Network Architecture

We use three different RNN architectures for our
experiments: Elman-RNN (abbreviated as SRNN
for simple RNN), GRU (gated recurrent unit), and
LSTM (long short-term memory).

For the experiments with SRNNs we use the
RNNLM toolkit (version 0.3e) developed by
Mikolov et al. (2011b). The SRNN has one hid-
den layer of arbitrary size Nhidden with a sigmoid
activation function. At each time step the input
vector is built by concatenating the vector of the
current word and the output produced by the hid-
den layer during the previous time step. The next
word is predicted by applying the softmax func-
tion to the last layer. The RNNLM toolkit of-
fers the possibility to group words into classes
(Mikolov et al., 2011a), but this feature is more
interesting for boosting efficiency in cases of large
vocabularies with a natural frequency distribution.
After initializing the weights with random Gaus-
sian noise, the training of the SRNNs is performed
using the standard stochastic gradient descent al-
gorithm with an initial learning rate α = 0.1 and
the recurrent weight is trained by the truncated
backpropagation through time algorithm (Rumel-
hart et al., 1985). We refer to the respective hyper-
parameter that specifies the number of time steps
taken into account as TBPTT.

For the other more elaborate architectures, we
make use of TF-NNLM-TK1 by Oualil et al.
(2016) which provides implementations of LSTM
and GRU networks. LSTMs and GRUs work sim-
ilar to SRNNs but exhibit specific units that allow
for storing previous activations and for tracking
long-term dependencies in a more flexible and ef-
ficient way. In the case of LSTMs, the memory
state is being handled via input, forget and output

1https://github.com/uds-lsv/TF-NNLM-TK
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Figure 3: Test perplexity PP1 vs. number of hidden
units Nhidden for SRNN. Both curves reach their
respective baseline, given in (7).

gate. Those gates allow to decide on the amount
of a cell state that should be preserved or forgot-
ten and the amount that should be passed to the
cells in the next layer of the network. Similarly,
the GRU regulates its memory state using an up-
date and a reset gate that allows to either delete the
previous cell state and decide on the amount of the
current activation that should be added to the cur-
rent cell state. For the experiments with LSTMs
and GRUs the hyperparameter settings are chosen
to be similar to the ones used with the RNNLM
toolkit. Weights are again initialized using ran-
dom Gaussian noise and standard stochastic gra-
dient descent is utilized. The initial learning rate
is set to α = 0.1 and in later training epochs de-
cayed using a factor of γ = 0.9. The models are
trained for 100 epochs using a batch size of 128
and TBPTT = 16 (if not stated otherwise) with
learning rate decay starting at epoch 80.

4 Experiments

4.1 Setup and Perplexities

We conduct a number of experiments for investi-
gating the overall performance and the influence
of the hyperparameters on the perplexity. For
all experiments we use datasets that were artifi-
cially generated in the previously described way
(cf. Sec 2.1). All training sets contain 131,072
Dyck words, while the test sets contain 10,000
Dyck words that were sampled from the same dis-
tribution. In all experiments, the value of p is var-
ied between 1/16 and 7/16 in steps of 1/16. The ra-
tio behind this choice is that 7/16 yields an average
sequence length of 16, which is roughly a typi-
cal sentence length for natural languages (Sichel,
1974; Sigurd et al., 2004). The smaller values of p
are considered for comparison.

n 1 2 3 4 5

baseline 1.444 1.881 2.195 2.449 2.667
GRU 1.450 1.900 2.204 2.488 2.691
LSTM 1.451 1.899 2.203 2.486 2.688
RNN 1.445 1.873 2.205 2.445 2.669

(a) For p = 3/16.

n 1 2 3 4 5

baseline 1.800 2.450 2.934 3.334 3.682
GRU 1.808 2.483 2.995 3.396 3.775
LSTM 1.810 2.481 2.995 3.401 3.771
RNN 1.804 2.494 3.030 3.499 3.885

(b) For p = 6/16.

Table 1: Baseline respectively mean test perplex-
ity PPn for TBPTT settings between 1 and 16 in
steps of 1 for different architectures (cf. Fig. 4 for
a graphical representation of the SRNN values).
The standard deviation is roughly around 0.001
and slightly larger for the SRNN.

In a first set of experiments, we considerD1 and
vary the number of hidden units between 1 and
512, doubling the hidden layer size in each iter-
ation. Having more than 512 units does not bring
much perplexity improvement but slows down the
training process considerably. Typical results for
the Elman-RNN can be found in Fig. 3. For all val-
ues of p, the test time perplexity reaches the base-
line. The convergence is slower for larger values
of p, which is the expected behavior. For larger
values of Nhidden there are some increases of PP1

that are most probably connected to the specific
software implementation. Despite that, the mod-
els are surprisingly good at recovering the base-
line. All in all we conclude that Nhidden = 64 is
a good compromise between optimization for per-
plexity and speed.

In a second set of experiments, we change
TBPTT from 0 to 16, increasing its size by one in
each iteration. We limit TBPTT with 16 as this is
the maximum expected length of a sentence in our
setting. This time, we do not only vary p, but also
the number of types of brackets n. Typical results
can be seen in Fig. 4. It is striking that TBPTT has
hardly any influence on the performance as long
as it is larger than zero. This can be exploted for
making the comparison easier: The average value
of the test perplexities for the different architec-
tures is given in Tab. 1. The values give a good
impression of where the curves saturate. Higher
values of p and n appear to make the task more
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Figure 4: Test perplexity PPn vs. hyperparameter TBPTT for Dyck languages with different numbers of
types of brackets, obtained with the Elman-RNN. The respective baselines (cf. Eq. (7)) are plotted as
solid lines.

p n L̄ ¯̀ SRNN GRU LSTM
3/16 1 3.191 2.586 1.00 1.000 1.000
3/16 2 3.222 2.611 0.978 0.9998 1.000
3/16 4 3.183 2.609 0.960 0.9994 1.000
6/16 1 8.049 4.976 1.00 0.9997 0.9999
6/16 2 7.941 4.936 0.742 0.9982 0.9996
6/16 4 8.095 5.079 0.966 0.9959 0.9998

Table 2: Accuracy for the task of finding the last
bracket of a Dyck word, together with measured
values for the average length L̄ of the words and
the average length of the task ¯̀ (see the text for a
definition).

challenging. While all curves rsp. values are close
to the baseline in Fig. 4a and Tab. 1a, the gap in-
creases with n in Fig. 4b and Tab. 1b. Given that
the average length of Dyck words for p = 3/16 is
only 3.2, compared to a length of 8 for p = 6/16,
the differences in the performance is not surpris-
ing. While the Elman-RNN performs similar or
even slightly better than the other architectures for
the easier tasks, the more elaborate methods in-
creasingly outperform it with increasing task diffi-
culty.

4.2 Accuracy

Based on the results of the previous section, the
RNNs appear to perform quite well in terms of the
perplexity. In order to get a better feeling for the
capability of the networks, we consider a second
task: Given a Dyck word without the last closing
bracket, the RNN has to predict the most likely
candidate for this missing symbol. The success is

measured in terms of accuracy, which is the num-
ber of successfully finished tasks divided by the to-
tal number of tasks. The respective values, based
on a dataset of 10000 Dyck words, are given in
Tab. 2. Except for one case, the RNNs reach an ac-
curacy close to one. Only one experiment is done
per configuration and even harder tasks appear to
be solvable, so the lower value is probably just an
outlier. GRU and in particular LSTM perform al-
most perfectly in this task.

Some additional statistics are given in the table.
The average word length L̄ indeed follows (4). Be-
sides that, a new quantity is introduced here: The
average length of the task ¯̀ measures how far the
algorithm has to look back in order to find the open
brackets it has to close on average. The difference
between length L and task length ` is best illus-
trated with an example. For the Dyck word

(2 (1 )1 )2 (1 (1 )1 (3 )3 )1
︸ ︷︷ ︸

task length ` = 6

,

the length is ten but the task length is six because
the first four brackets are irrelevant for determin-
ing the last one, which is boxed for emphasis. The
task length is the relevant measure for the hard-
ness of the task, because small values of ¯̀ would
mean that there are hardly any long-range depen-
dencies. For p = 6/16, ¯̀ lies around five, so we
would expect to need at least a five-gram model or
something equivalent for achieving good results in
this task.

The full frequency distribution of length and
task length can be seen in Fig. 6. By far the largest
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Figure 5: Accuracy depending on length respectively task length (see the text for a definition) for different
architectures. Data from the experiments with p = 6/16 and n = 4.
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Figure 6: Histogram for length and task length for
the experiment with p = 6/16 and n = 4.

part of the distribution is distributed over small
values, so the really long words do not play a big
role in the statistics. This naturally raises the ques-
tion how the RNNs perform for those. Fig. 5 re-
veals that the performance indeed depends on the
length of the sequence respectively the task length
and that there are huge differences between the ar-
chitectures. Only the bigger picture can be com-
pared because the test sets differ between the ar-

chitectures. While the Elman-RNN reaches per-
fect accuracy for lengths of up to eight symbols,
the GRU gets along very well with lengths of up
to 20 symbols. After that, the performance breaks
in for these networks. Due to the low number
of samples, the curve is very noisy for interme-
diate values, so it is hard to draw conclusions for
this region. There is not a single correct guess by
the Elman-RNN for task lengths beyond 90. The
LSTM once again performs best in this task and
exhibits an almost perfect accuracy over the whole
spectrum of lengths.

Finally, the kind of error that is made is of in-
terest. A good representation of that is the con-
fusion matrix given in Fig. 7. For our task, the
true bracket is always a closing one. Interestingly,
the SRNN appears to “understand” that and hardly
ever chooses an opening one. Apart from that
Fig. 7 reveals that the SRNN does not consider the
different types of brackets as equally likely, oth-
erwise the probability mass would be distributed
more evenly.
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0.963 0.005 0.003 0.011 0.019

0.002 0.982 0.004 0.012

0.007 0.009 0.002 0.958 0.024

0.007 0.010 0.021 0.962

0.001

0.01

0.1

1

Figure 7: Confusion matrix: Probability of confus-
ing the correct brackets on the y-axis with those
on the x-axis, measured with the Elman-RNN for
p = 6/16 and n = 4. Only non-zero values are
given in the plot.

5 Conclusion and Outlook

We evaluated the capability of different RNNs to
model an artificial language that consists of convo-
luted bracket expressions. In terms of perplexity,
the models easily get close to the theoretical base-
line in most cases. For the task of predicting the
last bracket of a sequence, the Elman-RNN mostly
reaches accuracies between 0.96 and 1 and hardly
ever chooses an opening bracket, while GRU and
LSTM score almost perfectly. Based on such good
results, our plans for future work are to make the
task harder by extending the artificial language.
This would help to better carve out the weaknesses
of particular architectures. In this context, an im-
portant point would be some kind of control over
the long-range dependencies.
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Abstract

How do neural language models keep track
of number agreement between subject and
verb? We show that ‘diagnostic classifiers’,
trained to predict number from the internal
states of a language model, provide a detailed
understanding of how, when, and where this
information is represented. Moreover, they
give us insight into when and where number
information is corrupted in cases where the
language model ends up making agreement
errors. To demonstrate the causal role played
by the representations we find, we then use
agreement information to influence the course
of the LSTM during the processing of difficult
sentences. Results from such an intervention
reveal a large increase in the language model’s
accuracy. Together, these results show that
diagnostic classifiers give us an unrivalled
detailed look into the representation of
linguistic information in neural models, and
demonstrate that this knowledge can be used
to improve their performance.

1 Introduction

Machine learning models for estimating the prob-
abilities of potential next words (and hence, for
predicting the next word) in a running text have
seen enormous improvements in performance over
the last few years (Merity et al., 2018). These
newer models—all based on deep learning tech-
niques such as LSTMs (Hochreiter and Schmid-
huber, 1997)—allow some language technologies,
such as speech recognisers, to reach ‘human par-
ity’. From their high accuracy and from further
analysis, it is clear that LSTM-based language
models have learned a great deal about both short
and long distance relations in sentences and dis-
course. In particular, Gulordava et al. (2018) re-

port that for several languages, their LSTM-based
language model performs remarkably well on a set
of long-distance number agreement tasks.

The Gulordava study, however, does not clarify
which components of the LSTM are responsible
for storing or processing syntactic features, and
how such features are represented. Understanding
how trained recurrent networks such as LSTMs
might represent syntax and other structural infor-
mation is currently a key area of research. Popular
approaches include visualising the state space of
these networks, performing ablations to the net-
work, or using the internal states of the networks
for some auxiliary task (e.g., Adi et al., 2016;
Kádár et al., 2017; Conneau et al., 2018; Khan-
delwal et al., 2018).

In this paper, we analyse the phenomenon of
subject-verb agreement in English using the di-
agnostic classification approach of Hupkes et al.
(2018). We start with replicating the results of Gu-
lordava et al. (2018) on English, and we then show
that diagnostic classifiers can be used to give a
fine-grained analysis of how neural language mod-
els capture structural dependencies. In particular,
we examine how information about subject-verb
agreement is represented by an LSTM (Section 4),
(ii) how that information varies across timesteps
(Section 5), and (iii) where and how the problems
arise that let the model commit agreement errors
(Section 5 and 6). Finally, to demonstrate how pre-
cisely and accurately this method can identify the
network’s internal representations, we (iv) show
that we can alter the representation to strongly im-
prove the models ability to predict verb number
(Section 7). In the next section, after discussing
subject-verb agreement, we outline the data used
throughout our experiments.
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2 Data

The work in this paper focuses on understanding
how recurrent neural language models can under-
stand subject-verb agreement, which is used as a
proxy for understanding syntactic structure. In this
section, we discuss subject verb agreement and the
type of sentences we look at throughout the rest of
this paper. We then briefly describe the data that
we use for our investigation.

2.1 Subject-verb agreement

Subject-verb agreement is a variable-distance syn-
tactic dependency, and a classic example of a
structural dependency in natural language (Chom-
sky, 1957; Tesnière, 1959). In English, a present
tense verb and the head of its syntactic subject
must agree on their number (singular or plural).
Thus, “The dog chases the cat” is grammatical,
whilst “The dog chase the cat” is not. In princi-
ple, subject and verb can be separated by an ar-
bitrary number of tokens, often including other
nouns with a potentially different number (for an
example, see Figure 1). We call the number of to-
kens between the subject head and the mean verb
the context size.

Without any syntactic analysis, it is unclear how
to identify all subject-verb pairs in a sentence
within an arbitrarily large window of tokens, es-
pecially since intervening nouns can themselves
be candidates for agreement. To respect subject-
verb agreement, a language model needs to de-
tect the grammatical number of both the subject
head and the verb, store this information across
timesteps, and identify which nouns correspond
to which verbs. When intervening nouns carry
the opposite grammatical number from the sub-
ject head—as do both intervening nouns in the ex-
ample sentence in Figure 1—we refer to them as
agreement attractors, or simply attractors.

2.2 Datasets

For the experiments described in this paper we use
two different datasets. The first is the one intro-
duced by Gulordava et al. (2018), which contains
410 sentences with at least three tokens occurring
between subject head and verb. For each of 41
original sentences, nine ‘nonce’ variants were gen-
erated by substituting each context word in the
sentence by a random word with the same part-
of-speech tag and morphological features. This
data construction method is motivated by the fact

that grammaticality judgements should not be in-
fluenced by the meaningfulness of a sentence,
and ensures that frequency-based confounds are
avoided. Every sentence in the dataset is anno-
tated with the correct and incorrect verb forms, the
morphological features of the former, the position
of the subject head and of the verb, the number of
agreement attractors, and the type of construction
spanning the long-distance dependency.

Additionally, we extract different subsets of the
Universal Dependency (UD) corpus (ca. 1.5 mil-
lion sentences) for our experiments. The large
amount of annotated sentences in this dataset al-
lows us to retrieve sets of sentences that satisfy
specific conditions relevant to subject-verb agree-
ment. In particular, we can extract sentences with
specific context sizes, and fixed numbers of words
before the subject and after the verb. We are also
able to specify whether the sentences in the set
should have an attractor and—if so—at which in-
dex (or, in our terminology, timestep) the attractor
should appear. Similarly, we can ensure that there
is no other noun between subject and verb that has
the same number as the subject (we call these help-
ful nouns). As we will see, this allows us to exam-
ine the dynamic effect of attractors in the way the
LSTM processes subject-verb agreement.

In this paper, the specific subset of the univer-
sal dependency dataset we use varies from exper-
iment to experiment, as different experiments re-
quire different constraints. We will specify our se-
lection of data for each experiment in the relevant
sections. To clarify which subset of the UD cor-
pus is used in an experiment, we use the follow-
ing notation: UD-Kk-Ll-Mm-Aa, where k refers to
the minimal number of words appearing before the
subject, l to the number of words between the sub-
ject and verb (the context size), m to the minimal
number of words after the verb, and a to the po-
sition of the attractor relative to the subject. We
use an asterisk to indicate that no restrictions are
placed on one of the above mentioned variables;
e.g., A* indicates that there may or may not be an
attractor. Finally, we denote datasets of sentences
that have no attractor with a minus following the
attractor index (i.e., A−).

3 Replication

We start with replicating the experiment per-
formed in (Gulordava et al., 2018), using the pre-
trained LM and the English test set made available
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The average of estimates of the 10 economists polled puts the dollar around 1.820 marks

root

det

nsubj

case

nmod

case

det

nummod

nmod

acl det

dobj case

nummod

nmod

· ·· ·
a1 a2

k l m

Figure 1: An example dependency parse of a sentence with a singular subject head and main verb (marked
in boldface). As the subject average and the verb put are separated by 7 tokens, the context size (l) of this
sentence is 7. Within this context, there are two intervening plural nouns, estimates (a1) and economists
(a2), which we call agreement attractors.

by the authors of the paper.1 Following Linzen
et al. (2016) and Gulordava et al. (2018), we
use the LSTM language model to process a cor-
pus of sentences containing long-distance subject-
verb relations, and test whether the model assigns
a higher probability to the verb that originally
occurred in the sentence than to its incongruent
counterpart.

Gulordava et al. Our Accuracy
Original 81.0 78.1
Nonce 74.1 70.7

Table 1: LM accuracy on both English sets from
Gulordava et al. (2018). Reported are the percent-
ages of sentences for which the correct verb form
is assigned a higher likelihood under the LM than
the incorrect form.

In Table 1 we report both Gulordava’s original
accuracies, and the results from our replication.
Overall we obtain similar results, but our accuracy
scores are slightly lower2 than those reported by
Gulordava et al. (2018).

4 Diagnostic Classification to Predict
Number

After confirming Gulordava et al. (2018)’s re-
sults, we now investigate how the LSTM repre-

1github.com/facebookresearch/
colorlessgreenRNNs/tree/master/data

2The results we obtain with our implementation exactly
match those we get when running the script publicly shared
by Gulordava et al. (2018); we currently have no explanation
for the discrepancy in overall scores but consider the differ-
ences small enough to proceed with the real purpose of our
study: understanding how the models work.

sents the required number information, how this
information is built up over time and where in the
network the representation resides. To this end,
we use diagnostic classifiers (DCs, Hupkes et al.,
2018). The key idea of diagnostic classification
is to test whether an LSTM’s intermediate repre-
sentations contain information about a particular
phenomenon—such as subject-verb agreement—
by training another model to recognise the infor-
mation relevant to the phenomenon in the internal
activations of the LSTM. More precisely, given a
dataset of intermediate LSTM representations and
a set of labels that describe the hypothesis to be
tested, a meta model can be trained to predict the
correct label from the representations. If the model
succeeds in this task (i.e. if it achieves a perfor-
mance significantly above chance on test data dis-
joint from the training data), this constitutes evi-
dence that the LSTM is in fact computing or keep-
ing track of the hypothesised information.

Training We create a training set containing
1000 sentences that all have 5 words between sub-
ject and verb (i.e. the context size is 5), have at
least one word before the subject and after the
verb, and for which no attractor based constraints
are placed on the training set (UD-K1-L5-M1-
A−). We run the pretrained LM of Gulordava et al.
(2018)—a two layer LSTM model with 650 hid-
den units—on this corpus, and for both layers we
extract activation data for both the hidden and gate
activations (the hidden activation ht and memory
cell ct, and the forget gate ft, input gate it and out-
put gate ot). For example, for a single sentence of
length nwe obtain 5×2×n activation vectors, be-
cause we have 2 layers, n timesteps, and 5 types of
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ht ct ft it ot
Layer 0 0.74 / 0.57 0.76 / 0.58 0.69 / 0.55 0.68 / 0.56 0.69 / 0.56
Layer 1 0.90 / 0.62 0.91 / 0.65 0.86 / 0.61 0.86 / 0.60 0.87 / 0.60

Table 2: Mean accuracy of DCs (correct/wrong) across timesteps, averaged over datasets drawn from
different context sizes and attractor positions (with K=0, M=0, 5≤L≤7 and with a variable number
of attractors at different positions).

Figure 2: Accuracies over time (on UD-K1-L5-M1-A3) of 10 diagnostic classifiers trained and tested on
data from different components of the LSTM. As in this testset one word occurs before the subject, the
subject is at timestep 1. Green lines represent sentences for which the LSTM predicts the correct verb,
blue lines sentences for which the LSTM assigns a higher probability to the incongruent counterpart.

activations at each time step t: ht, ct, ft, it,ot).
We then label all activations with the number of
the main verb of the sentence from which it was
generated (either ‘singular’ or ‘plural’) and train a
separate DCs for each of the 10 components of the
LSTM.

Results We test the trained DCs on two test sets,
that differ with respect to whether the LM cor-
rectly or incorrectly classified the sentences they
contain (i.e. a sentence s is in the ‘correct’ set
iff the LM assigns higher probability to the cor-
rect form of the sentence than to the incorrect
form). Otherwise, the two sets have similar fea-
tures, containing both sentences from UD-K1-L5-
M1-A3. While we strive to generate the ‘wrong’
and ‘correct’ test sets with 100 sentences each, this
is not always possible due to data sparsity. How-
ever, we ensure that both test sets have approxi-
mately the same size and do contain at least 50
sentences.

In Table 2, we print the average DC accura-
cies. We observe that for both the ‘wrong’ and
the ‘correct’ test sets, the accuracies are highest at
the second layer (layer 1) across almost all LSTM

components, suggesting that the last LSTM layer
reaches the level of abstraction which can best
capture long-distance dependencies.

In Figure 2, we plot the average DC accuracy
at different timesteps when processing sentences
(from a set with a context size of 5 and a sin-
gle attractor located three words after the subject).
Unsurprisingly, the DCs obtain their best accu-
racy scores at (or just after) the subject and verb
timestep. This pattern is consistent across context
sizes, attractor positions, and number of words be-
fore the subject and after the verb, and regardless
of whether the LSTM prediction was correct or in-
correct. This result illustrates that the LM learns to
recognise the number information of subject heads
and present tense verbs.

The figure furthermore shows that performance
differs between layers and between components.
The DC performance of the layer 1 compo-
nents, moreover, critically differs for ‘correct’ and
‘wrong’ sentences, For example, classifiers that
make predictions based on ct and ht activations
of ‘correct’ sentences are the most stable in terms
of accuracy, in particular at layer 1. Although all
LSTM components outperform the random base-
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line of 50%, these results imply that the cell state
and the hidden activation are the LSTM compo-
nents that are most specialised at processing num-
ber information. We test this claim in Section 5.

Another cause of differences across diagnostic
classification error rates is the presence of agree-
ment attractors. Accuracies for the test sets with
an attractor are overall lower than those obtained
on sentences without an attractor. While the error
rate rises in Figure 2 and diverges between ‘cor-
rect’ and ‘wrong’ at the position of the attractor,
the same does not happen for sentences without
attractors (not plotted).

5 Representations Across Timesteps

Results so-far show us that number information is
most easily retrieved from the internal states of the
LM when the noun or verb have just been pre-
sented, but not very well from the internal states
at intermediate timesteps. The good performance
of the LM in predicting the number of the verb,
however, indicates that the LM does retain the sub-
ject’s number information during those intermedi-
ate timesteps—but apparently it does so using a
different representation. In this section, we focus
on these changing representations.

In the previous experiment we trained diagnos-
tic classifiers on activation data for all words in
the sentence. In contrast, we now train separate
diagnostic classifiers for each timestep: each DCt

is trained with activation data at timestep t only.
We test, however, each DCt on data from all other
timesteps as well. With a total of T timesteps, this
gives us T×T DC-accuracies that together consti-
tute a Temporal Generalization Matrix (King and
Dehaene, 2014; Fyshe et al., 2016).

In effect, we are forcing each DC to specialise
on timestep-specific representations of subject-
verb agreement information. If this information
is represented uniformly across timesteps, a clas-
sifier trained at the subject timestep should also
have a high accuracy when applied to the activa-
tions corresponding with the timestep in which the
attractor occurs. If, on the other hand, informa-
tion is dynamically encoded, no such generality of
classifiers is to be expected.

Data To test the development of the encoding
over time, we create a corpus with sentences that
are identical with respect to the position of the
subject, attractor and main verb. We train on sen-
tences with 5 intervening words between the sub-

Figure 3: The temporal generalization matrices for
DCs trained on memory cell activation at differ-
ent timesteps, for correctly (top) and incorrectly
classified (bottom) sentences. Timestep 0 corre-
sponds to the subject of the sentence, the attractor
and main verb of the sentence occur at timesteps
3 and 6, respectively. The corpus used for testing
here is UD-K*-L5-M*-A3.

ject, containing one attractor 3 timesteps after the
subject, and a variable number of words before
the subject and after the verb (UD-K*-L5-M*-A3).
After computing the activations for all sentences,
we collect the activations corresponding to all 6
timesteps from subject to verb, in 6 different bins.
For each bin, we train a separate DC.

For testing we create again a ‘correct’ and an
‘incorrect’ test set, drawing both sets from UD-
K*-L5-M*-A3. Following the same procedure as
for the training data, we split both test sets up into
6 timesteps. In the remainder of this section, po-
sition 0 thus always refers to the position of the
subject, while the attractor and main verb of the
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sentence occur at timestep 3 and 6, respectively.
In Figure 3, we plot the Temporal Generaliza-

tion Matrix for the memory cell (c1t ) activation
data, containing the accuracies of T DC’s eval-
uated on T timestep datasets each. The top fig-
ure plots results for ‘correct’ sentences, the bottom
figure for ‘incorrect’ sentences.

A first observation is that accuracies on the
diagonals—which correspond to classifiers that
were trained and tested on the same timestep—
are typically high for sentences that are processed
correctly, while being lower for incorrectly pro-
cessed sentences. Interestingly, this difference al-
ready emerges at the first two timesteps, where no
attractor has yet appeared—suggesting that an im-
portant part of the problem with misclassified sen-
tences is the encoding of the relevant information
already when the subject occurs.

Comparing the plots for correctly and incor-
rectly processed sentences, we notice that the at-
tractor (timestep 3) has a very large effect on the
accuracies for incorrectly classified sentences. For
those sentences, the LM’s internal states contain
no information anymore after the attractor is pro-
cessed: timesteps 4 and 5 receive below chance
accuracies, whereas for correctly processed sen-
tences the attractor prompts only a slight dip in
accuracy.

Focussing on the correctly processed sentences,
an interesting observation that can be made is the
discrepancy between column 0 and 6 (the columns
corresponding to the subject and verb of a sen-
tence) and the rest of the columns. While the
first and last column generalise poorly to differ-
ent timesteps, the classifiers trained and tested on
timesteps 1-5 show a different pattern: despite
potential effects from the attractor at timestep 3,
the accuracy scores do not change substantially
across timesteps. This implies that the LSTM rep-
resents subject-verb agreement information in at
least two different ways: a short-term ‘surface’
level at and around the subject timestep, and a
longer-term ‘deep’ level for successive sequence
processing. This deep level information seems to
be represented most generically at timestep 4, the
classifier for which has the highest accuracy across
timesteps.

In the next section, we delve deeper into the rep-
resentations at this timestep and investigate which
components of the LSTM are most crucial in rep-
resenting this information.

Figure 4: The spatial generalization matrices at
timestep 4. Shown are accuracies of DCs trained
on activation data of each component separately
(horizontal), and tested on each component sep-
arately (vertical). Results for correctly (top) and
incorrectly (bottom) classified sentences.

6 Comparing Representations Across
Components

In this section, we briefly investigate the stability
of information across components of the LSTM.
Rather than comparing DCs that are trained on dif-
ferent timesteps, we now compare DCs that are
trained on different components. We focus on
timestep 4 which, following our previous exper-
iments, optimally represents ‘deep’ information
about subject-verb agreement. For our experi-
ments, we use the same training set as for the pre-
vious experiment, with sentences with a context
size of 5 and a single attractor located three words
after the subject (UD-K*-L5-M*-A3).

Figure 4 presents the ‘spatial generalization ma-
trix’, with DCs trained at timestep 4 with data
from each components separately. The matrix
shows that deep information is best represented in
the hidden activation and memory cell of layer 1,
and that the representations in these two compo-
nents are similar.
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Figure 5: Mean accuracies for each component of the LSTM after an intervention of ct and ht at the
subject timestep 0. An attractor and the agreeing verb occur at timestep 3 and 6, respectively.

An official estimate issued in 2003 suggests suggest
Original -11.05 -8.426 -8.472 -1.243 -3.951 -5.753 -5.6979
Intervention -11.05 -8.426 -8.472 -1.268 -3.97 -5.691 -6.4361

Table 3: Example sentence as processed by the neural language model of Gulordava et al. (2018), without
and with our intervention. Shown are perplexities per word, for two versions of the sentence (featuring
the verb ‘suggests’ or ‘suggest’).

7 Improving the Language Model Using
Diagnostic Classifiers

In the experiments presented above, we used diag-
nostic classifiers to investigate the way the LSTM
performs the verb number prediction task. In this
section, we take one step further: rather than using
DCs to analyse what neural networks are encod-
ing, we try to use them to actively influence their
behaviour through what they learned.

We use the same data as we used for the exper-
iments described in the previous section: a corpus
of sentences with the subject at timestep 0, one
attractor 3 timesteps after (at timestep 3) and the
main verb at timestep 6 (UD-K0-L5-M0-A3). We
train 4 DCs to predict the number of the sentence
from the hidden layer activations and memory cell
activations for both layers, respectively.

We then use the trained DCs to actively in-
fluence the course of processing by the LSTM.
We start processing sentences from the Gulordava
et al. (2018) corpus, but after processing the sub-
ject of a sentence—the point where we discov-
ered information is stored in a corrupted way for
‘wrong’ sentences—we halt the LSTM’s process-
ing, extract the hidden activation and the activation
of the memory cell, and apply the trained diagnos-
tic classifier to predict whether the main verb in
the sentence is singular or plural. We then slightly
adapt the activations based on the error that is de-

fined by the difference between the predicted label
and the correct label for this particular sentence.
We compute the gradients of this error with respect
to the activations of the network, and we modify
the activations using the delta-rule (we empirically
decided on η = 0.5). In other words, we change
the activations such that the prediction of the di-
agnostic classifier is slightly closer to the gold la-
bel. After adapting the activations, we continue to
process the rest of the sentence given the adapted
activations.

DC accuracy In Figure 5 we plot the accura-
cies of DCs trained on different components of the
LSTM when we apply them on activations result-
ing from sentences processed with the above de-
scribed intervention. Trivially, the intervention in-
creases the accuracy of DCs for the hidden activa-
tion and memory cell of the network at timestep
1. More interestingly, this effect persists while
the processing of the sentence proceeds—in some
cases it grows even stronger—and thus in fact
changes how the LSTM processes the sentence.
This effect is not only visible in the components on
which the intervention is done, but also displays in
the gate-values, that are not directly updated but
only changed indirectly through the interventions
in the memory cell and hidden activations.

Language modelling To put our interventions
to the test, we now assess the predictions made
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without with
intervention intervention

Original 78.1 85.4
Nonce 70.7 75.6

Table 4: Accuracy of the LSTM on the Gulordava
et al. (2018) agreement test, with and without an
intervention at the subject timestep.

by the LSTM as a consequence of the interven-
tions. First, we confirm that the intervention does
not cause strong anomalies in the LSTM, by com-
paring the perplexity of a small corpus of sen-
tences processed with interventions at the subject
timestep with sentences processed without any in-
terventions. Table 3 shows an example sentence.
We do not find any strong differences, confirm-
ing that the intervention is minor with respect to
the overall behaviour of the LSTM. On the agree-
ment test described by Gulordava et al. (2018) and
conducted earlier in Section 3, however, the inter-
vention does have a strong effect, as can be seen
in Table 4. The accuracy of predicting the correct
verb number increases from 78.1 to 85.4 and from
70.7 to 75.6 for original and nonce sentences, re-
spectively.

These results provide evidence that DCs are
able to pick up features that are actually used by
the LSTM, rather than relying on idiosyncrasies
in the high dimensional spaces that happen to be
aligned with the predicted labels. Furthermore,
they illustrate how diagnostic classifiers can be
used to actively change the course of processing in
a recurrent neural network, and with this opens a
path that moves from merely analysing to actively
influencing black box neural models.

8 Conclusions

In this paper, we focus on understanding how
an LSTM language model processes subject-verb
congruence, using a task first presented by Linzen
et al. (2016), in which it is tested whether a lan-
guage model prefers congruent over incongruent
verbs. After replicating their results, we train diag-
nostic classifiers (Hupkes et al., 2018) to discover
where and how number information is encoded by
the LSTM; we find that number information is en-
coded dynamically over time, rather than remain-
ing constant. Using a cognitive-neuroscience in-
spired method, we then train different diagnostic
classifiers for different timesteps, resulting in a

Temporal Generalisation Matrix, which provides
more information about changing representations
over time. We find that while number information
is stored in very different ways at the beginning
and end of a sentence, in between a relatively sta-
ble ‘deep’ representation is maintained. Addition-
ally, we find that for sentences in which the LSTM
prefers an incongruent verb over congruent one,
the information appears to be stored wrongly al-
ready at the beginning of the sentence, far before
the verb is to appear.

Combining this information, we invert the pro-
cess of diagnostic classification, using the classi-
fiers to influence rather than merely observe. To
this end, we process sentences with our language
model and, at the point where we find information
to be often corrupted, we intervene by (slightly)
changing the hidden activations of the network us-
ing a trained DC. After this intervention, we con-
tinue processing the sentence as normal. This
small intervention has little effect on the overall
course of the LSTM, but a very large effect on
the verb prediction at the end: the percentage of
sentences for which the model prefers the congru-
ent over the incongruent verb rises from 78.1% to
85.4%.

With these results, we not only show that di-
agnostic classifiers offer a detailed understanding
of where and when information is encoded in a
neural model, but also that this information can be
used post hoc to change the course of the process-
ing of such a model.
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Abstract

Natural language processing has greatly ben-
efited from the introduction of the attention
mechanism. However, standard attention mod-
els are of limited interpretability for tasks that
involve a series of inference steps. We de-
scribe an iterative recursive attention model,
which constructs incremental representations
of input data through reusing results of pre-
viously computed queries. We train our
model on sentiment classification datasets and
demonstrate its capacity to identify and com-
bine different aspects of the input in an easily
interpretable manner, while obtaining perfor-
mance close to the state of the art.

1 Introduction

The introduction of the attention mechanism (Bah-
danau et al., 2014) offered a way to demystify the
inference process of neural models. By assigning
scalar weights to different elements of the input, we
are able to visualize and potentially understand why
the model made the decision it made, or discover a
deficiency in the model by tracing down a relevant
aspect of the input being overlooked by the model.
Specifically in natural language processing (NLP),
which abounds with variable-length word sequence
classification tasks, attention alleviates the issue of
learning long-term dependencies in recurrent neu-
ral networks (Bengio et al., 1994) by offering the
model a glimpse into previously processed tokens.

Attention offers a good retrospective explanation
of the classification decision by indicating what
parts of the input contributed the most to the deci-
sion. However, in many cases the final decision is
best interpreted as a result of a series of inference
steps, each of which can potentially affect its polar-
ity. A case in point is sentiment analysis, in which
contrastive clauses and negations act as polarity
switches of the overall sentence sentiment. In such
cases, attention will only point to the part of the

input sentence whose polarity matches that of the
final decision. However, unfolding the inference
process of a model into a series of interpretable
steps would make the model more interpretable
and allow one to identify its shortcomings.

As a step toward that goal, we propose an exten-
sion of the iterative attention mechanism (Sordoni
et al., 2016), which we call the iterative recursive
attention model (IRAM), where the result of an
attentive query is nonlinearly transformed and then
added to the set of vector representations of the in-
put sequence. The nonlinear transformation, along
with reusing the representations obtained in previ-
ous steps, allows the model to construct a recursive
representation and process the input sequence bit
by bit. The upshot is that we can inspect how the
model weighs the different parts of the sentence
and recursively combines them to give the final
decision. We test the model on two sentiment anal-
ysis tasks and demonstrate its capacity to isolate
different task-related aspects of the input, while
reaching performance comparable with the state of
the art.

2 Related Work

Attention (Bahdanau et al., 2014) and its variants
(Luong et al., 2015) have initially been proposed for
machine translation, but are now widely adopted
in NLP. Attention has proven especially useful in
tasks that involve long text sequences, such as sum-
marization (Rush et al., 2015; See et al., 2017),
question answering (Hermann et al., 2015; Xiong
et al., 2016; Cui et al., 2017), and natural language
inference (Rocktäschel et al., 2015; Yin et al., 2016;
Parikh et al., 2016), as well as purely attentional
machine translation (Vaswani et al., 2017; Gu et al.,
2017).

Thus far, there has been a number of interesting
and effective approaches for interpreting the in-
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ner workings of recurrent neural networks through
methods such as representing them as finite au-
tomata (Weiss et al., 2017), extracting inference
rules (Zanzotto and Ferrone, 2017), and analyz-
ing saliency of inputs through first-order derivative
information (Li et al., 2016; Arras et al., 2017).

Akin to the saliency analysis approaches, we opt
not to condense the trained network into a finite set
of rules. We differ from (Li et al., 2016; Arras et al.,
2017) in that we attempt to decode the steps of the
decision process of a recurrent network instead of
demonstrating through saliency how the decision
changes with respect to the inputs. In the context
of sentiment analysis, the main benefit we see in
representing the decision process of a recurrent net-
work as a sequence of steps is that it offers a simple
way to isolate sentiment-bearing phrases by ob-
serving how they get grouped in a single iteration.
Secondly, we aim for improved interpretability of
functional dependencies such as negation, where
we demonstrate that our method first attends on the
negated phrase, constructing an intermediate repre-
sentation, which is then recursively transformed in
the next iteration.

Sordoni et al. (2016) introduced the iterative at-
tention mechanism for question answering, where
attention alternates between the question and the
document, and the query is updated in each step by
a GRU cell (Cho et al., 2014). The model combines
the weights obtained throughout the iterations to
select the final answer, similar to the attention sum
reader of Kadlec et al. (2016) and pointer networks
of Vinyals et al. (2015).

We believe there is much to gain from the itera-
tive attention mechanism by eliminating the direct
link between the intermediate representations and
the output, allowing the model to construct its own
sequential representation of the input. Our model
only connects the last attention step to the output,
removing the need for intermediate steps to contain
all the information relevant for the final decision.
Apart from (Sordoni et al., 2016), related work
closest to ours consists of concepts of multi-head
attention (Lin et al., 2017; Vaswani et al., 2017),
in which all queries are generated at once, pair-
wise attention (Cui et al., 2017; Xiong et al., 2016),
where attention is applied to multiple inputs but
is not applied iteratively and hierarchical iterative
attention (Yang et al., 2016), where the authors
first use a intra-sentence attention mechanism and
then combine the intermediate representations with

inter-sentence attention. In contrast to their work,
we do not predetermine the level on which the at-
tention is applied – in each iteration the mechanism
can focus on any element of the input sequence.

3 Model

Throughout the experiments, we will use two vari-
ants of our model: (1) the vanilla model and (2)
the full model. The vanilla model contains the bare
minimum of components needed for the attention
mechanism to function as intended. The purpose
of the vanilla model is to eliminate any additional
confounders for the performance and showcase the
interpretability of the model. For the full model,
we extend the vanilla model with additional deep
learning components commonly employed in state-
of-the-art models, to showcase the performance of
the model when given capacity akin to competing
models.

In both versions of the model, data is processed
in three phases: (1) encoding phase, which con-
textualizes the word representations; (2) attention
phase, which uses iterative recursive attention to
isolate and combine the different parts of the in-
put; and (3) classification phase, where the learned
representation is fed as an input to a classifier.

The vanilla and full model differ only in the en-
coding phase, while our proposed attention mech-
anism is employed only in the second phase. We
begin with a detailed account of the proposed atten-
tion mechanism and its regularization, and continue
with a description of the remaining components,
highlighting the differences between the vanilla
and full models.

3.1 Iterative Recursive Attention
Fig. 1 shows the architecture of the iterative atten-
tion mechanism. The mechanism uses a recurrent
network, dubbed the controller, to refine the atten-
tion query throughout T iterations.

Inputs to the mechanism are an initial query x̂
and a set of hidden states H = [hi, . . . , hN ] consti-
tuting the input sequence, both obtained from the
encoding step.

As the controller, we use a gated recurrent unit
(GRU) (Cho et al., 2014) cell. The input to the
controller is the transformed result of the previous
query, while the hidden state is the previous query.

For the attention mechanism we use bilinear at-
tention (Luong et al., 2015):

~a = softmax (~qWH) (1)
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Figure 1: The iterative recursive attention model
(IRAM). Green-colored components share their pa-
rameters with components of the same type. High-
lighted in gray is one iteration of IRAM.

where ~q is the current query vector, W a param-
eter of size Rdq×dh , while dq and dh are the di-
mensionalities of the query and the hidden state,
respectively.

The attention weights are then used to compute
the input summary in timestep t as a linear combi-
nation of the hidden states:

ŝ(t) =
N∑

i

a
(t)
i hi (2)

As we intend to use ŝ(t) in the next iteration
of the attention mechanism, we need to allow the
network the capacity to discern between the new
additions and original inputs. To this end, we use a
highway network (Srivastava et al., 2015), which
gives the model the option to pass subsets of the
summary as-is or transform them with a nonlin-
earity. If the summary is not transformed with
a nonlinearity, it ends up being merely a linear
combination of the hidden states, and we gain no
information from adding it to the sequence.

The final input summary is thus obtained as
s(t) = Highway(ŝ(t)) and added to the set of hid-
den states H = {hi, . . . , hn, s(1), . . . , s(t)}.

3.2 Attention Regularization
Ideally, we want the model to focus on different
task-related aspects of the input in each iteration.
However, the model is in no way incentivized to
learn to propagate information through the sum-

maries and can in principle focus on the same seg-
ment in each step.

To prevent this from happening – and push the
model to focus on different aspects of the input
in every step – we regularize it by minimizing the
pairwise dot products between all iterations of at-
tention:

Lattn =
γ

2T

∑

i 6=j

[AAT ]ij (3)

where γ is a hyperparameter determining the regu-
larization strength and A ∈ RT×N+T−1 is a matrix
containing the attention weights generated in T
steps over N inputs by the iterative attention mech-
anism. The matrix has N + T − 1 columns to
account for attention over T − 1 added summaries,
as the summary generated in the last iteration can-
not be attended over. In each row t, the matrix
has T − t − 1 trailing zeroes, corresponding to
summaries that are not yet available in iteration t.

Concretely, the attention weight vector in row t
of the matrix A consists of:

At = [

Input sequence︷ ︸︸ ︷
a1, . . . , aN ,

Summaries in t− < t︷ ︸︸ ︷
aN+1, . . . , aN+t−1, 0, . . . ]

(4)
resulting in each element i, j of the regularization
matrix AAT storing the dot product between atten-
tion weights in iterations i, j. The regularization
expression is a sum over all off-diagonal elements.
The diagonal elements are dot products of attention
weights in the same iteration so we ignore them.
We scale by 1

2 to account for the symmetrical ele-
ments in ATA and by 1

T to account for the number
of dot product comparisons.

We note that, while this regularization penalty
does encourage the model to focus on different ele-
ments of the input sequence, there is still a trivial
way for the model to minimize the penalty without
learning a meaningful behavior. Since the atten-
tion weight over the summary in iteration t is zero
in all iterations t− < t, the model can simply at-
tend over any elements of the input sequence in
the first iteration, and afterwards propagate the in-
formation forward by fully attending only over the
summary generated in the previous iteration. We
will illustrate this behavior with concrete examples
in Section 4.

3.3 Vanilla Encoder
For training, the inputs of the encoding phase are a
sequence of words x = [w1, . . . , wN ] and a class

251



Figure 2: The full version of the iterative recursive
attention model (IRAM). Green-colored compo-
nents share their parameters with components of
the same type; blue-colored components each have
their own parameters.

label y. The encoder of the vanilla model maps
the word indices to dense vector representations
using pretrained GloVe vectors (Pennington et al.,
2014). The sequence of word vectors is then fed
as input to a bidirectional long-short term memory
(BiLSTM) network (Hochreiter and Schmidhuber,
1997). The outputs of the BiLSTM are used as
the input sequence to the iterative attention step,
while the cell state in the last timestep is used as
the initial query.

3.4 Full Encoder

There are three key differences between the full
encoder and the vanilla encoder. The full encoder
uses (1) character n-gram embeddings, (2) an addi-
tional highway network, whose task is to fine-tune
the word embeddings, and (3) an additional layer
of BiLSTM, followed by a highway layer to con-
struct the initial query. For extensions (1) and (2),
we took inspiration from McCann et al. (2017),
who also use both components. However, unlike
McCann et al. (2017), who used a ReLU feedfor-
ward network to fine-tune the embeddings for the
task, we use a highway network, which we found
performs better.

The pretrained character n-gram vectors ob-
tained from (Hashimoto et al., 2016) are first aver-

aged over all character n-grams for a given word
and then concatenated to the GloVe embedding.
Further on, before feeding the sequence of word
embeddings to a recurrent model, we use a two-
layer highway network (Srivastava et al., 2015) to
fine-tune the embeddings for the task, which is es-
pecially beneficial when the input vectors are kept
fixed.

To contextualize the input sequence and produce
an initial attention query, we use a bidirectional
long-short term memory (BiLSTM) network. We
split the network conceptually into two parts: the
lower lctx layers are used to transform the input se-
quence of word embeddings into a sequence of con-
textualized word representations, while the upper
lquery layers are used to read and comprehend the
now-transformed sequence and capture its relevant
aspects into a single vector. The rationale for the
split is that recurrent networks are often required
to tackle two tasks at once: contextualize the input
and comprehend the whole sequence. Intuitively,
the split should incite a division of labor between
the two parts of the network: contextualization net-
work only has to memorize the local information
specific to each word (e.g., verb tense, noun gen-
der) in order to transform its representation, while
comprehension network needs to model aspects
of meaning pertaining to the entire sequence (e.g.,
the overall sentiment of the sentence, locations of
sentiment bearing phrases).

