@inproceedings{lai-tetreault-2018-discourse,
title = "Discourse Coherence in the Wild: A Dataset, Evaluation and Methods",
author = "Lai, Alice and
Tetreault, Joel",
editor = "Komatani, Kazunori and
Litman, Diane and
Yu, Kai and
Papangelis, Alex and
Cavedon, Lawrence and
Nakano, Mikio",
booktitle = "Proceedings of the 19th Annual {SIG}dial Meeting on Discourse and Dialogue",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/W18-5023/",
doi = "10.18653/v1/W18-5023",
pages = "214--223",
abstract = "To date there has been very little work on assessing discourse coherence methods on real-world data. To address this, we present a new corpus of real-world texts (GCDC) as well as the first large-scale evaluation of leading discourse coherence algorithms. We show that neural models, including two that we introduce here (SentAvg and ParSeq), tend to perform best. We analyze these performance differences and discuss patterns we observed in low coherence texts in four domains."
}
Markdown (Informal)
[Discourse Coherence in the Wild: A Dataset, Evaluation and Methods](https://preview.aclanthology.org/jlcl-multiple-ingestion/W18-5023/) (Lai & Tetreault, SIGDIAL 2018)
ACL