We use a single (lctx + lquery)-layered BiLSTM,
where we use the output of the lctx -th layer, while
we use the cell state from the last layer as the se-
quence representation x̂.

Lastly, since the weights of the BiLSTM network
are suited toward processing the input sequence
rather than preparing the query vector, we add an
additional highway layer designed to fine-tune the
sentence representation into the initial query.

3.5 Classifier

As input to the classifier, we use the summary vec-
tor obtained from the last step of iterative attention
s(T ). This way we force the network to propagate
information through the attention steps, and also be-
cause the intermediate summaries do not contribute
directly toward the classification and hence need
not have the same polarity. The last summary vec-
tor is fed into a maxout network (Goodfellow et al.,
2013) to obtain the class-conditional probabilities.

Fig. 2 shows the full version of the iterative at-
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tention mechanism with all of the aforementioned
components.

4 Experiments

4.1 Datasets

We test IRAM on two sentiment classification
datasets. The first is the Stanford Sentiment Tree-
bank (SST) (Socher et al., 2013), a dataset de-
rived from movie reviews on Rotten Tomatoes
and containing 11,855 sentences labeled into five
classes at the sentence level and at the level of
each node in the constituency parse tree. The bi-
nary version with the neutral class removed con-
tains 56,400 instances, while the fine-grained ver-
sion with scores ranging from 1 (very negative)
to 5 (very positive) contains 94,200 text-sentiment
pairs. The second dataset is the Internet Movie
Database (IMDb) (Maas et al., 2011), containing
22,500 multi-sentence reviews extracted from pos-
itive and negative reviews. We truncate each sen-
tence from this dataset to a maximum length of 200
tokens.

Firstly, we demonstrate and analyze how each
component in the vanilla model contributes to the
performance and interpretability. We then analyze
the full model and evaluate it on the aforemen-
tioned datasets.

4.2 Experimental Setup

Unless stated otherwise, all weights are initialized
from a Gaussian distribution with zero mean and
standard deviation of 0.01. We use the Adam opti-
mizer (Kingma and Ba, 2014) with the AmsGrad
modification (Reddi et al., 2018) and α = 0.0003.
We clip the global norm of the gradients to 1.0 and
set weight decay to 0.00003.

We use 300-dimensional GloVe word embed-
dings trained on the Common Crawl corpus and
100-dimensional character embeddings. We follow
the recommendation of Mu et al. (2017) and stan-
dardize the embeddings. Dropout of 0.1 is applied
to the word embedding matrix.

For both datasets, we set lctx = 2 and lquery = 1.
The highway network for fine-tuning the input em-
beddings has two layers, while the ones fine-tuning
the query and the summary have a single layer. All
highway networks’ gate biases are initialized to
1, as recommended by Srivastava et al. (2015), as
well as the biases of the LSTM forget gates.

The maxout network uses two 200-dimensional
layers with a pool size of 4.

Figure 3: The effect of regularization γ across dif-
ferent values of T

Throughout our experiments, we have experi-
mented with selecting the batch size from {32, 64},
dropout for the recurrent layers and the maxout
classifier from {0.1, 0.2, 0.3, 0.4}, and the LSTM
hidden state size from {400, 500, 1000}. The word
and character n-gram vectors are kept fixed for SST
but are learned for the IMDb dataset. These param-
eters are optimized using cross-validation, and the
best configuration is ran on the test set. As IMDb
has no official validation set, we randomly select
10% of the dataset and use it for all of the experi-
ments. The values of other hyperparameters were
selected through inexhaustive search.

4.3 Analysis of the Vanilla Model

The vanilla model defined in Section 3.3 has two
main confounding variables: strength (and pres-
ence) of attention regularization (γ) and the num-
ber of iterations of the iterative recursive attention
mechanism (T ). We also would like to examine
the difference in performance of the vanilla IRAM
compared to some baseline sequence classifier. To
this end, we implement a baseline model without
the attention mechanism – a maxout classifier over
the last hidden state of the encoder BiLSTM. To
keep the running time of the experiments feasible,
in this section we use only the binary SST dataset.

Effect of regularization. For each experiment in
this round, we run every model three times with
different random seeds and report the average re-
sults along with the standard deviations across the
experiments. In Fig. 3 we present the comparison
between the performance of the vanilla model with
and without regularization. A more telling sign of
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Figure 4: Attention sample for γ = 0 and T = 3

Figure 5: Classification accuracy for different val-
ues of γ

the different behavior between the models can be
seen through inspecting attention weights.

In Fig. 4 we can see that the attention mechanism,
when not regularized, fails to use its capacity and
simply attends over the same element in each time-
step. The last two columns, which contain the
summaries from the first two steps of the iterative
attention mechanism, have an attention weight of
0, which means that the model does not pass any
information through the summaries nor refine the
query. This behavior initially prompted us to add
the regularization penalty term.

Through inexhaustive search we isolated a crit-
ical range of values for γ, for which we perform
a detailed analysis of performance. For this ex-
periment, we fix T = 3 as it has exhibited better
performance for the vanilla model.

Effect of the number of iterations. Apart from
comparing the effect of the existence of regulariza-
tion, in Fig. 3 we can also observe the effect of the
number of timesteps T . Increasing T beyond 3 has
a diminishing effect on classification performance,
something which we find to be consistent for the
IMDB dataset as well.

We attribute this decrease in performance to the

SST
NSE (Munkhdalai and Yu, 2017) 89.7
IRAM 90.1
BCN + CoVe (McCann et al., 2017) 90.3
bmLSTM (Radford et al., 2017) 91.8

SST-5
IRAM 53.7
BCN + CoVe (McCann et al., 2017) 53.7
BCN + ELMo (Peters et al., 2018) 54.7

IMDb
IRAM 91.2
TRNN (Dieng et al., 2016) 93.8
oh-LSTM (Johnson and Zhang, 2016) 94.1
Virtual (Miyato et al., 2016) 94.1

Table 1: Classification accuracy on the test sets

Removed component Accuracy
Full model 90.1
Vanilla model 88.7
– char n-grams 89.3
– query fine-tune 89.8
– embedding fine-tune 89.3

Table 2: Effect of removing components on perfor-
mance

fact that SST is relatively simple, containing at
most two contrastive aspects in each sentence, mak-
ing any additional steps unnecessary. While the
model could in theory exploit the pass-through
mechanism, we believe that this operation adds
some noise to the final representations and in turn
affects performance slightly.

4.4 Analysis of the Full Model

We now evaluate the full model. Table 1 shows
the accuracy scores of our best models (for T = 3,
γ = 0.0003) and other state-of-the-art models on
the test portions of the SST and IMDb datasets. Our
model performs competitively with the best results
on SST and SST-5 datasets. It is important to note
that our model does not use transfer learning apart
from the pretrained word vectors, which is not the
case for the competing models.

Ablation study of encoder components. As
mentioned in Section 3.4, through adding various
components to the model we introduced a number
of confounders. In order to determine the effect of
each of the added components on the overall score,
we evaluate the performance of the full model on
the binary SST dataset with the remaining hyperpa-
rameters fixed and one of the components removed
in isolation.

254



(a) Simple unipolar sentence

(b) Sentence with a negation

(c) Contrastive multipolar sentence

Figure 6: Visualization of attention across sentence
words (horizontal) and T=3 time steps (vertical).
The last T -1 columns contain the attention weights
over the result of the previous attentive query.

4.5 Visualizing Attention

To gain an intuition about the working of IRAM,
we visually analyzed its attention mechanism on
a number of sentences from our dataset. We limit
ourselves to examples from the test set of the SST
dataset as the length of examples is manageable for
visualization. We isolate three specific cases where
the attention mechanism demonstrates interesting
results: (1) simple unipolar sentences, (2) sentences
with negations, and (3) multipolar sentences.

The least interesting case is the unipolar, as the
attention mechanism often does not need multiple
iterations. Fig. 6a shows the attention mechanism
simply propagating information, since sentiment
classification is straightforward and does not re-
quire multiple attention steps. This can be seen
from most of the attention weight in the second and
third steps being on the columns corresponding to
the summaries.

The more interesting cases are sentences involv-
ing negations and modifiers. Fig. 6b shows the
handling of negation: attention is initially on all

words except on the negator. In the second step,
the mechanism combines the output of the first step
with the negation. We interpret this as flipping the
sentiment – the model cannot rely solely on recog-
nizing a negative word, and has to account for what
that word negates through a functional dependence.
These examples highlight one of the drawbacks of
recurrent networks which we aim to alleviate. In
case a standard attention mechanism is applied to
a sentence containing a negator, the hidden repre-
sentation of the negator has to scale or negate the
intensity of an expression. Our model has the ca-
pacity to process such sequences iteratively, first
constructing the representation of an expression,
which is then adjusted by the nonlinear transforma-
tion and simpler to combine with the negator in the
next step.

Lastly, Fig. 6c shows a contrastive multipolar
sentence, where the model in the first step focuses
on positive words, and then combines the negative
words (tortured, unsettling) with the results of the
first step. In such cases, the model succeeds to
isolate the contrasting aspects of the sentence and
attends to them in different iterations of the model,
alleviating the burden of simultaneously represent-
ing the positive and negative aspects. After both
contrastive representations have been formed, the
model has the capacity to weigh them one against
other and compute the final representation.

5 Conclusion

The proposed iterative recursive attention model
(IRAM) has the capacity to construct representa-
tions of the input sequence in a recursive fashion,
making inference more interpretable. We demon-
strated that the model can learn to focus on various
task-relevant parts of the input, and can propagate
the information in a meaningful way to handle the
more difficult cases. On the sentiment analysis task,
the model performs comparable to the state of the
art. Our next goals will be to try to use the iterative
attention mechanism to extract tree-like sentence
structures akin to constituency parse trees, evalu-
ate the model on more complex datasets as well as
extend the model to support an adaptive number of
iterative steps.
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Abstract

While Long Short-Term Memory networks
(LSTMs) and other forms of recurrent neural
network have been successfully applied to lan-
guage modeling on a character level, the hid-
den state dynamics of these models can be
difficult to interpret. We investigate the hid-
den states of such a model by using the HDB-
SCAN clustering algorithm to identify points
in the text at which the hidden state is similar.
Focusing on whitespace characters prior to the
beginning of a word reveals interpretable clus-
ters that offer insight into how the LSTM may
combine contextual and character-level infor-
mation to identify parts of speech. We also
introduce a method for deriving word vectors
from the hidden state representation in order
to investigate the word-level knowledge of the
model. These word vectors encode meaning-
ful semantic information even for words that
appear only once in the training text.

1 Introduction

Recurrent Neural Networks (RNNs), including
Long Short-Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997; Gers et al.,
2000), have been widely applied to natural lan-
guage processing tasks including character-level
language modeling (Mikolov et al., 2012; Graves,
2013). However, like other types of neural net-
works, the hidden states and behaviour of a given
LSTM can be difficult to understand and interpret,
due to both the distributed nature of the hidden
state representations and the relatively opaque re-
lationship between the hidden state and the final
output of the network. It is also not clear how a
character-level LSTM language model takes ad-
vantage of orthographic patterns to infer higher-
level information.

∗Corresponding author

In this paper, we investigate the hidden state dy-
namics of a character-level LSTM language model
both directly and — through the use of output gate
activations — indirectly. As an overview, our main
contributions are:

1. We use clustering to investigate similar hid-
den states (and output gate activations) at dif-
ferent points in a text, paying special atten-
tion to whitespace characters. We provide in-
sight into the model’s awareness of both or-
thographic patterns and word-level grammat-
ical information.

2. Inspired by our findings from clustering, we
introduce a method for extracting meaning-
ful word embeddings from a character-level
model, allowing us to investigate the word-
level knowledge of the model.

First, we use the HDBSCAN clustering algo-
rithm (Campello et al., 2013) to reveal locations
within a text at which the hidden state of the
LSTM is similar, or at which a similar combina-
tion of cell state dimensions is relevant (as deter-
mined by output gates). Interestingly, focusing
on moments when the network must predict the
first letter of a word reveals clusters that are in-
terpretable on the level of words and which dis-
play both character-level patterns and grammati-
cal structure (i.e. separating parts of speech). We
give examples of clusters of similar hidden states
that appear to be heavily influenced by local ortho-
graphic patterns but also distinguish between dif-
ferent grammatical functions of the pattern — for
example, a cluster containing whitespace charac-
ters following possessive uses, but not contractive
uses, of the affix “’s”. This sheds light on the use
of orthographic patterns to infer higher-level infor-
mation.

We also introduce a method for extracting word
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embeddings from a character-level model and per-
form qualitative and quantitative analyses of these
embeddings. Surprisingly, this method can as-
sign meaningful representations even to words that
appear only once in the text, including associ-
ating the rare word “scrutinizingly” with “ques-
tioningly” and “attentively”, and correctly iden-
tifying “deck” as a verb based on a single use
despite its lack of meaningful subword compo-
nents. These results suggests that the model is ca-
pable of deducing meaningful information about a
word based on the context of a single use. While
these embeddings do not achieve state-of-the-art
performance on word similarity benchmarks, they
do outperform the older methods of Turian et al.
(2010) despite the small corpus size and the fact
that our language model was not designed with the
intent of producing word embeddings.

The rest of the paper is structured as follows:
The following section describes related work. Sec-
tion 3 describes the architecture and training of the
LSTM language model used in our experiments.
In Section 4, we describe our clustering methods
and show examples of the clusters found, as well
as a part of speech analysis. In Section 5, we de-
scribe and analyze our method for extracting word
embeddings from the character-level model. Fi-
nally, we conclude and suggest directions for fu-
ture work.

2 Related Work

2.1 Analyzing Hidden State Dynamics

Many researchers have investigated techniques for
understanding the meaning and dynamics of the
hidden states of recurrent neural networks. In
his seminal paper (Elman, 1990) introducing the
simple recurrent network (SRN) (or “Elman net-
work”), Elman uses hierarchical clustering to in-
vestigate the hidden states of a word-level RNN
modeling a toy language of 29 words. Our ap-
proach in Section 4 is in some ways similar, al-
though we use real English data and a character-
level LSTM model. This also bears some similari-
ties to a visualization technique used by Krakovna
and Doshi-Velez (2016) to investigate a hybrid
HMM-LSTM model, although their work uses
only 10 k-means clusters and does not deeply in-
vestigate clustering. Elman also uses principal
component analysis to visualize hidden state over
time (1991), and many researchers have used di-
mensionality reduction methods such as t-SNE

(Van der Maaten and Hinton, 2008) to visualize
similarity between word embeddings, as well as
other forms of distributed representation. More
recently, Li et al. (2016) directly visualize repre-
sentations over time using heatmaps, and Strobelt
et al. (2018) develop interactive tools for visual-
izing LSTM hidden states and testing hypotheses
about distributed representations.

Other researchers have investigated methods for
clarifying the function of specific hidden dimen-
sions. Karpathy et al. (2015) use static visu-
alizations to demonstrate the existence of cells
in an LSTM language model with interpretable
behaviour representing long-term dependencies
(such as cells tracking line length or quotations
in a text). Another approach is that of Kádár
et al. (2017), who introduce a “Top K Contexts”
method for interpreting the function of certain hid-
den dimensions, identifying the K points in a se-
quence which experience the highest activations
for the dimension in question.

2.2 Character-Level Word Embeddings

Multiple researchers have developed methods for
creating word embeddings that incorporate sub-
word level (Luong et al., 2013) or character-level
(Santos and Zadrozny, 2014; Ling et al., 2015) in-
formation in order to better handle rare or out-of-
vocabulary words. These approaches differ from
our work in Section 5 in that they use architec-
tures specifically designed to create word embed-
dings, while we create embeddings from the hid-
den state of a character-level model not designed
for this purpose. In addition, we are interested not
in the embeddings themselves, but rather in what
they tell us about the word-level knowledge of the
language model.

Kim et al. (2016) investigate word embeddings
created by a character-aware language model;
however, the model uses word-level inputs that are
further subdivided into character-level information
and makes predictions on the word level, while we
use an entirely character-level model.

3 Model

In this paper we focus on the task of language
modeling on the character level. Given an input se-
quence of characters, the model is tasked with pre-
dicting the log probability of the following charac-
ter.

We trained two models on different data sets us-
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ing the same architecture. Most of the paper fo-
cuses on the War and Peace model, but Section
5 uses embeddings derived from the Lancaster-
Oslo/Bergen Corpus model when measuring per-
formance against word embedding benchmarks.

3.1 Training Data

Our first model uses a relatively small data set,
consisting of the text of War and Peace by Tol-
stoy1. This data set was chosen due to its conve-
nience as a sufficiently long but stylistically con-
sistent example of English text. The text contains
3,201,616 characters. We use the first 95% of the
data for training and the last 5% for validation.

Our second model uses a slightly larger data set,
consisting of the Lancaster-Oslo/Bergen (LOB)
corpus (Johansson et al., 1978)2, which we re-
moved all markup from. This data set draws
from a wide variety of fiction and non-fiction texts
written in British English in 1961, and contains
5,818,332 characters total. It was chosen for use
in Section 5 because it covers a wide range of top-
ics (allowing us to extract word embeddings for a
wider vocabulary) while still remaining at a man-
ageable size. We use the last 95% of the data for
training and the first 5% for validation.

3.2 Model Architecture and Implementation

We use a simple LSTM architecture consisting
of a 256-dimensional character embedding layer,
followed by three 512-dimensional LSTM layers,
and a final layer producing a log softmax distribu-
tion over the set of possible characters. The model
was implemented in PyTorch (Paszke et al., 2017)
using the default LSTM implementation3.

This architecture was chosen mostly arbitrarily,
and distantly inspired by Karpathy et al. (2015).

3.3 Training

The War and Peace model was trained for 170
epochs using stochastic gradient descent and the
negative log likelihood loss function, with mini-
batches of size 100 and truncated backpropaga-
tion through time (BPTT) of 100 time steps. Dur-
ing training, dropout was applied after each LSTM
layer with a dropout rate of 0.5. The learning rate

1(Tolstoy, 2009), translated to English by Louise and
Aylmer Maude.

2retrieved from http://purl.ox.ac.uk/ota/
0167

3We intend to release our code, including the trained mod-
els.

was initially set to 1 and halved every time the
loss on the validation data set plateaued. The final
model achieved 1.660 bits-per-character (BPC) on
the validation data.

The Lancaster-Oslo/Bergen model was trained
for 100 epochs using the PyTorch implementation
of AdaGrad, with mini-batches of size 100, trun-
cated BPTT of 100 time steps, a dropout rate of
0.5, and an initial learning rate of 0.01.4 The final
model achieved 1.787 BPC on the validation data.

4 Cluster Analysis of Character-Level
and Word-Level Patterns

In this section we analyze points in the training
text by clustering according to hidden state val-
ues and output gate activations, revealing a combi-
nation of grammatical and word-level patterns re-
flected in the hidden state of our language model.

4.1 Data For Clustering

We created two sets of data for use in clustering: a
“full” data set and a “whitespace” data set.

To create the “full” data set, we ran our War and
Peace language model on the first 50,000 charac-
ters5 of the training data and recorded the hidden
state (i.e. the values often denoted ht in the LSTM
literature, rather than the cell state ct) and the sig-
moid activations of the output gate of the third
LSTM layer at each time step. We focus on the
third layer based on the expectation that it will en-
code more high-level information than earlier lay-
ers, an expectation which was supported by brief
experimentation on the first layer.

To create the “whitespace” data set, we ran the
War and Peace model on the first 250,000 charac-
ters of the training data and recorded data only for
timesteps when the input character was a space or
a new line character.

4.2 Basic Clustering Experiment

We chose to use the HDBSCAN clustering algo-
rithm (Campello et al., 2013), since it is designed
to work with non-globular clusters of varying den-
sity, does not require that an expected number of
clusters be specified in advance, and is willing to
avoid assigning points to a cluster if they do not

4Training parameters were not tuned to the data and differ
mainly because the models were not trained at the same time,
with unrelated experiments intervening.

5This smaller data set was used due to the relatively
slow speed of the HDBSCAN implementation on high-
dimensional data.
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Cluster Sample Cluster Members

4
even wi[s]h to; conversing wi[t]h;
case wi[t]h; whi[c]h was; him wi[t]h;
his wi[f]e; very wi[t]ty; acts whi[c]h;

7
so[m]ething like; she sa[w] that;
Hardenburg sa[y]s; the sa[m]e time;
none se[e]med to; words su[g]gested.

14 e[x]plains; e[v]erything; e[x]posed;
e[x]pectations; e[l]derly; e[x]pression;

39 thi[s] reception; tha[t] profound; like thi[s]?”;
the[y] promised; the[y] have; The[r]e is;

54
who[ ]is; He[ ]spoke; he[ ]indicated;
who[ ]had; He[ ]frowned; She[ ]was;
who[ ]was; she[ ]said; why[ ]he

56
on[ ]the; for[ ]God’s; of[ ]the;
of[ ]them; by[ ]imbecility; for[ ]Pierre;
of[ ]young people; from[ ]abroad;

62
had[ ]gone; had[ ]the; had[ ]been;
have[ ]reference; have[ ]promised;
had[ ]also; has[ ]been; has[ ]to;

63
her[ ]house; that[ ]is; his[ ]boats;
this[ ]pretty; that[ ]this; prevented her[ ]from;
her[ ]age; his[ ]way; her[ ]duties;

Table 1: Example members of clusters found using
hidden state values based on the “full” data set. Cluster
members (indicated by brackets) are accompanied by
text excerpts (separated by semicolons) to give context.

seem to be a good fit for any cluster. We used the
Python implementation of McInnes et al. (2017).

Using the “full” data set, we attempted to
cluster the time steps according to either hid-
den state or output gate activations. We used
the Euclidean metric and the HDBSCAN param-
eters min cluster size=100 and min samples=10.
This was chosen somewhat arbitrarily and not on
the basis of a parameter search; we did briefly
try other settings during preliminary research and
found that the results were similar6. Clustering
by hidden state values and clustering by output
gate activations both produced a number of inter-
pretable clusters7.

Table 1 shows a representative sample of the
clusters found when using the hidden state for
clustering8. We found that most clusters seemed to
have interpretable meanings on the character level,
often including characters near the start of words
that begin with a particular character or characters,
as in clusters 4, 7, and 14. In some cases, these
clusters seem to locate orthographic patterns that

6Of course, allowing smaller clusters results in more clus-
ters, while requiring larger clusters results in fewer, broader
clusters, but there were no major qualitative differences in the
types of clusters produced.

7Clustering by hidden state produced 67 clusters, while
clustering by output gate activations produced 87 clusters.

8The output gate clusters were similar and are omitted to
save space.

are useful in predicting the following character;
for example, the characters in cluster 4 are often
followed by an “h”, and cluster 39 contains mostly
letters at the end of a word (i.e. usually followed
by whitespace). However, we did not find clusters
that were characterised only by the following char-
acters and not by patterns in the preceding charac-
ters.

More interestingly, clusters consisting of points
immediately preceding the start of a word tended
to reflect word-level information relating to the
preceding word. For example, cluster 54 con-
sists of spaces immediately following the pro-
nouns “he” and “she”, as well as the interroga-
tive pronoun “who”9, while cluster 56 consists of
spaces following certain prepositions. This was
observed in both the clusters based on hidden state
and the clusters based on output gate activation.
This could be due to the fact that the output gate
activations, which also impact the hidden state,
can be intepreted as choosing which dimensions
of the cell state are relevant for the network’s “de-
cision” at a given time, and we would expect that
word-level information is relevant when choosing
a distribution over the first letter of the next word.

4.3 Whitespace Clustering and
Part-of-Speech Analysis

Since the clusters including whitespace tended
to reflect word-level grammatical information (as
seen in clusters 54, 56, and 62 from Table 1), we
performed another round of clustering restricting
our focus to only spaces and new lines. Cluster-
ing was performed on the “whitespace” data ac-
cording to either hidden states or output gate acti-
vations, again producing many interpretable clus-
ters10.

For the purposes of word-level analysis, each
data point (corresponding to a whitespace charac-
ter in the text) was equated with the word imme-
diately preceding it. The Stanford Part-of-Speech
Tagger (Toutanova et al., 2003) was used to tag
the text with part of speech (POS) information,
and for each cluster the precision (percentage of
words in the cluster having a given tag) and re-
call (percentage of words with a given tag falling

9 This cluster also occasionally includes spaces following
the word “why”, which may be due to orthographic similarity
to “who”, or due to the fact that “why” is often followed by a
verb, as in “Why is...”.

10Clustering by hidden states produced 70 clusters, while
clustering by output gate activations produced 77 clusters.
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Cluster Sample Members of Cluster POS - Precision POS - Recall

HS-35 asked; replied; remarked; continued; replied; cried; cried;
repeated; continued; exclaimed; remarked; remarked; continued; declared; VBD: 100% VBD: 4.5%

HS-40
will; will; don’t; don’t; don’t; cannot; just; can’t;
will; will; might; could; shall; will; would; just;
would; just; just; don’t; don’t; could;

MD: 59.2%
RB: 18.3%
NN: 21.3% 11

MD: 89.9%
RB: 5.1%
NN: 2.9%

HS-57 looking; looked; looking; looked; looked; looking; walked; glanced;
looking; looking; glancing; looked; looked; looked; looking

VBD: 60.0%
VBG: 40.0%

VBD: 2.4%
VBG: 4.8%

HS-59
trembled; jumped; tucked; smoothed; smiled; raised;
standing; smiled; pushed; smiled; passed; crowding;
turning; raised; climbed; watched; turned; changed;

VBD: 59.1%
VBG: 31.5%
VBN: 8.7%

VBD: 6.0%
VBG: 9.7%
VBN: 3.3%

HS-62
unnatural; beautiful; beautiful; beautiful; terrified;
suppressed; proud-looking; polished; well-garnished; nice-looking;
swaggering; wonderful; embittered; alarmed; mournful

JJ: 84.4%
VBN: 6.7%
VBG: 4.4%

JJ: 4.1%
VBN: 0.9%
VBG: 0.5%

OG-69
laughter; mother; father; daughter; father; father; matter;
daughter; father; manner; officer; father; daughter;
mother; laughter; daughter; daughter; father; officer;

NN: 94.1%
NNS: 2.9%
JJ: 2.9%

NN: 1.9%
NNS: 0.3%
JJ: 0.1%

OG-74 emancipation; nation; conversation; conversation; opinion
conversation; resignation; conversation; conversation; expression;

NN: 95.7%
NNP: 4.4%

NN: 3.8%
NNP: 0.3%

Table 2: Cluster members and POS statistics. Example cluster members (corresponding to whitespace characters)
are drawn uniformly at random from the cluster and are represented by the preceding word. Note that some words
appear multiple times since each appearance of the word in the text corresponds to a different data point. POS
tags are those used by the Stanford POS tagger. Statistics are reported for the three parts of speech with highest
precision.

into the cluster)12 were calculated with respect to
each tag. Since the clusters are based only on data
corresponding to whitespace, words not followed
by whitespace (approximately 16% of all words)
were not counted when calculating recall.

A selection of clusters, example members, and
POS statistics can be seen in Table 2. Clusters are
designated “OG” or “HS” for “output gate” and
“hidden state” respectively, so “HS-35” means the
35th cluster produced when clustering by hidden
state values. These clusters were selected to illus-
trate the interesting patterns present, rather than to
represent “typical” clusters.

The resulting clusters based on hidden states
were similar to those based on output gate acti-
vations. Both approaches resulted in some clus-
ters based on a mix of orthographic and semantic
similarity — for example, both produced a clus-
ter consisting primarily of three-letter verbs be-
ginning with “s” (particularly “sat”, “saw”, and
“say”), as well as clusters consisting of possessive
uses of the suffix “’s”, but not uses of “’s” as a
contraction of “is” (as in “it’s”, “that’s”, etc.), de-
spite the existence of several such uses in the text.

11Manual inspection suggests that the claimed 22% preci-
sion for nouns is actually due to the POS tagger mistaking
“don’t”, “can’t” etc. for nouns, probably due to poor tok-
enization, meaning that the true precision for modal verbs in
this cluster is 80% if we consider these to be modal verbs.

12Note that when measured in this way, recall will usually
be quite low, since most clusters only contain some particular
subset of words with a given tag.

In fact, some early experimentation resulted in a
distinct cluster for the contractive use of “’s”, al-
though this does not occur with the parameters we
chose for our canonical data. Additionally, in both
cases the majority of clusters contained instances
of only a single word or a small set of words —
for example, a cluster consisting entirely of the
word “the”, a cluster consisting almost entirely of
the words “he” and “she”, and a cluster containing
only the words “me” and “my”. In total, 71% of
clusters either contained only one or two words, or
were determined by preceding punctuation.

However, there were qualitative differences be-
tween the two approaches. Some of the hidden
state clusters appear to be based on semantic sim-
ilarities that go beyond mere grammatical similar-
ity; in particular, cluster HS-35 (as seen in Table 2)
contains words related to dialogue (and additional
context reveals that members of this cluster always
follow the end of a quotation), while cluster HS-
57 contains multiple words related to looking (in-
cluding “gazed”, although it does not appear in the
table). Additionally, cluster HS-40 finds modal
verbs with high precision and 89.9% recall, along
with the words “just” and “still”, which might be
included due to orthographic similarity to “must”
and “will”.

In contrast, clusters based on output gate acti-
vations appear to be somewhat more closely re-
lated to orthographic similarities. Several of these
clusters display orthographic patterns that corre-
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late strongly with parts of speech; for example,
clusters OG-69 and OG-74 contain “-ion” nouns
and “-er” nouns (but not “-er” adjectives) respec-
tively, and rather than including all modal verbs
in a single cluster, the output gate clusters group
the words “would”, “could”, and “should” sepa-
rately from “don’t”, “won’t”, and “can’t” (which
are in turn separate from the cluster containing
“will” and “still”). This suggests that character-
level patterns correlated with grammatical infor-
mation could strongly influence output gate activa-
tions in a way that contributes to the grammatical
understanding of the model13.

5 Extracting Word Embeddings

As seen in Section 4.3, hidden states after whites-
pace characters encode word-level information.
This suggests a method for deriving word embed-
dings from a character-level model, in order to bet-
ter investigate the model’s word-level knowledge.

To obtain word embeddings, we ran the War
and Peace model on the entire text of War and
Peace, storing hidden state values at each point in
the text. We then associated each word appear-
ing at least once in the text14 with the average hid-
den state vector for whitespace characters follow-
ing the word in question. This produced a set of
512-dimensional embeddings for a vocabulary of
15,750 distinct words15.

Table 3 shows the nearest neighbours16 of the
embeddings of several words, as well as a count of
how frequently the word appears in the text. While
not all nearest neighbours seem to be relevant (par-
ticularly for e.g. “write” and “food”), it nonethe-
less appears that for words well-represented in
the text, these embeddings do reflect meaning
(e.g. “loved” is similar to “liked”, “soldier” to “of-
ficer”, and so on). In the case of words that are less
well represented (e.g. “write”, “food”), the nearest
neighbours often seem to be retrieved based more
on orthographic similarities; however, “food” is

13Though the ability of RNNs to learn and represent syntax
has been studied in RNNs with explicit access to grammati-
cal structure (Kuncoro et al., 2017), to our knowledge, syn-
tax representations have not been explored in character-level
RNNs.

14Excluding words that are never followed immediately by
a whitespace character (about 16% of all words).

1517,510 words in total, but 1,760 are a combination of two
words joined by an em-dash. We ignore these “words” in our
nearest neighbours analysis.

16A tool from scikit-learn (Pedregosa et al., 2011) was used
to find nearest neighbours by cosine similarity. Using the
Euclidean metric instead gives very similar results.

Word (Occurrences) 5 Nearest Neighbours

prince (1,926) princess, pwince, princes,
platón, phillip

we (1069) I, tu, you, ve, he

soldier (201) officer, footman, soldiers,
traveler, landowner

loved (120) liked, longed, saved,
lived, lose

frenchman (100)
frenchwoman, englishman,
huntsman, coachman,
frenchmen

write (61) wring, wake, wipe, strive, live
food (41) foot, folk, fool, fear, form
tu (4) we, I, thou, you, je

untruth (3) distrust, entreaty, rescript,
rupture, ruse

cannonading (2)
undertaking, attacking,
outflanking, maintaining
tormenting

scrutinizingly (1)
questioningly, challengingly,
attentively, imploringly,
despairingly

moscovite (1) honneur, moravian, tshausen,
chinese, grenadier

custodian (1) guardian, battalion, nightmare,
republican, mathematician

conduce (1) convince, conclude, conduced
induce, introduce

deck (1) delve, dwell, descry,
deny, decide

Table 3: Sample vocabulary words and the number
of times each appears in the text, compared with the
5 nearest neighbours according to our extracted word
embeddings.

still associated with nouns, and “write” with verbs,
and more generally the embedding usually appears
to at least reflect basic part of speech information.

More surprising, however, is the treatment of
words that appear only once in the text. In
some cases, the embeddings of these words do re-
flect not only grammatical information but also
their actual meaning; the word “moscovite”,
for example, is correctly associated with the
words “moravian” and “chinese” which also de-
scribe geographic origin, and the word “scruti-
nizingly” is associated with “questioningly” and
“challengingly”. In these cases, since the word
“moscovites” and various forms of “scrutinize”
do appear more frequently in the text, it is pos-
sible that orthographic similarity and an under-
standing of morphemes such as “-s”, “-ing” and
“-ly” contribute to these embeddings. This would
be consistent with the findings of e.g. Santos and
Zadrozny (2014) and others who have used the or-
thographic information associated with words to
develop word embeddings that perform well for
rare words and even out-of-vocabulary words.
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Task Pairs Found and Correlation
Our Embeddings Metaoptimize Skip-Gram

WS-353 290 0.1376 351 0.1013 353 0.6392
WS-353-SIM 164 0.2265 201 0.1507 203 0.6962
WS-353-REL 215 0.1384 252 0.0929 252 0.6094
MC-30 25 0.1808 30 -0.1351 30 0.6258
RG-65 48 0.2051 64 -0.0182 65 0.5386
Rare-Word 604 0.1500 1159 0.1085 1435 0.3878
MEN 2317 0.1800 2915 0.0908 2999 0.6462
MTurk-287 232 0.3681 284 0.0922 286 0.6698
MTurk-771 689 0.0920 770 0.1016 771 0.5679
YP-130 111 0.1311 124 0.0690 130 0.3992
SimLex-999 948 0.0827 998 0.0095 998 0.3131
Verb-144 144 0.3437 144 0.0553 144 0.2728
SimVerb-3500 3052 0.0098 3447 0.0009 3492 0.2172

Table 4: Performance of the word vectors derived from our Lancaster-Oslo/Bergen model on word similarity tasks,
compared with scores (taken from http://wordvectors.org (Faruqui and Dyer, 2014)) for the Metaopti-
mize (Turian et al., 2010) and Skip-Gram (Mikolov et al., 2013) embeddings. For each set of embeddings and each
task we list the number of word pairs found and the measured correlation (Spearman’s rank correlation coefficient).

However, this does not explain the case of
“deck”. When this word appears in the text, it is
used in its sense as a verb. The only other ap-
pearance of the string “deck” in the text is the
word “decks”, referring to the noun form of the
word, and yet the embedding for “deck” is cor-
rectly similar to other verbs. For this reason, and
because the word “deck” is short and does not con-
sist of meaningful sub-word entities, it is unlikely
that the verb-ness of “deck” was deduced from the
word itself. This suggests that the model was able
to determine the part of speech of the word from
its use in a single context (e.g. the fact that it was
preceded by “do not”). A similar mechanism may
also be responsible for the understanding of the
French word “tu”, which is correctly identified as
a personal pronoun similar to both “you” (its trans-
lation, appearing 3,509 times) and “je” (the French
1st-person singular pronoun, appearing 16 times)
despite containing little orthographic information.
It should also be noted that while it is not the norm
for these embeddings of singleton words to reflect
meaning (as in the case of “scrutinizingly”), the
majority of embeddings do appear to at least iden-
tify part of speech (as in the case of “deck”), sug-
gesting a fairly robust mechanism for determining
this information from context.

The goal of this experiment was not to produce
high-quality embeddings, but rather to understand
the word-level knowledge of a character-level lan-
guage model. Nonetheless, we decided to evaluate
word embeddings obtained in this manner against
some word similarity benchmarks. In order to ob-
tain a broader vocabulary, we used word embed-

dings derived from the model we trained on the
Lancaster-Oslo/Bergen corpus. While this train-
ing data is still quite small (less than 6 million
characters), it covers a wider range of authors,
styles, and topics, including fiction, non-fiction,
scientific papers and news articles, and thus is bet-
ter suited to producing general-purpose word em-
beddings. The embeddings we extracted from this
corpus cover a vocabulary of 38,981 words.

We assessed these embeddings us-
ing the 13 word similarity tasks of
http://wordvectors.org (Faruqui and
Dyer, 2014), achieving the results shown in Table
4. While these results are far from state-of-the-art,
they do outperform the representations of Turian
et al. (2010) on all tasks except for MTurk-771.
Furthermore, our embeddings perform compa-
rably on the “Rare Words” task compared to
several other tasks, despite the small corpus size,
presumably due to the use of orthographic and
contextual information by the language model.

6 Discussion and Conclusion

In this paper, we used clustering to investigate the
type of information reflected in the hidden states
and output gate activations of an LSTM language
model. Focusing on whitespace characters re-
vealed clusters containing words with meaningful
semantic similarities, as well as clusters reflecting
orthographic patterns that correlate with grammat-
ical information.

We also described a method for extracting
word embeddings from a character-level language
model. Analysis suggests that the model is able to
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learn meaningful semantic information even about
words that appear only once in the training text,
using some combination of orthographic and con-
textual information.

Directions for future work related to our cluster-
ing analysis could include applying similar tech-
niques to other RNN architectures (e.g. the GRU
of Cho et al. (2014)), comparing the effectiveness
of different clustering algorithms for this type of
analysis, and scaling up the clustering experiments
using more computational resources, a more effi-
cient algorithm, and a larger corpus.

Another promising direction is to expand on the
findings of Section 5 by analyzing the quality of
word embeddings produced from character-level
models trained on a larger corpus, and investi-
gating the capability of character level models to
produce word embeddings for out-of-vocabulary
words when given a small amount of context.

Collectively, our findings regarding clustering
analysis and extraction of word embeddings offer
interesting insight into the behaviour of character-
level recurrent language models, and we hope that
they will prove a useful contribution in the ongo-
ing effort to increase the interpretability of recur-
rent neural networks.

Acknowledgments

This research was supported by NSERC (Natural
Sciences and Engineering Research Council),
including an Undergraduate Student Research
Award for Avery Hiebert, and by CIFAR (Cana-
dian Institute for Advanced Research).

References
Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg

Sander. 2013. Density-based clustering based on hi-
erarchical density estimates. In Advances in Knowl-
edge Discovery and Data Mining, pages 160–172,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
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Abstract

Despite their superior performance, deep
learning models often lack interpretability. In
this paper, we explore the modeling of insight-
ful relations between words, in order to un-
derstand and enhance predictions. To this ef-
fect, we propose the Self-Attention Network
(SANet), a flexible and interpretable archi-
tecture for text classification. Experiments
indicate that gains obtained by self-attention
is task-dependent. For instance, experiments
on sentiment analysis tasks showed an im-
provement of around 2% when using self-
attention compared to a baseline without atten-
tion, while topic classification showed no gain.
Interpretability brought forward by our archi-
tecture highlighted the importance of neigh-
boring word interactions to extract sentiment.

1 Introduction

Deep neural networks have achieved great suc-
cesses on numerous tasks. However, they are of-
ten seen as black boxes, lacking interpretability.
Research efforts in order to solve this issue have
steadily increased (Simonyan et al., 2013; Zeiler
and Fergus, 2014; Bach et al., 2015; Ribeiro et al.,
2016; Fong and Vedaldi, 2017). In language mod-
eling, interpretability often takes place via an at-
tention mechanism in the neural network (Bah-
danau et al., 2014; Xu et al., 2015; Sukhbaatar
et al., 2015; Choi et al., 2017). In this context,
attention essentially allows a network to identify
which words in a sentence are more relevant. Be-
yond interpretability, this often results in improved
decision making by the network.

Recently, Vaswani et al. (2017) proposed the
Transformer architecture for machine translation.
It relies only on attention mechanisms, instead of
making use of either recurrent or convolutional

∗Authors contributed equally to this work.

neural networks. This architecture contains lay-
ers called self-attention (or intra-attention) which
allow each word in the sequence to pay attention
to other words in the sequence, independently of
their positions. We modified this architecture, re-
sulting in the following contributions:
• A novel architecture for text classification

called Self-Attention Network (SANet) that
models the interactions between all input
word pairs. It is sequence length-agnostic,
thanks to a global max pooling layer.
• A study on the impact of this self-attention

mechanism on large scale datasets. In partic-
ular, we empirically demonstrate the positive
impact of self-attention in terms of perfor-
mance and interpretability for sentiment anal-
ysis, compared to topic classification. In the
study, we make use of two quantitative met-
rics (Gini coefficient and diagonality) that ex-
hibit particular behaviors for attention mech-
anisms in sentiment analysis.

2 Related Work

The majority of text classification techniques ei-
ther use convolutional or recurrent neural net-
works on the words or the characters of the sen-
tence (Zhang et al., 2015, 2017; Yang et al., 2016;
Conneau et al., 2017; Johnson and Zhang, 2016,
2017; Howard and Ruder, 2018). One notable ex-
ception is the fastText architecture (Joulin et al.,
2016) which essentially employs a bag-of-words
approach with word embeddings of the sentence.

Attention mechanisms are a way to add inter-
pretability in neural networks. They were in-
troduced by Bahdanau et al. (2014), where they
achieved state-of-the-art in machine translation.
Since then, attention mechanisms have been used
in other language modeling tasks such as image
captioning (Xu et al., 2015), question answer-
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ing (Sukhbaatar et al., 2015; Choi et al., 2017), and
text classification (Yang et al., 2016). The con-
cept of self-attention (Cheng et al., 2016; Parikh
et al., 2016), central to our proposed approach,
has shown great promises in natural language pro-
cessing; It produced state-of-the-art results for ma-
chine translation (Vaswani et al., 2017).

In text classification, the focus on interpretabil-
ity has thus far been limited. Lee et al. (2018) used
a convolutional neural network (CNN) with Class
Activation Mapping (CAM) (Oquab et al., 2015)
to do sentiment analysis. CAM basically uses
the weights of the classification layer to derive a
heatmap on the input. Wang et al. (2018) used a
densely connected CNN (Huang et al., 2017) to
apply attention to n-grams. However, their ap-
proach limits the range and acuteness of the in-
teractions between the words in the text. Lin et al.
(2017) and Yang et al. (2016) both combined an
attention mechanism with a recurrent neural net-
work. The main difference with our work is, while
being interpretable, these approaches do not per-
form true word-on-word attention across a whole
sequence such as our self-attention layer.

3 SANet: Self-Attention Network

Inspired by the Transformer architecture (Vaswani
et al., 2017) which performed machine translation
without recurrent or convolutional layers, we pro-
pose the Self-Attention Network (SANet) archi-
tecture targeting instead text classification. One
key difference between our approach and Vaswani
et al. (2017)’s is that we only perform input-input
attention with self-attention, as we do not have se-
quences as output but a text classification. More-
over, we employ global max pooling at the top,
which enables our architecture to process input se-
quences of arbitrary length.

Formally, let X = [xT1 ;x
T
2 ; . . . ;x

T
n ] be the con-

catenation of a sequence of n vectors giving a ma-
trix X ∈ Rn×d such that xi ∈ Rd. Vaswani et al.
(2017) defined attention as a function with as input
a triplet containing queries Q, keys K with asso-
ciated values V .

Att(Q,K, V ) = softmax
(
QKT

)
V

In the case of self-attention, Q, K and V are linear
projections of X . Thus, we define the dot-product

Self-Attention

Add & Norm

Add & Norm

Feed Forward

+
Input

Embedding

Positional
Encoding

Inputs

Global Max
Pooling

Feed-Forward

Softmax

Linear

Class
Probabilities

N
Self-Attention

Blocks

Figure 1: Our Self-Attention Network (SANet),
derived from the Transformer architec-
ture (Vaswani et al., 2017). The self-attention
block is repeated N times.

self-attention mechanism as follows.

Self-Att(X) = Att(XWQ, XWK , XWV )

= softmax
(
XWQKXT

)
XWV

Where WQ,WK ,WV ,WQK ∈ Rd×d and
WQK = WQW

T
K . Hence, WQK and WV are

learned parameters.
Our network (depicted in Figure 1) first encodes

each word to its embedding. Pre-trained embed-
dings, like GloVe (Pennington et al., 2014), may
be used and fine-tuned during the learning pro-
cess. Next, to inject information about the order
of the words, the positional encoding layer adds
location information to each word. We use the
positional encoding vectors that were defined by
Vaswani et al. (2017) as follows.

PEpos,2i = sin
( pos

100002i/d

)

PEpos,2i+1 = cos
( pos

100002i/d

)

Where pos is the position of the word in the se-
quence and 1 ≤ i ≤ d is the dimension in the
positional encoding vector.

268



0 200 400 600 800 1000

Sequence length

AG

DBP

Yah. A.

Yelp P.

Yelp F.

Amz. F.

Amz. P.

D
at

as
et

s

127.6KTC

630KTC

1460KTC

598KSA

700KSA

3650KSA

4000KSA

Figure 2: Visualization of sequences length distributions. For each dataset, the total number of exam-
ples is presented on the right and task semantics are identified on the left: Topic Classification (TC) or
Sentiment Analysis (SA).

A linear layer then performs dimensionality re-
duction/augmentation of the embedding space to
a vector space of dimension d, which is kept con-
stant throughout the network. It is followed by one
or several “self-attention blocks” stacked one onto
another. These blocks are comprised of a self-
attention layer followed by a feed-forward net-
work, both with residual connections. Contrary
to Vaswani et al. (2017), we only use a single
attention head, with attention performed on the
complete sequence with constant d-dimensional
inputs.

The feed-forward network consists of a single
hidden layer with a ReLU.

FFN(x) = max(0, xW1 + b1)W2 + b2

Where W1,W2 ∈ Rd×d are learned parameters.
The “Add & Norm” layer is a residual connection
defined by LayerNorm(x + SubLayer(x)), where
SubLayer(x) is the output of the previous layer
and LayerNorm is a layer normalization method
introduced by Ba et al. (2016). Let xi be the vec-
tor representation of an element in the input se-
quence. The normalization layer simply normal-
izes xi by the mean and the variance of its ele-
ments. Throughout this paper, dropout of 0.1 is
applied to the output of SubLayer(x)

Finally, since we restrict ourselves to classifica-
tion, we need a fixed-size representation of the se-
quence before the classification layer. To achieve
this, we apply a global max pooling operation for

each dimension across all the n words of the se-
quence. That is, if X ∈ Rn×d, then the max pool-
ing on X outputs a vector in Rd. This technique
was inspired by global average pooling introduced
by Lin et al. (2013) for image classification in
CNNs. Global max pooling allows us to handle se-
quences of any length (up to memory limitations).
Thus, our approach is length-agnostic contrary to
some approaches based on CNN, where sequences
are truncated or padded to obtain a fixed-length
representation.

4 Experiments

We evaluated our model on seven large scale
text classification datasets introduced by Zhang
et al. (2015), grouped into two kinds of tasks.
The first one is topic classification: AG’s News
with 4 classes of news articles, DBPedia with
14 classes of the Wikipedia ontology and Ya-
hoo! Answers containing 10 categories of ques-
tions/answers. Yelp and Amazon reviews involve
sentiment analysis with ratings from 1 to 5 stars.
Two versions are derived from those datasets: one
for predicting the number of stars, and the other
involving the polarity of the reviews (negative for
1-2 stars, positive for 4-5 stars).

Each text entry was split into sentences and tok-
enized using NLTK (Bird et al., 2009). Sequences
longer than 1000 tokens were truncated to accom-
modate GPU memory limitations, only affecting a
negligible portion of the texts. See Figure 2 for
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Table 1: Test error rates (%) for text classification. In bold, the state-of-the-art and in italic, our best
model. Lin et al. (2017)’s results provided by Wang et al. (2018). Stars (*) indicate attention mechanisms.

Model
Topic Classification Sentiment Analysis

AG DBP. Yah. A. Yelp P. Yelp F. Amz. F. Amz. P.

ngrams/CNN (Zhang et al., 2015) 7.64 1.31 28.26 4.36 37.95 40.43 4.98
fastText (Joulin et al., 2016) 7.5 1.4 27.7 4.3 36.1 39.8 5.4
word-CNN (Johnson and Zhang, 2016) 6.57 0.84 24.85 2.90 32.39 36.24 3.79
HN-ATT* (Yang et al., 2016) - - 24.2 - - 36.4 -
VDCNN (Conneau et al., 2017) 8.67 1.29 26.57 4.28 35.28 37.00 4.28
DCNN (Zhang et al., 2017) - 1.17 25.82 3.96 - - -
DPCNN (Johnson and Zhang, 2017) 6.87 0.88 23.90 2.64 30.58 34.81 3.32
SA-Embedding* (Lin et al., 2017) 8.5 1.7 - 5.1 36.6 40.2 -
ULMFiT (Howard and Ruder, 2018) 5.01 0.80 - 2.16 29.98 - -
DCCNN-ATT* (Wang et al., 2018) 6.4 0.8 - 3.5 34.0 37.0 -

Baseline (base model) 7.34 1.30 26.87 6.39 39.98 41.80 6.38
SANet* (base model) 7.86 1.27 26.99 6.26 38.16 40.08 5.55
Baseline (big) 7.20 1.25 25.90 6.42 38.92 40.58 5.82
SANet* (big) 7.42 1.28 25.88 4.77 36.03 38.67 4.52

a visualization of the resulting sequences length
distribution and the total number of examples per
dataset.

We used 20% of the training texts for vali-
dation. The vocabulary was built using every
word appearing in the training and validation
sets. The words embeddings were initialized using
pre-trained word vectors from GloVe (Pennington
et al., 2014) when available, or randomly initial-
ized otherwise.

We experimented with two configurations for
our proposed SANet. The base model used N = 1
self-attention blocks, an embedding size of 100
and a hidden size of d = 128. The big model
doubled these numbers, i.e. N = 2 self-attention
blocks, embedding size of 200 and hidden size
d = 256. For each configuration, we also trained
a baseline network without any attention mecha-
nisms, replacing each self-attention layer with a
feed forward layer.

Training was performed using SGD with a mo-
mentum of 0.9, a learning rate of 0.01 and mini-
batches of size 128. For the embeddings, a learn-
ing rate of 0.001 was applied without momentum.
All learning rates were halved for the big model.
We trained for 40 epochs and selected the best
epoch, based on validation accuracy.

5 Results and Discussion

From a performance perspective, as shown in Ta-
ble 1, our model based entirely on attention is
competitive while offering high level interpretabil-
ity. There is a notable exception with Yelp Review
Polarity that will be discussed. Our results also
indicate that the increase in depth and representa-
tion size in the big model is beneficial, compared
to the simpler base model. Most noteworthy, we
noticed considerably different behaviors of the at-
tention mechanism depending on the type of task.
We offer an analysis below.

5.1 Topic Classification Tasks

On the topic classification task, the self-attention
behavior can be described as looking for interac-
tions between important concepts, without consid-
ering relative distance. As such, it acts similarly
to a bag-of-word approach, while highlighting key
elements and their associations. Thus, the atten-
tion matrix takes shape of active columns, one per
concept. One such matrix is depicted in Figure
3a, where the attention is focused on distanced
pairs such as (microsoft, class-action)
or (settlement, billions) to help SANet
predict the Business category, while the baseline
wrongfully predicts Sci/Tech. We observed this
column-based structure for attention matrix for ev-
ery topic classification dataset, see Figure 4 for
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Figure 3: Self-attention different behavior for each text classification task. The attention matrices were
extracted from the SANet base model applied on the testing set of each dataset. Words on the y-axis are
attending to the words on the x-axis. GT refers to the ground truth.

multiple examples. Although it adds interpretabil-
ity to the model, our results seem to indicate that
self-attention does not improve performances for
topic classification, compared to the baseline.

5.2 Sentiment Analysis Tasks

For sentiment analysis tasks, self-attention im-
proves accuracy for every dataset and model con-
figurations that we tested. For Yelp Review Po-
larity, although attention helps, the overall perfor-
mances remain subpar.

Noticeably for the other datasets, SANet is able
to extract subtle interactions between words, with
a strong focus on neighboring relation. Hence, the
attention matrices are close to being band matri-
ces, with interest concentrated on very small re-
gions near the diagonal. This is observable in Fig-
ure 5 where multiple examples from all sentiment
analysis datasets are presented. Concentration of
the attention around the diagonal indicates that
the useful features learned by the attention mech-
anism consist essentially of skip-bigrams with rel-
atively small gaps. Of note, Wang and Manning
(2012) previously observed consistent gains when
including word bigram features to extract senti-
ment. Thus, our model corroborates this intu-
ition about sentiment analysis while yielding in-
terpretable insights on relevant word pairs across

all possible skip-bigrams.
Figure 3b is a typical example of such ma-

trix with a band diagonal structure, for a 5-star
Yelp review. A number of positive elements are
highlighted by the self-attention mechanism such
as i) the initial strong sentiment with the inter-
action between this with love and ! ii) the
favorable comparison with even and better
iii) the enticing openness to experiences with
try and something and iv) the positive com-
bination of two negative words with never and
disappointed.

Positional encoding helps the self-attention
mechanism when interpreting words repetitions,
in order to extract sentiment gradation. When re-
peating three times an adjective before the mod-
ified noun, attention on the adjective increases
with their proximity to the noun: horrible
horrible horrible service. Punctu-

ation repetitions exhibit a similar behavior, as in
the sentence “love this place!!!”, where the words
love and all three exclamation points apply at-
tention to this with varying intensities: love
this place ! ! ! . This particular behav-
ior of the model reinforces our belief that it learns
intricate knowledge for the task of sentiment anal-
ysis. Entire attention heatmaps for complete se-
quences can be found in Figure 6.
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Figure 4: Randomly selected attention matrices for topic classification task. Each row corresponds to a
different dataset in this order: AG’s News, DBPedia and Yahoo! Answers. The column-based pattern is
clearly present in the attention mechanism for topic classification.

Figure 5: Randomly selected attention matrices for sentiment analysis task. Each row corresponds to a
different dataset in this order: Yelp Review Polarity, Yelp Review Full, Amazon Review Full and Amazon
Review Polarity. The diagonal band pattern of the matrices is clearly present in the attention mechanism
for sentiment analysis except for the Yelp Review Polarity dataset.

5.3 Quantitative Analysis

We now present a quantitative analysis of the at-
tention matrices to support the qualitative intuition
stated previously. Two metrics are used in order to
assess the properties of the matrices; the first one
(Gini coefficient) quantifies the sparsity of the at-
tention, whereas the second one (diagonality) fo-
cuses on the diagonal concentration. These two

properties are relevant for interpretability issues.
The results are presented in Table 2.

The Gini coefficient which measures the in-
equality in the attention weights distribution is first
computed. For topic classification datasets, the
mean of the Gini coefficient is 63.57%, whereas,
for sentiment analysis datasets, it raises at 87.15%
without considering Yelp Review Polarity. Thus,
for topic classification it reveals that every word
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Figure 6: Positional encoding impact for sentiment gradation through self-attention mechanism. Both
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Table 2: Quantitative statistics of the self-attention mechanism behavior for the two text classification
tasks. Metrics are computed on the testing sets using the SANet base model.

Metric
Topic Classification Sentiment Analysis

AG DBP. Yah. A. Yelp P. Yelp F. Amz. F. Amz. P.

Gini coefficient 55.31 67.94 67.45 65.16 84.18 89.50 87.76

Diagonality (bandwidth = 1) 7.44 8.49 6.34 5.02 23.54 41.77 40.01
Diagonality (bandwidth = 2) 11.86 13.80 9.83 7.89 36.89 62.35 60.34
Diagonality (bandwidth = 3) 16.21 18.88 13.28 10.62 45.49 73.53 71.43
Diagonality (bandwidth = 4) 20.42 23.74 16.59 13.19 50.90 79.49 77.21
Diagonality (bandwidth = 5) 24.48 28.25 19.65 15.62 54.54 83.09 80.56

interacts with multiple other words in the se-
quence. On the other hand, for sentiment analy-
sis, the attention is focused on a fewer number of
word pairs. The second metric will also point out
that the sentiment analysis attention is sparse and
specifically based on pair of words that are close
in the sentence. This structurally corresponds to
an attention matrix concentrated near the diagonal
and justifies the introduction of the following met-
ric.

This new metric evaluates the resemblance with
a band matrix by computing the proportion of at-
tention weights which occur inside the band diago-
nal of a given bandwidth b, thus the band diagonal-

ity or diagonality for short. It expresses the inter-
actions of every element with itself, and the b ele-
ments before and after in the sequence. This met-
ric of diagonality was computed for a bandwidth
of b = 1, 2, . . . , 5 as presented in Table 2. Re-
sults clearly reveal that sentiment analysis atten-
tion matrices are structurally close to being band
matrices. Notably, with a bandwidth of b = 3 for
topic classification, 16.12% of the weights occur
inside the band diagonal, as for sentiment analysis
without considering Yelp Review Polarity, 63.48%
is located inside the band diagonal.

In our opinion, the combination of these two
metrics supports our qualitative observations of
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the attention matrices. It strengthens the differ-
ence in attention behavior between the topic clas-
sification and sentiment analysis task. Moreover,
this quantitative analysis clearly exposes SANet
inability to learn the appropriate attention behavior
for sentiment analysis with Yelp Review Polarity.
Its failure to adequately exploit the self-attention
mechanism coincide with its poor performance to
extract sentiment. Interestingly, Yelp Review Po-
larity examples are a subset of Yelp Review Full
with merged classes, for which SANet performs
well with the expected attention behavior. The
cause of this discrepancy with the Yelp datasets
is unknown and left for future work as is some lin-
guistic investigation of the impact of close inter-
acting words in sentiment analysis.

6 Conclusion

In this paper, we introduced the Self-Attention
Network (SANet), an attention-based length-
agnostic model architecture for text classification.
Our experiments showed that self-attention is im-
portant for sentiment analysis. Moreover, the im-
proved interpretability of the model through atten-
tion visualization enabled us to discover consid-
erably different behaviors of our attention mech-
anism between the topic classification and senti-
ment analysis tasks. The interpretable perspective
of this work gives insights on the importance of
modeling interaction between neighboring words
in order to accurately extract sentiment, as noted
by (Wang and Manning, 2012) for bigrams. It
highlights how interpretability can help us under-
stand models behavior to guide future research. In
the future, we hope to apply our Self-Attention
Network to other datasets such as bullying detec-
tion on social network data and tasks from vari-
ous fields, such as genomic data in bioinformat-
ics. Finally, we wish to study the properties of the
introduced global max pooling layer as a comple-
mentary tool for interpretability in a similar way
that was done with CAM (Oquab et al., 2015) for
global average pooling. The outcome will be some
attention on individual words that can take into ac-
count the context given by the self-attention mech-
anism. This contrast with the approach of this
paper which focuses on interaction between ele-
ments as pairs. Thus we are allowed to expect that
these two mechanisms will act in a complementary
way to enrich interpretability.
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Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef
Sivic. 2015. Is object localization for free?-weakly-
supervised learning with convolutional neural net-
works. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
685–694.
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Abstract

This paper presents an approach for inves-
tigating the nature of semantic information
captured by word embeddings. We propose
a method that extends an existing human-
elicited semantic property dataset with gold
negative examples using crowd judgments.
Our experimental approach tests the ability of
supervised classifiers to identify semantic fea-
tures in word embedding vectors and com-
pares this to a feature-identification method
based on full vector cosine similarity. The idea
behind this method is that properties identi-
fied by classifiers, but not through full vec-
tor comparison are captured by embeddings.
Properties that cannot be identified by either
method are not. Our results provide an initial
indication that semantic properties relevant for
the way entities interact (e.g. dangerous) are
captured, while perceptual information (e.g.
colors) is not represented. We conclude that,
though preliminary, these results show that our
method is suitable for identifying which prop-
erties are captured by embeddings.

1 Introduction

Word embeddings are widely used in NLP and
have been shown to boost performance in a large
selection of tasks ranging from morphological
analysis to sentiment analysis (Lazaridou et al.,
2013; Socher et al., 2013; Zhou and Xu, 2015,
among many others). Despite a number of dif-
ferent approaches to evaluation, our understand-
ing of what type of information is represented by
the vectors remains limited. Most approaches fo-
cus on full-vector comparison which treat vectors
as points in a space (Yaghoobzadeh and Schütze,
2016), which are evaluated by performance on
semantic similarity or relatedness test sets and
analogy questions (Mikolov et al., 2013; Turney,
2012). Previous work, however, has shown that
high performance does not necessarily mean that

vectors actually contain the information required
to solve the task (Rogers et al., 2017; Linzen,
2016). Better understanding of the kind of seman-
tic information captured by word embeddings can
increase our understanding of how they help im-
prove downstream tasks. In general, understand-
ing what information is present in (often promi-
nent) input embeddings forms an essential com-
ponent of gaining deeper understanding of the na-
ture of information and manner in which it travels
through the hidden layers of a neural network.

In this paper, we propose a method that inves-
tigates what kind of semantic information is en-
coded in vectors using a human-elicited dataset
of semantic properties. We compare the output
of supervised classifiers to an approach based on
full-vector comparison that cannot access individ-
ual dimensions. The assumptions behind this ap-
proach are that (1) both full-vector comparison
and the supervised classifier will perform well
on identifying semantic properties that correlate
highly with general similarity; (2) the classifier
will outperform full-vector analysis on properties
that are reflected by the context, but shared among
a diverse set of entities and (3) that neither ap-
proach will perform well on properties that are not
represented directly or indirectly in the text. The
last two outcomes can indicate whether a semantic
property is encoded in embeddings (2) or not (3).

The main contribution of this paper lies in the
new method and corpus it proposes. To our knowl-
edge, this is the first approach that aims at identify-
ing whether specific semantic properties are cap-
tured by individual dimensions or complex pat-
terns in the vector. In addition, we provide specific
hypotheses as to which properties are captured
well by which method and test them using our
approach.1 Our general hypothesis states that se-

1The hypotheses and code for our experiments can
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mantic properties that are relevant for the way en-
tities interact with the world are well represented
(e.g. functions of objects, activities entities are fre-
quently involved in), whereas properties of rela-
tively little consequence for the way entities inter-
act with the world are not (e.g. perceptual proper-
ties such as shapes and colors, which either have
no function or highly diverse functions). Though
preliminary due to the complexity of the task, re-
sults indicate that these tendencies hold. More-
over, the overall outcome shows that the method
and data are complementary to existing intrinsic
evaluation methods.

The rest of this paper is structured as follows.
We discuss related work in Section 2. Our method
is outlined in Section 3. Section 4 presents our ex-
periments and results. We finish with a critical dis-
cussion and overview of future work in Section 5.

2 Related work

Intrinsic evaluation of word embeddings has pri-
marily focused on two main tasks: identifying
general semantic relatedness or similarity and the
so-called analogy task, where word embeddings
have been shown to be able to predict missing
components of analogies of the type A is to B as
C is to D (Mikolov et al., 2013; Turney, 2012).
Furthermore, most intrinsic evaluation methods
take full vectors into consideration. The famous
examples Paris − France + Italy ≈ Rome
or king − man + woman ≈ queen evoke the
suggestion that embeddings can capture semantic
properties. The task has, however, been criticized
substantially (Linzen, 2016; Gladkova and Drozd,
2016; Gladkova et al., 2016; Drozd et al., 2016,
among others).

Gladkova et al. (2016) follow an observation
in Levy and Goldberg (2014) on the large differ-
ences in performance on different categories in the
Google analogy set (Mikolov et al., 2013). They
provide a new, more challenging, analogy dataset
that improves existing sets on balance (capturing
more semantic categories) and size. Linzen (2016)
points out more fundamental problems including
the observation that the target vector in the anal-
ogy task can often be found by simply taking the
vector closest to the source. Drozd et al. (2016)
show that classifiers picking out the target word
from a set of related terms outperform the stan-

be found at: https://cltl.github.io/semantic_
space_navigation

dardly applied cosine addition or multiplication
methods. Though also boosted by the aforemen-
tioned proximity bias, these results indicate that
standard methods of solving analogies miss infor-
mation that is captured by embeddings. Rogers
et al. (2017) conclude that the analogy evaluation
does not reveal if word embedding representations
indeed capture specific semantic properties.

On top of that, an embedding may capture spe-
cific semantic properties in ways that are not anal-
ogous to semantic properties of related categories.
Analogy methods assume that semantic properties
stand in analogous relation to each other based on
the information provided by the context, but there
is no reason why (e.g.) things made of wood and
things made of plastic result in (combinations of)
embedding dimensions that are similar enough to
stand in a parallel relation to each other. Our set-
up can determine whether the properties are rep-
resented without supposing such structures by tar-
geting semantic properties directly rather than in
relation to other concepts.

Several approaches have attempted to derive
properties collected in property norm datasets
from the distribution in naturally occurring texts
(Kelly et al., 2014; Baroni et al., 2010; Barbu,
2008). Whereas these approaches yield indica-
tions about the potential of distributional models,
they do not go beyond full-vector proximity on a
low-dimensional SVD model or context words in a
transparent, high-dimensional count model. Their
focus lies on detecting informative contexts. We
follow the idea behind this approach and make a
human-elicited property dataset that is created in
the same tradition, but larger. Our approach goes
beyond the previous work in two ways: first, we
add gold negative examples which allows us to
go beyond testing for salient properties. Second,
we compare full vector proximity to the outcome
of a classifier which allows us to verify whether
the property is captured for entities that share the
property, but are not similar otherwise.

A few other studies go beyond full vec-
tor comparisons, moving towards the interpreta-
tion of word embedding dimensions. Tsvetkov
et al. (2015, 2016) evaluate word embeddings
by measuring the correlation between word em-
bedding vectors and count vectors representing
co-occurrences of words with WordNet super-
senses. While they show that their results have
a higher correlation with results obtained from
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extrinsic evaluations than standardly used intrin-
sic evaluations, they do not provide insights into
what kind of semantic information is represented
well. Yaghoobzadeh and Schütze (2016) decom-
pose distributional vectors into individual linguis-
tic aspects by means of a supervised classifica-
tion approach to test which linguistic phenomena
are captured by embeddings. They test their ap-
proach on an artificially created corpus and do not
provide insights into specific semantic knowledge.
Faruqui et al. (2015) transform learned embedding
matrices into sparse matrices to make them more
interpretable, which is complementary to our ap-
proach.

Previous studies provide (indicative) support for
the hypothesis that embeddings lack information
people get from other modalities than language.
Fagarasan et al. (2015) present a method to ground
embedding models in perceptual information by
mapping distributional spaces to semantic spaces
consisting of feature norms. Several approaches to
boosting distributional models with visual infor-
mation show that the additional information im-
proves the performance of word embedding vec-
tors (Roller and Schulte im Walde, 2013; Lazari-
dou et al., 2014). Whereas this indicates that word
embedding models lack visual information, it does
not show to what extent different types of prop-
erties are encoded. The method proposed in this
paper is, to the best of our knowledge, the first
approach specifically designed to identify what
semantic knowledge is captured in word embed-
dings. We are not aware of earlier work that pro-
vides explicit hypotheses about the kind of infor-
mation we expect to learn from distributional vec-
tors, making this the first attempt to confirm these
hypotheses experimentally.

3 Method

The core of our evaluation consists of testing
whether nearest neighbors and classifiers are ca-
pable of identifying which embeddings encode a
given semantic property. We first describe the
dataset and then present the procedure we ap-
ply. We complete this section with our hypotheses
about the outcome of our evaluation.

3.1 Extended CSLB Data

We use the Centre for Speech, Language and the
Brain concept property norms dataset (Devereux
et al., 2014, henceforth CSLB). This dataset fol-

lows the tradition of the sets created by McRae
et al. (2005); Vinson and Vigliocco (2008) and
used in Kelly et al. (2014); Baroni et al. (2010);
Barbu (2008) and is the largest available seman-
tic property dataset we are aware of. In the col-
lection process, human subjects were given con-
crete and mostly monosemous concepts and asked
to provide a set of semantic features. Polysemous
concepts were disambiguated. Properties were
elicited by cues such as has, is, does and made of.
An empty slot was provided to fill in other rela-
tions. The dataset comprises 638 annotated con-
cepts, each of which was presented to 30 partici-
pants. Properties listed by at least two participants
are included in the published set.

We select features associated with at least 20
concepts. In an exploratory experiment, we count
all concepts for which the target feature is listed as
positive examples and all other concepts as nega-
tive examples. However, the fact that people did
not list a property does not necessarily mean that
a given concept is a negative example of it. For
instance: falcon is described by is a bird, but not
by is an animal.

For proper evaluation, the CSLB dataset should
be extended with verified negative examples. We
apply two methods to add both positive and (veri-
fied) negative properties to CSLB. First, we select
properties that necessarily imply the target prop-
erty (e.g. is a bird implies is an animal) or nec-
essarily exclude the target property (e.g. is food
almost certainly excludes has wheels). We both
manually inspect the extended sets of positive and
negative examples per selected property to ex-
clude remaining noise independently, resolving
disagreements after discussion.2

The resulting dataset has the disadvantage that
negative examples largely consist of the same
specific categories, e.g. negative examples of
has wheels are food, animals and plants. Based on
these examples, we cannot tell whether the classi-
fier performs well because embeddings encode the
property of having wheels or because it can distin-
guish vehicles from food, animals and plants. We
therefore need to expand the dataset so that it in-
cludes diverse negative and positive examples and
preferably positive and negative examples that are
closely related in semantic space.

Ultimately, we want to verify and increase the
2All annotations, guiding principles as well as notes about

resolving discussions can be found at https://cltl.
github.io/semantic_space_navigation.
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entire dataset and distinguish between things that
always or typically have a property (e.g. bike
has wheels, banana is yellow), things that can
have a property (e.g. bikini - is pink, plate -
made of metal) and things that do normally not
have a property (e.g. grape - does kill, beer -
is pink). We set up a crowdsourcing task in which
we ask participants whether a property applies to
a word. Possible answers are yes, mostly, possibly
and no.

This crowdsourcing method has currently been
applied to a selection of property-concept pairs
that were labeled as false-positives by at least one
of our approaches in the initial setup. In addi-
tion, we extend the property-concept pairs given
to crowd workers by collecting the nearest neigh-
bors of the property centroid and a number of seed
words. We aim at (1) identifying negative exam-
ples that have a high cosine similarity to positive
examples in the dataset and (2) including a broader
variety of words. This nearest-neighbors strategy
explicitly aims at collecting words that are highly
similar to positive examples of a property but are
not associated with it. For instance, in order to ex-
tend the concept set for the property has wheels,
we used the seed words car, sledge, and ship.3

In the experiments reported in this paper, we
only consider properties that clearly apply to a
concept as positive examples (the yes and mostly
cases) and properties that clearly do not apply as
negative examples, leaving disputable cases and
the cases that possibly apply for future work. We
manually checked cases of disagreement in the
crowd data and selected or removed data based on
these criteria.4

3.2 Classification approaches

We use the pretrained Word2vec model based on
the Google News corpus.5 The underlying ar-
chitecture is a skip-gram with negative sampling
model (Mikolov et al., 2013), which learns word
vectors by predicting the context given a word.

The overall goal is to investigate whether word
vectors capture specific semantic properties or not.
We start from the assumption that classifiers can

3The details about our selection and full lists of seed
words are provided with our code (see link in Footnote 1).

4Some difference in judgment are clearly the result of lack
of knowledge (e.g. not knowing a something is an animal).
The original outcome of the crowd and final resulting test are
provided on the github repository associated with this paper.

5https://code.google.com/archive/p/
word2vec/

learn properties that are represented in the embed-
ding in a binary classification task. We apply su-
pervised classification to see whether a logistic re-
gression classifier or a neural network are capable
of distinguishing embeddings of words that have
a specific semantic property from those which do
not. Specifically, we use embedding vectors cor-
responding to words associated or not associated
with a semantic target-property (i.e. positive and
negative examples) as input for a binary classifier
and test whether the classifier can learn to distin-
guish embeddings of words that have the property
from those who do not. However, word embed-
dings also capture semantic similarity. If a prop-
erty is shared by similar entities (e.g. most animals
with a beak are birds), the classifiers may perform
well because of this similarity rather than identi-
fying the actual property. We therefore compare
the performance of classifiers to the performance
of an approach based on full vector similarity. If
only the classifiers score well, this provides an in-
dication that the embedding captures the property.
If both methods perform poorly this could mean
that the property is not captured.6

Supervised classification

As the datasets are limited in size, we evaluate
by applying a leave-one-out approach. We em-
ploy two different supervised classifiers, which we
expect to differ in performance. As a ‘vanilla’
approach, we use a logistic regression classifier
with default settings as implemented in SKlearn.
This type of classifier is also used in Drozd et al.
(2016) to detect words of similar categories in an
improved analogy model.

In addition, we use a basic neural network.
Meaningful properties may not always be encoded
in individual patterns, but rather arise from a com-
bination of activated dimensions. This is not cap-
tured well by a logistic regression model, as it can
only react to individual dimensions. In contrast,
the neural network can learn from patterns of di-
mensions. We use a simple multi-layer perceptron
(as implemented in SKlearn7) with a single hid-
den layer. We calculate the number of nodes in the
hidden layer as follows: (number of input dimen-
sions + number of output dimensions) * 1/3. The

6Given the size and balance of our dataset as well as the
lack of fine-tuning, we remain careful not to draw firm con-
clusions at this point.

7http://scikit-learn.org/stable/index.
html
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pretrained Google News vectors have 300 dimen-
sions, resulting in a hidden layer of 100 nodes. We
use the recommended settings for small datasets.
No parameter tuning was conducted so far due to
the limited size of the datasets and the use of a
leave-one-out evaluation strategy. We present the
runs of several models, as the neural network can
react to the order in which the examples are pre-
sented as well as the randomly assigned vectors for
initialization. While the performance of the model
could be optimized further by experimenting with
the settings, we find that the set-up presented here
already outperforms the logistic regression classi-
fier in many cases.

Full vector similarity
To show that supervised classification can go be-
yond full vector comparison in terms of cosine
similarity, we compare the performance of the
classifiers to an n-nearest neighbors approach. We
calculate the centroid vector of all positive exam-
ples in the training set. The training set consists
of all positive examples in the leave-one-out split
except for the one we are testing on. We then con-
sider its n-nearest neighbors measured by their co-
sine distance to the centroid as positive examples.
We vary n between 100 and 1,000 in steps of 100.
We report the performance of the optimal number
of neighbors for each property (which varies per
property). In future work, we will add more fine-
grained steps and investigate the performance of
a classifier using the cosine similarity of words to
the centroid as a sole feature.

Variety approximation
The performance of the approaches outlined above
depends on to the variety of words associated with
a property. We approximate this variety by calcu-
lating the average cosine similarity of words as-
sociated with a property to one-another. This is
done by averaging over the cosine similarities be-
tween all possible pairs of words. A high average
cosine similarity means that the words associated
with a concepts tend to be close to each other in
the space, which should mostly apply to words as-
sociated with taxonomic categories. In contrast, a
low average cosine means a high diversity, which
should largely apply to general descriptions.

3.3 Specific hypotheses

We select a number of properties for closer inves-
tigation based on the clean and extended dataset

described in Section 3.1. We first formulated the
hypotheses independently, before discussing and
specifying them.8 Table 1 summarizes the agreed
upon expectations. The hypotheses can be catego-
rized in the following way:

Sparse Textual Evidence
We select properties of which we expect that tex-
tual evidence is too sparse to be represented by
distributional vectors. The properties is black,
is yellow, is red and made of wood have little im-
pact on the way most entities belonging to that
class interact with the world. We expect that the
only textual evidence indicating them are individ-
ual words denoting the properties themselves (e.g.
red, black, wooden)9 and it is unclear how often
they are mentioned explicitly. It may, however, be
the case that certain subcategories in the datasets
are learned regardless of this sparsity, because they
happen to coincide with more relevant taxonomic
categories such as red fruits.

Fine-grained Distinctions in Larger Categories
We expect that a supervised classifier may be able
to make more fine-grained distinctions between
examples of the same category when these dif-
ferences are relevant for the way they interact
with the world. We select two properties that in-
troduce crucial distinctions in larger categories:
has wheels and is found in seas. The former ap-
plies to a sub-group of vehicles and may be ap-
parent in certain behaviors and contexts only ap-
plying to these vehicles (rolling, street, etc). The
latter applies to animals, plants and other entities
found in water, but it is unclear whether textual ev-
idence is enough to distinguish between seawater
and fresh water.

Mixed Groups
We expect that a supervised machine learning ap-
proach can find positive examples of a property
that are not part of the most common class in the
training set. For instance, the majority of posi-
tive examples for is dangerous and does kill refer
to weapons or dangerous animals. We expect the
classifier to (1) find positive examples from less
well represented groups and (2) be able to distin-
guish between positive and negative examples of
a well-represented category (e.g. rhino v.s. hippo

8Details can be found on the paper’s github repository.
9In the case of made of wood, the evidence may be a bit

broader, as it might be indicated by different types of wood
occurring in the context of furniture.
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Property learnable property

is an animal yes
is food yes
is dangerous yes
does kill yes
is used in cooking yes
has wheels possibly
is found in seas possibly
is black no
is red no
is yellow no
made of wood no

Table 1: Hypotheses about whether selected semantic
properties can be learned by a supervised classifier

for killing). For the property is used in cooking,
the example words refer to food items as well as
utensils. We expect that classifiers can distinguish
between cooking-related utensils and other tools.

Polysemy
We expect that machine learning can recognize
vector dimensions indicating properties applying
to different senses of a word, whereas the nearest-
neighbors approach simply assigns the word to its
dominant class. For instance, we expect that word
vectors that can be used to describe animals as
well as food (e.g. chicken, rabbit or turkey) record
evidence of both contexts, but end up closer to one
of the categories. A supervised machine learning
approach should be able to find the relevant di-
mensions regardless of the cosine similarity to one
of the groups and classify the word correctly. We
test this by training on a set of monosemous words
(animals and food items) and test on a set of poly-
semous and monosemous examples.

4 Experimental set-up and results

4.1 Concept diversity vs performance

We first investigate the relation between perfor-
mance and diversity of concepts associated with
a property on the full, noisy dataset using a leave-
one-out approach. Table 2 shows a selection of
the f1-scores achieved on properties in the CSLB
dataset in relation to the average cosine similar-
ity of the associated words. A high average co-
sine similarity means that the concepts overall
have similar vector representations and can thus
be seen as having a low diversity. The results
of the Spearman Rank correlation clearly indicate
that scores achieved by nearest neighbors correlate
more strongly with the average cosine than the two
supervised classification approaches.

feature cos f1-neigh f1-lr f1-net type

is heavy 0.15 0.15 0.17 0.21 op
is strong 0.15 0.13 0.13 0.34 e
is thin 0.16 0 0.05 0.1 vp
is hard 0.16 0.15 0.08 0.26 op
is expensive 0.16 0 0.28 0.37 e
... ... ... ... ...
is black 0.2 0.29 0.23 0.24 vp
is electric 0.21 0.48 0.5 0.69 vp
is dangerous 0.21 0.53 0.57 0.59 e
is colourful 0.21 0.14 0.25 0.32 vp
is brown 0.21 0.13 0.22 0.33 vp
has a handle
handles

0.22 0.44 0.57 0.58 p

has a seat
seats

0.22 0.43 0.3 0.48 p

does smell
is smelly

0.22 0.08 0.15 0.37 op

made of glass 0.22 0.29 0 0.28 vp
has a point 0.23 0.38 0.23 0.47 p
does protect 0.24 0.38 0.26 0.37 f
is yellow 0.24 0.22 0 0.23 vp
is soft 0.24 0.12 0 0.16 op
is red 0.25 0.34 0.13 0.27 vp
is fast 0.25 0.3 0.31 0.48 vp
is tall 0.25 0.43 0.57 0.65 vp
is a tool 0.26 0.5 0.51 0.47 t
... ... ... ... ...
is a weapon 0.3 0.74 0.56 0.63 t
is green 0.31 0.45 0.45 0.45 vp
has a
blade blades

0.32 0.68 0.65 0.74 p

is worn 0.32 0.47 0.86 0.9 f
has wheels 0.32 0.82 0.83 0.87 p
is found
in kitchens

0.33 0.56 0.73 0.76 e

does fly 0.33 0.57 0.76 0.76 f
has a tail 0.33 0.53 0.68 0.69 p
is an animal 0.33 0.64 0.76 0.78 t
is eaten edible 0.33 0.37 0.88 0.85 f
has four legs 0.34 0.67 0.66 0.66 p
is a vehicle 0.34 0.76 0.69 0.79 t
does eat 0.34 0.68 0.71 0.68 f
... ... ... ... ...
has a beak 0.37 0.63 0.83 0.87 p
made of cotton 0.37 0.68 0.56 0.64 vp
has roots 0.37 0.3 0.65 0.72 p
is a mammal 0.37 0.69 0.85 0.86 t
does grow 0.37 0.52 0.81 0.81 e
is a plant 0.37 0.43 0.63 0.64 t
has leaves 0.37 0.41 0.71 0.78 p
... ... ... ... ...
has pips seeds 0.47 0.5 0.08 0.46 p
is juicy 0.5 0.71 0.48 0.56 op
is a vegetable 0.52 0.78 0.75 0.81 t
is played
does play

0.53 0.9 0.98 0.98 f

does make music 0.55 0.89 0.95 0.92 f
spearman-r 0.72 0.52 0.59

Table 2: Performance of different approaches in rela-
tion to the average cosine similarity of words associ-
ated with a property (cos). The last row shows the
Spearman Rank correlation between f1-scores and av-
erage cosine similarity. Property types are listed un-
der type (p = part, vp = visual-perceptual, op = other-
perceptual, e = encyclopaedic, f = functional, t = taxo-
nomic).
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Property pos neg

full does kill 101 69
crowd does kill 67 49
full has wheels 79 349
full is black 42 89
full is dangerous 177 104
crowd is dangerous 131 84
full is found in seas 83 72
crowd is found in seas 47 28
full is red 29 80
full is used in cooking 142 61
full is yellow 24 68
full made of wood 87 282
full is an animal test 37 20
full is an animal train 166 77
full is food test 37 20
full is food train 97 146

Table 3: Class distribution in dataset consisting of the
clean datasets derived from the CSLB set and the ad-
ditional crowd judgments (marked full ). For some
properties, we included the dataset consisting of crowd-
judgments only, as it is more balanced across seman-
tic categories than the full set (marked crowd ). For
all properties, a leave-one-out approach was applied to
evaluation except for is animal and is food.

4.2 Outcome Specific Hypotheses

We carry out further experiments on a small ex-
tended and clean subset, consisting of carefully se-
lected negative examples from the CSLB dataset
and crowd annotations validated by the authors.
The distribution of positive and negative exam-
ples per property is shown in Table 3. For some
properties, the sets derived from the CSLB norms
alone have an imbalanced distribution of nega-
tive examples over semantic categories, as they
were selected by means of logical exclusion (e.g.
concepts listed under has wheels have been se-
lected as negative examples of is food). Therefore,
we add the more balanced but smaller datasets
created by crowd-judgments only where enough
judgments have been collected. We created addi-
tional sets for words part of the food-animal pol-
ysemy to test whether supervised classifiers can
successfully predict semantic properties of vari-
ous senses of polysemous words. In the following
sections, we will outline the most striking results.
Most results confirm, but some contradict our ini-
tial hypotheses.

Table 4 shows the f1-scores on the full clean
datasets. As hypothesized, the color properties
is yellow and is red perform low in all approaches,
with slightly better results yielded by supervised
learning.

The properties involved in functions and activi-

ties or with high impact on the interaction of enti-
ties with the world all perform highly in the clas-
sification approaches. For does kill, is dangerous
and is used in cooking, there is a large differ-
ence between the best nearest neighbors approach
and the best classification approach (between 60
and 19 points), indicating that the classification
approaches are able to infer more information
from individual dimensions than is provided by
full vector similarity. The property is dangerous
has, as can be expected, a particularly high diver-
sity of associated words (comparable to the col-
ors). Has wheels and is found in seas can be ex-
pected to have high correlations with other tax-
onomic categories (fish and water animals, vehi-
cles), which is reflected in the lower diversity and
comparatively high nearest neighbor performance.

Cases contradicting our expectations are the vi-
sual properties is black and made of wood. Both
have comparatively high classification perfor-
mance with a big difference to the nearest neigh-
bor results. Most likely, this is due to a cat-
egory bias in the negative examples. For in-
stance, a large portion of the negative examples
for is made of wood consist of animals and food.
In the dataset for is black, a large proportion of the
positive examples consists of animals. A classifier
can perform highly by simply learning to distin-
guish these two categories from the rest.

The biases in semantic classes mentioned above
partially result from the way we generated the neg-
ative examples from the original CSLB dataset.
This means that a classifier may learn to distin-
guish two semantic categories rather than being
able to find vector dimensions indicative of the tar-
get property. We therefore also present selected
results on crowd-only datasets shown in Table 4,
which do not have this bias. It can be observed
that for all three properties,10 the performance
of the classification approaches drops marginally,
whereas it rises for nearest neighbors.

We investigate the outcome on a number of
individual examples to gain more insights into
whether the subtle differences hypothesized in
Section 3 hold. Since we only formulate a general
hypothesis for Sparse Textual Evidence, we do not
dive deeper into the results for that category here.

10We only included properties for which we had enough
positive and negative examples in our set
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Fine-Grained Category Distinctions
The full clean has wheels dataset includes a num-
ber of instances for which the classifiers can make
more fine-grained distinctions than nearest neigh-
bors. As hypothesized, classifiers, in contrast
to nearest-neighbors, can recognize that neither
sled nor a skidoo have wheels, but a unicycle
a limousine, a train, carriage, an ambulance, a
porsche do. Another fine-grained distinction can
be identified in the is found in seas crowd-only
set: Sculpin is correctly identified as a seawater
fish by all classifiers but not by nearest-neighbors.

Mixed Groups
Whereas nearest neighbors predominantly identify
weapons as is dangerous in the crowd-only set,
the classifiers go beyond this category. The neu-
ral network approach correctly identifies that imi-
tation pistol, imitation handgun, and screwdriver
are negative examples of is dangerous. Further-
more, no animals are labeled as dangerous based
on proximity to the centroid, but the classifiers
are able to distinguish between some dangerous
and non-dangerous animals (e.g. rhinoceros is la-
beled positive, while giraffe and zebra are labeled
as negative). All three classifiers recognize that
meth, cocaine and oxycodone are considered dan-
gerous substances, despite the fact that they are
far away from the centroid of dangerous things.
Of the only two disease-like concepts, Hepatitis C
and allergy, the former is recognized by all clas-
sifiers and the latter only by logistic regression.
The performance on the smaller, but also weapon-
dominated does kill crowd-only set is comparable,
but the variety of atypical cases is lower. Among
the only two disease-related items, dengue is iden-
tified by all classifiers and dengue virus only by
the neural network.

In the crowd-only is found in seas set, seabird
and gannet are correctly labeled as positive, even
though positive examples almost exclusively con-
sist of fish or underwater-animals, whereas the
negative examples encompass a vast variety of an-
imals, including bird and some freshwater fish.

Polysemy
For polysemy between food and animals (Table 4),
we observe that when trained on pure animal and
food words and tested on polysemous animal and
food words, the classifiers perform highly with a
large difference to nearest neighbors. For food
versus pure animal words, the classifier perfor-

property av-cos neigh lr net1 net2

full is yellow 0.23 0.19 0.47 0.64 0.64
full is used in
cooking

0.37 0.29 0.98 0.98 0.98

full is black 0.19 0.35 0.75 0.77 0.77
full is red 0.23 0.36 0.51 0.54 0.52
full is dangerous 0.24 0.58 0.88 0.88 0.87
crowd is dangerous 0.26 0.61 0.86 0.86 0.86
full has wheels 0.38 0.90 0.96 0.96 0.95
full is found in seas 0.44 0.87 0.97 0.98 0.98
crowd is found
in seas

0.50 0.87 0.94 0.96 0.96

full does kill 0.27 0.67 0.83 0.86 0.82
crowd does kill 0.30 0.70 0.82 0.84 0.80
full made of wood 0.17 0.14 0.84 0.85 0.85
full is food test 0.37 0.00 0.36 0.36 0.36
full is an
animal test

0.37 0.52 0.88 0.88 0.88

Table 4: F1 scores achieved by logistic regression (lr)
two runs of a neural net classifier (net1 and net2 and the
n-best nearest neighbors evaluated with leave-one-out
on the full datasets (marked as full and the crow-only
sets (marked as crowd ).

.

mance is much lower. We expect the extremely
low nearest neighbor performance to be due to the
fact that the centroid is calculated over pure food
items (without a single animal-related item, not
even culinary meat terms such as pork or beef )
which is far away from the animal-region in the
space. Despite the classifiers outperforming near-
est neighbors, the outcome does not confirm our
original hypotheses. We expected that the classi-
fiers could identify that edible animals have both
animal properties and food properties, but upon in-
spection of the results, the classifiers only identi-
fied entities with a predominant animal sense cor-
rectly as animals and those with a predominant
food sense correctly as food.

5 Discussion & Future Work

The experiments presented in this approach have
several limitations. First, our semantic datasets
are still limited in size. Second, the implication
method we applied to generate negative exam-
ples led to biases for some properties where most
negative examples belong to a small set of (tax-
onomic) classes. Third, no parameter tuning has
been carried out so far. Careful parameter tun-
ing would ensure that the best possible classifica-
tion approaches are chosen and that the obtained
results truly exploit the informative power of the
embeddings. Due to the limited size of the dataset
and the leave-one-out approach to evaluation, this
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has not been possible in this preliminary study.
Fourth, the experiments presented here only con-
cern a small subsection of semantic properties too
limited to draw general conclusions.

Despite these limitations, our results provide
preliminary insights that lead us to conclude that
the overall idea behind our methods works and
opens up promising directions for future work.
We first aim to address the limitations of the cur-
rent dataset. We intend to incorporate other sets
designed for similar insights, such as the analo-
gies presented in Drozd et al. (2016) and the Se-
mEval 2018 discriminative property set (Krebs
et al., 2018). In addition, we plan to extend and
refine the sets with crowd annotations asking for
graded judgments (e.g. a property can mostly or
possibly apply) and exploit these judgments in fu-
ture experiments.

Once we created a bigger and more balanced
dataset, we can carry out experiments on differ-
ent train and test splits in order to overcome the
limitations of the leave-one-out evaluation. Fur-
thermore, we will apply careful parameter tuning
on a development set in order to ensure our results
are representative of the information captured by
the embeddings. The increased size of the set will
allow us to conduct more experiments that take the
distributions of semantic categories in the splits
into account as was done for the polysemy set.
This way, we ensure that we do not train on ex-
amples that belong to the same semantic category
as the ones in the test set.

Going beyond the method introduced in this pa-
per, we plan on investigating the type of informa-
tion encoded in linguistic context by testing which
properties can be learned from textual context di-
rectly. In addition, applying the method presented
by Faruqui et al. (2015) may provide stronger indi-
cations about the information represented by word
embedding dimensions. Adding these to exper-
iments allows us to trace which information is
provided by the context and what ends up being
present in word embeddings.

6 Conclusion

The main contribution of this paper is that it in-
troduces a new method aimed at investigating the
kind of semantic information captured by word
embedding vectors. We have taken the first steps
towards constructing a dataset suitable for this
investigation on the basis of an existing dataset

of human-elicited semantic properties. We intro-
duced a set of hypotheses concerning which se-
mantic properties are captured by embeddings and
presented exploratory experiments verifying them.

The current results are limited by the size and
balance of our dataset, as discussed in detail in the
previous section. Nevertheless, we can report pre-
liminary insights based on our experiments. We
show that classifiers, in particular neural networks,
can identify which entities have a specific property
in cases where this does not follow from general
similarity or the overall semantic class the entity
belongs to. This can be seen as a first indication
that (some) semantic properties are encoded in in-
dividual (patterns of) vector dimensions, which
can be identified.

The results on the extended datasets partly con-
firm that visual properties are not well represented
by embeddings, while properties relating to func-
tion (e.g. cooking, having wheels) and interac-
tions with other entities (e.g. being dangerous or
killing) tend to be represented well. Some of
these indications could be the result of the bias
in our current dataset, but others have been con-
firmed on the smaller crowd-only sets for proper-
ties with enough available data (is dangerous and
does kill). Further evidence is provided by the full
dataset for has wheels which encompasses a large
group of vehicles to which the property does not
apply. In addition, we support these indications by
qualitative insights through examples of the kinds
of distinctions made by the classifiers, but not the
nearest neighbor approach. Results achieved for
polysemous words and two visual properties cur-
rently do not confirm our hypotheses.
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Abstract

The attention mechanism is a successful tech-
nique in modern NLP, especially in tasks like
machine translation. The recently proposed
network architecture of the Transformer is
based entirely on attention mechanisms and
achieves new state of the art results in neu-
ral machine translation, outperforming other
sequence-to-sequence models. However, so
far not much is known about the internal prop-
erties of the model and the representations it
learns to achieve that performance. To study
this question, we investigate the information
that is learned by the attention mechanism
in Transformer models with different transla-
tion quality. We assess the representations
of the encoder by extracting dependency rela-
tions based on self-attention weights, we per-
form four probing tasks to study the amount of
syntactic and semantic captured information
and we also test attention in a transfer learn-
ing scenario. Our analysis sheds light on the
relative strengths and weaknesses of the vari-
ous encoder representations. We observe that
specific attention heads mark syntactic depen-
dency relations and we can also confirm that
lower layers tend to learn more about syntax
while higher layers tend to encode more se-
mantics.

1 Introduction

Machine translation (MT) is one of the promi-
nent tasks in Natural Language Processing, tack-
led in several ways (Bojar et al., 2017). Neural
MT (NMT) has become the de-facto standard with
a performance that clearly outperforms the alter-
native approach of Statistical Machine Transla-
tion (Luong et al., 2015b; Bojar et al., 2016; Ben-
tivogli et al., 2016). NMT also improves training
procedures due to the end-to-end fashion without
tedious feature engineering and complex setups.
During recent years, a lot of research has been

done on NMT, designing new architectures, start-
ing from the plain sequence-to-sequence model
(Sutskever et al., 2014; Cho et al., 2014), to an im-
proved version featuring an attention mechanism
(Bahdanau et al., 2015; Luong et al., 2015a), to
models that only use attention instead of recurrent
layers (Vaswani et al., 2017) and models that ap-
ply convolution networks (Gehring et al., 2017a,b).
Among the different architectures, the Transformer
(Vaswani et al., 2017) has emerged as the dominant
NMT paradigm.1 Relying only on attention mech-
anisms, the model is fast, highly accurate and has
been proven to outperform the widely used recur-
rent networks with attention and ensembling (Wu
et al., 2016) by more than 2 BLEU points. Im-
proved translation quality is typically related to bet-
ter representation of structural information. While
other approaches make use of external information
to improve the internal representation of NMT mod-
els (Arthur et al., 2016; Niehues and Cho, 2017;
Alkhouli and Ney, 2017), the Transformer seems
to be able to encode a lot of structural informa-
tion without explicitly incorporating any structural
constraints. However, being a rather new architec-
ture, little is known about what the model exactly
learns internally. A better understanding of the in-
ternal representations of neural models has become
a major challenge in NMT (Koehn and Knowles,
2017).

In this work we investigate the kind of linguistic
information that is learned by the encoder. We start
by training the Transformer system from English
to seven languages, with different training set sizes,
resulting in models that are not only trained for
different target languages but also with expected
differences in translation quality. First, we visu-
ally inspect the attention weights of the encoders,

1Most submissions for the WMT18 shared task on news
(http://matrix.statmt.org/) employ the Trans-
former architecture.
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in order to find linguistic patterns. As the next
step, we exploit the attention weights of the net-
work to build a graph and induce tree structures for
each sentence, showing whether syntactic depen-
dencies between words have been learned or not
in the spirit of Williams et al. (2018) and Liu and
Lapata (2018). Additionally, following previous
studies on how to analyze the internal representa-
tion of neural systems (Adi et al., 2016; Shi et al.,
2016; Belinkov et al., 2017a), we probe the encoder
weights of the trained models to address different
sequence labeling tasks: Part-of-Speech tagging,
Chunking, Named Entity Recognition and Seman-
tic tagging. We evaluate the quality of the decoder
on a given task to assess how discriminative the
encoder representation is for that task. Lastly, in
order to check whether the learned information can
be transferred across models, we use the encoder
weights of a high-resource language pair to initial-
ize a low-resource language pair, inspired by the
work of Zoph et al. (2016). We show that, also
for the Transformer, the knowledge of an encoder
representation can be shared with other models,
helping them to achieve better translation quality.

Overall, our analysis leads to interesting insights
about strengths and weaknesses of the attention
weights of the Transformer, giving more empirical
evidence about the kind of information the model
is learning at each layer:

• We find that each layer has at least one atten-
tion head that encodes a significant amount of
syntactic dependencies.

• Consistent with previous findings on the
sequence-to-sequence paradigm, probing the
encoder to four different sequence labeling
tasks reveals that lower layers tend to encode
more syntactic information, whereas upper
layers move towards semantic tasks.

• The information about the length of the input
sentence starts to vanish after the third layer.

• The study corroborates that attention can be
used to transfer knowledge between high- and
low-resource languages.

2 Architecture

The architecture of the Transformer system follows
the so called encoder-decoder paradigm, trained in
an end-to-end fashion. Without using any recurrent
layer, the model takes advantage of the positional

Figure 1: The Transformer architecture (illustration
from Vaswani et al. (2017)).

embedding as a mechanism to encode order within
a sentence. The encoder, typically stacks 6 iden-
tical layers, in which each of them makes use of
the so called multi-head attention and of a 2 sub-
layers feed-forward network, coupled with layer
normalization and residual connection (see Figure
1). The multi-head attention mechanism computes
attention weights, i.e., a softmax distribution, for
each word within a sentence, including the word
itself. Specifically:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where the input consists of queries Q and keys
K of dimension dk, and values V of dimension
dv. The queries, keys and values are linearly pro-
jected h times, to allow the model to jointly attend
to information from different representation, con-
catenating the result,

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

with parameter matrices WQ
i ∈ Rdmodel×dk ,

WK
i ∈ Rdmodel×dk , W V

i ∈ Rdmodel×dv and WO ∈
Rhdv×dmodel . 2

2As hyper-parameters we used the base version from
Vaswani et al. (2017).
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On top of the multi-head attention there is a
feed-forward network that consists of two layers
with a ReLU activation in between. Each encoder
layer takes as input the output of the previous layer,
allowing it to attend to all positions of the previous
layer.

The decoder has the same architecture as the
encoder, stacking 6 identical layers of multi-head
attention with feed-forward networks. However,
here there are two multi-head attention sub-layers:
i) a decoder self-attention and ii) a encoder-decoder
attention. The decoder self-attention attends on the
previous predictions made step by step, masked
by one position. The second multi-head attention
performs an attention between the final encoder
representation and the decoder representation.

To summarize, the Transformer model consists
of three different attentions: i) the encoder self-
attention, in which each position attends to all po-
sitions in the previous layer, including the position
itself, ii) the encoder-decoder attention, in which
each position of the decoder attends to all posi-
tions in the last encoder layer, and iii) the decoder
self-attention, in which each position attends to all
previous positions including the current position.

In this work, we focus on analyzing the structure
that is learned by the first type of attention weights
of the model, i.e., the encoder self-attention, across
different models with different target language and
translation quality.

3 Methodology

We aim at analyzing the encoder representation of
different models by assessing their quality through
several experiments: i) by visualizing the attention
weights (Section 5), ii) by inducing tree structure
from the encoder weights (Section 6), iii) by prob-
ing the encoder as input representation for various
prediction tasks (Section 7), and iv) by transfer-
ring the knowledge of one encoder to another (Sec-
tion 8). We start by looking for linguistic patterns
through the visualization of the heat-maps of the en-
coder weights. Next, we use the softmax weights
extracted from the multi-head attention to build
maximum spanning trees from the input sentences,
assessing the quality of the induced tree through
dependency parsing. Additionally, we evaluate the
ability of the decoder, using a fixed encoder rep-
resentation as input, on several sequence labeling
tasks, measuring how important the input features
are for various tasks. As test bed we use four dif-

#Training sentences
English→ Czech 51.391.404
English→ German 25.746.259
English→ Estonian 1.064.658
English→ Finnish 2.986.131
English→ Russian 9.140.469
English→ Turkish 205.579
English→ Chinese 23.861.542

Table 1: Number of training instances used to train
each system.

newstest 2017 newstest 2018
English→ Czech 18.11 17.36
English→ German 23.37 34.46
English→ Estonian – 13.05
English→ Finnish 15.06 10.32
English→ Russian 21.30 18.96
English→ Turkish 6.93 6.22
English→ Chinese 23.10 23.75

Table 2: BLEU score for the newstest2017 and new-
stest2018 test data.

ferent tasks, ranging from syntax to semantics, i.e,
PoS tagging, Chunking, Named Entity Recogni-
tion, and Semantic tagging. The assumption is that
if a property is well encoded in the input represen-
tation then it is easy for the decoder to predict that
property. In practice, after training the MT sys-
tem, we freeze the encoder parameters, and train
one decoder layer for each task. The decoder layer
is simpler than the original one used for MT; it
consists only of one attention head and one feed-
forward layer with ReLU activation. Moreover,
in order to output the right amount of labels, the
decoder also has to learn implicitly the length of
the input sentence. Note that our goal is not to
beat the state of the art in a given task but rather
to analyze the representation of an encoder trained
for MT on different tasks referring to different lin-
guistic properties. Finally, to assess whether the
knowledge captured within an encoder is general
enough to also be used for other models, we test
a transfer learning scenario in which we use the
encoder representation of a high resource language
pair to initialize the encoder of a low resource lan-
guage pair. Here, we assume that a model is better
at encoding abstract linguistic properties if it can
share useful information to enhance another weaker
model.
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4 Model setup

We trained Transformer models3 from English
to seven languages, Czech, German, Estonian,
Finnish, Russian, Turkish and Chinese, using the
parallel data provided by the WMT18 shared task
on news translation.4 The parallel data come from
different sources, mainly from Europarl (Koehn,
2005), News Commentary (Tiedemann, 2012) and
ParaCrawl.5

The data sets are partially noisy, especially
ParaCrawl being on its first release, and to fil-
ter out potentially incorrect parallel sentences we
used a language identifier6 to tag each source and
target sentence, discarding the sentences that do
not match across languages (Stymne et al., 2013;
Zariņa et al., 2015). As development set we used
the provided newsdev data from the shared task,
while using the newstest from WMT 2017 and 2018
as test data. A widely used technique to allow an
open vocabulary is byte pair encoding (Sennrich
et al., 2016), in which the source and target words
are split into subword units. However, in this work
we prefer to use the full word forms, allowing us
to evaluate and compare the internal representation
on standard sequence labeling benchmarks tagged
with gold labels on the full word forms. Therefore,
we use a large vocabulary of 100K words per lan-
guage. General statistics on the training data are
given in Table 1. As can be seen, we ended up
having an heterogeneous amount of data, ranging
from 200K for Turkish up to 51M for Czech. We
trained each model for maximum 20 epochs, tak-
ing the best one according to the development set
as model to evaluate. The BLEU score7 of each
model is shown in Table 2. Even though the scores
seem low for the Transformer architecture for the
MT task, we have to note that each model is trained
using full word forms in order to facilitate the anal-
ysis of the encoder representation (our results are
in line with the comparison between subword units
and full word forms done by Sennrich et al. (2016)).

3We used the OpenNMT framework (Klein et al., 2017).
4The provided data are already preprocessed and

freely available at http://data.statmt.org/wmt18/
translation-task/preprocessed/.

5https://paracrawl.eu/
6We used the fasttext language identifier tool (Joulin

et al., 2016b,a) from https://fasttext.cc/docs/
en/language-identification.html

7We used the SACREBLEU script (Post,
2018), with signature BLEU+case.mixed+lang.en-
{targetLanguage}+numrefs.1+smooth.exp+test.wmt{17,18}+
tok.13a+version.1.3.0

We do not aim at beating the best system on the test
data, as our main point is to analyze different en-
coder representations across models with different
translation quality and target language.

5 Encoder Evaluation: Visualization

One of the most straightforward ways of under-
standing the weights of a neural network is by vi-
sualizing them. In its base setting, the Transformer
employs 6 layers with 8 different attention heads
for each of them, making complete visualization
difficult. Therefore, we focus only on attention
weights with high scores that are visually inter-
pretable.

We discovered four different patterns shared
across models: paying attention to the word itself,
to the previous and next word and to the end of
the sentence (Figure 2). We found that, usually on
the first layer, i.e., layer 0, more attention heads
focus their weights on the word itself, while on the
subsequent layers the network moves the attention
more on other words, e.g., on the next and previous
word, and to the end of the sentence. This suggests
that the transformer tries to find long dependencies
between words on higher layers whereas it tends to
focus on local dependencies in lower layers.

6 Encoder Evaluation: Inducing Tree
Structure

The architecture of the Transformer, linking each
word with each other with an attention weight, can
be seen as a weighted graph in which the words
are the nodes and from which tree structure can be
extracted. Even though the models are not trained
to produce any trees or to a specific syntax task, we
used the attention weights in each layer to extract
a tree of the input sentences and inspect whether
they reflect a dependency tree.

We evaluated the induced trees on the English
PUD treebank from the CoNLL 2017 Shared Task
(Zeman et al., 2017). The PUD treebank consists
of 1000 sentences randomly taken from on-line
newswire and Wikipedia. We measure the perfor-
mance as Unlabeled Attachment Score (UAS) with
the official evaluation script8 from the shared task,
using gold segmentation and tokenization. Plus,
given that our weights have no knowledge about
the root of the sentence, we decided to use the gold
root as starting node for the maximum spanning

8conll17 ud eval.py (version 1.1)
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en→ cs en→ de en→ et en→ fi en→ ru en→ tr en→ zh

Layer 0

attention head 0 15.06 10.67 8.79 31.63 17.13 10.99 13.00
attention head 1 9.94 32.90 8.68 12.58 12.02 10.74 15.76
attention head 2 15.84 10.62 9.60 10.12 12.08 13.69 15.50
attention head 3 10.62 15.39 31.38 8.31 11.08 9.78 22.79
attention head 4 17.25 18.12 7.76 25.10 11.75 13.20 10.28
attention head 5 16.71 14.47 24.24 13.63 12.39 27.55 17.19
attention head 6 30.26 26.28 11.76 10.43 11.55 9.90 33.26
attention head 7 15.17 15.31 9.61 9.51 12.13 31.81 9.69

Layer 1

attention head 0 10.95 11.73 11.04 11.47 36.05 26.20 20.33
attention head 1 10.91 10.65 27.58 10.88 12.66 11.23 10.72
attention head 2 10.72 10.87 25.80 27.32 25.64 14.46 35.77
attention head 3 12.21 15.06 15.06 20.90 10.45 14.04 9.62
attention head 4 35.08 13.17 11.14 11.01 18.44 15.83 14.17
attention head 5 29.04 10.69 10.85 12.51 33.23 27.41 10.84
attention head 6 15.22 35.94 13.55 35.30 10.27 11.03 11.59
attention head 7 22.64 35.89 35.07 10.10 13.59 11.82 24.09

Layer 2

attention head 0 35.46 12.33 7.40 9.01 35.07 20.53 11.02
attention head 1 10.29 22.62 32.80 10.98 7.63 10.03 11.55
attention head 2 19.74 9.02 33.16 9.00 20.92 9.52 29.40
attention head 3 16.23 15.82 13.04 13.98 22.27 14.05 10.71
attention head 4 23.23 11.07 12.58 29.43 35.53 10.85 12.98
attention head 5 16.78 33.76 13.80 14.53 36.08 22.56 35.80
attention head 6 10.17 22.15 10.23 11.30 12.54 19.38 15.16
attention head 7 32.01 14.97 13.76 18.36 8.84 11.79 22.12

Layer 3

attention head 0 8.28 9.97 11.05 13.89 35.03 18.55 13.80
attention head 1 35.20 24.76 7.99 13.72 20.64 21.53 13.03
attention head 2 10.67 10.54 22.62 15.14 9.43 17.03 14.78
attention head 3 31.13 17.36 12.14 27.24 9.27 15.67 11.20
attention head 4 23.89 35.59 8.59 12.18 10.36 13.05 14.89
attention head 5 14.94 10.12 12.37 7.78 12.62 7.18 19.80
attention head 6 16.02 13.54 13.38 8.70 10.79 8.80 38.87
attention head 7 13.44 11.81 13.02 14.96 29.10 17.83 9.02

Layer 4

attention head 0 14.45 27.88 20.86 11.63 12.84 25.40 13.34
attention head 1 10.37 14.37 17.80 24.00 10.72 21.11 22.87
attention head 2 15.06 10.69 11.82 9.52 13.20 11.36 25.25
attention head 3 13.47 13.47 14.01 10.92 17.11 12.88 12.29
attention head 4 29.66 17.31 19.45 11.82 10.87 11.76 13.55
attention head 5 28.07 18.14 32.87 22.50 13.76 11.06 35.40
attention head 6 13.35 11.27 9.95 15.49 27.68 25.13 11.56
attention head 7 10.84 25.03 14.93 17.32 13.86 14.00 17.52

Layer 5

attention head 0 36.02 29.80 17.37 17.49 35.56 16.91 16.75
attention head 1 28.02 27.23 16.68 28.25 13.04 28.23 17.71
attention head 2 20.20 11.14 19.02 33.38 18.49 7.98 13.45
attention head 3 11.86 8.30 22.45 14.71 19.17 15.76 19.16
attention head 4 31.71 19.62 33.68 31.87 26.42 13.61 27.50
attention head 5 13.55 15.20 30.73 17.35 11.98 23.13 26.70
attention head 6 26.02 35.32 14.83 24.99 9.77 16.99 29.73
attention head 7 18.63 10.33 15.71 11.01 12.59 25.67 14.79

Table 3: UAS F1-score of the induced trees produced by the attention weights on the English PUD treebank
from CoNLL 2017.
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Figure 2: Four examples of the discovered patterns through visualization for the sentence: ”there is also an
economic motive .”.

Sample tree from the attention head 1, layer 3 Sample tree from the attention head 4, layer 3

Figure 3: Sample trees induced by the attention weights from the English-Czech model.

tree algorithm. Specifically, we run the Chu-Liu-
Edmonds algorithm (Chu, 1965; Edmonds, 1967)
for each attention head of each layer of the models
to extract the maximum spanning trees. Table 3
shows the F1-score of the induced structures. For
comparison purposes, in this dataset, a state of the
art supervised parser (Dozat et al., 2017) reaches
88.22 UAS F1-score and our random baseline, i.e.,
induced trees with random weights and gold root,
achieves 10.1 UAS F1-score on average.9 Given
our findings in Section 5, we also computed a left-
and right- branching baseline (with golden root),
obtaining 10.39 and 35.08 UAS F1-score respec-
tively.

Although our models are not trained to produce
trees, the best dependency trees induced on each
layer are far better than the random baseline, sug-
gesting that the models are learning some syntac-
tic relationships. However, the best scores do not
achieve results much beyond the right branching
baseline, showing that it is difficult to encode more
complex and longer dependencies.

Overall, for all language pairs we notice the
same performance trend across layers. Comparing

9Even though not comparable in this setting, unsupervised
systems developed to build dependency trees achieve on an
English dataset UAS F1-score ranging from 27.9 to 51.4 when
using the output of a PoS tagger system (Alonso et al., 2017).

our low resource language pair, English-Turkish,
to the other high resource languages, we can see
that the models trained with larger dataset are
able to induce better syntactic relationships, while
among high resource languages all models are in
the same ballpark, without any specific correlation
with BLEU score, suggesting that it becomes more
difficult to induce better dependency relations at a
certain point. Figure 3 shows some examples of
induced dependency trees. Interestingly enough,
we can see that the trees with higher scores fol-
low the patterns found in Section 5, in which each
word is linked to the next one, so encoding most
compounds and multi-word expressions. From vi-
sualizing other trees, even if they do not belong to
the best attention head, we can see that they try to
capture longer dependencies, as for dress and stuffy
in the example in Figure 3.

7 Encoder Evaluation: Probing
Sequence Labeling Tasks

We evaluated the encoder representation through
four different sequence labeling tasks: Part-of-
Speech (PoS) tagging, Chunking, Named Entity
Recognition (NER) and Semantic tagging (SEM).
In this test bed we used the trained weights of the
encoder, keeping them fixed, training only one de-
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en→ cs en→ de en→ et en→ fi en→ ru en→ tr en→ zh

POS

layer 0 91.13 / 7.70 91.06 / 8.20 84.49 / 18.20 86.88 / 25.00 89.47 / 6.00 68.47 / 52.10 90.81 / 12.20
layer 1 92.79 / 2.90 93.12 / 4.60 87.11 / 18.40 87.58 / 12.40 90.67 / 10.60 67.53 / 47.00 92.60 / 7.90
layer 2 93.20 / 5.40 93.18 / 4.50 84.99 / 14.70 86.41 / 15.20 91.86 / 3.90 68.13 / 45.40 91.68 / 13.30
layer 3 92.24 / 9.50 92.31 / 8.60 84.51 / 16.60 85.16 / 18.70 91.46 / 6.00 66.50 / 53.20 89.52 / 19.00
layer 4 91.66 / 10.80 90.85 / 13.70 82.65 / 23.70 83.46 / 24.40 91.98 / 12.00 65.66 / 53.90 86.47 / 22.10
layer 5 87.14 / 19.10 87.83 / 24.10 82.11 / 23.60 80.41 / 33.30 89.47 / 16.30 62.80 / 54.80 82.95 / 31.30

CHUNK

layer 0 90.28 / 4.37 89.78 / 9.49 86.98 / 13.47 87.75 / 8.90 88.12 / 6.61 72.64 / 31.21 90.37 / 5.42
layer 1 92.98 / 4.32 92.91 / 3.58 88.00 / 11.78 88.92 / 10.19 91.16 / 4.03 71.59 / 40.81 92.76 / 6.71
layer 2 93.56 / 6.56 93.92 / 3.53 88.00 / 12.28 88.65 / 13.22 91.60 / 5.82 70.25 / 37.38 93.40 / 11.18
layer 3 93.46 / 12.33 93.92 / 10.14 87.56 / 14.36 87.41 / 19.93 92.78 / 5.91 69.20 / 46.17 90.83 / 16.90
layer 4 92.68 / 14.66 92.83 / 12.77 85.80 / 22.81 86.60 / 20.13 92.73 / 12.72 68.54 / 51.04 89.30 / 19.09
layer 5 90.87 / 14.46 89.92 / 16.60 85.34 / 19.88 84.04 / 27.14 90.95 / 15.11 65.01 / 53.33 82.82 / 31.71

NER

layer 0 91.18 / 23.75 92.71 / 12.02 87.21 / 33.03 89.38 / 29.53 91.29 / 14.58 86.49 / 39.47 91.72 / 11.05
layer 1 93.29 / 9.80 93.36 / 7.27 88.65 / 15.99 90.14 / 20.77 92.22 / 10.07 85.66 / 38.14 92.93 / 11.13
layer 2 93.83 / 7.11 94.13 / 11.13 87.46 / 37.30 90.20 / 26.47 93.20 / 8.12 86.52 / 43.05 93.72 / 12.35
layer 3 93.23 / 16.53 94.32 / 14.85 88.95 / 33.31 90.22 / 26.57 93.14 / 9.42 86.82 / 37.68 93.07 / 18.32
layer 4 93.72 / 11.81 93.93 / 12.51 88.57 / 40.55 89.14 / 34.28 92.02 / 12.65 87.21 / 53.99 91.93 / 26.95
layer 5 92.62 / 21.63 94.11 / 17.35 87.64 / 30.13 89.40 / 31.49 92.33 / 13.98 86.06 / 44.25 92.35 / 30.08

SEM

layer 0 83.99 / 13.56 84.05 / 13.35 81.87 / 14.73 81.99 / 14.69 83.36 / 14.07 79.04 / 16.87 84.08 / 13.63
layer 1 84.84 / 12.48 85.27 / 12.16 82.25 / 14.11 82.70 / 13.97 84.12 / 13.26 78.80 / 17.10 84.93 / 11.88
layer 2 85.17 / 11.95 85.11 / 12.16 82.28 / 14.25 82.76 / 14.85 84.09 / 13.03 78.26 / 18.09 85.40 / 11.74
layer 3 85.34 / 12.02 84.77 / 11.45 82.17 / 14.41 82.82 / 14.00 85.21 / 12.32 79.22 / 17.28 84.79 / 11.91
layer 4 85.29 / 11.38 85.91 / 9.93 82.44 / 14.50 83.19 / 13.77 84.26 / 12.50 78.36 / 19.26 85.38 / 11.42
layer 5 86.27 / 11.68 85.71 / 10.78 82.27 / 14.55 82.96 / 13.84 84.56 / 11.79 78.67 / 18.78 85.98 / 10.62

Table 4: Results in terms of precision for each test set (↑, on the left side of each cell), together with the
error rate on the sentence length (↓, on the right side of each cell).

#labels #training #testing average
sentences sentences sent. length

PoS 17 12543 1000 21.2
Chunk 22 8042 2012 23.5
NER 9 14987 3684 12.7
SEM 80 62739 4351 6.4

Table 5: Statistics of the evaluation benchmarks
used for the probing task.

coder layer using one attention head and one feed-
forward layer. We then assess the quality of the
encoder representation across stacked layers.

Evaluation Benchmarks. We used a standard
benchmark for each task: the Universal Depen-
dencies English Web Treebank v2.0 (Zeman et al.,
2017) for PoS tagging, the CoNLL2000 Chunking
shared task (Tjong Kim Sang and Buchholz, 2000),
the CoNLL2003 NER shared task (Tjong Kim Sang
and De Meulder, 2003), and the annotated data
from the Parallel Meaning Bank (PMB) for Seman-
tic tagging (Abzianidze et al., 2017). Each bench-
mark provides its own training, development and
test data, except chunking in which we use 10%
of the training corpus as validation, and the PMB

in which we used the silver portion for training
and the gold portion for test and dev (following the
80-20 split).10 Table 5 reports general statistics on
each benchmark, regarding the granularity of each
task, the number of training and testing instances,
and the average length of the test sentences.

Evaluation Results. Table 4 reports the perfor-
mance for each task and stacked layers, together
with the error rate for sentence length prediction.
For each language pair, we can see that the syntax
information, i.e., the PoS task, is encoded mostly
in the first 3 layers, corroborating the results in Sec-
tion 6, while moving towards more semantic tasks,
as NER and SEM we can see that in general the
decoder needs more encoder layers to achieve bet-
ter results. Another interesting finding is provided
by the length mismatch between the output of the
models and the gold labels. Clearly the models
encode the information about the sentence length
in the first three layers, and then the information
starts to vanish with an increase of the error rate.
The only exception is given by the SEM task, but
as can be seen from the statistics in Table 5, the

10We used the sem-0.1.0 version.
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newstest 2017 newstest 2018
English→ Turkish 6.93 6.22
English TL1→ Turkish 8.72 7.93
English TL2→ Turkish 7.82 6.91

Table 6: BLEU score for the newstest2017 and new-
stest2018 test data for the transfer learning experi-
ment.

average sentence length is very short and so it is
easier to predict. Overall, comparing the perfor-
mance reached on these probing tasks with the
BLEU score of each model, we can see again that
the high resource language pairs achieve better re-
sults compared to our low resource language pair.
Moreover, we notice that in general higher BLEU
score correspond to higher probing results, confirm-
ing the trend that encoding linguistic proprieties
within the encoder representation go on par with
better translation quality (Niehues and Cho, 2017;
Kiperwasser and Ballesteros, 2018).

8 Encoder Evaluation: Transfer learning

To assess whether the knowledge encoded in the
attention units can help other models in a low re-
source scenario, we additionally carried out an eval-
uation of the encoder representation in a transfer
learning task. Similar to Zoph et al. (2016), we
used the encoder weights from one high resource
language, i.e., English-German, to train a Trans-
former system for our low resource language pair,
English-Turkish. We provide two experiments: i)
initializing and fine tuning the encoder weights
(TL1), ii) initializing and keeping the encoder
weights fixed (TL2). Table 6 shows the BLEU
scores of the systems evaluated with and without
transferring the encoder parameters. Both transfer
learning settings are helpful to the decoder to reach
a better translation quality, with almost 2 BLEU
point more on the best scenario. Starting with a
better encoder representation, taken from a high
resource language pair, and then fine tuning the pa-
rameters on the low resource language achieves the
best result, matching and corroborating previous
findings on recurrent networks (Zoph et al., 2016).

9 Related Work

The problem of interpreting and understanding neu-
ral networks is attracting more and more interest
and work, with so many models and new architec-
tures being published continuously each year. One

of the first techniques to examine a neural network
involves the analysis of activation patterns of the
hidden layers (Elman, 1991; Giles et al., 1992).
Nowadays, given its popularity, recurrent neural
networks are the most evaluated networks, mainly
investigated on the structures and linguistic proper-
ties they are encoding (Linzen et al., 2016; Engue-
hard et al., 2017; Kuncoro et al., 2017; Gulordava
et al., 2018).

Traditionally, a common way to inspect neural
networks is by visualizing the hidden representa-
tion trained for a specific task (Ding et al., 2017;
Strobelt et al., 2018a,b), and to evaluate them by
assessing the properties through downstream tasks
(Chung et al., 2014; Greff et al., 2017).

Other recent studies look for hidden linguistic
units that provide information on how the network
works (Karpathy et al., 2015; Qian et al., 2016;
Kádár et al., 2017), while another line of analysis
probes the representation learned by a neural net-
work as input to a classifier of another task (Shi
et al., 2016; Adi et al., 2016; Belinkov et al., 2017a;
Tran et al., 2018).

The most closely related work is by Belinkov
et al. (2017b), in which they investigate the repre-
sentation learned by the encoder of a sequence-to-
sequence NMT system across different languages.
Unlike them, we studied a neural network with-
out any recurrent layers, which allows us to in-
duce a tree representation from the input sentence,
probing the encoder representation towards more
downstream tasks, and showing that the attention
weights can also be used to transfer knowledge to
low-resource languages.

10 Conclusion

In this paper we investigated the kind of infor-
mation that is captured by the encoder represen-
tation of a Transformer model trained for the
task of Machine Translation. We analyzed and
compared experimentally different models across
several languages, including the visualization of
weights, building tree structure from each sen-
tence, probing the representation to four different
sequence-labeling tasks and by transferring the en-
coder knowledge to a low resource language. Un-
like most previous studies, where the analysis is
made only on RNNs, we examined an architecture
based on attention only. Our experimental eval-
uation sheds lights on interesting findings about
dependency relations and syntactic and semantic
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behavior across layers. In future work, we plan to
extend the analysis with probing tasks to evaluate
other linguistic properties (Conneau et al., 2018)
as well as to a recent evaluation dataset (Sennrich,
2017), tackling also the attention weights between
the encoder and the decoder.
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Abstract

Sequence to sequence (seq2seq) models are
often employed in settings where the target
output is natural language. However, the
syntactic properties of the language generated
from these models are not well understood.
We explore whether such output belongs to a
formal and realistic grammar, by employing
the English Resource Grammar (ERG), a
broad coverage, linguistically precise HPSG-
based grammar of English. From a French
to English parallel corpus, we analyze the
parseability and grammatical constructions
occurring in output from a seq2seq translation
model. Over 93% of the model translations
are parseable, suggesting that it learns to
generate conforming to a grammar. The
model has trouble learning the distribution of
rarer syntactic rules, and we pinpoint several
constructions that differentiate translations
between the references and our model.

1 Introduction

Sequence to sequence models (seq2seq; Sutskever
et al., 2014; Bahdanau et al., 2014) have found
use cases in tasks such as machine translation
(Wu et al., 2016), dialogue agents (Vinyals and
Le, 2015), and summarization (Rush et al., 2015),
where the target output is natural language. How-
ever, the decoder side in these models is usually
parameterized by gated variants of recurrent neu-
ral networks (Hochreiter and Schmidhuber, 1997),
and are general models of sequential data not ex-
plicitly designed to generate conforming to the
grammar of natural language.

The syntactic properties of seq2seq output is our
central interest. We focus on machine translation
as a case study, and situate our work among those

French Une situation grotesque.
Reference It is a grotesque situation.

NMT Output A generic adj situation.
root strict

sb-hd mc

hd-cmp u

sp-hd n

aj-hdn norm

situationgrotesque

a

is

hdn bnp-qnt

It

root frag

np frg

sp-hd n

aj-hdn norm

situationgeneric adj

a

Figure 1: A test set source-reference pair and the NMT
translation. Below are parser derivations in the ERG of
both the reference and NMT translation. The ERG is
described in §2. Non-syntactic rules have been omitted.
The NMT model is trained and tested only on sentence
pairs where the reference is parseable by the ERG. The
NMT translation may not always be parseable. Analy-
sis on model output parseability in §4.1.

of artificial language learning, where we train our
translation model exclusively on sentence pairs
where the target-side output is in our grammar,
and test our models by evaluating the output with
respect to a grammar. We attempt to understand
seq2seq output with the English Resource Gram-
mar (Flickinger, 2000), a broad coverage, linguis-
tically precise HPSG-based grammar of English,
and explore the advantages and potential of using
such an approach.

This approach has three appealing properties in
evaluating seq2seq output. First, the language of
the ERG is a departure from studies on unrealis-
tic artificial languages with regular or context-free
grammars, which give exact analyses on gram-
mars that bear little relation to human language
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(Weiss et al., 2018; Gers and Schmidhuber, 2001).
In fact, about 85% of the sentences found in
Wikipedia are parseable by the ERG (Flickinger
et al., 2010). Second, our methodology directly
evaluates sequences the model outputs in practice
with greedy or beam search, in contrast to methods
rescoring pre-generated contrastive pairs to test
implicit model knowledge (Linzen et al., 2016;
Sennrich, 2016). Third, the linguistically precise
nature of the ERG gives us detailed analyses of
the linguistic constructions exhibited by reference
translations and parseable seq2seq translations for
comparison.

Figure 1 shows an example from our analy-
sis. Each testing example records the reference
derivation, the model translation, and the deriva-
tion of that translation, if applicable. The deriva-
tions richly annotate the rule types and the linguis-
tic constructions present in the translations.

Our analysis in §4.1 presents results on
parseability by the ERG and summarizes its rela-
tion to surface level statistics using Pearson cor-
relation. In §4.2 we manually annotate a small
sample of NMT output without ERG derivations
for grammaticality. We find that 60% of exhaus-
tively unparseable NMT translations are ungram-
matical by humans. We also identify that 18.3%
of the ungrammatical sentences could be corrected
by fixing agreement attachment errors. We con-
duct a discriminatory analysis in §4.4 on reference
and NMT rule usage to guide a qualitative analy-
sis on our NMT output. In analyzing specific sam-
ples, we find a general trend that our NMT model
prefers to translate literally.

2 Head-phrase Structure Grammars

A head-phrase structure grammar (HPSG; Pol-
lard and Sag, 1994) is a highly lexicalized con-
straint based linguistic formalism. Unlike statis-
tical parsers, these grammars are hand-built from
lexical entries and syntactic rules. The English Re-
source Grammar (Flickinger, 2000) is an HPSG-
based grammar of English, with broad coverage
of linguistic phenomena, around 35K unique lex-
ical entries, and handling of unknown words with
both generic part-of-speech conditioned lexical
types (Adolphs et al., 2008) and a comprehensive
set of class based generic lexical entries captured
by regular expressions. The syntactic rules give
fine-grained labels to the linguistic constructions

present.1 While the ERG produces both syntactic
and semantic annotations, we focus only on syn-
tactic derivations in this study.

Suitable to our task, the ERG was engineered to
capture as many grammatical strings as possible,
while correctly rejecting ungrammatical strings.
Parseability under the ERG should have linguis-
tic reality in grammaticality. Ideally, there will
be no parses for any ungrammatical string, and at
least one parse for all grammatical strings, which
can be unpacked in order of scores assigned by
the included maximum entropy model. We make
a distinction between parseability and grammati-
cality. For our purposes of evaluating with a spec-
ified grammar, we consider the parseability of sen-
tences under the ERG in §4.1, regardless of human
grammaticality judgments. In §4.2, we manually
annotate unparseable sentences for English gram-
maticality.

All experiments are conducted with the 1214
version of the ERG, and the LKB/PET was used
for all parsing (Copestake and Flickinger, 2000).
We use the default parsing configuration (com-
mand line option “--erg+tnt”), which uses a
parsing timeout of 60 seconds. A sentence is la-
beled unparseable either if the search space con-
tains no derivations or if not a single derivation is
found within the search space before the timeout.
Figure 1 shows a simplified derivation tree.

3 Experimental Setup

This section details our setup of a French to En-
glish (FR → EN) neural machine translation sys-
tem which we now refer to as NMT. Our goal was
to test a baseline system for comparable results to
machine translation and seq2seq models.

Dataset. From 2M French to English sen-
tence pairs in the Europarl v7 parallel corpora
(Koehn, 2005), we subset 1.6M where the En-
glish/reference sentence was parseable by the
ERG. For these 1.6M sentence pairs, we record
the best tree of the English sentence as determined
by the maximum entropy model included in the
ERG. All sentence pairs we now consider have at
least one English translation within our grammar,
and we make no constraint on French. About 1.4M
pairs were used for training, 5K for validation, and
the remaining 200K reserved for analysis.

Out of vocabulary tokens. On the source-side

1A list of rules types and their descriptions can be found
at http://moin.delph-in.net/ErgRules.
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Strict Informal Unpar-
Source Full Frag Full Frag seable

Ref 64.7 2.4 31.5 1.4 0.0
NMT 60.5 3.0 28.1 1.6 6.8

∆ -4.2 +0.6 -3.4 +0.2 +6.8

Table 1: The distribution of root node conditions for
the reference and NMT translations on the 200K anal-
ysis sentence pairs. Root node conditions are taken
from the recorded best derivation. The best derivation
is chosen by the maximum entropy model included in
the ERG.

French sentences, simple rare word handling was
applied, where all tokens with a frequency rank
over 40K were replaced with an “UNK” token.
However, when handling rare words in the target-
side English sentences, “UNK” will significantly
degrade ERG parsing performance on model out-
put. We replace our output tokens based on the
lexical entries recognized by the ERG in our best
parses (as in Figure 1’s NMT output). This form
of rare word handling is similar to the 10K PTB
dataset (Mikolov et al., 2011), but with more de-
tailed part-of-speech and regular expression con-
ditioned “UNK” tokens. After preprocessing, we
had a source vocabulary size of 40000, and a target
vocabulary size of 36292.

Model. Our translation model is a word-level
neural machine translation system with an atten-
tion mechanism (?). We used an encoder and de-
coder with 512 dimensions and 2 layers each, and
word embeddings of size 1024. Dropout rates of
0.3 on the source, target, and hidden layers were
applied. A dropout of 0.4 was applied to the
word embedding, which was tied for both input
and output. The model was trained for about 20
hours with early stopping on validation perplex-
ity with patience 10 on a single Nvidia GPU Titan
X (Maxwell). We used the NEMATUS (Sennrich
et al., 2017) implementation, a highly ranked sys-
tem in WMT16.

Translations. After training convergence on
the 1M sentence pairs, the saved model is used
for translation on the 200K sentences pairs left for
analysis. A beam size of 5 is used to search for the
best translation under our NMT model. We parse
these translations with the ERG and record the
best tree under the maximum entropy model. We
have parallel data of the French sentence, the hu-
man/reference English translation, the NMT En-
glish translation, the parse of the reference trans-

Feature Equation r

LP NMT logPm(So) 0.313

LP Unigr. (src-fr) logPu(Si) 0.289

LP Unigr. (ref-en) logPu(Sr) 0.273

LP Unigr. (out-en) logPu(So) 0.304

Length Output |So| -0.320

Mean LP logPm(So)
|So| 0.093

Norm LP − logPm(So)
logPu(So)

0.057

Table 2: Pearson’s r of surface statistics against the
binary parseability variable. Parseable is denoted with
+1. Si, Sr, So are the input, reference, and NMT output
sentences, respectively. We abbreviate log probability
as “LP.” Pm(S) is the probability of S occurring un-
der the NMT model, and Pu(S) is the probability of S
occurring under a unigram model.

lation, and the parse of NMT translation (if it was
grammatical). Note that the NMT translation may
have no parse.

4 Results

4.1 Parseability

The NMT translations for the 200K test split were
parsed. Parsing a sentence with the ERG yields
one of four cases:

• Parseable. A derivation is found and recorded
by the parser before the timeout. The best
derivation is chosen by the included maxi-
mum entropy in the ERG. About 93.2% of
the sentences were parseable.

• Unparseable due to resource limitations. The
parser reached its limit of either memory or
time before finding a derivation. This con-
stitutes about 3.2% of all cases, and 47% of
unparsable cases.

• Unparseable due to parser error. The parser
encountered an error in retrieving lexical en-
tries or instantiating the parsing chart. This
constitutes about 0.5% of all cases, and 8%
of unparsable cases.

• Unparseable due to exhaustation of search
space. The parser exhausted the entire search
space of derivations for a sentence, and con-
cludes that it does not have a derivation in
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Figure 2: Count of rule usage for the 10 most frequent
rules in the derivations of the reference and grammati-
cal NMT translations.

the ERG. This constitutes about 3.1% of all
cases, and 45% of unparsable cases.

The distribution of the root node conditions for
the reference and NMT translation derivations are
listed in table 1, along with the parseability of
the NMT translations. Root node conditions are
used by the ERG to denote whether the parser had
to relax punctuation and capitalization rules, with
“strict” and “informal”, and whether the deriva-
tion is of a full sentence or a fragment, with “full”
and “frag”. Fragments can be isolated noun, verb,
or prepositional phrases. Both full sentence root
node conditions saw a decrease in usage, with the
strict full root condition having the largest drop out
of all conditions. Both fragments have a small in-
crease in usage.

We summarize the parseability of NMT transla-
tions with a few surface level statistics. In addition
to log probabilities from our translation model, we
provide several transformations of these scores,
which were inspired by work in unsupervised ac-
ceptability judgments (Lau et al., 2015). In table
2, we calculate Pearson’s r for each statistic and
the binary parseability variable. The r coefficient
is effectively a normalized difference in means.

From the correlation coefficients, we see that
the probabilities from the NMT and unigram mod-
els are all indicative of parseability. The higher
the probabilities, the more likely the translation
is to be grammatical. Length is the only excep-
tion with a negative coefficient, where the longer
a sentence is, the less likely a translation is gram-
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Figure 3: The ratio of each rule’s count in grammat-
ical NMT translations over count in reference transla-
tions, ordered by the rule’s frequency rank in reference
derivations. Only rules with over 1000 usages in the set
of reference derivations are shown.

matical. Length has the strongest correlation of
all our features, but this correlation may be due
to limitations in the ERG’s ability to parse longer
sentences, instead of the NMT model’s to gener-
ate longer grammatical sentences. We see that the
LP NMT has a higher correlation with grammati-
cality than the unigram models, but not by a large
amount. Coefficients for length and LP NMT have
the two greatest magnitudes.

4.2 Grammaticality

Out of the 14K unparseable NMT translations,
there are 6.2K translations where the parser con-
cluded unparseability after exhausting the search
space for derivations. We will refer to these exam-
ples as “exhaustively unparseable.” To understand
the relation between English grammaticality and
exhaustive unparseability under the ERG, two lin-
guistics undergraduates (including the first author)
labeled a random sample of 100 NMT translations
from this subset. We sampled only those trans-
lations with less than 10 words to limit annotator
confusion. Annotators were instructed to assign
a binary grammatical judgment to each sentence,
ignoring the coherence and meaning of the trans-
lation, to the best of their abilities. Punctuation
was ignored in all annotations, although the ERG
is sensitive to punctuation. When the sentence was
ungrammatical, subject-verb agreement and noun
phrase agreement errors were annotated.

Within our random sample, 60 sentences were
labeled as ungrammatical. Of these ungrammat-
ical sentences, 5 could be made grammatical if a
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Reference NMT
Rule Type Annotations Rule Type Annotations
xp brck-pr Paired bracketed phrase j sbrd-pre Pred.subord phr fr.adj, prehead
cl-cl runon Run-on sentence w/two clauses n-j j-cpd Compound from noun+adj
np-hdn cpd Compound proper-name+noun j n-ed Adj-phr from adj + noun+ed

vp sbrd-prd-prp Pred.subord phr from prp-VP aj-np int-frg Fragment intersctv modif + NP
hd-aj int-sl Hd+foll.int.adjct, gap in adj vp sbrd-prd-aj Pred.subord phr from adjctv phr
hd-aj vmod Hd+foll.int.adjct, prec. NP cmp np frg Fragment NP

vp np-ger NP from verbal gerund flr-hd nwh Filler-head, non-wh filler
mrk-nh atom Paired marker + phrase hdn-aj rc-pr NomHd+foll.rel.cl, paired pnct

vp sbrd-pre Pred.subord phr fr.VP, prehead sb-hd mc Head+subject, main clause
num prt-det-nc Partitive NP fr.number, no cmp num-n mnp Measure NP from number+noun

Table 3: The most discriminatory features of both the reference and NMT translations. Features are ranked by a
logistic regression without an intercept and an L1 penalty C = 0.01, trained with LIBLINEAR within scikit-learn.
Description of rule types are taken from the annotations in the ErgRules website.

subject-verb agreement error was corrected, and
5 other translations could be made grammatical
by correcting an article or determiner attachment
to a noun. One translation exhibited both forms
of agreement attachment errors. Agreement at-
tachment errors are better studied phenomenon
(Linzen et al., 2016; Sennrich, 2016). However,
correcting these errors only fixes 18.3% of un-
grammaticality that we observed in our sample.

Out of the 100 sampled NMT translations that
have no ERG derivations, we found 35 to be gram-
matical. 5 test examples were excluded. These in-
clude two cases where the source sentences were
empty, and three cases where the sentence was
parliament session information. Both annotators
found annotating to be challenging, and possibly
better annotated on an ordinal scale. Out of the ex-
haustively unparseable random sample, 37% was
found to be grammatical. The ERG may have
grammar gaps for near grammatical sentences.

4.3 Rule Counts

This section and those following will analyze the
rules present in the derivations of the reference
and the grammatical NMT translations. We con-
sider only the appearance of the rule, disregarding
the context it appears in, and define CountX(R)
as the number of times rule R appears in the set
X ∈ {Ref,NMT} of derivations. In figure 2,
we plot the counts of the 10 most frequent rule
types in the reference and NMT translations. The
rules were taken from the best derivations as de-
termined by the included maximum entropy clas-
sifier in the ERG. Note that we have about 200K

reference derivations and 189K NMT derivations
we aggregate statistics from, as about 7% of the
NMT translations are unparseable. We see that
both distributions seem to be Zipfian, and that the
rule counts in the NMT translations match the ref-
erence closely.

In figure 3, for each rule R, we plot the ratio
CountNMT(R)/CountRef(R) of derivations against
the rank of the rule type. The rank is computed
from the set of reference derivations. The variance
of the ratio seems to increase as the rank of the
rule increases. While the occurrences of rarer con-
structions is low in the NMT translations, it seems
not to match the usage in the reference translation
dataset. This suggests that NMT has trouble learn-
ing the usage of rarer syntactic constructions.

4.4 Discriminative Rules

This section aims to understand which usage of
rules distinguish the reference from the NMT
translations. The analysis in this section is largely
inspired by work in syntactic stylometrics (Feng
et al., 2012; Ashok et al., 2013), where we vec-
torize each derivation as a bag of rules, and fit a
logistic regression without an intercept to predict
whether a derivation was from the set of reference
or NMT translations. In total, there are 392K ex-
amples and we prepare an 80/20 training valida-
tion split. The model is fit with an L1 sparsity
penalty of C = 0.01 with the LIBLINEAR solver
in scikit learn (Pedregosa et al., 2011). On the vali-
dation set, the logistic regression achieves an accu-
racy of about 59.0% on the validation set up from
the 51.9% majority class baseline. Of the 204 rules
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used as features, only 71 were non-zero. There
are 47 rules that are discriminatory towards refer-
ence translations (positive weights), and 24 rules
that are discriminatory towards NMT translations
(negative weights). Table 3 shows the 10 most dis-
criminative rules for each set.

4.5 Qualitative Analysis

We provide qualitative analysis for a few of the
most discriminative rules for both the reference
and NMT translations. When exploring discrim-
inatory rules in the reference, we sampled for sen-
tence pairs where the reference translation that
contained the rule of interest, and the NMT trans-
lation did not. We only sampled within sentences
with a length of less than 12. Our qualitative anal-
ysis is written after we looked through many sam-
ples, and we attempted to list a few of our general
observations for each rule.

The “cl-cl runon” rule type indicates a runon
sentence with two conjoined clauses. This rule has
a positive coefficient, and discriminates towards
reference translations. An example is given below:

French je le répète , vous avez raison .
Reference i repeat ; you are quite right .

NMT Output i repeat , you are right .

In this case, the NMT used a comma to conjoin
two clauses instead of using a semi-colon, which
is more similar in punctuation to the source sen-
tence. In every case we saw, the NMT model
seems to follow the French style of conjunction
more closely, mirroring the punctuation of the
source sentence. Reference translations seem to be
more spurious in the usage of semicolons or peri-
ods. In more concerning cases, short conjoined
clauses were dropped by the NMT translations;
e.g. “thank you .”.

We now analyze “np frg” which denotes a noun
phrase fragment. This rule that has a negative co-
efficient, and discriminates towards NMT transla-
tions. We give an example below:

French quel paradoxe !
Reference what a paradox this is !

NMT Output what a paradox !

When looking through samples, we saw many ex-
amples where the expletive is dropped. This is

similar to the case for the previous rule as it is a
literal translation of the French source. In NMT
translations we observed increases in the formal
and strict fragment root conditions, and we believe
these translations are a factor.

5 Related Work

Previous work in recurrent neural network based
recognizers on artificial languages has studied
the performance on context-free and limited
context-sensitive languages (Gers and Schmidhu-
ber, 2001). More recent research in this setting
provide methods to extract the exact determinis-
tic finite automaton represented by the RNN based
recognizers of regular languages (Weiss et al.,
2018). These studies give exact analyses of RNN
recognizers for simple artificial languages.

In the evaluation of language models in natural
language settings, recent work analyzes the rescor-
ing of grammatical and ungrammatical sentence
pairs based on specific linguistic phenomenon
such as agreement attraction (Linzen et al., 2016).
These contrastive pairs have also found use in
evaluating seq2seq models through rescoring with
the decoder side of neural machine translation sys-
tems (Sennrich, 2016). Both studies on contrastive
pairs evaluate implicit grammatical knowledge of
a language model.

HPSG-based grammars have found use in eval-
uating human produced language. To determine
the degree of syntactic noisiness in social media
text, parseability under the ERG was examined
for newspaper and Twitter texts (Baldwin et al.,
2013). In predicting grammaticality of L2 lan-
guage learners with linear models, the parseability
of sentences with the ERG was found to be a use-
ful feature (Heilman et al., 2014). These studies
suggest parseability in the ERG has some degree
of linguistic reality.

Our work combines analysis of neural seq2seq
models with an HPSG-based grammar, which be-
gins to let us understand the syntactic properties
in the model output. Recent work most similar
to ours is in evaluating multimodel deep learn-
ing models with the ERG (Kuhnle and Copestake,
2017). While their work uses the ERG for lan-
guage generation to test language understanding,
we evaluate language generation with the parsing
capabilities of the ERG, and study the syntactic
properties.
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6 Conclusion

Neural sequence to sequence models do not have
any explicit biases towards inducing underlying
grammars, yet was able to generate sentences con-
forming to an English-like grammar at a high rate.
We investigated parseability and differences in
syntactic rule usage for this neural seq2seq model,
and these two analyses were made possible by the
English Resource Grammar. Future work will in-
volve using human ratings and machine translation
quality estimation datasets to understand which
syntactic biases are preferable for machine trans-
lation systems. The ERG also produces Mini-
mal Recursion Semantics (MRS; Copestake et al.,
2005), a semantic representation which our work
does not yet explore. By matching the semantic
forms produced, we can make evaluations of lan-
guage generation systems on a semantic level as
well. In using these deep resources for evalua-
tion, there is a shortcoming in the biased cover-
age of the grammar. Future work will also study
how to evaluate our models despite these limita-
tions. We hope this paper spurs others’ interest
in HPSG-based or language-like grammar evalua-
tions of neural networks.
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Abstract

This paper analyzes the behavior of stack-
augmented recurrent neural network (RNN)
models. Due to the architectural similarity be-
tween stack RNNs and pushdown transduc-
ers, we train stack RNN models on a num-
ber of tasks, including string reversal, context-
free language modelling, and cumulative XOR
evaluation. Examining the behavior of our net-
works, we show that stack-augmented RNNs
can discover intuitive stack-based strategies
for solving our tasks. However, stack RNNs
are more difficult to train than classical ar-
chitectures such as LSTMs. Rather than em-
ploy stack-based strategies, more complex net-
works often find approximate solutions by us-
ing the stack as unstructured memory.

1 Introduction

Recent work on recurrent neural network (RNN)
architectures has introduced a number of models
that enhance traditional networks with differen-
tiable implementations of common data structures.
Appealing to their Turing-completeness (Siegel-
mann and Sontag, 1995), Graves et al. (2014) view
RNNs as computational devices that learn trans-
duction algorithms, and develop a trainable model
of random-access memory that can simulate Tur-
ing machine computations. In the domain of natu-
ral language processing, the prevalence of context-
free models of natural language syntax has mo-
tivated stack-based architectures such as those of
Grefenstette et al. (2015) and Joulin and Mikolov
(2015). By analogy to Graves et al.’s Neural Tur-
ing Machines, these stack-based models are de-
signed to simulate pushdown transducer compu-
tations.

From a practical standpoint, stack-based mod-
els may be seen as a way to optimize networks
for discovering dependencies of a hierarchical

∗Equal contribution.

nature. Additionally, stack-based models could
potentially facilitate interpretability by imposing
structure upon the recurrent state of an RNN.
Classical architectures such as Simple RNNs (El-
man, 1990), Long Short-Term Memory networks
(LSTM, Hochreiter and Schmidhuber, 1997), and
Gated Recurrent Unit networks (GRU, Cho et al.,
2014) represent state as black-box vectors. In cer-
tain cases, these models can learn to implement
classical data structures using state vectors (Kirov
and Frank, 2011). However, because state vec-
tors are fixed in size, the inferred data structures
must be represented in a fractal encoding requir-
ing arbitrary position. On the other hand, differ-
entiable stacks typically increase in size through-
out the course of the computation, so their per-
formance may better scale to larger inputs. Since
the ability of a differentiable stack to function cor-
rectly intrinsically requires that the information it
contains be represented in the proper format, ex-
amining the contents of a network’s stack through-
out the course of its computation could reveal hi-
erarchical patterns that the network has discovered
in its training data.

This paper systematically explores the behav-
ior of stack-augmented RNNs on simple computa-
tional tasks. While Yogatama et al. (2018) provide
an analysis of stack RNNs based on their Multi-
pop Adaptive Computation Stack model, our anal-
ysis is based on the existing Neural Stack model
of Grefenstette et al. (2015), as well as a novel en-
hancement thereof. We consider tasks with opti-
mal strategies requiring either finite-state memory
or a stack, or possibly a combination of the two.
We show that Neural Stack networks have the abil-
ity to learn to use the stack in an intuitive man-
ner. However, we find that Neural Stacks are more
difficult to train than classical architectures. In
particular, our models prefer not to employ stack-
based strategies when other forms of memory are
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Controller Stack

〈Vt−1, st−1〉〈xt,ht−1, rt−1〉

〈yt,ht〉 〈rt,Vt, st〉

〈vt, ut, dt〉

Figure 1: The Neural Stack architecture.

available, such as in networks with both LSTM
memory and a stack.

A description of our models, including a re-
view of Grefenstette et al.’s Neural Stacks, ap-
pears in Section 2. Section 3 discusses the rela-
tionship between stack-augmented RNN models
and pushdown transducers, motivating our intu-
ition that Neural Stacks are a suitable architecture
for learning context-free structure. The tasks we
consider are defined in Section 4, and our experi-
mental paradigm is described in Section 5. Section
6 presents quantitative evaluation of our models’
performance as well as qualitative description of
their behavior. Section 7 concludes.

2 Models

The neural network models considered in this pa-
per are based on the Neural Stacks of Grefenstette
et al. (2015), a family of stack-augmented RNN
architectures.1 A Neural Stack model consists of
two modular components: a controller executing
the computation of the network and a stack imple-
menting the data model of the network. At each
time step t, the controller receives an input vector
xt and a read vector rt−1 representing the mate-
rial at the top of the stack at the end of the previ-
ous time step. We assume that the controller may
adhere to any feedforward or recurrent structure;
if the controller is recurrent, then it may also re-
ceive a recurrent state vector ht−1. Based on xt,
rt−1, and possibly ht−1, the controller computes
an output yt, a new recurrent state vector ht if
applicable, and a tuple 〈vt, ut, dt〉 containing in-
structions for manipulating the stack. The stack
takes these instructions and produces rt, the vec-
tor corresponding to the material at the top of the
stack after popping and pushing operations have
been performed on the basis of 〈vt, ut, dt〉. The

1Code for our PyTorch (Paszke et al., 2017) im-
plementation is available at https://github.com/
viking-sudo-rm/StackNN.

contents of the stack are represented by a recur-
rent state matrix Vt and a strength vector st. This
schema is shown in Figure 1.

Having established the basic architecture, the
remainder of this section introduces our models
in full detail. Subsection 2.1 describes how the
stack computes rt and updates Vt and st based
on 〈vt, ut, dt〉. Subsection 2.2 presents the various
kinds of controllers we consider in this paper. Sub-
section 2.3 presents an enhancement of Grefen-
stette et al.’s schema that allows the network to
perform computations of varying duration.

2.1 Differentiable Stacks
A stack at time t consists of sequence of vectors
〈Vt[1],Vt[2], . . . ,Vt[t]〉, organized into a matrix
Vt whose ith row is Vt[i]. By convention, Vt[t]
is the “top” element of the stack, while Vt[1] is
the “bottom” element. Each element Vt[i] of the
stack is associated with a strength st[i] ∈ [0, 1].
The strength of a vector Vt[i] represents the “de-
gree” to which the vector is on the stack: a strength
of 1 means that the vector is “fully” on the stack,
while a strength of 0 means that the vector has
been popped from the stack. The strengths are or-
ganized into a vector st = 〈st[1], st[2], . . . , st[t]〉.

At each time step, the stack pops a number of
items from the top, pushes a new item to the top,
and reads a number of items from the top, in that
order. The behavior of the popping and push-
ing operations is determined by the instructions
〈vt, ut, dt〉. The value obtained from the reading
operation is passed back to the controller as the re-
current vector rt. Let us now describe each of the
three operations.

Popping reduces the strength st−1[t − 1] of the
top element from the previous time step by ut.
If st−1[t − 1] ≥ ut, then the strength of the
(t−1)st element after popping is simply st[t−1] =
st−1[t− 1]− ut. If st−1[t− 1] ≤ ut, then we con-
sider the popping operation to have “consumed”
st−1[t − 1], and the strength st−1[t − 2] of the
next element is reduced by the “left-over” strength
ut − st−1[t − 1]. This process is repeated until
all strengths in st−1 have been reduced. For each
i < t, we compute the left-over popping strength
ut[i] for the ith item as follows.

ut[i] ={
ut, i = t− 1

ReLU(ut[i+ 1]− st−1[i+ 1]), i < t− 1
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The strengths are then updated accordingly.

st[i] = ReLU (st−1[i]− ut[i])

The pushing operation simply places the vector
vt at the top of the stack with strength dt. Thus,
Vt and st[t] are updated as follows.

st[t] = dt Vt[i] =

{
vt, i = t

Vt−1[i], i < t

Note that st[1], st[2], . . . , st[t − 1] have already
been updated during the popping step.

The reading operation “reads” the elements on
the top of the stack whose total strength is 1. If
st[t] = 1, then only the top element is read. Oth-
erwise, the next element is read using the “left-
over” strength 1− st[t]. As in the case of popping,
we may define a series of left-over strengths ρt[1],
ρt[2], . . . , ρt[t] corresponding to each item in the
stack.

ρt[i] =

{
1, i = t

ReLU (ρt[i+ 1]− st[i+ 1]) , i < t

The result rt of the reading operation is obtained
by computing a sum of the items in the stack
weighted by their strengths, including only items
with sufficient left-over strength.

rt =

t∑

i=1

min (st[i], ρt[i]) ·Vt[i]

2.2 Controllers
We consider two types of controllers: linear and
LSTM. The linear controller is a feedforward net-
work consisting of a single linear layer. The net-
work output is directly extracted from the lin-
ear layer, while the stack instructions are passed
through the sigmoid function, denoted σ.

ut = σ
(
Wu ·

[
xt rt−1

]>
+ bu

)

dt = σ
(
Wd ·

[
xt rt−1

]>
+ bd

)

vt = σ
(
Wv ·

[
xt rt−1

]>
+ bv

)

yt = Wy ·
[
xt rt−1

]>
+ by

The LSTM controller maintains two state vectors:
the hidden state ht and the cell state ct. The out-
put and stack instructions are produced by pass-
ing ht through a linear layer. As in the linear
controller, the stack instructions are additionally
passed through the sigmoid function.

Controller Stack

〈Vt−1, st−1〉Input

Output〈Ot−1,ot−1〉

〈It, it〉〈It−1, it−1〉

〈Ot,ot〉
〈rt,Vt, st〉

〈ht−1, rt−1〉

〈it,ht〉

it−1

〈vt, ut, dt〉
xt

〈yt, ot〉

Figure 2: Our enhanced architecture with buffers.

2.3 Buffered Networks

One limitation of many RNN architectures, in-
cluding Neural Stacks, is that they can only com-
pute same-length transductions: at each time step,
the network must accept exactly one input vec-
tor and produce exactly one output vector. This
limitation prevents Neural Stacks from producing
output sequences that may be longer or shorter
than the input sequence. It also prohibits Neu-
ral Stack networks from performing computation
steps without reading an input or producing an
output (i.e., ε-transitions on input or output), even
though such computation steps are a common fea-
ture of stack transduction algorithms.

A well-known approach to overcoming this lim-
itation appears in Sequence-to-Sequence models
such as Sutskever et al. (2014) and Cho et al.
(2014). There, the production of the output se-
quence is delayed until the input sequence has
been fully read by the network. Output vectors
produced while reading the input are discarded,
and the input sequence is padded with blank sym-
bols to indicate that the network should be produc-
ing an output.

The delayed output approach solves the prob-
lem of fixed-length outputs, and we adopt it for
the String Reversal task described in Section 4.
However, delaying the output does not allow our
networks to perform streaming computations that
may interrupt the process of reading inputs or
emitting outputs. An alternative approach is to al-
low our networks to perform ε-transitions. While
Graves (2016) achieves this by dynamically re-
peating inputs and marking them with flags, we
augment the Neural Stack architecture with two
differentiable buffers: a read-only input buffer and
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a write-only output buffer. At each time step t,
the input vector xt is obtained by popping from
the input buffer with strength it−1. In addition to
the output vector and stack instructions, the con-
troller must produce an input buffer pop strength it
and an output buffer push strength ot. The output
vector is then enqueued to the output buffer with
strength ot. This enhanced architecture is shown
in Figure 2.

The implementation of the input and output
buffers is based on Grefenstette et al. (2015)’s
Neural Queues, a first-in-first-out variant of the
Neural Stack. Like the stack, the input buffer at
time t consists of a matrix of vectors It and a vec-
tor of strengths it. Similarly, the output buffer
consists of a matrix of vectors Ot and a vector of
strengths ot. The input buffer is initialized so that
I0 is a matrix representation of the full input se-
quence, with an initial strength of 1 for each item.

At time t, items are dequeued from the “front”
of the buffer with strength it−1.

ιt[j] =

{
it−1, j = 1

ReLU(ιt[j − 1]− it−1[j]), j > 1

it[j] = ReLU (it−1[j]− ιt[j])
Next, the input vector xt is produced by reading
from the front of the buffer with strength 1.

ξt[j] =

{
1, j = 1

ReLU (ξt[j − 1]− it[j]) , j > 1

xt =
n∑

j=1

min (it[j], ξt[j]) · It[j]

Since the input buffer is read-only, there is no push
operation. This means that unlike Vt and Ot,
the number of rows of It is fixed to a constant
n. When the controller’s computation is complete,
the output vector yt is enqueued to the “back” of
the output buffer with strength ot.

Ot[j] =

{
yt, j = t

Ot−1[j], j < t

ot[j] =

{
ot, j = t

ot−1[j], j < t

After the last time step, the final output sequence is
obtained by repeatedly dequeuing the front of the
output buffer with strength 1 and reading the front
of the output with strength 1. These dequeuing and
reading operations are identical to those defined
for the input buffer.

q0start
x : #, ε→ x
# : y, y → ε

Figure 3: A PDT for the String Reversal task.

3 Pushdown Transducers

Our decision to use a stack for NLP tasks rather
than some other differentiable data structure is
motivated by the success of context-free grammars
(CFGs) in describing the hierarchical phrase struc-
ture of natural language syntax. A classic theoreti-
cal result due to Chomsky (1962) shows that CFGs
generate exactly those sets of strings that are ac-
cepted by nondetermininstic pushdown automata
(PDAs), a model of computation that augments a
finite-state machine with a stack. When enhanced
with input and output buffers, we consider Neural
Stacks to be an implementation of deterministic
pushdown transducers (PDTs), a variant of PDAs
that includes an output tape.

Formally, a PDT is described by a transition
function of the form δ(q, x, s) = 〈q′, y, s′〉, in-
terpreted as follows: if the machine receives an
x from the input buffer and pops an s from the top
of the stack while in state q, then it sends a y to
the output buffer, pushes an s′ to the stack, and
transitions to state q′. We assume that δ is only
defined for finitely many configurations 〈q, x, s〉.
These configurations, combined with their corre-
sponding values of δ, represent all the possible ac-
tions of a pushdown transducer.

To illustrate, let us construct a PDT that com-
putes the function f

(
w#|w|

)
= #|w|wR, where

wR is the reverse of w and #|w| is a sequence
of #s of the same length as w. We can begin to
compute f using a single state q0 by pushing each
symbol of w onto the stack while emitting #s as
output. When the machine has finished reading w,
the stack contains the symbols of w in reverse or-
der. In the remainder of the computation, the ma-
chine pops symbols from the stack one at a time
and sends them to the output buffer. A pictoral
representation of this PDT is shown in Figure 3.
Each circle represents a state of the PDT, and each
action δ(q, x, s) = 〈q′, y, s′〉 is represented by an
arrow from q to q′ with the label “x : y, s → s′.”
Observe that the two labels of the arrow from q0
to itself encode a transition function implementing
the algorithm described above.

Given a finite state transition function, there ex-
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ists an LSTM that implements it. In fact, Weiss
et al. (2018) show that a deterministic k-counter
automaton can be simulated by an LSTM. Thus,
any deterministic PDT can be simulated by the
buffered stack architecture with an LSTM con-
troller.

4 Tasks

The goal of this paper is to ascertain whether
or not stack-augmented RNN architectures can
learn to perform PDT computations. To that
end, we consider six tasks designed to highlight
various features of PDT algorithms. Four of
these tasks—String Reversal, Parenthesis Predic-
tion, and the two XOR Evaluation tasks—have
simple PDT implementations. The PDTs for each
of these tasks differ in their memory requirements:
they require either finite-state memory or stack-
structured memory, or a combination of the two.
The remaining two tasks—Boolean Formula Eval-
uation and Subject–Auxiliary Agreement—are de-
signed to determine whether or not Neural Stacks
can be applied to complex use cases that are
thought to be compatible with stack-based tech-
niques.

4.1 String Reversal

In the String Reversal task, the network must com-
pute the function f from the previous section. As
discussed there, the String Reversal task can be
performed straightforwardly by pushing all input
symbols to the stack and then popping all symbols
from the stack. The purpose of this task is to serve
as a baseline test for whether or not a controller
can learn to use a stack in principle. Since in
the general case, correctly producing wR requires
recording w in the stack, we evaluate the network
solely based on the portion of its output where wR

should appear, immediately after reading the last
symbol of w.

4.2 XOR Evaluation

We consider two tasks that require the network to
implement the XOR function. In the Cumulative
XOR Evaluation task, the network reads an input
string of 1s and 0s. At each time step, the network
must output the XOR of all the input symbols it
has seen so far. The Delayed XOR Evaluation task
is similar, except that the most recent input symbol
is excluded from the XOR computation.

As shown in the left of Figure 4, the XOR Eval-
uation tasks can be computed by a PDT without
using the stack. Thus, we use XOR Evaluation
to test the versatility of the stack by assessing
whether a feedforward controller can learn to use
it as unstructured memory.

The Cumulative XOR Evaluation task presents
the linear controller with a theoretical challenge
because single-layer linear networks cannot com-
pute the XOR function (Minsky and Papert, 1969).
However, in the Delayed XOR Evaluation task,
the delay between reading an input symbol and
incorporating it into the XOR gives the network
two linear layers to compute XOR when unrav-
elled through time. Therefore, we expect that the
linear model should be able to perform the De-
layed XOR Evaluation task, but not the Cumula-
tive XOR Evaluation task.

The discrepancy between the Cumulative and
the Delayed XOR Evaluation tasks for the lin-
ear controller highlights the importance of tim-
ing in stack algorithms. Since the our enhanced
architecture from Subsection 2.3 can perform ε-
transitions, we expect it to perform the Cumu-
lative XOR Evaluation task with a linear con-
troller by learning to introduce the necessary de-
lay. Thus, the XOR tasks allow us to test whether
our buffered model can learn to optimize the tim-
ing of its computation.

4.3 Parenthesis Prediction

The Parenthesis Prediction task is a simplified lan-
guage modelling task. At each time step t, the
network reads the tth symbol of some string and
must attempt to output the (t + 1)st symbol. The
strings are sequences of well-nested parentheses
generated by the following CFG.

S→ S T | T S | T
T→ ( T ) | ( )

T→ [ T ] | [ ]

We evaluate the network only when the correct
prediction is ) or ]. This restriction allows for a
deterministic PDT solution, shown in the right of
Figure 4.

Unlike String Reversal and XOR Evaluation,
the Parenthesis Prediction task relies on both the
stack and the finite-state control. Thus, the Paren-
thesis Prediction task tests whether or not Neu-
ral Stack models can learn to combine different
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q1start q2

( : ), ε→ (
[ : ], ε→ [

) : ε, (→ ε
] : ε, [→ ε

ε : ), (→ (
ε : ], [→ [
ε : ε, $→ $

10start

0 : 0
1 : 1

0 : 1

1 : 0

Figure 4: PDTs for Cumulative XOR Evaluation (left) and Parenthesis Prediction (right) tasks. The symbol $
represents the bottom of the stack.

types of memory. Furthermore, since context-
free languages can be canonically represented as
homomorphic images of well-nested parentheses
(Chomsky and Schützenberger, 1959), the Paren-
thesis Prediction task may be used to gauge the
suitability of Neural Stacks for context-free lan-
guage modelling.

4.4 Boolean Formula Evaluation
In the Boolean Formula Evaluation task, the net-
work reads a boolean formula in reverse Polish no-
tation generated by the following CFG.

S→ S S ∨ | S S ∧
S→ T | F

At each time step, the network must output the
truth value of the longest sub-formula ending at
the input symbol.

The Boolean Formula Evaluation task tests the
ability of Neural Stacks to infer complex computa-
tions over the stack. In this case, the network must
store previously computed values on the stack and
evaluate boolean operations over these stored val-
ues. This technique is reminiscent of shift-reduce
parsing, making the Boolean Formula Evaluation
task a testing ground for the possibility of applying
Neural Stacks to natural language parsing.

4.5 Subject–Auxiliary Agreement
The Subject–Auxiliary Agreement task is inspired
by Linzen et al. (2016), who investigate whether
or not LSTMs can learn structure-sensitive long-
distance dependencies in natural language syntax.
There, the authors train LSTM models that per-
form language modelling on prefixes of sentences
drawn from corpora. The last word of each prefix
is a verb, and the models are evaluated solely on
whether or not they prefer the correct form of the

verb over the incorrect ones. In sentences with em-
bedded clauses, the network must be able to iden-
tify the subject of the verb among several possible
candidates in order to conjugate the verb.

Here, we consider sentences generated by a
small, unambiguous CFG that models a fragment
of English.

S→ NPsing has | NPplur have

NP→ NPsing | NPplur

NPsing→ the lobster (PP | Relsing)

NPplur→ the lobsters (PP | Relplur)

PP→ in NP

Relsing→ that has VP | Relobj

Relplur→ that have VP | Relobj

Relobj→ that NPsing has devoured

Relobj→ that NPplur have devoured

VP→ slept | devoured NP

As in the Parenthesis Prediction task, the network
performs language modelling, but is only evalu-
ated when the correct prediction is an auxiliary
verb (i.e., has or have).

5 Experiments

We conducted four experiments designed to assess
various aspects of the behavior of Neural Stacks.
In each experiment, models are trained on a gener-
ated dataset consisting of 800 input–output string
pairings encoded in one-hot representation. Train-
ing occurs in mini-batches containing 10 string
pairings each. At the end of each epoch, the model
is evaluated on a generated development set of 100
examples. Training terminates when five consecu-
tive epochs fail to exceed the highest development
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accuracy attained. The sizes of the LSTM con-
trollers’ recurrent state vectors are fixed to 10, and,
with the exception of Experiment 2 described be-
low, the sizes of the vectors placed on the stack are
fixed to 2. After training is complete, each trained
model is evaluated on a testing set of 1000 gener-
ated strings, each of which is at least roughly twice
as long as the strings used for training. 10 trials are
performed for each set of experimental conditions.

Experiment 1 tests the propensity of trained
Neural Stack models to use the stack. We train
both the standard Neural Stack model and our en-
hanced buffered model from Subsection 2.3 to per-
form the String Reversal task using the linear con-
troller. To compare the stack with unstructured
memory, we also train the standard Neural Stack
model using the LSTM controller as well as an
LSTM model without a stack. Training and de-
velopment data are obtained from sequences of 0s
and 1s randomly generated with an average length
of 10. The testing data have an average length of
20.

Experiment 2 considers the XOR Evaluation
tasks. We train standard models with a linear con-
troller on the Delayed XOR task and an LSTM
controller on the Cumulative XOR task to test the
network’s ability to use the stack as unstructured
state. We also train both a standard and a buffered
model on the Cumulative XOR Evaluation task us-
ing the linear controller to test the network’s abil-
ity to use our buffering mechanism to infer optimal
timing for computation steps. Training and devel-
opment data are obtained from randomly gener-
ated sequences of 0s and 1s fixed to a length of 12.
The testing data are fixed to a length of 24. The
vectors placed on the stack are fixed to a size of 6.

In Experiment 3, we attempt to perform the
Parenthesis Prediction task using standard mod-
els with various types of memory: a linear con-
troller with no stack, which has no memory; a
linear controller with a stack, which has stack-
structured memory; an LSTM controller with no
stack, which has unstructured memory; and an
LSTM controller with a stack, which has both
stack-structured and unstructured memory.

Sequences of well-nested parentheses are gen-
erated by the CFG from the previous section. The
training and development data are obtained by ran-
domly sampling from the set of strings of deriva-
tion depth at most 6, which contains strings of
length up to 20. The testing data are of depth 12

and length up to 110.
Experiment 4 compares the standard models

with linear and LSTM controllers against a base-
line consisting of an LSTM controller with no
stack. Whereas Experiments 1–3 presented the
network with tasks designed to showcase vari-
ous features of the Neural Stack architecture, the
goal of this experiment is to gauge the extent
to which stack-structured memory may improve
the network’s performance on more sophisticated
tasks. We train the three types of models on the
Boolean Formula Evaluation task and the Subject–
Auxiliary Agreement task. Data for both tasks
are generated by the CFGs given in Section 4.
The boolean formulae for training and develop-
ment are randomly sampled from the set of strings
of derivation depth at most 6, having a maximum
length of 15, while the testing data are sampled
from derivations of depth at most 7, with a max-
imum length of 31. The sentence prefixes are of
depth 16 and maximum length 23 during the train-
ing phase, and depth 32 and maximum length 49
during the final evaluation round.

6 Results

Our results are shown in Table 1. The networks
we trained were able to achieve a median accu-
racy of at least 90.0% during the training phase
in 10 of the 13 experimental conditions involving
a stack-augmented architecture. However, many
of these conditions include trials in which the
model performed considerably worse during train-
ing than the median. This suggests that while
stack-augmented networks are able to perform our
tasks in principle, they may be more difficult to
train than traditional RNN architectures. Note that
there is substantially less variation in the perfor-
mance of the LSTM networks without a stack.

In Experiment 1, the standard network with
the linear controller performs perfectly both dur-
ing the training phase and in the final testing
phase. The buffered network performed nearly
as well during the training phase, but its perfor-
mance failed to generalize to longer strings. The
LSTM network achieved roughly the same per-
formance both with and without a stack, substan-
tially worse than the linear controller. The left-
most graphic in Figure 5 shows that the linear con-
troller pushes a copy of its input to the stack and
then pops the copy to produce the output. As sug-
gested by an anonymous reviewer, we also consid-
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Task Buffered Controller Stack Min Med Max Min Med Max
Reversal No Linear Yes 49.9 100.0 100.0 49.3 100.0 100.0
Reversal Yes Linear Yes 55.3 98.7 99.4 49.5 60.4 74.7
Reversal No LSTM Yes 81.2 89.3 94.4 67.2 71.0 73.7
Reversal No LSTM No 83.0 86.5 92.5 64.8 68.6 73.3
XOR No Linear Yes 51.1 53.5 54.4 50.7 51.9 51.9
XOR No LSTM Yes 100.0 100.0 100.0 99.7 100.0 100.0
XOR Yes Linear Yes 51.0 99.8 100.0 50.4 96.0 99.1
Delayed XOR No Linear Yes 100.0 100.0 100.0 100.0 100.0 100.0
Parenthesis No Linear Yes 72.8 97.0 99.3 59.9 80.3 83.2
Parenthesis No Linear No 70.0 71.8 73.3 59.9 60.5 60.7
Parenthesis No LSTM Yes 100.0 100.0 100.0 85.8 86.8 88.9
Parenthesis No LSTM No 100.0 100.0 100.0 83.5 85.8 88.0
Formula No Linear Yes 87.4 92.0 97.3 87.8 91.2 96.2
Formula No LSTM Yes 98.0 98.7 99.4 96.8 97.7 98.4
Formula No LSTM No 95.4 98.5 99.3 95.3 97.6 98.4
Agreement No Linear Yes 53.3 73.5 93.9 51.8 68.8 85.8
Agreement No LSTM Yes 95.6 98.5 99.7 82.4 88.8 91.2
Agreement No LSTM No 96.2 98.1 100.0 83.7 88.2 90.6

Table 1: The minimum, median, and maximum accuracy (%) attained by the 10 models for each experimental
condition during the last epoch of the training phase (left) and the final testing phase (right).

ered a variant of this task in which certain alpha-
bet symbols are excluded from the reversed out-
put. The center graphic in Figure 5 shows that
for this task, the linear controller learns a strat-
egy in which only symbols included in the re-
versed output are pushed to the stack. The right-
most graphic shows that LSTM controller behaves
differently from the linear controller, exhibiting
uniform pushing and popping behavior through-
out the computation. This suggests that under
our experimental conditions, the LSTM controller
prefers to rely on its recurrent state for memory
rather than the stack, even though such a strategy
does not scale to the final testing round.

The models in Experiment 2 perform as we ex-
pected. The unbuffered model with the linear con-
troller performed at chance, in line with the in-
ability of the linear controller to compute XOR.
The rest of the models were able to achieve accu-
racy above 95.0% both in the training phase and in
the final testing phase. The buffered network was
successfully able to delay its computation in the
Cumulative XOR Evaluation task. The leftmost
graphic in Figure 6 illustrates the network’s be-
havior in the Delayed XOR Evaluation task, and
shows that the linear controller uses the stack as
unstructured memory—an unsurprising observa-
tion given the nature of the task. Note that the

vectors pushed onto the stack in the presence of
input symbol 1 vary between two possible values
that represent the current parity.

In Experiment 3, the linear model without a
stack performs fairly well during training, achiev-
ing a median accuracy of 71.8%. This is because
43.8% of (s and [s in the training data are imme-
diately followed by )s and ]s, respectively, so it is
possible to attain 71.9% accuracy by predicting )
and ] when reading ( and [ and by always predict-
ing ] when reading ) or ]. Linear models with the
stack perform better, but as shown by the right-
most graphic in Figure 6, they do not make use of
a stack-based strategy (since they never pop), but
instead appear to use the top of the stack as un-
structured memory. The LSTM models perform
slightly better, achieving 100% accuracy during
the training phase. However, the LSTM controller
still suffers significantly in the final testing phase
with or without a stack, suggesting that the LSTM
models are not employing a stack-based strategy.

In Experiment 4, the Boolean Formula Evalu-
ation task is performed easily, with a median ac-
curacy exceeding 90.0% for all models both on
the development set and the testing set. This is
most likely because, on average, three quarters of
the nodes in a boolean formula either require no
context for evaluation (because they are atomic)
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2 symbols, linear controller 4 symbols, linear controller 2 symbols, LSTM controller
Input: 100111# . . .# Input: 223030123112# . . .# Input: 100111# . . .#

Output: . . . 111001 Output: . . . 11100 . . . Output: . . . 111001

Figure 5: Diagrams of network computation on the Reversal task with linear and LSTM controllers. In each
diagram, the input may consist of 2 or 4 distinct alphabet symbols, but only the symbols 0 and 1 are included in
the output. Columns indicate the pop strengths, push strengths, and pushed vectors throughout the course of the
computation, along with the input and predicted output in one-hot notation. Lighter colors indicate higher values.

Delayed XOR, linear controller Parenthesis, linear controller
Input: 110110000110 Input: [([[]])][[()]]()[]

Output: 010010000010 Output: ])]]]]]]]])]]])]]]

Figure 6: Diagrams of network computation for the Delayed XOR and Parenthesis tasks with a linear controller.

or make use of limited context (because they are
boolean formulas of depth one). The linear con-
troller performed worse on average than the LSTM
models on the agreement task, though the highest-
performing linear models achieved a comparable
accuracy to their LSTM counterparts. Again, the
performance of the LSTM networks is unaffected
by the presence of the stack, suggesting that our
trained models prefer to use their recurrent state
over the stack.

7 Conclusion

We have shown in Experiments 1 and 2 that it is
possible in principle to train an RNN to operate
a stack and input–output buffers in the intended
way. There, the tasks involved have only one opti-
mal solution: String Reversal cannot be performed
without recording the string, and the linear con-
troller cannot solve Cumulative XOR Evaluation
without introducing a delay. In the other experi-

ments, our models were able to find approximate
solutions that rely on unstructured memory, and
the stack-augmented LSTMs always favored such
solutions over using the stack.

As we saw in Experiments 3 and 4, training
examples that require full usage of the stack are
rare in practice, making the long-term benefits of
stack-based strategies unattractive to greedy opti-
mization. However, the usage of a stack is neces-
sary for a general solution to all of the problems
we have explored, with the exception of the XOR
Evaluation tasks. While gradual improvements in
performance may be obtained by optimizing the
usage of unstructured memory, the discrete nature
of most stack-based solutions means that finding
such solutions often requires a substantial level of
serendipity. Our results then raise the question of
how to incentivize controllers toward stack-based
strategies during training. We leave this question
to future work.
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Abstract

PatternAttribution is a recent method, intro-
duced in the vision domain, that explains
classifications of deep neural networks. We
demonstrate that it also generates meaningful
interpretations in the language domain.

1 Introduction

In the last decade, deep neural classifiers achieved
state-of-the-art results in many domains, among
others in vision and language. Due to the com-
plexity of a deep neural model, however, it is dif-
ficult to explain its decisions. Understanding its
decision process potentially allows to improve the
model and may reveal new knowledge about the
input.

Recently, Kindermans et al. (2018) claimed that
“popular explanation approaches for neural net-
works (...) do not provide the correct explana-
tion, even for a simple linear model.” They show
that in a linear model, the weights serve to can-
cel noise in the input data and thus the weights
show how to extract the signal but not what the
signal is. This is why explanation methods need
to move beyond the weights, the authors explain,
and they propose the methods “PatternNet” and
“PatternAttribution” that learn explanations from
data. We test their approach in the language do-
main and point to room for improvement in the
new framework.

2 Methods

Kindermans et al. (2018) assume that the data x
passed to a linear model wTx = y is composed of
signal (s) and noise (d, from distraction) x = s+d.
Furthermore, they also assume that there is a linear
relation between signal and target yas = s where
as is a so called signal base vector, which is in
fact the “pattern” that PatternNet finds for us. As

mentioned in the introduction, the authors show
that in the model above, w serves to cancel the
noise such that

wTd = 0, wT s = y. (1)

They go on to explain that a good signal estima-
tor S(x) = ŝ should comply to the conditions in
Eqs. 1 but that these alone form an ill-posed qual-
ity criterion since S(x) = u(wTu)−1y already
satisfies them for any u for which wTu 6= 0. To
address this issue they introduce another quality
criterion over a batch of data x:

ρ(S) = 1−max
v

corr(

y︷︸︸︷
wTx, vT

d̂︷ ︸︸ ︷
(x− S(x))) (2)

and point out that Eq. 2 yields maximum values
for signal estimators that remove most of the in-
formation about y in the noise.

We argue that Eq. 2 still is not exhaustive. Con-
sider the artificial estimator

Sm(x) = mx+ (1−m)s = s+md

which arguably is a a bad signal estimator for
large m as its estimation contains scaled noise,
md. Nevertheless, it still satisfies Eqs. 1 and yields
maximum values for Eq. 2 since

x− Sm(x) = (1−m)(x− s) = (1−m)d

is again just scaled noise and thus does not cor-
relate with the output y. To solve this issue, we
propose the following criterion:

ρ′(S) :=max
v1

corr(wTx, vT1 S(x))

−max
v2

corr(wTx, vT2 (x− S(x))).

The minuend measures how much noise is left in
the signal, the subtrahend measures how much sig-
nal is left in the noise. Good signal estimators split
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Figure 1: Contributions to positive classification.

signal and noise well and thus yield large ρ′(S).
We leave it to future research to evaluate existing
signal estimators with our new criterion.

For our experiments, the authors equip us with
expressions for the signal base vectors as for sim-
ple linear layers and ReLU layers. For the sim-
ple linear model, for instance, it turns out that
as = cov(x,y)/σ2y. To retrieve contributions for
PatternAttribution, in the backward pass, the au-
thors replace the weights by w�as.

3 Experiments

To test PatternAttribution in the NLP domain, we
trained a CNN text classifier (Kim, 2014) on a sub-
set of the Amazon review polarity data set (Zhang
et al., 2015). We used 150 bigram filters, dropout
regularization and a dense FC projection with 128
neurons. Our classifier achieves an F1 score of
0.875 on a fixed test split. We then used Kin-
dermans et al. (2018) PatternAttribution to retrieve
neuron-wise signal contributions in the input vec-
tor space.1

To align these contributions with plain text, we
summed up the contribution scores over the word
vector dimensions for each word and used the ac-
cumulated scores to scale RGB values for word
highlights in the plain text space. Positive scores
are highlighted in red, negative scores in blue.
This approach is inspired by Arras et al. (2017a).
Example contributions are shown in Figs. 1 and 2.

4 Results

We observe that bigrams are highlighted, in par-
ticular no highlighted token stands isolated. Bi-
grams with clear positive or negative sentiment
contribute heavily to the sentiment classification.
In contrast, stop words and uninformative bigrams
make little to no contribution. We consider these

1Our experiments are available at https://github.
com/DFKI-NLP/language-attributions.

DVD Player crapped out after one year : I

also began having the incorrect disc problems

that I ’ve read about on here . The VCR

still works , but hte DVD side is useless .

I understand that DVD players sometimes just

quit on you , but after not even one year

? To me that ’s a sign on bad quality .

I ’m giving up JVC after this as well . I

’m sticking to Sony or giving another brand a

shot .

Figure 2: Contributions to negative classification.

meaningful explanations of the sentiment classifi-
cations.

5 Related Work

Many of the approaches used to explain and in-
terpret models in NLP mirror methods originally
developed in the vision domain, such as the recent
approaches by Li et al. (2016), Arras et al. (2017a),
and Arras et al. (2017b). In this paper we imple-
mented a similar strategy.

Following Kindermans et al. (2018), however,
our approach improves upon the latter methods
for the reasons outlined above. Furthermore,
PatternAttribution is related to Montavon et al.
(2017) who make use of Taylor decompositions to
explain deep models. PatternAttribution reveals a
good root point for the decomposition, the authors
explain.

6 Conclusion

We successfully transferred a new explanation
method to the NLP domain. We were able to
demonstrate that PatternAttribution can be used to
identify meaningful signal contributions in text in-
puts. Our method should be extended to other pop-
ular models in NLP. Furthermore, we introduced
an improved quality criterion for signal estimators.
In the future, estimators can be deduced from and
tested against our new criterion.

* Co-first authorship.
This research was partially supported by the German

Federal Ministry of Education and Research through the
projects DEEPLEE (01IW17001) and BBDC (01IS14013E).
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Abstract

Datasets that boosted state-of-the-art solutions
for Question Answering (QA) systems prove
that it is possible to ask questions in natural
language manner. However, users are still used
to query-like systems where they type in key-
words to search for answer. In this study we
validate which parts of questions are essential
for obtaining valid answer. In order to conc-
lude that, we take advantage of LIME - a fra-
mework that explains prediction by local ap-
proximation. We find that grammar and na-
tural language is disregarded by QA. State-
of-the-art model can answer properly even if
’asked’ only with a few words with high co-
efficients calculated with LIME. According to
our knowledge, it is the first time that QA mo-
del is being explained by LIME.

1 Introduction

Release of SQuAD (Rajpurkar et al., 2016) data-
set boosted development of state-of-the-art solu-
tions in Question Answering (QA) systems. Qu-
estions asked in natural way give opportunity for
human-computer interaction. However, in real life
scenario, users are used to ’querying’ rather than
’asking’. This assumption inspired us to investi-
gate whether QA systems trained on SQuAD da-
taset could be used by people who prefer to write
faster and more intuitive queries. Our experiments
indicate that indeed, QA system returns true an-
swer once we type in just selected keywords wi-
thout keeping the sentence structure. We conclude
that QA systems have a very limited understanding
of natural language. They rather learn to distingu-
ish specific words. This indifference to semantics-
altering edits is called overstability (Jia and Liang,
2017). Research on this issue was also recently

*Both authors contributed equally.

conducted by Mudrakarta et al. (2018) who com-
pute importance of words by application of Inte-
grated Gradients.

Inspired by LIME (Ribeiro et al., 2016) we per-
turb questions and score newly created examples
with context held constant. We prove that we can
remove up to over 90% of words in question and
still get the right answer.

The contribution of our study is the following:
1. We use LIME in QA model for determining

which parts of question are substantial for obta-
ining right answer. We obtain valid results al-
though QA systems are not natural candidates for
explanation with LIME, since they do not solve a
regular classification problem.

2. We show that QA models disregard gram-
mar and syntax and thus can give the right an-
swer once queried with most important keywords,
which are the words with high coefficients retur-
ned by LIME. Our findings can serve as a starting
point for development of QA models that are im-
mune to adversarial examples and as a result - ge-
neralize better.

We use QA system developed by Chen et al.
(2017). We pick this model for its good perfor-
mance combined with simplicity and popularity of
the algorithm, which in its basic form builds the
core of many other QA models.

2 Experiments

In order to query QA system with most impor-
tant words indicated by coefficients estimated with
LIME, we design a two-step algorithm. First, we
adjust the logic of LIME to our problem, which
is perturbing questions while holding the context
unchanged. We treat each word in context as a
separate class and words in question serve as fe-
atures. This way, we run LIME in a multiclass set-
ting, with a varied number of ćlasses"for each run.
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Question Answer
What type of rock is found at
the Grand Canyon?

sedimentary

type of rock Grand Canyon sedimentary
type sedimentary

Table 1: Questions and answers after removing impor-
tant words.

We inspect coefficients estimated for ground truth
class (first word in answer). Second, once we es-
timate the influence of each feature, we iteratively
remove one word starting with lowest coefficients.
After each removal we ask reduced question until
we are left with only one word. We call the shor-
test form of question that still gives the right an-
swer a root question. We treat as a right answer a
returned span of tokens in which we can locate at
least one word from ground truth i.e: question: To
promote accessibility of the works, what did Lu-
ther remove? ground truth: impediments and dif-
ficulties QA answer: impediments and difficulties
so that other people may read it without hindrance.

We inspect 800 examples, analyzing questions
for which the QA system predicted right answers.

Results. Table 1 presents example of algorithm
performance. In this particular case we observe
that by leaving only one word type we still get the
right answer. As shown in figure 1 this word has
the highest LIME coefficient. This is quite surpri-
sing as one-word question does not convey suffi-
cient information about what we want to ask. Fi-
gure 2 shows distribution of percentages of remo-
ved words from question that do not disturb the
answer. It is left-skewed indicating that a large
proportion of question can be removed. We obse-
rve that root questions consist mostly of wh-words
and nouns, as displayed in table 2.

This behavior can be partly traced down to the
characteristics of SQuAD dataset. Due to the
shortness and focus on just single topic in conte-
xts, the network needs just a single keyword to
infer the likely remainder of the question. For
example, if we query "type"in a text about rocks
in Grand Canyon, it is almost guaranteed that con-
text mentions just single "type"which refers to the
rock itself.

Moreover, we observe that there are questions
which start off with wrong answer, but when we
remove one or more words they start to consisten-
tly give valid answers. Based on this, we can hy-
pothesize that although performance of QA sys-
tems does not depend on grammar, there are still

Word/PoS/Phrase % occurences
wh-word + 0 or more words (any) 51 %
1 word (any) 32 %
1 noun 18 %
who 16 %
wh-word + 1 word (any) 13 %
what 12 %
7 and more words 10 %

Table 2: Most common words and phrases found in
root questions.

some underlying dependencies between words.

Figure 1: LIME coefficients estimated per word.

Figure 2: Distribution of percentages of removed qu-
estion words that still give a valid answer.

3 Summary

In this study we show that QA models do not need
grammar to answer questions correctly once they
are left with keywords. It indicates that actually
model does not really encode what we want to ask,
but rather recognizes specific words and associates
them with the answer. It means that words that we
as humans perceive as important part of questions
are disregarded in reality. This might indicate a
problem with the underlying dataset, as root qu-
estions contain too little information to be consi-
dered valid in a real world setting. Our study sets
a direction for decreasing their overstability by hi-
ghlighting drawbacks of QA models.
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Abstract

In this paper we present the results of an inve-
stigation of the importance of verbs in a deep
learning QA system trained on SQuAD data-
set. We show that main verbs in questions
carry little influence on the decisions made by
the system - in over 90% of researched ca-
ses swapping verbs for their antonyms did not
change system decision. We track this pheno-
menon down to the insides of the net, analy-
zing the mechanism of self-attention and va-
lues contained in hidden layers of RNN. Fi-
nally, we recognize the characteristics of the
SQuAD dataset as the source of the problem.
Our work refers to the recently popular to-
pic of adversarial examples in NLP, combined
with investigating deep net structure.

1 Introduction

Recent advances in interpretability for NLP focus
on the problem of adversarial examples (Ribeiro
et al., 2018) (Jia and Liang, 2017) which lead sys-
tems to mistakenly change output. In case of QA
systems, either questions or contexts are modified,
and it is shown that seemingly small changes in
semantics flip system decisions.

In this paper we take a different approach: we
create heavy differences in meaning by generating
questions with their meaning negated, and obse-
rve system outputs. Our initial hypothesis was that
verbs together with nouns should be of paramount
importance to the system, as they are the main cre-
ators of meaning in language. We find that rever-
sing verb meaning disturbs system output in 9.5%
of cases, with little influence on decision certa-
inty. We then proceed to explain this phenomenon
by observing the behavior of deep net architecture
and the characteristics of the SQuAD dataset (Raj-
purkar et al., 2016) itself.

As a basis of our research we use the QA system
described in Chen et al. (2017). We pick this mo-

*Both authors contributed equally.

del for its good performance and state-of-the-art
approach.

2 Negating Question Meaning

The first step we take is to measure the impact
of verb meaning in question on system output.
First, we swap verbs in questions for their anto-
nyms using WordNet (Miller, 1995). For auxiliary
verbs, we insert their negations (e.g. is - isn’t). If
an antonym is not found in WordNet, we substitute
a random verb without assuring that its meaning
matches the context. Examples of modified qu-
estions are presented in Table 1. Next, we test how
many system outputs for original questions match
the outputs for questions with reversed meaning of
verbs. As matching we classify identical answers
and also some cases with minimal differences in
meaning (where we are sure that the system is at-
tending to the same answer), such as 18th overall
vs. 18th, or School of Architecture vs. Notre Dame
School of Architecture. The test was conducted on
SQuAD development set.

In total, we obtained an accurate match (no sys-
tem decision change) in 90.5% of all tested ca-
ses. Mean decision certainty expressed in softmax
stayed similar at 0.60 for modified questions and
0.61 for original questions.

3 Experiments

Attempting to understand the behavior of the sys-
tem we take inspiration from works focusing on
visualizing deep net internals (Li et al., 2015; Kar-
pathy et al., 2015). We apply measures specific to
the mechanisms present in our tested system: qu-
estion self-attention and hidden layers of the RNN.
We run experiments on SQuAD development set.

Question self-attention As described in Chen
et al. (2017), question self-attention learns to en-
code importance of each question word. We in-
spect attention scores bj for each token during pre-
diction and measure averaged absolute scores for
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Original question Question with verb antonym
Q: How many teams participate in the Notre Dame Bo-
okstore Basketball tournament?

Q: How many teams drop out in the Notre Dame Bo-
okstore Basketball tournament?

Q: Which art museum does Notre Dame administer? Q: Which art museum doesn’t Notre Dame administer?

Table 1: Examples of sentences obtained with inserting verb antonyms.

PoS Attention
Total Verbs 2.32
Total Nouns 5.43
Other PoS 2.39
AUX Verbs 0.63
Non-AUX Verbs 4.16
Non-NE Nouns 5.21
NE Nouns 5.83

Table 2: Average absolute attention scores for parts
of speech. We show scores for all verbs, all nouns,
all PoS other than nouns and verbs, auxiliary verbs
(AUX Verbs), all verbs other than auxiliary (Non-AUX
Verbs), all nouns which are not named entities (Non-
NE Nouns) and nouns which are named entities (NE
Nouns).

words. As shown in Table 2, indeed question at-
tention learned to devalue verbs. Statistical im-
portance of differences between distributions (in
particular, of verbs vs. nouns) was confirmed
with Kolmogorov-Smirnov test, which showed p-
values smaller than 0.001.

Hidden LSTM Layers. Next, we analyze 3-
layer LSTM RNN, whose outputs are used to com-
pute question attention. We gather the outputs of
all layers and visualize them using heatmaps, as in
Figure 1. We observe that variances in numbers
appearing in lower layers are distinctively smal-
ler than in the third layer. Furthermore, nouns (in
particular named entities) exhibit greater variances
than other parts of speech, which aligns with ob-
servations for attention scores. Indeed, correlation
between entropy scores counted for last hidden
layer vectors and attention scores equals -0.91 Pe-
arson’s r, and and appropriate variance-attention
correlation equals 0.85 Pearson’s r and 0.96 Spe-
arman’s correlation, as displayed in Figure 2. It
suggests that importance of parts of speech is en-
coded already by the LSTM network.

Diagnosis of Dataset. We observe that in fact
the system correctly aligned to the characteristics
of the contexts appearing in SQuAD. Most often
a specific noun (commonly a named entity, or a
combination thereof) appears in a single sentence
in single context, so contrasting verbs is not ne-
eded to extract the answer. To combat this pro-
blem, enhancement of the dataset would be ne-

Figure 1: Visualization of values in LSTM hidden lay-
ers for a noun (top), verb (middle) and question mark
(bottom). Each heatmap shows the 256 values returned
by each layer, in 3 layers for each word.

Figure 2: Scatterplot of entropy (top) and variance
scores (bottom) in hidden layers (y-axis) and absolute
attention scores (x-axis).

eded to include more sentences with repeating no-
uns (subjects and objects) and varying verbs de-
scribing their actions and relations.

Summary. We observe low importance of verbs
in QA system training on SQuAD dataset and
identify shortcomings in the underlying data. Our
findings have confirmation in values yielded by
network itself. We show that values in hidden lay-
ers and attention scores are correlated with impor-
tance of words in the question. This work confirms
the usefulness of visualization and explanation of
deep learning NLP models.
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Abstract
Input optimization methods, such as Google
Deep Dream, create interpretable representa-
tions of neurons for computer vision DNNs.
We propose and evaluate ways of transfer-
ring this technology to NLP. Our results sug-
gest that gradient ascent with a gumbel soft-
max layer produces n-gram representations
that outperform naive corpus search in terms
of target neuron activation. The representa-
tions highlight differences in syntax awareness
between the language and visual models of the
Imaginet architecture.

1 Introduction

Deep Neural Networks (DNNs) have led to ad-
vances in Natural Language Processing, but they
are hard to interpret. This is partly due to the fact
that their smallest components, i.e., neurons, lack
interpretable representations.

For computer vision problems, Simonyan et al.
(2014) propose to use gradient ascent to find an in-
put image that maximizes the activation of a neu-
ron of interest. Using these image representations,
one can for instance show that lower level neu-
rons in vision CNNs specialize in patterns such as
stripes (Mordvintsev et al., 2015).

Applying gradient ascent input optimization to
NLP is not straightforward, as discrete symbols
are not open to continuous manipulation. A
common alternative approach is to search exist-
ing corpora for optimal documents or n-grams
(e.g., Kádár et al. (2017), Aubakirova and Bansal
(2016)). As this strategy only covers the space of
existing inputs, we assume that it may lead to in-
correct assumptions. For instance, the represen-
tation of a given neuron may suggest that syntax
was learned, when in reality this is due to a lack of
ungrammatical inputs in the corpus.

In the following, we propose and test methods
for gradient ascent input optimization in NLP. Our

quantitative assessment suggests that one method,
which is based on the gumbel softmax trick, pro-
duces inputs that are more highly activating than
corpus search. By applying this method to the
Imaginet architecture, we confirm that a language
model pays attention to syntax to some degree,
while a visual model looks for key content words
and ignores function words.

2 Input optimization for NLP

In the following, we denote as f(E) the activation
of some neuron of interest when forward-feeding
a sequence of embedding vectors E = [e1 . . . eT ].

2.1 Embedding optimization
One straightforward approach to NLP input opti-
mization is to treat E like Simonyan et al. (2014)
treat images, i.e., to apply gradient ascent directly
to the embedding vectors, while keeping other
model parameters constant: argmaxE

[
f(E)

]
.

However, there is no guarantee that the optimal
vectors will correspond to the embedding vectors
of real words, or even be close to them. In our
experiments, the average cosine proximity to the
closest real-word embedding is 0.24, suggesting
that there is a divergence between the training
goal (finding embedding vectors) and the real goal
(finding a representation made up of real words).

2.2 Word optimization
Note that the embedding operation can be written
as E = XM, where X ∈ {0, 1}T×V is a matrix
of one-hot vectors and M is the embedding matrix
for all V known words. If we relax the require-
ment that X be one-hot, we can perform gradient
ascent directly on X, while keeping M constant:
argmaxX

[
f(XM)

]
. This approach has the unde-

sirable effect that entries in X can become very
large or negative, and therefore unlike the one-hot
vectors seen in training.
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To enforce positive vectors that sum to one, we
can use the softmax function across the vocabu-
lary axis: argmaxX

[
f(PsmxM)

]
, where psmx

t =
softmax(xt). However, this input can still be un-
like the inputs seen during training, as the optimal
distribution may be smooth.

To remedy this situation, we use the gumbel
softmax trick (Jang et al. (2017), Maddison et al.
(2017)): argmaxX

[
f(PgblM)

]
, where

pgbl
t = softmax

[
τ−1

(
log(psmx

t ) + gt
)]

and gt,v ∼ −log(−log(U(0, 1))). By slowly an-
nealing τ , we are able to transition from a uniform
probability distribution to a “spiky” one where
probability mass is concentrated on few words.

3 Experiment

3.1 Model
We re-implement the Imaginet architecture from
Kádár et al. (2017). It consists of a joint word
embedding layer (embedding size 1024) and two
separate unidirectional GRUs (hidden size 1024
each). One GRU serves as a language model,
while the other predicts visual features of a scene
described in the input sentence. The model is
trained on 566435 MSCOCO captions with visual
features taken from Chrupała et al. (2017)1.

Figure 1: Activation after input optimization for ran-
domly selected projection layer neurons. crp: corpus
search; emb: embedding opt.; logit: word opt. w/o
softmax; smx: word opt. w/ softmax; gbl: word opt.
w/ gumbel softmax.

3.2 Quantitative evaluation
We evaluate the input optimization methods by the
activation that they achieve in 160 randomly cho-
sen neurons of the language and visual model pro-
jection layers. For embedding optimization, repre-
sentations are derived by finding the nearest real-
word neighbor of the optimized embeddings in the

1https://zenodo.org/record/804392/files/data.tgz

embedding space. For word optimization, we take
the argmax over the vocabulary dimension of X.

We find that while representations from embed-
ding, logit and softmax optimization are not com-
petitive, the gumbel softmax trick outperforms the
corpus search strategy in terms of target neuron
activation.

3.3 Qualitative observations

Table 1 shows optimal 5-grams for some neurons.
We observe that, contrary to what corpus search

suggests, optimal inputs for the visual model
rarely contain function words, i.e., the model
seems to ignore them. Optimal inputs for the
language model sometimes display grammatically
correct structures with function words directly be-
fore the predicted word (e.g., “stare to their [left]”,
“under an [umbrella]”, see Table 1). This suggests
that the language model pays attention to function
words and has indeed learned some syntax, as sug-
gested by Kádár et al. (2017).

method optimal 5-gram target neuron activation
crp pizza a sandwich and appetizers 48.44
gbl fangs calzone raspberries sandwhich pizzas 64.46

315th neuron in visual projection layer

crp fighter jet flying in formation 31.25
gbl propelleor phrases jetliners treetops flight 37.82

657th neuron in visual projection layer

crp a woman sitting under an 13.28
gbl campbell lawn raincoat under an 17.54

314th neuron (“umbrella”) in language model projection layer

crp the view through a car 10.42
gbl logging jeep watch through cracked 14.87
957th neuron (“windshield”) in language model projection layer

crp a giraffe looks to its 10.64
gbl fest stares stares to their 13.22

973th neuron (“left”) in language model projection layer

Table 1: Examples of optimal 5-grams via corpus
search and via gradient ascent with gumbel softmax.
Spelling errors stem from the Imaginet dictionary.

4 Conclusion

The gumbel softmax trick makes it possible to ex-
tend the input optimization method to NLP, and
to find interpretable textual neuron representations
via gradient ascent. Our experimental results sug-
gest that this technique exceeds naive search on a
large in-domain corpus in terms of target neuron
activation. The representations also show interest-
ing differences in syntax awareness based on tar-
get modality in Imaginet.
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1 Introduction

A glut of recent research shows that language
models capture linguistic structure. Linzen et al.
(2016) found that LSTM-based language models
may encode syntactic information sufficient to fa-
vor verbs which match the number of their subject
nouns. Liu et al. (2018) suggested that the high
performance of LSTMs may depend on the lin-
guistic structure of the input data, as performance
on several artificial tasks was higher with natural
language data than with artificial sequential data.

Such work answers the question of whether a
model represents linguistic structure. But how
and when are these structures acquired? Rather
than treating the training process itself as a black
box, we investigate how representations of linguis-
tic structure are learned over time. In particular,
we demonstrate that different aspects of linguistic
structure are learned at different rates, with part
of speech tagging acquired early and global topic
information learned continuously.

2 Methods

2.1 Concentration
We measure the degree to which a neural network
has “structured” its representation x of a particular
word in a sequence through concentration.

c(x) =
‖x‖2
‖x‖1

(1)

The more similar in value the cells of x are, the
smaller its l2/l1 ratio is. Thus if a neural network
relies heavily on a small number of cells in an acti-
vation pattern, the activation is very concentrated.
Likewise, a concentrated gradient is mainly mod-
ifying a few specific pathways. For example, it
might modify a neuron associated with particular
inputs like parentheses (Karpathy et al., 2015), or
properties like sentiment (Radford et al., 2017).

Figure 1: Correlation between mean concentration of
a word gradient and word frequency. Vertical dashes
mark when the optimizer rescales step size.

2.2 SVCCA
Existing work investigates how language model
layers encode tags by training taggers on the ac-
tivations produced by each layer (Belinkov et al.,
2018). We use an alternative technique, SVCCA
(Raghu et al., 2017), which interprets an arbitrary
selection of neurons in terms of how they relate to
another selection of neurons from any network run
on the same input data. This method treats a se-
lection of neurons as a subspace, spanned by their
activations. Given any 2 sets of neurons, SVCCA
projects the 2 distinct views of the same data onto
a shared subspace which maximizes correlation
between the 2 views.

Intuitively, if both views encode the same se-
mantic information, the correlation in the shared
subspace will be high. If the 2 views are encoding
disjoint properties, the correlation will be low.

3 Experiments

All experiments are conducted on 1.6GB of En-
glish Wikipedia (70/10/20 train/dev/test split) with
a 2-layer LSTM language model featuring tied
weights in the softmax and embedding layers.

3.1 Gradient Concentration During Training
Over time, the model learns to shape weight struc-
ture around familiar words, with more frequent
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Figure 2: Correlation between mean concentration of a
word gradient and word frequency.

words being more concentrated in their gradient.
We can inspect this correlation between word fre-
quency and concentration over time in the gradi-
ents passed backwards from the decoder layer to
the RNN layer in Figure 1. It is clear that fre-
quent words are more concentrated in their rep-
resentation, and further that generally words be-
come more concentrated in their representation
over time. These observations support the idea
that gradient concentration can measure the degree
to which a word is relied on in shaping specialized
structures within the representation.

However, Figure 2 shows that this correlation
follows dramatically different trends for open POS
classes (e.g., nouns and verbs) and closed classes
(e.g., pronouns and prepositions). Initially, fre-
quent words from closed classes are highly con-
centrated, but soon stabilize, while frequent words
from open classes continue to become more con-
centrated. Why might this pattern emerge?

Closed classes offer clear signals about the cur-
rent part of speech in a sequence. Open classes,
however, contain words which are often ambigu-
ous, such as “report”, which may be a noun or
verb. Open classes may also offer murkier syntac-
tic signals because there are far more words that
may occur in a particular open class POS role.
We posit that early in training, closed classes are
therefore essential for learning how to prototype
syntactic structure, and are essential for shaping
network structure. However, open classes are es-
sential for modeling global sentence topic, so their
importance in training continues to increase after
part of speech tags are effectively modeled.

Figure 3: SVCCA correlation scores between LM and
taggers. Values are rescaled so maximum score is 1.

3.2 Structure Encoding Over Time

Concentration experiments imply that a network
first learns syntax, but topic significance continues
to rise later. We test this claim directly.

As a proxy for syntactic representation, we use
the task of POS tagging, as in (Belinkov et al.,
2017). For document-global topic information, we
classify the sequence by which Wikipedia article it
came from. Both taggers are single layer LSTMs.

We applied SVCCA to the RNN layers of our
language model and each tagger in order to find
the correlation between the language model rep-
resentation and the tagger representation. Indeed,
Figure 3 illustrates that the POS structure is ef-
fectively represented immediately, and continues
to be learned in the early stages of training be-
fore the first optimizer step size rescale. After that
point, POS structure actually slightly declines and
stabilizes below its peak value. Meanwhile, topic
structure continues to increase over the course of
training.

4 Conclusions

The SVCCA results imply that early in training,
representing syntax and POS is the natural way to
get initial high performance. However, as train-
ing progresses, these low-level aspects of linguis-
tic structure sees diminishing returns from com-
mitting more parameters to their representation.
Instead, later training realizes more gains from re-
fining representations of global topic.

The concentration experiments tell the same
story through a different lens. Early in training,
structure is dictated by the closed POS classes,
which give clear signals about syntax. However,
small collections of directions within the network
are increasingly responsive to words from open
classes, which are more useful for modeling topic.

Our next step in this work is to develop ways of
interpreting syntactic structures during training.
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Abstract

We propose a novel way to handle out of vo-
cabulary (OOV) words in downstream natu-
ral language processing (NLP) tasks. We im-
plement a network that predicts useful em-
beddings for OOV words based on their mor-
phology and on the context in which they ap-
pear. Our model also incorporates an attention
mechanism indicating the focus allocated to
the left context words, the right context words
or the word’s characters, hence making the
prediction more interpretable. The model is a
“drop-in” module that is jointly trained with
the downstream task’s neural network, thus
producing embeddings specialized for the task
at hand. When the task is mostly syntactical,
we observe that our model aims most of its
attention on surface form characters. On the
other hand, for tasks more semantical, the net-
work allocates more attention to the surround-
ing words. In all our tests, the module helps
the network to achieve better performances in
comparison to the use of simple random em-
beddings.

1 Introduction and motivation

Goldberg (2017) emphasizes the fact that out of
vocabulary (OOV) words represent a problem of-
ten underestimated for NLP tasks such as part of
speech tagging (POS) or named entity recognition
(NER) (Collobert et al., 2011; Turian et al., 2010).
Due to the lack of proper ways to handle OOV
words, researchers often resort to simply assign
random embeddings to unknown words or to map
them to a unique “unknown” embedding, hoping
their model will generalize well nonetheless.

An interesting way to handle OOV words is the
Mimick model (Pinter et al., 2017). This model
aims to predict embeddings such as GloVe (Pen-
nington et al., 2014) for OOV words by training a
recurrent network on the characters of the words.

∗Authors contributed equally to this work.

While being simple, this model improves the ac-
curacy of POS tagging as well as morphosyntactic
attribute tagging on the Universal Dependencies
corpus (De Marneffe et al., 2014).

We propose an extension to this model by taking
into account not only the surface form of a word
(i.e. its characters) but also the embeddings of its
surrounding words. We hypothesize that context
words provide useful semantic and syntactic in-
formation to model unknown word embeddings,
hence complementing cues given by its charac-
ters. For this purpose, we introduce a module
that can make, for the same word in different con-
texts, different predictions. It can also learn “spe-
cialized” embeddings for a specific downstream
task which we evaluate for two sequence labeling
tasks. Furthermore, we add to our model an atten-
tion/interpretation mechanism to determine which
of the left context, right context or the surface form
of a word receives more attention during predic-
tion. Our experimental results are depicted in a
quantitative and qualitative analysis.

2 Architecture

To test our ideas, we developed an OOV pre-
diction module comprising the following compo-
nents. First, the left context, right context and
word characters are fed to three bi-LSTMs to
produce separate encodings. These three hidden
states are then passed to a linear layer on which a
softmax is applied to determine their relative im-
portance (i.e. their degree of attention). The out-
put of this layer is then used to produce a weighted
sum of the hidden states. Finally, a simple layer
computes an embedding from this sum.

To evaluate the contribution of this OOV pre-
diction scheme to sequence labeling tasks, we use
a bi-LSTM architecture on the resulting word em-
beddings and apply a softmax on the hidden state
of each word to predict tags.
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Task Metric Random Emb. Our module

NER F1 77.56 80.62
POS acc. 91.41 92.58

Table 1: Comparison of our OOV embeddings pre-
diction scheme against random embeddings.

Task Tag Ex Word Left Right

NER

O 1039 0.81 0.08 0.11
B-PERS 63 0.21 0.31 0.49
I-PER 119 0.16 0.52 0.32
B-ORG 40 0.26 0.30 0.44
I-ORG 3 0.27 0.31 0.42
B-LOC 13 0.23 0.30 0.47
I-LOC 2 0.16 0.48 0.36
B-MISC 47 0.40 0.21 0.39
I-MISC 5 0.41 0.26 0.33

POS

NNP 308 0.29 0.31 0.40
NN 46 0.45 0.20 0.35
CD 827 0.86 0.05 0.09
NNS 23 0.37 0.24 0.39
JJ 100 0.49 0.15 0.36

Table 2: Average weights assigned to word charac-
ters, left context and right context by the attention
mechanism for NER and for POS tagging.

3 Experimental results and discussion

We evaluate the performance gain that our module
can offer by solving two sequence labeling tasks,
NER and POS tagging, using the CoNLL 2003
shared task dataset. We compare our module to
a baseline where OOV words are assigned random
embeddings. Table 1 shows the results we obtain.
We can observe the clear advantage of proper han-
dling of OOV words can provide. For both tasks,
we gain a significant margin on the baseline, with

more than 3% of the F1 score for NER.
We can see from Table 2 that the network fo-

cuses more on the context for a semantic task such
as NER. An interesting phenomenon is a focus
on the right context when the entity is of type
B and on the left context when the entity is of
type I. We can also note that for the syntactic task
(POS), the network tends to focus on the context
for proper nouns (NNP), which corroborates our
observations for the NER task. However, mor-
phology plays a more important role to predict em-
beddings for other lexical categories. Embeddings
for quantities (CD) are mostly predicted from their
numerical characters.

We further qualitatively analyze the behavior
of the network for a given OOV word appearing
in different contexts in Table 3. When the tar-
get OOV word langmore is preceded by john or
australian, the network gives high importance to
these context words. However, an interesting phe-
nomenon happens when a sentence begins with
this word: the network shifts its attention from the
left context to the right one and also assigns more
importance to the morphology of the word, thus
showing the network has truly learned where it can
extract useful information.

4 Future works

In our future works, we plan to apply the attention
mechanism specifically on the characters of the
OOV word and the words that compose the context
instead of using the hidden state of the respective
elements only. We are also looking forward to test-
ing our attention model in different languages and
on other NLP tasks such as machine translation.
We hope to present the full results and the archi-
tecture of our model in more details in a paper to
be published relatively soon.

Word Left Right Examples

0.24 0.38 0.38 <BOS> langmore , a persistent campaigner for interventionist economic
0.15 0.59 0.26 <BOS> australian parliamentarian john langmore has formally resigned from his lower house

0.15 0.61 0.24 had received today from mr john vance langmore , a letter resigning his place as

0.15 0.69 0.16 <BOS> rtrs - australian mp john langmore formally resigns . <EOS>

0.17 0.40 0.43 <BOS> langmore , 57 , announced in november that

Table 3: Qualitative example on the OOV word langmore which is an entity of type PER. We can cleary
see that depending on the context, the weights may shift drastically.
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1 Introduction

Learning universal sentence representations which
accurately model sentential semantic content is a
current goal of natural language processing re-
search (Subramanian et al., 2018; Conneau et al.,
2017; Wieting et al., 2016; Kiros et al., 2015). A
prominent and successful approach is to train re-
current neural networks (RNNs) to encode sen-
tences into fixed length vectors (Conneau et al.,
2018; Nie et al., 2017). Many core linguistic
phenomena that one would like to model in uni-
versal sentence representations depend on syn-
tactic structure (Chomsky, 1965; Everaert et al.,
2015). Despite the fact that RNNs do not have
explicit syntactic structural representations, there
is some evidence that RNNs can approximate
such structure-dependent phenomena under cer-
tain conditions (Gulordava et al., 2018; McCoy
et al., 2018; Linzen et al., 2016; Bowman et al.,
2015), in addition to their widespread success in
practical tasks.

In this work, we assess RNNs’ ability to learn
the structure-dependent phenomenon of main
clause tense. To test whether sentence represen-
tations derived from RNNs capture main clause
tense, we attempt to predict the tense from the rep-
resentation. This approach is called probing, and
was introduced by Ettinger et al. (2016) and sub-
sequently used by Adi et al. (2017) and others.

Conneau et al. (2018) probed English sentence
representations from various RNN architectures
for main clause tense and concluded that these
architectures, along with a bag-of-vectors (BoV)
baseline, capture tense very well (84-91% accu-
racy). However, this result was based on a test set
in which the tense category (i.e. past or present)
to be predicted was the most common tense cate-
gory in the sentence for 95.2% of sentences. The
high performance of the BoV model on this test set

is not entirely surprising, given that Köhn (2015,
2016) showed a wide variety of word embed-
ding models capture tense at the word level very
well. The high performance of the RNN mod-
els is not strong evidence that they are sensitive
to the structure-dependence of main clause tense.
As suggested by Linzen et al. (2016), these models
may be learning a flawed heuristic that only works
in grammatically simple examples.

Our goal is to determine whether RNNs learn
to perform structure-dependent computation or
whether they merely learn practical heuristics.
To do this, we extend the experimental setup of
Adi et al. (2017), which has a two step nature.
First, we train autoencoders for English, Span-
ish, French and Italian where both the encoder
and decoder are either Simple Recurrent Networks
(SRNs, Elman, 1990) or Long Short-Term Mem-
ory networks (LSTMs, Hochreiter and Schmidhu-
ber, 1997). Second, we use the trained encoder
to obtain sentence representations and probe those
representations for main clause tense. We inves-
tigate whether probing performance is affected by
eight potential distractors, one of which is other
words in the sentence with tense categories that
differ from the tense of the main clause (e.g. we
know who won). To the extent that the represen-
tations are insensitive to structure-dependence, we
expect to see probing performance negatively af-
fected by distractors. We compare the RNNs to
three BoV baseline models.

In this extended abstract, we report on our work
in progress. We have completed data collection
and preprocessing, designed our experiments and
obtained complete results from our BoV baselines.

2 Data

A guiding principle in our choice of data sources
was availability across multiple languages, be-
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cause we are interested in cross-linguistic gener-
ality. To train sentence embedding models (i.e.
RNNs and BoV), we extracted one million sen-
tences between 5 and 70 tokens in length from
each language’s Wikipedia, in line with Adi et al.
(2017). This yields between 25 and 29 million to-
kens per language.

Our labelled probing data are sentences from
Universal Dependencies treebanks (UD, Nivre
et al., 2016). Because of the way the UD schema
annotates tense in multiword verb phrases, ex-
tracting main clause tense is not straightforward.
Therefore, for each language we developed be-
tween five and seven heuristic rules in terms of
UD annotations to extract tense. A random sample
of 100 sentences for each language shows that our
heuristics produce the correct tense in at least 98%
of sentences.

To ensure the sentence embedding models see
all word types needed for the probing task during
training, the embedding vocabulary is set to the
union of the 50k most frequent word types in the
Wikipedia data and all word types in the probing
data. Resulting vocabulary sizes range from 53k
to 68k, with OOV rates in the Wikipedia data be-
tween 2 and 4% per language. We remove sen-
tences from the probing task that require word
types not seen in the Wikipedia data. This results
in between 12k and 31k sentences per language
in the probing task. We split these into 70% train
and 30% test sets, with the constraint that no word
form that is responsible for main clause tense in
the training set also appears in the test set, follow-
ing Conneau et al. (2018).

3 Experimental setup

In line with Adi et al. (2017), we trained word em-
beddings on the Wikipedia data using skipgram
(Mikolov et al., 2013), with hierarchical softmax
and a window size of five, for five epochs. We
trained 50 sets of embeddings per language, with
dimension sizes from 20 to 1000 in steps of 20.
Our three BoV baselines consist of combining
these word embeddings by summing, averaging
and using Smooth Inverse Frequency (Arora et al.,
2017). Here, we report results from summing,
which in contrast to related experiments (Conneau
et al., 2018; Arora et al., 2017), consistently and
significantly outperforms the other two baselines.
For the probing task, we use L1-regularized logis-
tic regression with ten-fold cross validation.

4 Baseline results

Here, we present results for one of our eight dis-
tractors. Figure 1 shows the effect on probing per-
formance of the number of words in the sentence
with tense categories that differ from the main
clause tense. In all four languages, as the number
of such conflicting tensed forms in the sentence
increases, error rates on the probing task also tend
to increase. This is expected given that BoV is
not sensitive to syntactic structure, and serves as a
baseline for our upcoming work using RNNs.

Figure 1: The effect of conflicting tensed words on
probing performance for our summed BoV baseline.
We measure the absolute percentage increase in er-
ror rate over the error rate when no conflicting tensed
words are in the sentence. Each bar represents this
quantity averaged across all 50 sets of embeddings per
language. Error bars are 95% confidence intervals.

Adi et al. (2017) found a negative correlation
between performance on one of their probing tasks
(content prediction) and sentence length. Surpris-
ingly, we find no correlation between performance
of any of our baseline models and sentence length.

5 Remaining work

Our goal is to understand to what extent
RNNs show a similar insensitivity to structure-
dependence. Our next step is to train SRN- and
LSTM-based autoencoders on the Wikipedia data
and assess their representations in our probing
task. Due to our careful choice of data sources, fu-
ture work can extend our analysis to any language
with i) a sizable Wikipedia, ii) a UD corpus, and
iii) tense.
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Abstract

We present a large scale collection of diverse
natural language inference (NLI) datasets that
help provide insight into how well a sen-
tence representation encoded by a neural net-
work captures distinct types of reasoning. The
collection results from recasting 13 existing
datasets from 7 semantic phenomena into a
common NLI structure, resulting in over half a
million labeled context-hypothesis pairs in to-
tal. Our collection of diverse datasets is avail-
able at http://www.decomp.net/, and
will grow over time as additional resources are
recast and added from novel sources.

1 Introduction

A plethora of new natural language inference
(NLI)1 datasets has been created in recent
years (Bowman et al., 2015; Williams et al., 2017;
Lai et al., 2017; Khot et al., 2018). However, these
datasets do not provide clear insight into what type
of reasoning or inference a model may be perform-
ing. For example, these datasets cannot be used
to evaluate whether competitive NLI models can
determine if an event occurred, correctly differ-
entiate between figurative and literal language, or
accurately identify and categorize named entities.
Consequently, these datasets cannot answer how
well sentence representation learning models cap-
ture distinct semantic phenomena necessary for
general natural language understanding (NLU).

To answer these questions, we introduce the
Diverse NLI Collection (DNC), a large-scale NLI
dataset that tests a model’s ability to perform di-
verse types of reasoning. DNC is a collection of
NLI problems, each requiring a model to perform
a unique type of reasoning. Each NLI dataset con-
tains labeled context-hypothesis pairs that we re-

1The task of determining if a hypothesis would likely be
inferred from a context, or premise; also known as Recogniz-
ing Textual Entailment (RTE) (Dagan et al., 2006, 2013).

I Find him before he finds the dog food
Event The finding did not happen

3

Factuality I I’ll need to ponder
The pondering happened

7

I Ward joined Tom in their native Perth
Relation Ward was born in Perth

3

ExtractionI Stefan had visited his son in Bulgaria
Stefan was born in Bulgaria

7

I Kim heard masks have no face value
Kim heard a pun

3

I Tod heard that thrift is better than annuity
Puns

Tod heard a pun
7

Table 1: Example sentence pairs for different semantic phe-
nomena. I indicates the line is a context and the following
line is its corresponding hypothesis. 3 and 7 respectively in-
dicate that the context entails, or does not entail the hypothe-
sis.

cast from semantic annotations for specific struc-
tured prediction tasks. Table 1 includes a sample
of NLI pairs that test specific types of reasoning.

We extend various prior works on challenge
NLI datasets (Zhang et al., 2017), and define
recasting as leveraging existing datasets to cre-
ate NLI examples (Glickman, 2006; White et al.,
2017). We recast annotations from a total of 13
datasets across 7 NLP tasks into labeled NLI ex-
amples. The tasks include event factuality, named
entity recognition, gendered anaphora resolution,
sentiment analysis, relationship extraction, pun
detection, and lexicosyntactic inference (Table 2).
Currently, DNC contains over half a million la-
beled examples that can be used to probe a model’s
ability to capture different types of semantic rea-
soning necessary for general NLU. In short, this
work answers a recent plea to the community to
test “more kinds of inference” than in previous
challenge sets (Chatzikyriakidis et al., 2017).
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2 Motivation & Background

Compared to eliciting NLI datasets directly, i.e.
asking humans to author contexts and/or hypoth-
esis sentences, recasting can 1) help determine
whether an NLU model performs distinct types of
reasoning; 2) limit types of biases observed in pre-
vious NLI data; and 3) generate examples cheaply,
potentially at large scales.

NLU Insights Popular NLI datasets, e.g. Stan-
ford Natural Language Inference (SNLI) (Bow-
man et al., 2015) and its successor Multi-
NLI (Williams et al., 2017), were created by elic-
iting hypotheses from humans. Crowd-source
workers were tasked with writing one sentence
each that is entailed, neutral, and contradicted
by a caption extracted from the Flickr30k cor-
pus (Young et al., 2014). Although these datasets
are widely used to train and evaluate sentence
representations, a high accuracy is not indicative
of what types of reasoning NLI models perform.
Workers were free to create any type of hypothe-
sis for each context and label. Such datasets can-
not be used to determine how well an NLI model
captures many desired capabilities of language un-
derstanding systems, e.g. paraphrastic inference,
complex anaphora resolution (White et al., 2017),
or compositionality (Pavlick and Callison-Burch,
2016; Dasgupta et al., 2018). By converting prior
annotation of a specific phenomenon into NLI ex-
amples, recasting allows us to create a diverse NLI
benchmark that tests a model’s ability to perform
distinct types of reasoning.

Limit Biases Studies indicate that many NLI
datasets contain significant biases. Examples in
the early Pascal RTE datasets could be correctly
predicted based on syntax alone (Vanderwende
and Dolan, 2006; Vanderwende et al., 2006).
Statistical irregularities, and annotation artifacts,
within class labels allow a hypothesis-only model
to significantly outperform the majority baseline
on at least six recent NLI datasets (Poliak et al.,
2018). Class label biases may be attributed to the
human-elicited protocol. Moreover, examples in
such NLI datasets may contain racial and gendered
stereotypes (Rudinger et al., 2017).

We limit some biases by not relying on humans
to generate hypotheses. Recast NLI datasets may
still contain some biases, e.g. non-uniform dis-
tributions over NLI labels caused by the distribu-
tion of labels in the original dataset that we re-

Phenomena Dataset

Decomp (Rudinger et al., 2018b)
UW (Lee et al., 2015)Event Factuality

MeanTime (Minard et al., 2016)

Groningen (Bos et al., 2017)Named Entity Recognition CoNLL (Tjong Kim Sang and De Meulder, 2003)

Gendered Anaphora Winogender (Rudinger et al., 2018a)

VerbCorner (Hartshorne et al., 2013)
MegaVeridicality (White and Rawlins, 2018)Lexicosyntactic Inference

VerbNet (Schuler, 2005)

(Yang et al., 2015)Puns SemEval 2017 Task 7 (Miller et al., 2017)

Relationship Extraction FACC1 (Gabrilovich et al., 2013)

Sentiment Analysis (Kotzias et al., 2015)

Table 2: List of each type of semantic phenomena paired
with its corresponding dataset(s) we recast.

cast.2 Experimental results using hypothesis-only
models (Poliak et al., 2018; Gururangan et al.,
2018; Tsuchiya, 2018) can indicate to what degree
the recast datasets retain some biases that may be
present in the original semantic datasets.

NLI Examples at Large-scale Generating NLI
datasets from scratch is costly. Humans must be
paid to generate or label natural language text.
This linearly scales costs as the amount of gen-
erated NLI-pairs increases. Existing annotations
for a wide array of semantic NLP tasks are freely
available. By leveraging existing semantic annota-
tions already invested in by the community we can
generate and label NLI pairs at little cost and cre-
ate large NLI datasets to train data hungry models.

Why These Semantic Phenomena? A long
term goal is to develop NLU systems that can
achieve human levels of understanding and rea-
soning. Investigating how different architectures
and training corpora can help a system perform
human-level general NLU is an important step in
this direction. DNC contains recast NLI pairs that
are easily understandable by humans and can be
used to evaluate different sentence encoders and
NLU systems. These semantic phenomena cover
distinct types of reasoning that an NLU system
may often encounter in the wild. While higher per-
formance on these benchmarks might not be con-
clusive proof of a system achieving human-level
reasoning, a system that does poorly should not be
viewed as performing human-level NLU. We ar-
gue that these semantic phenomena play integral
roles in NLU. There exist more semantic phenom-
ena which are integral to NLU (Allen, 1995) and
we plan to include them in future versions of DNC.

2In a corpus with part-of-speech tags, the distribution of
labels for the word “the” will likely peak at the Det tag.
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Abstract

In this paper, we propose a method of calibrat-
ing a word embedding, so that the semantic
it conveys becomes more relevant to the con-
text. Our method is novel because the output
shows clearly which senses that were origi-
nally presented in a target word embedding be-
come stronger or weaker. This is possible by
utilizing the technique of using sparse coding
to recover senses that comprises a word em-
bedding.

1 Introduction

In this paper we propose a method of generat-
ing contextualized word embeddings. What we
mean by ‘contextualized’ is that standard embed-
dings such as Skip-gram and GloVe are modified
to reflect their contexts. For instance, apple ap-
peared in fruit-implying context should become
more similar to fruit than it was in the prior state.

We need contextualized embeddings because
not all information contained in an embedding is
helpful for modelling accurately the meaning of a
word in context (e.g. company-related senses of
apple in fruit-implying context). Since word em-
beddings are trained on unconstrained variation of
contexts, using word embeddings as-is is like tak-
ing the risk of feeding our subsequent models (e.g.
classifiers) with noises that are not relevant to the
given context.

We formulate our task as calibrating senses con-
tained in embeddings so that contextually relevant
senses (e.g. fruit-ness) becomes stronger and the
others (e.g. company-ness) become weaker. To
achieve this we utilize the technique of recovering
standard word embeddings as linear composition
of different senses, proposed by (Murphy et al.,
2012; Faruqui et al., 2015; Arora et al., 2016). Af-
ter applying the technique word embeddings are

transformed into high dimensional (e.g. 2,500)
and sparse (only small portion of dimensions are
nonzero) embeddings. This makes our method
interpretable since extracted senses can give us
“a succinct description of which other words co-
occur with a specific word sense”. More detailed
explanation is presented in Section 3.

Using the technique we first decompose word
embeddings of a target word (to be contextual-
ized) and context words into linear composition of
senses, then identify strong senses extracted from
context and regard them as contextually relevant.
Finally we use the contextually relevant senses for
calibrating the senses contained in a target word.

2 Task and Model

2.1 Task

We show that our method is effective by applying
it to Word Sense Discrimination (WSD) task. For
brevity we present only one instance of sense dis-
crimination: discriminating apple as a fruit or a
company depending on given context. The result
is described in Section 3

2.2 Embedding Decomposition

To contextualize a target word’s embedding, we
should first decompose the participating word em-
beddings (i.e. target and context words) into lin-
ear composition of different senses. As a result we
obtain high dimensional and sparse embeddings,
in which few ‘activated’ dimensions represent sig-
nificant senses reside in a word embedding.

For our preliminary experiment we use Non-
negative Sparse Embedding (NNSE) proposed by
(Murphy et al., 2012). We use NNSE partly be-
cause pre-trained word embeddings are publicly
available at it’s official website1.

1https://www.cs.cmu.edu/ bmurphy/NNSE/
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2.3 Contextualization

Figure 1 shows the baseline method of perform-
ing word sense discrimination only using embed-
dings of a target word and context words (Kober
et al., 2017). Basically it takes a sum of a target
word and context word embeddings, and then de-
cide whether the target word in the context has the
same sense by calculating cosine similarity. In our
work, we modify the composition (i.e. contextual-
ization) step.

Figure 1: The baseline method. The red circle indicates
the step where we make our modification.

We first retrieve NNSE embeddings of a tar-
get word and context words. We then generate
embcontext by summing all the context embed-
dings to identify contextually relevant dimensions
(i.e. senses) (Figure 2).

Figure 2: Calculation of target and context embedding.
Since NNSE is sparse, the visual part of embeddings in
this figure has all zero values.

We hypothesize that the dimensions of
embcontext that have zero value are irrelevant to
the context. This is because in NNSE, a specific
dimension is activated only when it represents a
significant sense contained in word embeddings.
So if a dimension is still deactivated after the sum
of all context words, it means that the sense the
dimension represents must have low importance.

So we turn off such atoms as well in the target
word embedding by applying element-wise multi-
plication between a target word and a context em-
bedding (Equation 1). This weakens senses that
are irrelevant to context.

embcontextualized = embtarget ∗ embcontext (1)

Finally, we normalize our contextualized em-
bedding then use it in our task (Equation 2). This
strengthens concepts that are relevant to context.

embcontextualized
‖embcontextualized‖2

(2)

3 Preliminary Experiment and Result

In our experiment we attempt to discriminate com-
pany and fruit senses of apple by contextualizing
with a relevant context.

Figure 3 shows the calibrated senses of apple.
In the figure, ‘d2104’ means it is 2104th dimen-
sion of the embedding, and the list of words in
the figure is an interpretation of the dimension (i.e.
sense), which can be derived by sorting the whole
vocabulary by the strength of the specific dimen-
sion in reverse order. The score is the strength of
the dimension. Note that the identified dimensions
are all extracted from apple embedding, while the
values are calibrated.

The figure shows that our contextualization
method is able to strengthen and weaken the
senses of apple by reflecting the given context.

Figure 3: The calibrated senses of apple.

4 Discussion and Future Work

We showed that our method could be both inter-
pretable and effective in performing a word sense
discrimination task. Our method can be utilized
not only to discriminate senses but to decide types
of named entities or any other tasks that require in-
ferring the context specific meaning of words. As
a future work, we will try to elaborate our method
and prove the efficacy of our method by testing on
well-known tasks.
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Abstract

We present a framework for analyzing what
the state in RNNs remembers from its input
embeddings. We compute the gradients of the
states with respect to the input embeddings
and decompose the gradient matrix with Sin-
gular Value Decomposition to analyze which
directions in the embedding space are best
transferred to the hidden state space, charac-
terized by the largest singular values. We ap-
ply our approach to LSTM language models
and investigate to what extent and for how
long certain classes of words are remembered
on average for a certain corpus. Additionally,
the extent to which a specific property or re-
lationship is remembered by the RNN can be
tracked by comparing a vector characterizing
that property with the direction(s) in embed-
ding space that are best preserved in hidden
state space.

1 Introduction

Recurrent neural networks (RNNs) are the cur-
rent state of the art in many speech and language
technology applications, but they are often called
‘black-box’ models since it is hard for humans
to interpret what exactly the network has learned.
We present a framework to investigate what the
states of RNNs remember from their input and
for how long. We apply our approach to the cur-
rent state of the art in language modeling, long
short-term memory (Hochreiter and Schmidhuber,
1997) (LSTM) LMs (Sundermeyer et al., 2012),
but it can be applied to other types of RNNs too
and to other models with continuous word repre-
sentations as input.

2 Average memory of the RNN

Our framework is inspired by backpropagation,
but instead of computing the gradient of the loss,
we compute the gradient of the state with respect

to the input embedding, the ‘state gradient’, to
capture the influence of the input on the state. To
examine how long input words are remembered by
the RNN, we calculate the gradient with a certain
delay – with respect to the input word embedding
a few time steps earlier. The gradient matrix Ḡτ

(averaged over all time steps), where τ is a certain
delay, is decomposed with Singular Value Decom-
position (SVD):

Ḡτ = U Σ VT = σ1 u1 vT1 +σ2 u2 vT2 +. . . (1)

We can interpret V as directions in the embed-
ding space, Σ as the extent to which the directions
in the embedding space can be found in the hid-
den state space and U as corresponding directions
in the hidden state space. Hence, the directions
with the largest singular values (SVs) (lowest in-
dex) are directions in embedding space that are
best remembered by the RNN.

In order to investigate how well the RNN re-
members on a corpus level, we can track the
largest SV or the sum of all SVs with respect to
the delay τ . For an LM trained on Penn Treebank,
we observe an exponential decay of the SVs with
respect to the delay: much of the information that
is present in the cell state about a specific word is
quickly forgotten. However, on average, some in-
formation is still remembered even after process-
ing more than 20 words. The ratio of the largest
SV with respect to the sum of all SVs becomes
larger as the delay increases, indicating that the
memory becomes more selective.

We can also compare the SVs based on gra-
dient matrices averaged over specific classes of
words or individual words. We observe for exam-
ple that pronouns have a larger effect on the cell
state than other parts-of-speech for a delay of 0,
which makes sense because they determine which
verb conjugation should follow.
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3 Tracking a specific property

We can also track whether a specific relationship
encoded in the input embedding is remembered by
the RNN. It has been shown that relationships be-
tween word embeddings can be characterized as
vector offsets (Mikolov et al., 2013). We compare
a vector characterizing a specific property to the
directions in the embedding space that are best re-
membered (the directions in VT corresponding to
the largest SVs), to see if and how well the prop-
erty is remembered in the hidden state.

Firstly, we define a specific property as the dif-
ference between the averaged embeddings for the
classes separated by that property:

da−b = ēa − ēb (2)

where ēa and ēb are the result of averaging all em-
beddings of words belonging to classes a and b
respectively. In order to check whether this defi-
nition makes sense for a specific property, we first
test whether the embeddings of the two classes are
linearly separable by training a linear classifier.

We propose two methods to investigate the ex-
tent to which a property is remembered. Firstly,
we can compare d with Hn, which is the sub-
space of the embedding space spanned by the di-
rections that are best remembered, the n largest
right-singular vectors. To be able to do this, we
make the orthogonal projection of d onHn:

y = projHn
d = Vn VT

n d (3)

where Vn is the matrix containing the n first
columns of V. Assuming d is normalized to unit
length, we can calculate the cosine similarity be-
tween y and d as follows:

cos(d,y) =
dT Vn VT

n d

‖d‖ ‖Vn VT
n d‖ =

∥∥VT
n d
∥∥ (4)

The cosine similarity between d andHn is a mea-
sure of how close d is to the top n directions that
are best remembered in the RNN state.

A second option is comparing d with the direc-
tion in embedding space that is best remembered.
To do this, we multiply d with the average gradi-
ent matrix:

r =
∥∥Ḡτ × d

∥∥ (5)

If d would be the embedding direction that is best
remembered in the state, then it would be equal to
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Figure 1: m (full lines) and cos(d,H5) (dotted lines)
for sg-pl (blue) and common-proper (green) nouns with
respect to the delay for a PTB LM. Gray lines: σ1 /

∑
σ

(full) and
∑5

n=1 σn /
∑
σ (dotted).

v1 and r would be equal to σ1. Hence, in order to
get a relative measure of how well the difference
between two classes is remembered, we compare r
with σ1 and obtain a ‘extent to which the property
is remembered, relative to the property that is best
remembered’, or the ‘relative memory’ m:

m =
r

σ1
(6)

In Figure 1, we plot m and cos(d,H5) for
the properties singular-plural (sg-pl) noun and
common-proper (cm-pr) noun. Prior experiments
with a linear classifier showed that these properties
can be characterized as a difference vector. Ac-
cording to both measures the sg-pl distinction is
slightly better remembered for a delay of 0, while
for the other delays the cm-pr distinction is better
remembered. In all plots, there is a sharp decrease
after a delay of 1 or 2, indicating that the proper-
ties seem mostly important on the short term. We
also plot the ratio of σ1 and the sum of the 5 largest
SVs with respect to the sum of all SVs (gray lines).
Notice that if τ increases, the ratio increases too,
which confirms our observation in section 2 that
the memory becomes more selective over time.

4 Conclusion

We analyze the memory of an RNN by comput-
ing the gradients of its state with respect to its in-
put. The state gradient matrix is decomposed with
SVD, and the resulting singular values and direc-
tions with the highest singular values are inspected
to investigate for how long and how well the RNN
remembers its input.
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1 Introduction

Interpreting neural networks is a popular topic,
and there are many works focusing on analyz-
ing networks with respect to learning syntax (Shi
et al., 2016; Linzen et al., 2016; Blevins et al.,
2018).

In particular, Vaswani et al. (2017) showed that
the self-attentions in their Transformer architec-
ture may be directly interpreted as syntactic de-
pendencies between tokens. However, there is
a potential problem in the fact that the atten-
tion mechanism on deeper layers operates on the
previous-layer neurons, which already comprise
mixed information from multiple source tokens.

Our goal is to infer source sentence tree struc-
tures form the encoder’s self-attention energies
used in the Transfomer neural machine translation
(NMT) system. We would like to visualize how
the self-attention mechanism connects individual
words (or wordpieces) of the sentence, to cre-
ate various tree structures (e.g. constituency trees,
undirected trees, dependency trees), and to discuss
their characteristics with respect to the existing
syntactic theories and annotations. We would also
like to discuss results across various languages and
natural language processing (NLP) tasks.

In this abstract, we present our preliminary re-
sults, analyzing the encoder in English-to-German
NMT within the NeuralMonkey toolkit (Helcl and
Libovický, 2017). We introduce aggregation of
self-attention through layers to get a distribution
over the input tokens for each encoder position
and layer (Section 2). We then propose algorithms
for constructing two types of syntactic trees (Sec-
tions 3 and 4), apply them to 42 sentences sampled
from PennTB (Marcus et al., 1993), and compare
the resulting structures to established syntax anno-
tation styles, such as that of PennTB, UD (Nivre
et al., 2016), or PDT (Böhmová et al., 2003).
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Figure 1: Aggregated encoder’s self-attentions after the
6th layer. Each column contains a distribution over the
source wordpieces for one encoder position.

2 Aggregated self-attention visualization

We use the default setting: encoder is composed
of 6 layers, each consisting of a 16-head self-
attention mechanism and a fully connected feed-
forward network, both bridged by residual connec-
tions. Each position in one layer can attend to all
positions in the previous layer; the attention to the
same position is boosted by the residual connec-
tion. When translating a single sentence by Trans-
former, we would like to capture how much each
input token affects each particular position on each
layer in the encoder. This is done by aggregating
the attention distributions through the layers. For
each layer, we collect the self-attention distribu-
tion to the previous layer and add +1 to the same-
position attention for the residual connection. The
output is then normalized. So far, we take the at-
tention distribution as the average attention over
all the 16 heads.
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Figure 2: A binary constituency tree and an undirected tree, generated by the proposed algorithms.

3 Constituency trees extraction

In Figure 1, we can see that the self-attention
mechanism is quite strong within phrases. That
led us to an idea of extracting phrase-structure
trees from that. We define the score of a con-
stituent with span from position i to position j as

score(i, j) =

∑
x∈[i,...,j]

∑
y∈[i,...,j]w[x, y]

j − i+ 1
,

where w[x, y] is the attention weight of the token
y in the position x. We then build a binary con-
stituency tree by recurrently splitting the sentence.
When splitting a phrase with span (i, j), we look
for a position k maximizing the scores of the two
resulting phrases:

argmax
k

(score(i, k) · score(k + 1, j)) .

We also rejoin wordpieces into words, assigning
zero scores to constituents separating pieces of a
single word. One example is shown in Figure 2.

When compared to PennTB, clauses, noun
phrases, or shorter verb phrases are often well rec-
ognized. The differences are mainly inside them1

and in composing them together forming clauses.

4 Undirected trees extraction

First, for each pair of tokens i, j, we calculate a
coattention score, expressing how common it is
for the tokens to be attended to at the same time:

score(i, j) =
∑

m∈[1,N−1]
w[m, i] · w[m, j]

1This is also caused by very flat noun phrases representa-
tions in PennTB compared to our binary branching.

We then construct an undirected tree 2 maximiz-
ing the coattention scores along its edges, using
the algorithm of Kruskal (1956); see the bottom
tree in Figure 2. We have found the resulting trees
to bear surprising similarities to standard syntactic
dependency trees (which, however, are directed).

For example, we observe many flat treelets, re-
sembling headed syntactic phrases; the “phrase
heads” (bold) are mostly content words, while
the function words are mostly attached as leaf
nodes (as in UD). We hypothesize that the encoder
tries to concentrate the representation of the whole
phrase onto the position of a single token – ideally
one that already carries a lot of meaning.

Furthermore, the phrase treelets are then typi-
cally connected to each other via these heads (as
in UD), and/or via a sort of connector tokens at
phrase boundaries (underlined), such as commas,
conjunctions, or prepositions (as in PDT).

5 Future work

In future, we would like to (1) analyze how the
trees evolve through layers, (2) employ unsuper-
vised or supervised selection of “more syntactic”
heads, and (3) perform the experiments on more
language pairs; especially, we hope that transla-
tion into multiple languages could push the en-
coder to use a more syntactic internal representa-
tion.

2 We also tried to construct directed graphs, (i.e. a stan-
dard dependency tree), where the edges could be directly
viewed as dependencies, but we did not find any sensible way
of defining the coattention scores assymetrically; rather than
parent-child dependencies, many relations seem to be more
general, without a clear direction.
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1 Introduction

There is a long-standing interest in understanding
the internal behavior of neural networks (Touret-
zky and Pomerleau, 1989; Zhou et al., 2017;
Raghu et al., 2017; Alishahi et al., 2017). Deep
neural architectures for natural language process-
ing (NLP) are often accompanied by explanations
for their effectiveness, from general observations
(e.g. RNNs can represent unbounded dependen-
cies in a sequence) to specific arguments about
linguistic phenomena (early layers encode lexi-
cal information, deeper layers syntactic). The re-
cent ascendancy of DNNs is fueling efforts in the
NLP community to explore these claims (Belinkov
et al., 2017; Dalvi et al., 2017; Karpathy et al.,
2015; Kadar et al., 2016; Kohn, 2015; Qian et al.,
2016a). Previous work has tended to focus on
easily-accessible representations like word or sen-
tence embeddings (Kohn, 2015; Qian et al., 2016b;
Adi et al., 2016), with deeper structure requiring
more ad hoc methods to extract and examine (Be-
linkov and Glass, 2017; Poliak et al., 2018). In this
work, we introduce Vivisect, a toolkit that aims at
a general solution for broad and fine-grained mon-
itoring in the major DNN frameworks, with min-
imal change to research patterns. Vivisect is gen-
eral enough to serve as a less-polished version of
the widely-used TensorBoard tool, but has several
priorities that set it apart:

• Minimal invasiveness (e.g. no SummaryOps)

• Low resource use (only keep final metrics)

• Uniform support for major DNN frameworks

• Monitor performance on auxiliary tasks

The first three points are largely ergonomic,
though we hope that feature parity between the

major DNN research frameworks will yield an-
swers to previously-daunting questions, such as
why seemingly-identical implementations of a
deep architecture perform differently. The fourth
point is the most important: when made aware
of task labels from various linguistic modalities,
Vivisect will train lightweight linear classifiers and
clusterers using each of the model’s internal rep-
resentations as features. A lightweight web server
aggregates and plots these scores as a function of
other variables (e.g. training epoch) to give insight
into what linguistic information is captured by dif-
ferent parts of the model, and how they evolve over
time.

Vivisect has evolved out of a focus on neural
machine translation models, but is designed with
generalization as a fundamental principle. There-
fore, it includes mechanisms for deciding what
and when calculations are made, and on which
parts of a model. There are simple APIs for reg-
istering additional metrics and entire DNN frame-
works. Vivisect is provided as a code repository
and optional prebuilt Docker image.

2 Client usage

To use Vivisect with a PyTorch Module, Tensor-
flow Session, or MXNet Block, one can minimally
add three lines to existing code:

from vivisect import probe, flush
probe(model, vivisect host, vivisect port)
flush(vivisect host, vivisect port)

This will monitor all operations in the compu-
tation graph, using a Vivisect server at the given
host and port. This is accomplished by travers-
ing the computation graph, and at each operation,
overriding the forward method (similarly for op-
eration backward methods and parameter update
methods). probe accepts two optional arguments:
a callback which(model, operation) that deter-
mines whether to attach to each operation, and
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when(model, operation) that determines whether
the operation should be monitored at the current
state.

3 Server architecture

Vivisect has a client and server arrangement so
that the computational aspects of monitoring can
be off-loaded to other servers, and without writ-
ing data to disk. Figure 1 shows the data flow,
where all dashed edges are transmitting JSON ob-
jects with fields values and metadata.

Client
code

Aggregator
Incremental

Evaluator

Complete

Frontend

Metric

Browser

Plots

Requests

Figure 1: System diagram of Vivisect

(1) The client code, where the model is being
trained or applied, sends incremental data points
to the aggregator whenever a monitored parame-
ter, activation, or gradient is used. These typically
don’t represent a full input for computing a metric
(e.g. we want to monitor full epochs, but are get-
ting activations for each mini-batch). (2) The ag-
gregator keeps track of the metadata fields until it
satisfies some condition (e.g. the epoch metadata
field increases for the given model), constructs a
complete data point by combining the appropriate
arrays and metadata, and sends this to the evalu-
ator. (3) The evaluator uses each complete data
point to calculate arbitrary scalar-valued metrics,
which it ships (again, with appropriate metadata)
to the frontend. (4) The frontend is a simple web
server on top of a sqlite database, into which it in-
serts each metric value, along with corresponding
metadata like the model name and epoch. It uses
this database to dynamically serve visualizations
of the metrics along various axes, with the canon-
ical use-case of how different activations perform
as features for a classification task, as a function
of epoch.

4 Beyond intrinsic measurements

Tracking and visualizing intrinsic properties of a
model’s internal state is useful, but well-covered

by existing tools like Tensorboard and its variants.
Vivisect’s goal is to employ user-specified infor-
mation about the model’s input and output (in the
latter case, during training or dev/eval) to test in-
tuitions about how linguistic information is orga-
nized internally. The user can register such infor-
mation with the server:
from vivisect import register targets
register targets(vivisect host, vivisect port,

name=”Training classes”,
targets=y train,
model pattern=”Gluon MLP”)

In this case, y train are just the N -length se-
quence of classes that the model is being trained
to identify, but since it is now registered, when-
ever the evaluator sees a CDP of appropriate di-
mension from a matching model, it trains a linear
classifier and a k-means clustering using the CDP
and calculates macro f-score and mutual informa-
tion, respectively. These values are passed along
in the same fashion as the intrinsic metrics, pro-
ducing figures that compare how well the hidden
layers are encoding this information:

Figure 2: An example figure from the Vivisect frontend
showing mutual information between clustering based
on the given layer and reference labels

Figure 2 tells a simple story: for this small data
set, information about the class is already captured
on the surface in the shallow layers, and the model
learns to preserve it as training progresses.

5 Ongoing work

Our immediate goal prior to the workshop is to
employ Vivisect in training a large machine trans-
lation model with targets from several linguistic
modalities not explicit in the model, at a mini-
mum, part-of-speech and NER tagging at the word
level, and topic ID at the sentence level, and
present visualization and analysis.
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Human ability to understand language is gen-
eral, flexible, and robust. In contrast, most NLU
models above the word level are designed for a
specific task and struggle with out-of-domain data.
If we aspire to develop models with understand-
ing beyond the detection of superficial correspon-
dences between inputs and outputs, then it is crit-
ical to develop a unified model that can execute a
range of linguistic tasks across different domains.

To facilitate research in this direction, we
present the General Language Understanding
Evaluation (GLUE, gluebenchmark.com): a
benchmark of nine diverse NLU tasks, an auxil-
iary dataset for probing models for understand-
ing of specific linguistic phenomena, and an on-
line platform for evaluating and comparing mod-
els. For some benchmark tasks, training data is
plentiful, but for others it is limited or does not
match the genre of the test set. GLUE thus favors
models that can represent linguistic knowledge in
a way that facilitates sample-efficient learning and
effective knowledge-transfer across tasks. While
none of the datasets in GLUE were created from
scratch for the benchmark, four of them feature
privately-held test data, which is used to ensure
that the benchmark is used fairly.

We evaluate baselines that use ELMo (Peters
et al., 2018), a powerful transfer learning tech-
nique, as well as state-of-the-art sentence repre-
sentation models. The best models still achieve
fairly low absolute scores. Analysis with our diag-
nostic dataset yields similarly weak performance
over all phenomena tested, with some exceptions.

The GLUE benchmark GLUE consists of nine
English sentence understanding tasks covering a
broad range of domains, data quantities, and diffi-
culties. As the goal of GLUE is to spur develop-
ment of generalizable NLU systems, we design the
benchmark such that good performance should re-

Corpus |Train| Task Domain

Single-Sentence Tasks

CoLA 8.5k acceptability misc.
SST-2 67k sentiment movie reviews

Similarity and Paraphrase Tasks

MRPC 3.7k paraphrase news
STS-B 7k textual sim. misc.
QQP 364k paraphrase online QA

Inference Tasks

MNLI 393k NLI misc.
QNLI 108k QA/NLI Wikipedia
RTE 2.5k NLI misc.
WNLI 634 coref./NLI fiction books

Table 1: Task descriptions and statistics. Bold de-
notes tasks for which there is privately-held test
data. All tasks are binary classification, except
STS-B (regression) and MNLI (three classes).

quire models to share substantial knowledge (e.g.,
trained parameters) across tasks, while maintain-
ing some task-specific components. Though it is
possible to train a model per task and evaluate the
resulting set of models on this benchmark, we ex-
pect that inclusion of several data-scarce tasks will
ultimately render this approach uncompetitive.

The nine tasks include two tasks with single-
sentence inputs: Corpus of Linguistic Acceptabil-
ity (CoLA; Warstadt et al. 2018) and Stanford
Sentiment Treebank (SST-2; Socher et al. 2013)
Three tasks involve detecting semantic similarity:
Microsoft Research Paraphrase Corpus (MRPC,
(Dolan and Brockett, 2005)), Quora Question
Pairs1 (QQP), and Semantic Textual Similarity
Benchmark (STS-B; Cer et al. 2017). The remain-
ing four tasks are formatted as natural language in-
ference (NLI) tasks, such as the Multi-Genre NLI
corpus (MNLI; Williams et al. 2018) and Recog-

1 data.quora.com/First-Quora-Dataset-
Release-Question-Pairs
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Single Sentence Similarity and Paraphrase Natural Language Inference
Model Avg CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE WNLI

Single-task 64.8 35.0 90.2 68.8/80.2 86.5/66.1 55.5/52.5 76.9/76.7 61.1 50.4 65.1
Multi-task 69.0 18.9 91.6 77.3/83.5 85.3/63.3 72.8/71.1 75.6/75.9 81.7 61.2 65.1
CBoW 58.9 0.0 80.0 73.4/81.5 79.1/51.4 61.2/58.7 56.0/56.4 75.1 54.1 62.3
Skip-Thought 61.5 0.0 81.8 71.7/80.8 82.2/56.4 71.8/69.7 62.9/62.8 74.7 53.1 65.1
InferSent 64.7 4.5 85.1 74.1/81.2 81.7/59.1 75.9/75.3 66.1/65.7 79.8 58.0 65.1
DisSent 62.1 4.9 83.7 74.1/81.7 82.6/59.5 66.1/64.8 58.7/59.1 75.2 56.4 65.1
GenSen 66.6 7.7 83.1 76.6/83.0 82.9/59.8 79.3/79.2 71.4/71.3 82.3 59.2 65.1

Table 2: Baseline performance on the GLUE tasks. For MNLI, we report accuracy on the matched and
mismatched test sets. For MRPC and QQP, we report accuracy and F1. For STS-B, we report Pearson and
Spearman correlation. For CoLA, we report Matthews correlation (Matthews, 1975). For all other tasks
we report accuracy. All values are scaled by 100. A similar table is presented on the online platform.

nizing Textual Entailment (RTE; aggregated from
Dagan et al. 2006, Bar Haim et al. 2006, Giampic-
colo et al. 2007, Bentivogli et al. 2009), as well
as versions of SQuAD (Rajpurkar et al., 2016)
and Winograd Schema Challenge (Levesque et al.,
2011) recast as NLI (resp. QNLI, WNLI). Table 1
summarizes the tasks. Performance on the bench-
mark is measured per task as well as in aggregate,
averaging performance across tasks.

Diagnostic Dataset To understand the types of
knowledge learned by models, GLUE also in-
cludes a dataset of hand-crafted examples for
probing trained models. This dataset is designed
to highlight common phenomena, such as the use
of world knowledge, logical operators, and lexi-
cal entailments, that models must grasp if they are
to robustly solve the tasks. Each of the 550 ex-
amples is an NLI sentence pair tagged with the
phenomena demonstrated. We ensure that the data
is reasonably diverse by producing examples for
a wide variety of linguistic phenomena, and bas-
ing our examples on naturally-occurring sentences
from several domains. We validate our data by us-
ing the hypothesis-only baseline from Gururangan
et al. (2018) and having six NLP researchers man-
ually validate a random sample of the data.

Baselines To demonstrate the benchmark in use,
we apply multi-task learning on the training data
of the GLUE tasks, via a model that shares a BiL-
STM between task-specific classifiers. We also
train models that use the same architecture but are
trained on a single benchmark task. Finally, we
evaluate the following pretrained models: average
bag-of-words using GloVe embeddings (CBoW),
Skip-Thought (Kiros et al., 2015), InferSent (Con-
neau et al., 2017), DisSent (Nie et al., 2017), and
GenSen (Subramanian et al., 2018).

Tags Sentence Pair

Quantifiers
Double Negation

I have never seen a hummingbird
not flying.
I have never seen a hummingbird.

Active/Passive Cape sparrows eat seeds, along
with soft plant parts and insects.
Cape sparrows are eaten.

Named Entities
World Knowledge

Musk decided to offer up his per-
sonal Tesla roadster.
Musk decided to offer up his per-
sonal car.

Table 3: Diagnostic set examples. Systems must
predict the relationship between the sentences, ei-
ther entailment, neutral, or contradiction when
one sentence is the premise and the other is the
hypothesis, and vice versa. Examples are tagged
with the phenomena demonstrated. We group each
phenomena into one of four broad categories.

We find that our models trained directly on the
GLUE tasks generally outperform those that do
not, though all models obtain fairy low absolute
scores. Probing the baselines with the diagnos-
tic data, we find that performance on the bench-
mark correlates with performance on the diag-
nostic data, and that the best baselines similarly
achieve low absolute performance on the linguis-
tic phenomena included in the diagnostic data.

Conclusion We present the GLUE benchmark,
consisting of: (i) a suite of nine NLU tasks, built
on established annotated datasets and covering a
diverse range of text genres, dataset sizes, and
difficulties; (ii) an online evaluation platform and
leaderboard, based primarily on private test data;
(iii) an expert-constructed analysis dataset. Exper-
iments indicate that solving GLUE is beyond the
capability of current transfer learning methods.
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Abstract

Neural dependency parsing models that com-
pose word representations from characters can
presumably exploit morphosyntax when mak-
ing attachment decisions. How much do they
know about morphology? We investigate how
well they handle morphological case, which
is important for parsing. Our experiments
on Czech, German and Russian suggest that
adding explicit morphological case—either or-
acle or predicted—improves neural depen-
dency parsing, indicating that the learned rep-
resentations in these models do not fully en-
code the morphological knowledge that they
need, and can still benefit from targeted forms
of explicit linguistic modeling.

1 Introduction

Parsing morphologically rich languages (MRLs) is
difficult due to the complex relationship of syn-
tax to morphology. But the success of neural net-
works offer an appealing solution to this problem
by computing word representation from charac-
ters. Character-level models (Ling et al., 2015;
Kim et al., 2016) learn relationship between sim-
ilar word forms and have shown to be effective
for parsing MRLs (Ballesteros et al., 2015; Dozat
et al., 2017; Shi et al., 2017; Björkelund et al.,
2017). Does that mean that we can do away with
explicit modeling of morphology altogether? Con-
sider two challenges in parsing MRLs raised by
Tsarfaty et al. (2010, 2013):
• Can we represent words abstractly so as to

reflect shared morphological aspects between
them?
• Which types of morphological information

should we include in the parsing model?
It is tempting to hypothesize that character-level
models effectively solve the first problem. For
the second, Tsarfaty et al. (2010) and Seeker and
Kuhn (2013) reported that morphological case is

beneficial across morphologically rich languages
with extensive case systems, where case syn-
cretism is pervasive and often hurts parsing perfor-
mance. But these studies focus on vintage parsers;
do neural parsers with character-level representa-
tions also solve this second problem?

We attempt to answer this question by asking
whether an explicit model of morphological case
helps dependency parsing, and our results show
that it does. Furthermore, a pipeline model in
which we feed predicted case to the parser out-
performs multi-task learning in which case predic-
tion is an auxiliary task. These results suggest that
neural dependency parsers do not adequately in-
fer this crucial linguistic feature directly from the
input text.

2 Dependency Parsing Model

We use a neural graph-based dependency parser
similar to that of Kiperwasser and Goldberg
(2016) and Zhang et al. (2017) for all our exper-
iments. We treat our parser as a black box and ex-
periment only with the input representations of the
parser. Let w = w1, . . . , w|w| be an input sentence
of length |w| and let w0 denote an artificial ROOT

token. For each input token wi, we compute the
context-independent representation, e(wi) with a
bidirectional LSTM (bi-LSTM) over characters.
We concatenate the result with its part-of-speech
(POS) representation, ti: xi = [e(wi); ti]. We then
feed xi to a word-level bi-LSTM encoder to learn
a contextual word representation wi. The model
uses these representations to compute the proba-
bility p(hi, `i | w, i) of head hi ∈ {0, ..., |w|}/i
and label `i of word wi.

3 Experiments

We experiment with three fusional languages with
extensive case systems: Czech, German, and Rus-
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Language Input Dev Test

Czech word 89.9 89.3
(68.5K) char 91.2 90.6

char (multi-task) 91.6 91.0
char + predicted case 92.2 91.8

char + gold case 92.3 91.9
char + full analysis 92.5 92.0

German word 86.7 84.5
(14.1K) char 87.5 84.5

char (multi-task) 87.9 84.4
char + predicted case 87.8 86.4

char + gold case 90.2 86.9
char + full analysis 89.7 86.5

Russian word 89.5 90.1
(48.8K) char 91.6 92.4

char (multi-task) 92.2 92.6
char + predicted case 92.5 93.3

char + gold case 92.8 93.5
char + full analysis 92.6 93.3

Table 1: Label Attachment Score (LAS) results.
For each language, we show the number of train-
ing sentences.

sian; and we consider four forms of input (e(wi),
§2): word (embedding), characters, characters
with gold case, and characters with predicted
case. For the latter two, we append the case la-
bel to the character sequence, e.g. 〈b, a, t,
Acc〉 represents bat with accusative case. Us-
ing the same method, we also supply the gold
full analysis, to tease out the importance of case
specifically. Finally, we experiment with multi-
task learning (MTL; Søgaard and Goldberg, 2016;
Coavoux and Crabbé, 2017), using the bi-LSTM
states of the lower layer of the bi-LSTM encoder
to predict case feature. Table 1 summarizes the
results.

Effect of case We found that the oracle condi-
tion of adding gold case improves the parsing per-
formance for all languages, and indeed explains
all of the gains of a full morphological analysis.
In German, case syncretism is pervasive—a sin-
gle surface form can represent multiple cases—
and we see improvement of up to 2.4 LAS points
on test set. This results suggest that the character-
level models still struggle to disambiguate case
when they learn only from the input text.

Language %case
Dev Test

PL MT PL MT

Czech 66.5 95.4 96.7 95.2 96.6
German 36.2 92.6 92.0 90.8 91.4
Russian 55.8 95.8 96.5 95.9 96.5

Table 2: Case accuracy for case-annotated to-
kens, for pipeline (PL) vs. multitask (MT) setup.
%case shows percentage of training tokens anno-
tated with case.

We then look at the performance when we re-
place gold case with predicted case. We train a
morphological tagger to predict case information.
The tagger has the same structure as the parser’s
encoder, with an additional feedforward neural
network with one hidden layer followed by a soft-
max layer. We found that predicted case improves
accuracy, although the effect is different across
languages. These results are interesting, since in
vintage parsers, predicted case usually harmed ac-
curacy (Tsarfaty et al., 2010). However, we note
that our taggers use gold POS, which might help.

Pipeline model vs. Multi-task learning In gen-
eral, MTL models achieve similar or slightly better
performance than the character-only models, sug-
gesting that supplying case in this way is benefi-
cial. However, we found that using predicted case
in a pipeline model gives more improvements than
MTL. We also observe an interesting pattern in
which MTL achieves better tagging accuracy than
the pipeline model but lower performance in pars-
ing (Table 2). This is surprising since it suggests
that the MTL model must learn to effectively en-
code case in the model’s representation, but must
not effectively use it for parsing.

4 Conclusion

Vintage dependency parsers rely on hand-crafted
feature engineering to encode morphology. The
recent success of character-level models for many
NLP tasks motivates us to ask whether their
learned representations are powerful enough to
completely replace this feature engineering. By
empirically testing this using a single feature
known to be important—morphological case—we
have shown that they are not. Experiments with
multi-task learning suggest that although MTL
gives better performance, it is still underperformed
by a traditional pipeline model.
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dra Kübler, Marie Candito, Jennifer Foster, Yannick
Versley, Ines Rehbein, and Lamia Tounsi. 2010. Sta-
tistical parsing of morphologically rich languages
(spmrl): What, how and whither. In Proceedings
of the NAACL HLT 2010 First Workshop on Statis-
tical Parsing of Morphologically-Rich Languages,
SPMRL ’10, pages 1–12, Stroudsburg, PA, USA.
Association for Computational Linguistics.
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1 Introduction

Recently, researchers have found that deep
LSTMs (Hochreiter and Schmidhuber, 1997)
trained on tasks like machine translation learn sub-
stantial syntactic and semantic information about
their input sentences, including part-of-speech
(Belinkov et al., 2017a,b; Blevins et al., 2018).
These findings begin to shed light on why pre-
trained representations, like ELMo and CoVe, are
so beneficial for neural language understanding
models (Peters et al., 2018; McCann et al., 2017).
We still, though, do not yet have a clear under-
standing of how the choice of pretraining objec-
tive affects the type of linguistic information that
models learn. With this in mind, we compare
four objectives—language modeling, translation,
skip-thought, and autoencoding—on their ability
to induce syntactic and part-of-speech informa-
tion, holding constant the quantity and genre of the
training data, as well as the LSTM architecture.

2 Methodology

We control for the data domain by exclusively
training on datasets from WMT 2016 (Bojar et al.,
2016). We train models on all tasks using the par-
allel En-De corpus, which allows us to make fair
comparisons across all tasks. We also augment the
parallel data with a large monolingual corpus from
WMT to examine how the performance of the un-
supervised tasks scales with more data.

We analyze representations learned by lan-
guage models and by the encoders of sequence-
to-sequence models.1 Following Belinkov et al.
(2017a), after pretraining, we fix the LSTM model
parameters and use the hidden states to train aux-
iliary classifiers on several probing tasks. We

1All our encoders are 2-layer, bidirectional LSTMs (500-
D in each direction)—except for our large forward language
models, which are 1000-D and unidirectional.

use two syntactic evaluation tasks: part-of-speech
(POS) tagging on Penn Treebank WSJ (Marcus
et al., 1993) and Combinatorial Categorical Gram-
mar (CCG) supertagging on CCG Bank (Hocken-
maier and Steedman, 2007). CCG supertagging
allows us to measure the degree to which models
learn syntactic structure above the word. We also
measure how much LSTMs simply memorize in-
put sequences with a word identity prediction task.

3 Results

Comparing Pretraining Tasks For all pretrain-
ing dataset sizes, bidirectional language model
(BiLM) and translation encoder representations
outperform skip-thought and autoencoder repre-
sentations on both POS and CCG tagging. Trans-
lation encoders, however, slightly underperform
BiLMs, even when both models are trained on
the same amount of data. Furthermore, BiLMs
trained on the smallest amount of data (1 mil-
lion sentences) outperform models trained on all
other tasks using larger dataset sizes (5 million
sentences for translation, and 63 million sentences
for skip-thought and autoencoding). Especially
since BiLMs do not require aligned data to train,
the superior performance of BiLM representations
on these tasks suggests that BiLMs (like ELMo)
are better than translation encoders (like CoVe) for
transfer learning of syntactic information.

Untrained Baseline Surprisingly, we find that
the untrained LSTM baseline—frozen after ran-
dom initialization—performs quite well on syn-
tactic tagging tasks (a few percentage points be-
hind BiLMs) when using all auxiliary data; how-
ever, decreasing the amount of classifier training
data leads to a significantly greater drop in the un-
trained encoder performance compared to trained
encoders. We hypothesize that the classifiers can
recover neighboring word identity information—
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Figure 1: POS accuracies when training on different amounts of encoder and classifier data. We show
results for the best performing layer of each model. The most frequent class baseline is word-conditional.

even from untrained LSTMs representations—and
thus perform well on tagging tasks by memorizing
word configurations and their associated tags from
the training data. We test this hypothesis directly
with the word identity task.

Word Identity For this task, we train classifiers
to take LSTM hidden states and predict the identi-
ties of the words from different time steps. For ex-
ample, for the sentence “I love NLP .” and a time
step shift of -2, we would train the classifier to take
the hidden state for “NLP” and predict the word
“I”. While trained encoders outperform untrained
ones on both POS and CCG tagging, we find that
all trained LSTMs underperform untrained ones
on word identity prediction. This finding confirms
that trained encoders genuinely capture substantial
syntactic features, beyond mere word identity, that
the auxiliary classifiers can use.

Effect of Depth Belinkov et al. (2017a) find
that, for translation models, the first layer con-
sistently outperforms the second on POS tagging.
We find that this pattern holds for all our models,
except BiLMs, where the first and second layers
perform equivalently. This pattern occurs even in
untrained models, which suggests that POS infor-
mation is stored on the lower layer not necessarily
because the training tasks encourage this, but due
to properties of the deep LSTM architecture. For
CCG supertagging though, the second layer per-
forms better than the first in some cases (first layer
performs best for untrained LSTMs). Which layer

performs best appears to be independent of abso-
lute performance on the supertagging task.

On word identity prediction, we find that for
both trained and untrained models, the first layer
outperforms the second layer when predicting the
identity of the immediate neighbors of a word.
However, the second layer tends to outperform
the first at predicting the identity of more distant
neighboring words. As is the case for convolu-
tional neural networks, our findings suggest that
depth in recurrent neural networks has the effect
of increasing the “receptive field” and allows the
upper layers to have representations that capture a
larger context. These results reflect the findings of
Blevins et al. (2018) that for trained models, upper
levels of LSTMs encode more abstract syntactic
information, since more abstract information gen-
erally requires larger context information.

4 Conclusion

By controlling for the genre and quantity of the
training data, we make fair comparisons between
several data-rich training tasks in their ability to
induce syntactic information. Our results suggest
that for transfer learning, bidirectional language
models like ELMo (Peters et al., 2018) capture
more useful features than translation encoders—
and that this holds even on genres for which data is
not abundant. Our work also highlights the inter-
esting behavior of untrained LSTMs, which show
an ability to preserve the contents of their inputs
better than trained models.
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Abstract
Performance in language modelling has been
significantly improved by training recurrent
neural networks on large corpora. This
progress has come at the cost of interpretabil-
ity and an understanding of how these archi-
tectures function, making principled develop-
ment of better language models more difficult.
We look inside a state-of-the-art neural lan-
guage model to analyse how this model repre-
sents high-level lexico-semantic information.
In particular, we investigate how the model
represents words by extracting activation pat-
terns where they occur in the text, and com-
pare these representations directly to human
semantic knowledge.

1 Introduction & Related Work

Language modelling involves learning to predict
the next word in a sequence of words, using large
text corpora as the training input. Language mod-
els must therefore learn to represent information
from the preceding context which is relevant for
future word prediction, and, intuitively, this should
include information about the syntactic structure
of the context and the meanings of constituent
words. Today’s state-of-the-art language models
make use of Recurrent Neural Networks (RNNs)
with Long Short-Term Memory cells (LSTMs)
(Hochreiter and Schmidhuber, 1997) which can
handle time series information by remembering
salient information over latent variables (Mikolov
et al., 2010). Because of their wide applicability,
there has been much interest in developing a bet-
ter understanding of the inner workings of RNN
models, and, in particular, researchers have inves-
tigated how syntactic knowledge is encoded and
processed by such networks (Dyer et al., 2016;
Linzen et al., 2016; Jozefowicz et al., 2016; Mc-
Coy et al., 2018; Gulordava et al., 2018). Karpa-
thy et al. (2015) performed an in-depth analysis of
the types of errors RNN’s make, in order to un-
derstand how recurrent mechanisms can encode

long-term dependency information. Linzen et al.
(2016) present a more direct analysis by examin-
ing LSTM language models’ ability to understand
difficult long-range dependencies such as the form
of a verb linked to a noun subject. Recently, re-
searchers have started to study the semantic em-
beddings generated by these networks (Chrupała
et al., 2015), especially for those focused on en-
coding visual grounding (Kiela et al., 2017; Yoo
et al., 2017). However, compared to syntax, there
has been relatively less work on how LSTM net-
works represent lexical semantic knowledge.

In this work, we evaluate latent semantic knowl-
edge present in the LSTM activation patterns pro-
duced before and after the word of interest. We
evaluate whether these activations predict human
similarity ratings, human-derived property knowl-
edge, and brain imaging data. In this way, we test
the model’s ability to encode important semantic
information relevant to word prediction, and it’s
relationship with human cognitive semantic repre-
sentations.

2 Language Model Data

We make use of a state-of-the-art LSTM neu-
ral language model known as lm 1b (Jozefowicz
et al., 2016), which consists of two LSTM layers
followed by low-dimensional projections. To con-
struct representations from the language model’s
LSTM projection layer, we first select a subset of
62.5 million sentences from the One Billion Word
dataset (Chelba et al., 2013). We then choose a
predefined set of target words, based on the over-
lap of words in the lm 1b vocabulary with words
used in three evaluation datasets, described in Sec-
tion 3. To derive a model of the lexical represen-
tation for each of our target words using the lan-
guage model, we sample 100 sentences for each
word in which that word occurs, and process each
of those sentences using lm 1b. More specifically,
at the location in the sentence where the specific
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word of interest has just been processed, we record
the 1024-dimensional projection of the activations
of the first LSTM layer in the network and then
average all these vectors (from 100 sentences) to
get the final vector. On the assumption that the ef-
fects of context “average out” over the 100 differ-
ent sampled sentences for each word, we take the
average vector to be a representation of the lexi-
cal content of the concept, independent of context.
Furthermore, we also build a model of lexical rep-
resentation by recording the LSTM activations at
the word just before the target word is presented to
the network.

3 Experiments & Results

3.1 Comparison to Similarity Judgments

We first investigate how well similarities between
our model vectors predict human similarity judg-
ments. We use WordSim353 (Finkelstein et al.,
2001) a set of 353 pairs of words along with hu-
man ratings. We split WordSim353 into semantic
similarity and semantic relatedness datasets, fol-
lowing Agirre et al. (2009). On the hypothesis that
the representations we derived from the language
model reflect lexical content, we predicted that
similarity, as calculated from the model, would
more closely correspond to semantic similarity
(i.e. shared hypernyms) than semantic relatedness.
We also anticipated that correlations with human
judgments would be stronger for the ‘after’ model
than the ‘before’ model, since the word explic-
itly affects activations in the network only after it
is encountered (however, the ‘before’ model pro-
vides an interesting test of whether lexical infor-
mation can be predicted, drawing an analogy with
models of human language comprehension (Ku-
perberg, 2016)).

For both the before and after models, correla-
tions were stronger for the human semantic sim-
ilarity ratings than for semantic relatedness, with
the strongest correlation achieved for the ‘after’
model and similarity ratings (r=0.30). Further-
more, the after model more closely corresponded
to the human similarities than the before model,
though the before model still shows some cor-
relation (r=0.21), indicating that the model may
indeed encode information about upcoming con-
cepts before they occur.

3.2 Property Knowledge Prediction

To directly investigate how the language model
encodes lexico-semantic content, we analysed
whether the derived lexical representations can
predict human-derived properties of the same con-
cepts. We used a dataset of human-elicited prop-
erty knowledge (the CSLB norms; Devereux et al.
(2014)), which lists semantic properties for con-
cepts (e.g. leaf has the properties is-green &
grows-on-trees). To test how well the model repre-
sentations can predict these properties, we largely
follow Collell and Moens (2016) and Lucy and
Gauthier (2017). For each property, we train
an L2-regularized logistic regression to predict
whether that property is true for a given concept.
We train two sets of logistic regression models to
predict properties from the vectors in the ‘before’
and ‘after’ models. We use 5-fold cross validation
with stratified sampling to ensure at least one posi-
tive case occurs in the validation fold. To get the fi-
nal score of the decodability of a property for each
model, we average the F1 scores over each test
fold. Interestingly, semantic features were more
decodable before the noun than afterwards.

3.3 Comparison to Brain Imaging Data

We compared the before and after representations
from the language model to fMRI and MEG brain
imaging data for 60 concepts available in Brain-
Bench (Xu et al., 2016). We use the “2 vs 2” test
described in Xu et al. (2016) for all pairs of con-
cepts to measure the correspondence between the
models and the brain data. The ‘before’ and ‘after’
models perform similarly, though (somewhat sur-
prisingly) the before model performs slightly bet-
ter on fMRI data than the after model. However,
both models perform above chance, indicating that
these models are correlated with brain representa-
tions of the same nouns.

4 Conclusions

Our results suggest that LSTM language models
not only encode probabilistic syntactic knowledge
but also represent the semantic content of words in
a way which is at least somewhat consistent with
measures of human conceptual knowledge. Lan-
guage models’ ability to predict human property
knowledge allows us to draw initial comparisons
between these models and activation (and pre-
activation) of lexical information in human lan-
guage comprehension.
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1 Introduction

Neural network methods are experiencing wide
adoption in NLP, thanks to their empirical per-
formance on many tasks. Modern neural ar-
chitectures go way beyond simple feedforward
and recurrent models: they are complex pipelines
that perform soft, differentiable computation in-
stead of discrete logic. Inspired by pioneering
work by, e.g. Kohonen et al. (1981); Das et al.
(1992); Schmidhuber (1992), such modern dif-
ferentiable architectures include neural memories
(Sukhbaatar et al., 2015) and attention mecha-
nisms (Bahdanau et al., 2015). The price of such
soft computing is the introduction of dense depen-
dencies, which make it hard to disentangle the pat-
terns that trigger a prediction. Our recent work on
sparse and structured latent computation (Mar-
tins and Astudillo, 2016; Niculae and Blondel,
2017; Niculae et al., 2018; Malaviya et al., 2018)
presents a promising avenue for enhancing inter-
pretability of such neural pipelines. Through this
extended abstract, we aim to discuss and explore
the potential and impact of our methods.

The principle of parsimony suggests that sim-
pler explanations are more plausible and inter-
pretable. Our perspective is similar to prior
work on regularizing model weights (Hastie et al.,
2015), but with a twist: instead of model sparsity
that tells us which “static” groups of variables are
relevant for a task, we now have a “dynamic” form
of sparsity that tells us, for a particular input ob-
ject, where we should attend to produce a decision.

• sparsity: shrinking probabilities to zero to
prune entire parts of the input when explaining
a prediction (Martins and Astudillo, 2016);

• regularization: injecting prior assumptions,
such as that neighbouring words should be fused
together (Niculae and Blondel, 2017);

• constraints: constraining probabilities within
lower and upper bounds, to prevent words
from receiving too much or too little attention
(Malaviya et al., 2018);

• structure: learning latent structure predictors
(e.g. aligners or parsers), to induce a compact
representation as a small, interpretable set of
global structures (Niculae et al., 2018).

2 Attention Mechanisms

The key background for our work is the concept
of attention. Attention mechanisms and mem-
ory networks are able to “point” to relevant items
(e.g. words or pixels) that determine the final pre-
diction, approximating a discrete choice (argmax)
with a soft, differentiable one (softmax). Let H =
[h1, . . . ,hL] ∈ RD×L be a matrix whose columns
are vectors encoding the L different choices (for
example, words in a sentence). An attention mech-
anism maps a H and a control state s to a proba-
bility distribution p ∈ △L over the L choices.1

This can be split into (i) generating scores for
each choice, e.g., zi = v⊤tanh(Whi + Us)
for i ∈ {1, . . . , L} and (ii) mapping the scores
to a probability distribution. Common attention
uses (Bahdanau et al., 2015; Luong et al., 2015)
p = softmax(z), i.e., pi = exp(zi)/

∑
j exp(zj).

Since softmax is strictly positive, this leads to
dense probability distributions. However, putting
nonzero weight on every choice is not ideal for in-
terpretability (Fig. 1, center); instead, we explore
sparse selection, identifying a small set of choices
responsible for a prediction. Niculae and Blondel
(2017) proposed the general family

ΠΩ(z) = argmax
p∈△L

z⊤p− Ω(p), (1)

recovering softmax for Ω(p) = −∑
j pj log pj .

1We denote by △L = {p ∈ RL | ∑L
i=1 pi = 1, pi ≥

0, ∀i} the (L− 1)-dimensional probability simplex.
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Figure 1: Attention weights for a sequence-to-sequence sentence compression instance. Traditional softmax attention (middle)
yields dense weights, which are less interpretable than the sparse weights from sparsemax (right) or fusedmax (left); the latter
further enhances interpretability by clustering probabilities of adjacent words. Image courtesy of Niculae and Blondel (2017).

Sparse attention. Martins and Astudillo (2016)
proposed sparsemax, which replaces softmax with
a Euclidean projection, remaining differentiable
while also yielding sparse probabilities. This can
be obtained by setting Ω = 1

2‖ · ‖22 in Eqn 1. The
resulting probabilities are substantially more inter-
pretable, as the contribution of irrelevant words is
now shrunk to exactly 0 (Fig. 1, right).

Regularized attention. Parsimony goes beyond
sparsity: prior assumptions may encourage se-
lecting groups or clusters with equal proba-
bility. Niculae and Blondel (2017) propose
two linguistically-motivated regularized attention
mechanisms: fusedmax, which tends to group ad-
jacent words together, and oscarmax, which may
cluster non-adjacent words, suitable for languages
with flexible word order. Such mechanisms can
select interpretable segments (Fig. 1, left).

Constrained attention. Some forms of parsi-
mony must be strictly enforced using constraints,
rather than simply encouraged via regulariza-
tion. One such constraint is to add an upper
bound to the cumulative attention an input vari-
able may receive. This can be done using con-
strained softmax (Martins and Kreutzer, 2017)
or its sparse analogue, constrained sparsemax
(Malaviya et al., 2018). Constraining attention
weights can be interpreted as specifying the fertil-
ity (Brown et al., 1993) of the alignments between
the source and target, in machine translation.

3 Structured Attention

In this section, we consider combinatorial repre-
sentations. Across application domains, but es-
pecially in NLP, many objects of interest can be
represented by such structures: syntactic and de-
pendency trees, sequential labellings, alignments.
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Figure 2: Structured alignment on SNLI (Niculae et al.,
2018). The premise is on the y-axis, the hypothesis on the
x-axis. Sequential alignment encourages monotonic align-
ments, matching induces a single symmetrical alignment.

Allowing hidden layers to output structured repre-
sentations can be valuable for modelling perspec-
tive but also for interpretability: discrete structures
provide organized representations, in contrast to
unstructured vectors of neuron activations.

SparseMAP (Niculae et al., 2018) allows han-
dling discrete structures within end-to-end differ-
entiable neural networks, able to automatically se-
lect only a few global structures. On natural lan-
guage inference, for a word-to-word alignment
joint attention mechanism, SparseMAP can induce
structured alignments as illustrated in Fig. 2.

4 Conclusion

Building upon the principle of parsimony, we pro-
pose sparse, regularized, constrained and struc-
tured hidden layers. We seek to discuss the poten-
tials of these strategies with an expert community
on black-box interpretability.
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1 Introduction

Neural attention-based sequence-to-sequence
models (seq2seq) (Sutskever et al., 2014; Bah-
danau et al., 2014) have proven to be accurate
and robust for many sequence prediction tasks.
They have become the standard approach for au-
tomatic translation of text, at the cost of increased
model complexity and uncertainty. End-to-end
trained neural models act as a black box, which
makes it difficult to examine model decisions and
attribute errors to a specific part of a model. The
highly connected and high-dimensional internal
representations pose a challenge for analysis and
visualization tools. The development of methods
to understand seq2seq predictions is crucial
for systems in production settings, as mistakes
involving language are often very apparent to
human readers. For instance, a widely publicized
incident resulted from a translation system mis-
takenly translating “good morning” into “attack
them” leading to a wrongful arrest (Hern, 2017).

In this work, we present the visual analysis tool
SEQ2SEQ-VIS that allows interaction and ”what
if”-style exploration of trained seq2seq models
through each stage of the translation process.
The aim is to identify which patterns have been
learned, to detect errors within a model, and to
understand the model through counterfactual sce-
narios. In order to investigate the origin of an
error within a seq2seq model, we separate errors
within each translation stage into the following
categories: (1) representation errors, in which an
encoder or decoder misrepresent a word within a
given context (2) alignment errors, in which the
attention focuses on the wrong word, and (3) de-
coding errors, in which the prediction assigns a
wrong probability distribution over words, or the
beam search fails to include the correct solution.
We define three steps within an analysis that aim
to understand the prediction process, understand

how an output relates to training data, and examine
causal relationships between inputs and outputs.

Examine Model Outputs: SEQ2SEQ-
VIS shows a separate visual representation for the
output of each stage of the seq2seq pipeline.

Connect Outputs to Samples: SEQ2SEQ-
VIS connects the encoder and decoder of a
seq2seq model to relevant training examples by
showing a neighborhood of examples with the
most similar internal states.

Test Alternative Decisions: SEQ2SEQ-
VIS enables ”what if” explorations and causal
relationship testing by manipulation of inputs,
attention, and outputs.

The full system is shown in Figure 1. It com-
bines visualizations for the external components
with internal representations from specific exam-
ples and nearest-neighbor lookups over a corpus
of precomputed examples. The entire system inte-
grates with OpenNMT (Klein et al., 2017), one of
the largest open source seq2seq libraries.

2 Debugging Use Case

This case study follows the example in Fig-
ure 1 and involves a model trainer (Strobelt
et al., 2018b) who is building a German-to-
English translation model on the IWSLT ’14
dataset (Mauro et al., 2012)). The user observes
that a specific example was mistranslated. She
finds the source sentence: Die längsten Reisen
fangen an, wenn es auf den Straßen dunkel wird.
The correct translation for this sentence is The
longest journeys begin, when it gets dark in the
streets. The model produces the mistranslation:
The longest journey begins, when it gets to the
streets. SEQ2SEQ-VIS shows the tokenized in-
put sentence in blue and the corresponding trans-
lation of the model in yellow (on the top). The
user observes that the model does not translate the
word dunkel into dark. This mistake exemplifies
several goals that motivated the development of
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Figure 1: Seq2Seq-Vis tool. See http://seq2seq-vis.io for interactive demo and video.

Seq2Seq-Vis. The user would like to examine
the system’s decisions, connect to training exam-
ples, and test possible changes:

Nearest neighbors to examine encoder and de-
coder: Seq2Seq-Vis lets the user examine sim-
ilar encoder/decoder states for any example. We
define neighborhood as the twenty training ex-
amples with the closest states in vector space.
SEQ2SEQ-VIS displays the neighborhood for a
specific encoder state in a list of training set ex-
amples with red highlights for the word with the
closest state. Figure 1(h) shows that the nearest
neighbors for dunkel match similar use of the word
from training data. Overall, the encoder seems to
perform well in this case. A similar analysis can
be done for the decoder.

Graphical test for Attention error: Another pos-
sible issue is that the attention may not focus on
the corresponding source token dunkel. The pre-
vious test revealed many examples in the neigh-
borhood that place dark after gets, which matches
the valid translation. In Figure 1(c) the analyst can
observe that the highlighted connection following
get to the correct next word dunkel is very strong.
Therefore, the user can assume that the attention
is well set for predicting dark in this position.

What-if testing for Prediction and Search er-
ror: The combination of decoder state and atten-
tion is used to compute the probability over possi-
ble next words. It may be that an error occurs in
this decision, leading to a poor probability of the

word dark. The tool shows the most likely next
words and their probabilities in Figure 1(d). Here,
the model mistakenly assigns a higher probability
to to than dark. However, both options are very
close in probability, indicating that the model is al-
most equally split between the two choices. These
local mistakes should be automatically fixed by
the beam search, which is shown in Figure 1(e).
In this case, the analyst finds that dark is never
considered within the search. The analyst has
identified a search error, where the approximations
made by beam search cut off the better global op-
tion in favor of better local choices. To investi-
gate whether the model would produce the correct
answer the analyst can test a counterfactual, what
would have happened if she had forced the transla-
tion to use dark at this critical position? By click-
ing on dark she can produce this probe (shown in
Figure 1(i)), which yields the correct translation.

3 Conclusion

We have shown SEQ2SEQ-VIS, an interactive tool
for finding errors in seq2seq models. It utilizes
approaches to debugging in which black-box de-
cisions are connected to easily understandable vi-
sual presentations. In future work, we will extend
this work to improve models based on feedback
from SEQ2SEQ-VIS. A longer description of the
system, and additional use-cases can be found in
Strobelt et al. (2018a).

369



References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Alex Hern. 2017. Facebook translates ’good morning’
into ’attack them’, leading to arrest. The Guardian.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
Proceedings of ACL 2017, System Demonstrations,
pages 67–72.

Cettolo Mauro, Girardi Christian, and Federico Mar-
cello. 2012. Wit3: Web inventory of transcribed and
translated talks. In Conference of European Associ-
ation for Machine Translation, pages 261–268.

Hendrik Strobelt, Sebastian Gehrmann, Michael
Behrisch, Adam Perer, Hanspeter Pfister, and
Alexander M Rush. 2018a. Seq2seq-vis: A vi-
sual debugging tool for sequence-to-sequence mod-
els. arXiv preprint arXiv:1804.09299.

Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfis-
ter, and Alexander M Rush. 2018b. Lstmvis: A tool
for visual analysis of hidden state dynamics in recur-
rent neural networks. IEEE transactions on visual-
ization and computer graphics, 24(1):667–676.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

370



Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 371–373
Brussels, Belgium, November 1, 2018. c©2018 Association for Computational Linguistics

Grammar Induction with Neural Language Models:
An Unusual Replication

Phu Mon Htut1
pmh330@nyu.edu

Kyunghyun Cho1,2

kyunghyun.cho@nyu.edu
Samuel R. Bowman1,2,3

bowman@nyu.edu

1Center for Data Science
New York University

60 Fifth Avenue
New York, NY 10011

2Dept. of Computer Science
New York University

60 Fifth Avenue
New York, NY 10011

3Dept. of Linguistics
New York University
10 Washington Place
New York, NY 10003

1 Introduction
Grammar induction is the task of learning syntac-
tic structure without the expert-labeled treebanks
(Charniak and Carroll, 1992; Klein and Manning,
2002). Recent work on latent tree learning of-
fers a new family of approaches to this problem by
inducing syntactic structure using the supervision
from a downstream NLP task (Yogatama et al.,
2017; Maillard et al., 2017; Choi et al., 2018). In a
recent paper published at ICLR, Shen et al. (2018)
introduce such a model and report near state-of-
the-art results on the target task of language mod-
eling, and the first strong latent tree learning re-
sult on constituency parsing. During the analy-
sis of this model, we discover issues that make
the original results hard to trust, including tuning
and even training on what is effectively the test
set. Here, we analyze the model under different
configurations to understand what it learns and to
identify the conditions under which it succeeds.
We find that this model represents the first empiri-
cal success for neural network latent tree learning,
and that neural language modeling warrants fur-
ther study as a setting for grammar induction.

2 Background and Experiments
We analyze the Parsing-Reading-Predict-
Network (PRPN; Shen et al., 2018), which uses
convolutional networks with a form of structured
attention (Kim et al., 2017) rather than recursive
neural networks (Goller and Kuchler, 1996;
Socher et al., 2011) to learn trees while perform-
ing straightforward backpropagation training on a
language modeling objective. The structure of the
model seems rather suboptimal: Since the parser
is trained as part of a language model, it makes
parsing greedily, with no access to any words to
the right of the point where each parsing decision
must be made.

The experiments on language modeling and

A crusade of NO to the consumption of drugs is imperative .

Figure 1: Parses from PRPN-LM trained on
AllNLI.
parsing are carried out using different configura-
tions of the model—PRPN-LM tuned for language
modeling, and PRPN-UP for (unsupervised) pars-
ing. PRPN-LM is much larger than PRPN-UP,
with embedding layer that is 4 times larger and
the number of units per layer that is 3 times larger.
In the PRPN-UP experiments, we observe that the
WSJ data is not split, such that the test data is used
without parse information for training. This im-
plies that the parsing results of PRPN-UP may not
be generalizable in the way usually expected of
machine learning evaluation results.

We train PRPN on sentences from two datasets:
The full WSJ and AllNLI, the concatenation
of SNLI (Bowman et al., 2015) and MultiNLI
(Williams et al., 2018b). We then evaluate the con-
stituency trees produced by these models on the
full WSJ, WSJ101, and the MultiNLI development
set.

3 Results
Table 1 shows results with all the models un-
der study, plus several baselines, on WSJ and
WSJ10. Unexpectedly, the PRPN-LM models
achieve higher parsing performance than PRPN-
UP. This shows that any tuning done to sepa-
rate PRPN-UP from PRPN-LM was not necessary,
and that the results described in the paper can be
largely reproduced by a unified model in a fair
setting. Moreover, the PRPN models trained on
the larger, out-of-domain AllNLI perform better
than those trained on WSJ. Surprisingly, PRPN-
LM tained on out-of-domain AllNLI achieves the
best F1 score on full WSJ among all the models

1A processed subset of WSJ in which the sentences con-
tain no punctuation and no more than 10 words.
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Training Stopping Vocab Parsing F1 Depth Accuracy on WSJ by Tag
Model Data Criterion Size WSJ10 WSJ WSJ ADJP NP PP INTJ

µ (σ) max µ (σ) max

PRPN-UP AllNLI Train UP 76k 67.5 (0.6) 68.6 38.1 (0.7) 39.1 5.9 27.8 63.0 31.4 52.9
PRPN-UP AllNLI Train LM 76k 66.3 (0.8) 68.5 39.8 (0.6) 40.7 5.9 26.5 53.0 32.9 52.9
PRPN-LM AllNLI Train LM 76k 52.4 (4.9) 58.1 42.5 (0.7) 43.6 6.2 34.2 60.1 60.0 64.7

PRPN-UP WSJ Full UP 15.8k 64.7 (3.2) 70.9 26.6 (1.9) 31.6 5.9 19.3 48.7 19.2 44.1
PRPN-UP WSJ Full LM 15.8k 64.3 (3.3) 70.8 26.5 (1.9) 31.4 5.9 18.8 48.1 19.1 44.1
PRPN-UP WSJ Train UP 15.8k 63.5 (3.5) 70.7 26.6 (2.5) 34.2 5.9 21.3 57.2 19.4 47.1
PRPN-UP WSJ Train LM 15.8k 62.2 (3.9) 70.3 26.4 (2.5) 34.0 5.9 22.3 56.2 19.1 44.1
PRPN-LM WSJ Train LM 10k 70.5 (0.4) 71.3 38.3 (0.3) 38.9 5.9 26.0 64.4 25.5 50.0
PRPN-LM WSJ Train UP 10k 66.1 (0.5) 67.2 34.0 (0.9) 36.3 5.9 32.0 58.3 19.6 44.1

300D ST-Gumbel AllNLI Train NLI – – – 19.0 (1.0) 20.1 – 15.6 18.8 9.9 59.4
w/o Leaf GRU AllNLI Train NLI – – – 22.8 (1.6) 25.0 – 18.9 24.1 14.2 51.8

300D RL-SPINN AllNLI Train NLI – – – 13.2 (0.0) 13.2 – 1.7 10.8 4.6 50.6
w/o Leaf GRU AllNLI Train NLI – – – 13.1 (0.1) 13.2 – 1.6 10.9 4.6 50.0

CCM WSJ10 Train – – – 71.9 – – – – – – –
DMV+CCM WSJ10 Train – – – 77.6 – – – – – – –
UML-DOP WSJ10 Train – – – 82.9 – – – – – – –

Random Trees – – – – 34.7 21.3 (0.0) 21.4 5.3 17.4 22.3 16.0 40.4
Balanced Trees – – – – – 21.3 (0.0) 21.3 4.6 22.1 20.2 9.3 55.9

Table 1: Unlabeled parsing F1 test results broken down by training data and by early stopping criterion.
The Accuracy columns represent the fraction of ground truth constituents of a given type that correspond
to constituents in the model parses. Italics mark results that are worse than the random baseline. Results
with RL-SPINN and ST-Gumbel are from Williams et al. (2018a). WSJ10 baselines are from Klein and
Manning (2002, CCM), Klein and Manning (2005, DMV+CCM), and Bod (2006, UML-DOP).

Stopping F1 wrt.
Model Criterion LB RB SP Depth

300D SPINN NLI 19.3 36.9 70.2 6.2
w/o Leaf GRU NLI 21.2 39.0 63.5 6.4

300D SPINN-NC NLI 19.2 36.2 70.5 6.1
w/o Leaf GRU NLI 20.6 38.9 64.1 6.3

300D ST-Gumbel NLI 32.6 37.5 23.7 4.1
w/o Leaf GRU NLI 30.8 35.6 27.5 4.6

300D RL-SPINN NLI 95.0 13.5 18.8 8.6
w/o Leaf GRU NLI 99.1 10.7 18.1 8.6

PRPN-LM LM 25.6 26.9 45.7 4.9
PRPN-UP UP 19.4 41.0 46.3 4.9
PRPN-UP LM 19.9 37.4 48.6 4.9

Random Trees – 27.9 28.0 27.0 4.4
Balanced Trees – 21.7 36.8 21.3 3.9

Table 2: Unlabeled parsing F1 on the MultiNLI
development set for models trained on AllNLI. F1
wrt. shows F1 with respect to strictly right- and
left-branching (LB/RB) trees and with respect to
the Stanford Parser (SP) trees supplied with the
corpus; The evaluations of SPINN, RL-SPINN,
and ST-Gumbel are from Williams et al. (2018a).
SPINN is a supervised parsing model, and the oth-
ers are latent tree models.

we experimented, even though its performance on
WSJ10 is the lowest of all. Under all the configu-
rations we tested, PRPN yields much better perfor-
mance than that seen with the baselines from Yo-
gatama et al. (2017, called RL-SPINN) and Choi

et al. (2018, called ST-Gumbel), despite the fact
that the model was tuned exclusively for WSJ10
parsing (Table 1 and 2). This suggests that PRPN
is strikingly effective at latent tree learning.

Additionally, Table 2 shows that both PRPN-UP
models achieve F1 scores of 46.3 and 48.6 respec-
tively on the MultiNLI dev set, setting the state
of the art in parsing on this dataset among latent
tree models. We conclude that PRPN does acquire
some substantial knowledge of syntax, and that
this knowledge agrees with Penn Treebank (PTB)
grammar significantly better than chance.

Moreover, we replicate the language model-
ing perplexity of 61.6 reported in the paper us-
ing PRPN-LM trained on WSJ, which indicates
that PRPN-LM is effective at both parsing and lan-
guage modeling.

4 Conclusion
In our analysis of the PRPN model, we find sev-
eral experimental problems that make the results
difficult to interpret. However, in the analyses go-
ing well beyond the scope of the original paper,
we find that PRPN is nonetheless robust. It repre-
sents a viable method for grammar induction and
the first success for latent tree learning. We expect
that it heralds further work on language modeling
as a tool for grammar induction research.
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Abstract

Recent work has shown that neural models can
be successfully trained on multiple languages
simultaneously. We investigate whether such
models learn to share and exploit common
syntactic knowledge among the languages on
which they are trained. This extended abstract
presents our preliminary results.

1 Introduction

Recent work has shown that state-of-the-art neu-
ral models of language and translation can be suc-
cessfully trained on multiple languages simulta-
neously without changing the model architecture
(Östling and Tiedemann, 2017; Johnson et al.,
2017). In some cases this leads to improved per-
formance compared to models only trained on
a specific language, suggesting that multilingual
models learn to share useful knowledge cross-
lingually through their learned representations.
While a large body of research exists on the mul-
tilingual mind, the mechanisms explaining knowl-
edge sharing in computational multilingual mod-
els remain largely unknown: What kind of knowl-
edge is shared among languages? Do multilingual
models mostly benefit from a better modeling of
lexical entries or do they also learn to share more
abstract linguistic categories?

We focus on the case of language models (LM)
trained on two languages, one of which (L1)
is over-resourced with respect to the other (L2),
and investigate whether the syntactic knowledge
learned for L1 is transferred to L2. To this end
we use the long-distance agreement benchmark re-
cently introduced by Gulordava et al. (2018).

2 Background

The recent advances in neural networks have
opened the way to the design of architecturally

simple multilingual models for various NLP tasks,
such as language modeling or next word predic-
tion (Tsvetkov et al., 2016; Östling and Tiede-
mann, 2017; Malaviya et al., 2017; Tiedemann,
2018), translation (Dong et al., 2015; Zoph et al.,
2016; Firat et al., 2016; Johnson et al., 2017),
morphological reinflection (Kann et al., 2017)
and more (Bjerva, 2017). A practical benefit
of training models multilingually is to transfer
knowledge from high-resource languages to low-
resource ones and improve task performance in
the latter. Here we aim at understanding how lin-
guistic knowledge is transferred among languages,
specifically at the syntactic level, which to our
knowledge has not been studied so far.

Assessing the syntactic abilities of monolin-
gual neural LMs trained without explicit super-
vision has been the focus of several recent stud-
ies: Linzen et al. (2016) analyzed the performance
of LSTM LMs at an English subject-verb agree-
ment task, while Gulordava et al. (2018) extended
the analysis to various long-range agreement pat-
terns in different languages. The latter study found
that state-of-the-art LMs trained on a standard log-
likelihood objective capture non-trivial patterns of
syntactic agreement and can approach the perfor-
mance levels of humans, even when tested on syn-
tactically well-formed but meaningless (nonce)
sentences.

Cross-language interaction during language
production and comprehension by human subjects
has been widely studied in the fields of bilin-
gualism and second language acquisition (Keller-
man and Sharwood Smith; Odlin, 1989; Jarvis
and Pavlenko, 2008) under the terms of language
transfer or cross-linguistic influence. Numerous
studies have shown that both the lexicons and the
grammars of different languages are not stored in-
dependently but together in the mind of bilinguals
and second-language learners, leading to observ-
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able lexical and syntactic transfer effects (Koot-
stra et al., 2012). For instance, through a cross-
lingual syntactic priming experiment, Hartsuiker
et al. (2004) showed that bilinguals recently ex-
posed to a given syntactic construction (passive
voice) in their L1 tend to reuse the same construc-
tion in their L2.

While the neural networks in this study are not
designed to be plausible models of the human
mind learning and processing multiple languages,
we believe there is interesting potential at the in-
tersection of these research fields.

3 Experiment

We consider the scenario where L1 is over-
resourced compared to L2 and train our bilingual
models by joint training on a mixed L1/L2 corpus
so that supervision is provided simultaneously in
the two languages (Östling and Tiedemann, 2017;
Johnson et al., 2017). We leave the evaluation of
pre-training (or transfer learning) methods (Zoph
et al., 2016; Nguyen and Chiang, 2017) to future
work.

The monolingual LM is trained on a small L2
corpus (LML2). The bilingual LM is trained on
a shuffled mix of the same small L2 corpus and
a large L1 corpus, where L2 is oversampled to
approximately match the amount of L1 sentences
(LML1+L2). See Table 1 for the actual training
sizes. For our preliminary experiments we have
chosen French as the helper language (L1) and
Italian as the target language (L2). Since French
and Italian share many morphosyntactic patterns,
accuracy on the Italian agreement tasks is ex-
pected to benefit from adding French sentences to
the training data if syntactic transfer occurs.

Data and training details: We train our LMs
on French and Italian Wikipedia articles extracted
using the WikiExtractor tool.1 For each language,
we maintain a vocabulary of the 50k most fre-
quent tokens, and replace the remaining tokens
by <unk>. For the bilingual LM, all words are
prepended with a language tag so that vocabular-
ies are completely disjoint. Their union (100K
types) is used to train the model. This is the least
optimistic scenario for linguistic transfer but also
the most controlled one. In future experiments we
plan to study how transfer is affected by varying
degrees of vocabulary overlap.

1https://github.com/attardi/
wikiextractor

Following the setup of Gulordava et al. (2018),
we train 2-layer LSTM models with embedding
and hidden layers of 650 dimensions for 40
epochs. The trained models are evaluated on the
Italian section of the syntactic benchmark pro-
vided by Gulordava et al. (2018), which includes
various non-trivial number agreement construc-
tions.2 Note that all models are trained on a regular
corpus likelihood objective and do not receive any
specific supervision for the syntactic tasks.

4 Results and Conclusions

Table 1 shows the results of our preliminary ex-
periments. The unigram baseline simply picks,
for each sentence, the most frequent word form
between singular or plural. As an upper-bound
we report the agreement accuracy obtained by a
monolingual model trained on a large L2 corpus.

Table 1: Accuracy on the Italian agreement set by the
unigram baseline, monolingual and bilingual LMs.

AgreementIT
Model Training (#tok) Orig. Nonce

Unigram — 54.9 54.5

LSTMIT 10MIT 80.7 79.9
LSTMFR+IT 80MFR + 8×10MIT 82.4 77.5

LSTMIT (large) 80MIT 88.2 82.6

The effect of mixing the small Italian corpus
with the large French one does not appear to be
major. Agreement accuracy increases slightly in
the original sentences, where the model is free to
rely on collocational cues, but decreases slightly in
the nonce sentences, where the model must rely on
pure grammatical knowledge. Thus there is cur-
rently no evidence that syntactic transfer occurs
in our setup. A possible explanation is that the
bilingual model has to fit the knowledge from two
language systems into the same number of hidden
layer parameters and this may cancel out the ben-
efits of being exposed to a more diverse set of sen-
tences. In fact, the bilingual model achieves a con-
siderably worse perplexity than the monolingual
one (69.9 vs 55.62) on an Italian-only held-out set.
For comparison, Östling and Tiedemann (2017)
observed slightly better perplexities when mix-
ing a small number of related languages, however

2For more details on the benchmark and LM
configurations refer to https://github.com/
facebookresearch/colorlessgreenRNNs
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their setup was considerably different (character-
level LSTM with highly overlapping vocabulary).

This is work in progress. We are currently look-
ing for a bilingual LM configuration that will re-
sult in better target language perplexity and, pos-
sibly, better agreement accuracy. We also plan
to extend the evaluation to other, less related,
language pairs and different multilingual training
techniques. Finally, we plan to examine whether
lexical syntactic categories (POS) are represented
in a shared space among the two languages.
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Robert Östling and Jörg Tiedemann. 2017. Continuous
multilinguality with language vectors. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 644–649, Valencia,
Spain. Association for Computational Linguistics.

376



Jörg Tiedemann. 2018. Emerging language spaces
learned from massively multilingual corpora. CoRR,
abs/1802.00273.

Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui,
Guillaume Lample, Patrick Littell, David
Mortensen, Alan W Black, Lori Levin, and
Chris Dyer. 2016. Polyglot neural language
models: A case study in cross-lingual phonetic
representation learning. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1357–1366, San
Diego, California. Association for Computational
Linguistics.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for low-resource
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1568–1575, Austin,
Texas. Association for Computational Linguistics.

377



Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 378–380
Brussels, Belgium, November 1, 2018. c©2018 Association for Computational Linguistics

Exploiting Attention to Reveal Shortcomings in Memory Models

Kaylee Burns
UC Berkeley

kayleeburns@berkeley.edu

Aida Nematzadeh
DeepMind

nematzadeh@google.com

Erin Grant
UC Berkeley

eringrant@berkeley.edu

Alison Gopnik
UC Berkeley

gopnik@berkeley.edu

Thomas L. Griffiths
Princeton University
tomg@princeton.edu

Abstract

The decision making processes of deep net-
works are difficult to understand and while
their accuracy often improves with increased
architectural complexity, so too does their
opacity. Practical use of machine learning
models, especially for question and answering
applications, demands a system that is inter-
pretable. We analyze the attention of a mem-
ory network model to reconcile contradic-
tory performance on a challenging question-
answering dataset that is inspired by theory-
of-mind experiments. We equate success on
questions to task classification, which explains
not only test-time failures but also how well
the model generalizes to new training condi-
tions.

1 Reasoning about Beliefs

Possessing a capacity similar to human reasoning
has been argued to be necessary for the success
of artificial intelligence systems (e.g., Levesque
et al., 2011). One well-studied domain that re-
quires reasoning is question answering, where
simply memorizing and looking up information is
often not enough to correctly answer a question.

Recent research has focused on developing
neural models that succeed in such scenarios
(Sukhbaatar et al., 2015; Henaff et al., 2017). As
a benchmark to evaluate these models, Weston
et al. (2016) released a dataset – Facebook bAbi
– that provides a set of toy tasks, each examining
a specific type of reasoning. However, the bAbi
tasks are already too simple for the current mod-
els, which fail at only one or two (out of 20) tasks
(Rae et al., 2016; Santoro et al., 2017).

Considering humans’ reasoning abilities can
provide inspiration for more complex tasks. Peo-
ple reason not just about their own observations
and beliefs but also about others’ mental states
(such as beliefs and intentions). The capacity to

recognize that others can have mental states dif-
ferent than one’s own – theory of mind – marks
an important milestone in the development of chil-
dren and has been extensively studied by psychol-
ogists (for a review, see Flavell, 2004). Recently,
Nematzadeh et al. (2018) released a dataset in-
spired by the theory-of-mind experiments from
Baron-Cohen et al. (1985). The dataset is based on
three tasks designed to capture increasingly com-
plex theory-of-mind reasoning: true-, false-, and
second-order false-belief tasks. Examples of each
task type are given in Figure 1. In the true-belief
task, Sally observes the world and as a result she
has a first-order true-belief about the location of
the milk – her belief matches reality. In the false-
belief task, Sally’s first-order belief differs from
reality (i.e., she has a false-belief ) because she was
absent when the state of the world changed. In the
second-order false-belief task, Sally observes the
new location of the milk; thus, she has a true-belief
about the milk’s location. However, Anne’s belief
about Sally’s mental state does not match reality
because Anne does not know that Sally has ob-
served the change in the environment. As a result,
Anne has a false belief about Sally’s beliefs.

The dataset from Nematzadeh et al. (2018) con-
tains 4 question types: 2 related to world state and
2 related to beliefs (Table 1). These questions en-
able us to test whether a model can reason about
first-order and second-order beliefs and know the
initial and current location of an object; thus, we
can distinguish between when a model answers a
question by chance and when it actually under-
stands the entire state of the world. Table 2 gives
the answers for the 12 combinations of task type
and question. Our analysis will focus on the two
belief questions proposed.

We use these tasks to generate a training set
with 10 000 examples with each of the 12 com-
binations of task and question types, randomly

378



Figure 1: The attention of MemN2N in response to first-order (all left) and second-order (all right) belief
questions. To correctly answer the second order belief question, the model needs to identify the true
belief task from other tasks (see Table 2). To this end, the model can use the presence of “exit” to classify
true-belief from non-true-belief tasks. There is no analogous identifier for the first-order question, where
the model fails.

Memory Where was the milk at the beginning?
Reality Where is the milk really?
First-order Where will Sally look for the milk?
Second-order Where does Sally think that Anne searches for the milk?

Table 1: Examples of the four question types.

True Belief False Belief Second-Order FB

Memory first first first
Reality second second second
First-order second first second
Second-order second first first

Table 2: The correct answer to each question. Here, “first”
and “second” are the the initial and actual locations of the
object of interest.

grouped into sets of 5 to form stories. Each story
in the test set contains 4 tasks, but there is only one
question present at the end. Because questions that
come closer to the beginning of a story have fewer
distractors (i.e., potential answer words) that may
confound a model, they are easier to answer.

2 Experiments

We train MemN2N (Sukhbaatar et al., 2015)
jointly over all task types without noise, but eval-
uate success on a test set with noise sentences
generated randomly at different positions (i.e.
ToM (noised)). We first examine how the model
performs across a range of parameter and initial-
ization values. Because MemN2N models are very
sensitive to the network initialization, for each set
of parameters, the best result out of 10 runs is used
for each configuration of hyperparameters. To un-
derstand why failures occur, we plot the average
attention over all instances of each task-question
combination. Figure 1 shows the average attention
of the best performing 3-hop model on the first-
order (left) and second-order (right) belief tasks.
Only the attention over memory slots with relevant

story sentences is displayed.
Surprisingly, the model is successful on the

“harder” second-order belief question but not on
the first-order one. Indeed, the pattern of atten-
tion across hops in response to the second-order
belief question is more varied across task condi-
tions and attends to sentences that provide infor-
mation about agents’ transition in the world (i.e.,
“Sally exited the kitchen”). On the other hand, the
left hand side of the figure shows that, in response
to the first-order belief question, the attention is
not sensitive to the task type (i.e., true-, false- or
second-order- belief).

Considering each belief question as a task clas-
sification, as shown in Table 2, can explain this
result. The answer to the first-order question is
different for false-belief and second-order false-
belief tasks while it is the same for the second-
order question. Given the similarity of these 2
tasks (e.g., Sally moves between rooms in both
tasks, both contain the word “exited”), the “clas-
sification” problem is much easier when the two
questions have the same answer. To answer the
first-order question correctly – where the answers
are different for the false-belief and second-order
false-belief tasks – the model needs to learn to dis-
tinguish between between these very similar tasks.

To further test this hypothesis, we created an in-
accurate version of the ToM dataset where the an-
swer to the false belief question was modified to be
the second location of the object as opposed to the
first. With the difficulty of classifying false-belief
from second-order false belief tasks removed, the
models were able to successfully answer all of the
first order belief questions.
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Image description generation, or image caption-
ing (IC), is the task of automatically generating a
textual description for a given image. The gener-
ated text is expected to describe, generally in a sin-
gle sentence, what is visually depicted in the im-
age, for example the entities/objects present in the
image, their attributes, the actions/activities per-
formed, entity/object interactions (including quan-
tification), the location/scene, etc. (e.g. “a man
riding a bike on the street”). Significant progress
has been made with end-to-end approaches to
tackling this problem, where parallel image–
description datasets such as Flickr30k (Young
et al., 2014) and MSCOCO (Chen et al., 2015) are
used to train a CNN-RNN based neural network IC
system (Vinyals et al., 2017; Karpathy and Fei-Fei,
2015; Xu et al., 2015). Such systems have demon-
strated impressive performance in the COCO cap-
tioning challenge1 according to automatic metrics,
seemingly even surpassing human performance in
many instances (e.g. CIDEr score > 1.0 vs. hu-
man’s 0.85) (Chen et al., 2015). However, in real-
ity, the performance of end-to-end systems is still
far from satisfactory according to metrics based on
human judgement2. This task is thus currently far
from being a solved problem.

We challenge the common assumption that end-
to-end IC systems are able to achieve strong per-
formance because they have learned to ‘under-
stand’ and infer semantic information from visual
representations, i.e. they can for example induce
that “a boy is playing football” by learning di-
rectly from mid-level image features and the corre-
sponding textual descriptions in an implicit man-
ner, without explicitly modeling the presence of

∗This is an abridged version of a recently published
BMVC paper (Madhyastha et al., 2018)

1http://cocodataset.org/
#captions-challenge2015

2http://cocodataset.org/
#captions-leaderboard

boy, ball, green field, etc. in the image. It is be-
lieved that IC models have managed to infer that
the phrase football is associated with some ‘green-
like’ area in the image and is thus generated in the
output description, or that the word boy is gen-
erated because of some CNN activations corre-
sponding to a young person. However, there seems
to be no concrete evidence that this is the case.
Instead, we hypothesize that the apparent strong
performance of end-to-end systems is attributed to
the fact that they exploit the distributional simi-
larity in the multimodal feature space. To our best
knowledge, our work is the first to provide empir-
ical analysis of visual representations for the task
of image captioning.

By ‘distributional similarity’ we mean that IC
models essentially attempt to match images from
the training set that are most similar to a test im-
age, and generate a caption from the most similar
training instances, or generate a ‘novel’ descrip-
tion from a combination of training instances, for
example by ‘averaging’ the descriptions.

Previous work has alluded to this fact (Karpa-
thy, 2016; Vinyals et al., 2017), but it has not been
thoroughly investigated. This phenomenon could
also be in part attributed to the fact that the datasets
are repetitive and simplistic, with a virtually con-
stant and predictable linguistic structure (Lebret
et al., 2015; Devlin et al., 2015; Vinyals et al.,
2017).

We empirically evaluate end-to-end IC systems
where we vary the input image representation but
keep the RNN text generation model constant. Our
experiment demonstrates that regardless of the im-
age representation (a continuous image embed-
ding or a sparse, low-dimensional vector), end-to-
end IC systems seem to utilize a visual-semantic
subspace for IC. We also analyze various types of
image representations and their transformed ver-
sions.
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We visualize the initial visual subspace and the
learned joint visual semantic subspace and ob-
serve that the visual semantic subspace has learned
to cluster images with similar visual and linguistic
information together, further validating our claims
of distributional similarity3.

Representation B-4 M C S

Random 0.07 0.11 0.07 0.03

Softmax
VGG19 0.19 0.20 0.61 0.13

ResNet152 0.19 0.20 0.62 0.12

Penultimate
VGG19 (fc7) 0.22 0.21 0.69 0.14

ResNet152 (pool5) 0.23 0.22 0.74 0.15

Embeddings Top-k 0.19 0.20 0.63 0.13

BOO

Gold-Binary 0.22 0.22 0.75 0.15
Gold-Counts 0.23 0.22 0.81 0.16
YOLO-Coco 0.22 0.22 0.75 0.15

YOLO-9k 0.21 0.20 0.68 0.13

Pseudo-random
Pseudorandom-Binary 0.21 0.21 0.73 0.14
Pseudorandom-Counts 0.23 0.22 0.80 0.15

Table 1: Results on the MSCOCO test split, where
we vary only the image representation and keep other
parameters constant. The captions are generated with
beam = 1. We report BLEU (BLEU-4), Meteor,
CIDEr and SPICE scores.

We tabulate our observations from our experi-
ments in Table 1 where we used standard end-to-
end IC model (Vinyals et al., 2017) which is con-
ditioned on the various image representations. We
observe that utilizing standard bottleneck repre-
sentations (penultimate) are slightly better than us-
ing the ImageNet class posteriors (softmax). How-
ever, we observe that better captions are obtained
by using representations from explicit object de-
tections.

We also introduce pseudo-random vectors
which are derived from object-level representa-
tions as a control to evaluate IC systems. The
pseudo-random representation is obtained using
the object type information, but without actual
object features. More specifically, Ipseudo =

3Our visualization and analysis can be found here:
https://github.com/sheffieldnlp/whatIC

Method B-1 B-2 B-3 B-4 M C S

PCA 0.66 0.48 0.34 0.24 0.22 0.75 0.15
ICA 0.66 0.48 0.34 0.24 0.22 0.74 0.15

PPCA 0.66 0.48 0.34 0.24 0.22 0.76 0.15

FULL 0.66 0.48 0.33 0.23 0.22 0.74 0.15

Table 2: Performance of compressed Pool5 representa-
tions.

∑
o∈Objects f × φo, where φo ∈ Rd is an object-

specific random vector and f is a scalar represent-
ing counts of the object category. Our results in
Table 1 show that the models that utilize pseudo-
random representations are able to perform com-
petitively. The models in the current setup are
remarkably capable of separating structure from
noisy input. We further visualized the initial
and projected representations in the setup and ob-
served that while the initial pseudo-random repre-
sentations were noisy, the projected ones closely
resembled the bag-of-objects representations.

We then perform experiments where IC mod-
els are conditioned on image representations fac-
torized and compressed to a lower dimen-
sional space. We experimented with three
exploratory factor analysis based methods –
Principal Component Analysis (PCA) (Halko
et al., 2011), Probabilistic Principal Compo-
nent Analysis (PPCA) (Tipping and Bishop,
1999) and Independent Component Analysis
(ICA) (Hyvärinen et al., 2004). In all cases, we ob-
tain 80-dimensional factorized representations on
ResNet152 pool5 (2048D) that is commonly used
in IC. We summarize this experiment in Table 2.
We observe that the representations obtained by
all the factor models seem to retain the neces-
sary representational power to produce appropri-
ate captions equivalent to the original representa-
tion. This seems contradictory as we expected a
loss in the information content when compress-
ing it to arbitrary 80-dimensions. We observe
that high dimensional image embeddings that are
factorized to a lower dimensional representation
and used as input to an IC model result in vir-
tually no loss in performance, further strengthen-
ing our claim that IC models only perform simi-
larity matching rather than image understanding.
We conclude that the model is able to learn from
a seemingly weak, structured information and is
able to result in a performance that is close to that
of a model that uses the full representation.

The observations above strengthen our distribu-
tional similarity hypothesis – that end-to-end IC
performs image matching and generates captions
for a test image from similar image(s) from the
training set – rather than performing actual im-
age understanding. Our findings provide novel in-
sights into what end-to-end IC systems are actu-
ally doing, which previous work only suggests or
hints at.
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Abstract

In this submission I report work in progress
on learning simplified interpreted languages
by means of recurrent models. The data is
constructed to reflect core properties of nat-
ural language as modeled in formal syntax
and semantics. Preliminary results suggest
that LSTM networks do generalise to compo-
sitional interpretation, albeit only in the most
favorable learning setting.

Motivation. Despite showing impressive per-
formance on certain tasks, neural networks are still
far from showing natural language understanding
at a human level, cf. Paperno et al. (2016). In a
sense, it is not even clear what kind of neural ar-
chitecture is capable of learning natural language
semantics in all its complexity, with recurrent and
convolutional models being currently tried on var-
ious tasks.

One can hope to make progress towards the
challenging goal of natural language understand-
ing by taking into account what is known about
language structure and language processing in hu-
mans. With this in mind, it is possible to formulate
certain preliminary desiderata for an adequate nat-
ural language understanding model.

First, language processing in humans is known
to be sequential; people process and interpret lin-
guistic input on the fly, without any lookahead and
without waiting for the linguistic structure to be
completed. This property, which has serious po-
tential consequences for the cognitive architecture
(Christiansen and Chater, 2016), gives a certain
degree of cognitive plausibility to unidirectional
recurrent models compared to other neural archi-
tectures, at last in their current implementations.

Second, natural language can exploit recursive
structures: natural language syntax consists of
constructions, represented in formal grammars as
rewrite rules, which can recursively embed other

constructions of the same kind. For example, noun
phrases can in principle consist of a single proper
noun (e.g. Ann) but can also, among other pos-
sibilities, be built from other noun phrases recur-
sively via the possessive construction, as in Ann’s
child, Ann’s child’s friend, Ann’s child’s friend’s
parent etc. The possessive construction can be de-
scribed by the rewrite rule NP −→ NP’s N.

Third, the recursive syntactic structure drives
compositional semantic interpretation. The mean-
ing of the noun phrase Ann’s child’s friend is not
merely the sum of the meanings of the individual
words (in which case it would have been semanti-
cally equivalent to Ann’s friend’s child). Rather,
to interpret a complex expression correctly, one
has to follow the syntactic structure, first identify-
ing the meaning of the smaller constituent (Ann’s
friend), and then computing the meaning of the
whole on its basis.

Fourth, semantic compositionality can be for-
malized as function application, with one con-
stituent in a complex structure corresponding to
an argument of a function that another constituent
encodes. For instance, in Ann’s child, we can
think of Ann as denoting an individual and child as
denoting a function from individuals to individu-
als. In formal semantics, function argument appli-
cation as a semantic compositionality mechanism
extends to a wide range of syntactic constructions.

Finally, natural language interpretation, while
being sensitive to syntactic structure, is robust
to syntactic variation. For example, humans are
equally capable of learning to interpret and using
left-branching structures such as NP −→ NP’s N
(Ann’s child) and right-branching structures such
as NP −→ the Nof NP (the child of Ann).

The task. To summarize, in order to mimic hu-
man language capacities, an artificial system has
to be able to learn interpreted languages with com-
positionally interpreted recursive structures, while
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being adaptive to surface variation in the syntactic
patterns. To test whether neural systems can fit the
bill, we define toy interpreted languages based on
a fragment of English. The vocabulary includes
four names (Ann, Bill, Dick, George), interpreted
as individual identifiers, four function-denoting
nouns (child, parent, friend, enemy), and gram-
matical elements (of, ’s, the). Our languages con-
tain either left-branching (NP −→ NP’s N, Ann’s
child) or right-branching structures (the child of
Ann, NP −→ the N of NP).

The interpretation is defined model-
theoretically. We randomly generate a model
where each proper name corresponds to a dis-
tinct individual and each function denoted by a
common noun is total. In such a model, each
well-formed expression of the language is inter-
preted as an individual identifier. The denotation
of any expression can be calculated by recursive
application of functions to arguments, guided by
the syntactic structure of the expression.

The task given to the neural systems is to iden-
tify the individual that corresponds to each expres-
sion; e.g. Ann’s child’s friend is the same person as
George. Since there is just a finite number of indi-
viduals in our models, this boils down formally to
a string classification task, assigning each expres-
sion to one of the set of individuals in the model.

Systems and data. We tested two standard sys-
tems: a vanilla recurrent neural network (RNN)
and a long short-term memory network (LSTM)
on the task. Both systems were implemented in
PyTorch and used hidden layers of 256 units.

We used all expressions of the language up to
complexity n as experimental data; development
and testing data was randomly selected among
examples of maximal complexity. Examples of
smaller complexity, i.e. 1 and 2, were always in-
cluded in the training partition since they are nec-
essary to learn the interpretation of lexical items.
We also set a curriculum whereby the system was
at first given training examples of minimal com-
plexity, with more complex examples added grad-
ually in the process of training.

Results and discussion. We found the RNN
system to struggle already at a basic level; it
never achieved perfect accuracy even for mini-
mally complex structures (e.g. Ann’s child), so as-
sessing its recursive compositionality abilities is
out of question. Accuracies across LSTM experi-
mental setups are summarized in Table 1.

branching 3 4 5 6 7
right branching 0 .17 .21 .23 .26
left branching 1 1 1 1 1
left, slow curriculum .17 .33 .96 1 1
left, no curriculum .17 .21 .19 .21 .26

Table 1: System accuracy as a function of the lan-
guage, curriculum and data complexity. Random base-
line is .25.

rec.in train 0.0 0.2 0.4 0.6 0.8
average accuracy 0 .65 .67 .92 .98

Table 2: Percentage of complexity 3 data included in
training data vs. average test accuracy over 10 runs.

We find that LSTM does learn to do composi-
tional interpretation in our task, but only in the best
scenario. First, and unsurprisingly, a curriculum
is essential for the LSTM to generalize to unseen
compositional examples. Informally, the system
has to learn to interpret words first, and recursive
semantic composition has to be learned later.

Second, although the recurrent architecture
seems naturally adapted for processing complex
left-branching structures, the system has to be
trained on a lot of examples of composition before
it generalizes; cf. Table 2. Unlike (presumably) in
humans, recursive compositionality does not come
for free and has to be learned from extensive data.
This observation goes in line with other findings in
related literature (Liska et al., 2018; Hupkes et al.,
2018; Lake and Baroni, 2017).

Third, the LSTM only generalized correctly
in the case of left-branching structures; for right
branching, the accuracy of recursive composition
in the end stays just above the chance level (25%).
This means that the system only learned to apply
composition following the linear sequence of the
input and failed when the order of compositional-
ity as determined by the syntactic structure runs
opposite to the linear order.

The last two observations suggest that learning
recursive structure remains a challenge for LSTM
networks, which excel only in sequential, left-to-
right processing. If recursion, as has been claimed,
is a core distinguishing property of human lan-
guage and cognition (Hauser et al., 2002; Chom-
sky, 2014), we may need to ensure that learning
systems designed for language incorporate proper
biases towards recursive processing.
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