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Abstract

Luyia is a macrolanguage in central Kenya. The Luyia languages, like other Bantu languages,
have a complex morphological system. This system can be leveraged to aid in part of speech
tagging. Bag-of-characters taggers trained on a source Luyia language can be applied directly to
another Luyia language with some degree of success. In addition, mixing data from the target
language with data from the source language does produce more accurate predictive models
compared to models trained on just the target language data when the training set size is small.
However, for both of these tagging tasks, models involving the more distantly related language,
Tiriki, are better at predicting part of speech tags for Wanga data. The models incorporating
Bukusu data are not as successful despite the closer relationship between Bukusu and Wanga.
Overlapping vocabulary between the Wanga and Tiriki corpora as well as a bias towards open
class words help Tiriki outperform Bukusu.

1 Introduction

Luyia is a macrolanguage comprised of over 20 individual languages that form a dialect continuum.
These languages have a very high degree of cognates. This provides a unique opportunity to examine the
performance of Natural Language Processing tools on a cluster of very closely related Bantu languages.
The structure of this paper is as follows: first, I provide some background on the Luyia languages, then, I
evaluate the relative performance of different languages on two types of predictive part of speech tagging
tasks. The first task involves direct training of an SVM part of speech tagging model on one language and
then evaluation of this model on another language. The second task involves augmenting an SVM part
of speech tagging model by training on a mixture of data from the target language and another variety of
Luyia.

2 The Luyia languages

Oluluyia or Luyia1 is a macro-language spoken in Kenya by approximately 5.3 million people (Simons
and Fennig, 2017). The varieties of Luyia belong to JE30 and JE40 in the revised Guthrie Bantu clas-
sification scheme (Maho, 2009, 61-62). This macrolanguage consists of over 20 sub groupings. As a
macrolanguage, Luyia consists of a number of linguistic groupings that are individual languages but that
are treated as a single language in some contexts (Simons and Fennig, 2017). Older works like (Williams,
1973) refer to the linguistic groups that compose Luyia as dialects instead of unique languages. However,
newer works on Luyia like Ebarb (2014) refer to Luyia as a dialect continuum with “geographically close
varieties enjoy[ing] higher rates of mutual intelligibility” Ebarb (2014, 7). The map shown in figure 1
displays the geographic distribution of the Luyia languages.

The generalization that geographically closer languages have more in common is largely supported
by the cognate probability table shown in 1. The Luyia languages are italicized in the table. The non-
Luyia languages (Soga, Ganda, and Gusii) are closely related to the Luyia languages but are outside of

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1Also spelled Luhya
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Figure 1: A map of the Luyia languages (Hinnebusch et al., 1981)
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Ganda Soga Saamia Wanga Bukusu Idakho Logooli
Soga 83.0
Saamia 54.0 59.0
Wanga 54.0 59.0 88.0
Bukusu 52.0 60.0 77.0 81.0
Idakho3 48.0 51.0 71.0 71.0 68.0
Logooli 51.0 55.0 75.0 78.0 70.0 80.0
Gusii 40.0 42.5 48.5 47.5 42.5 44.0 47.0

Table 1: Cognate percentages using 200-word lists (Hinnebusch et al., 1981, 184)

the macro-language2. The language pairs with cognate probabilities higher than 75% are geographically
adjacent. This threshold of 75% is estimated to indicate sufficient mutual intelligibility to consider
languages sharing such percentages to be dialects of a single language (Ladefoged et al., 1972) as cited
in (Hinnebusch et al., 1981, 184).

The languages being examined in this study are Wanga (lwg), Bukusu (bxk), and Tiriki (ida). Bukusu
is classified as JE31c while Wanga is JE32a in the New Guthrie Classification (Maho, 2009, 61). How-
ever, both belong to the Masaba-Luhya group (Maho, 2009). Tiriki (JE413), is part of a more distant
branch of Luhya, the Logooli-Kuria group (Maho, 2009, 62).

3 Related Work

Most previous approaches to Bantu part of speech tagging have been based upon two-level finite state
morphologies (Hurskainen, 1992; Pretorius and Bosch, 2009). However, these methods are expensive in
terms of person hours and monetary cost because they rely on highly trained grammar writers. While
Pretorius and Bosch (2009) use an existing morphology to expedite morphology creation in a related
language, there are other disadvantages to finite-state morphologies for POS labels; systems like these
are also difficult to expand. Most significantly for this particular setting, these require fairly extensive
knowledge about the language being modeled. As documentation of the Luyia languages is still in
progress, development of a finite state grammar with sufficient coverage does not seem to be feasible
at this time. An alternative course is to develop a corpus and then use probabilistic methods to do the
analysis.

Corpus creation is also a laborious process, however, there have been attempts to mitigate the expense.
For example, (Yarowsky and Ngai, 2001) used cross-linguistic projection to apply existing resources for
English to bilingual text corpora and project the analysis of the English text onto the second language
using statistically derived word alignments. While this method is successful, what if reliable parallel
texts are not available?

Hana et al. (2004) uses a morphological analyzer for their target language (Russian) and then used
transition probabilities from a related language (Czech) using a Hidden Markov Model (HMM). This
approach is similar in that I am using information from a related language to bolster taggers without
doing projection. However, I propose the possibility of using robust machine learning techniques, rather
than relying on an expensive morphological analyzer. Morphologically rich languages can have a large
number of morphological variants for a single word resulting in high rates of Out of Vocabulary (OOV)
terms. Statistical taggers perform worse on tokens that are not found in the training data. A common way
to make taggers more robust to OOV terms is to use components of words as features during training
rather than whole words. Such methods include using induced and hand labeled suffixes as features
(Hasan and Ng, 2009), initial and final characters of words combined with the tags of surrounding words
(Màrquez et al., 2000) and morphologically segmented words (Tachbelie et al., 2011). However, unlike
these approaches, I use a simple character n-gram model instead of building a segmenter. This is similar

2These languages are not the subject of this paper. They are only included as a point of reference for these probabilities
3While Hinnebusch et al. (1981) does not include figures for Tiriki, Idakho is a good reference for what the expected values

would be for Tiriki. Both languages share the same ISO-639-3 code (ida) and are considered by some to be part of a single
Idakho-Isukha-Tiriki variety (Simons and Fennig, 2017).
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Language Number of Sentences Number of Words
Wanga 1,294 7,337
Bukusu 1,107 7,940
Tiriki 1,393 9,319

Table 2: Total corpus size for the Luyia corpora

to the MaxEnt tagger in Gambäck et al. (2009) but with all possible character n-grams rather than n-
grams anchored to the beginning or end of the word and with fewer contextual features. This is not
unfounded as De Pauw et al. (2012) found that contextual information was not necessary to achieve good
tagging accuracy for machine learning in Bantu languages.

In this light I, like Tachbelie et al. (2011), am interested in how much data is required to obtain
satisfactory prediction accuracies (85%). I experiment with using a corpus from one language directly
to tag the target language as well as mixing data from both a source and target language to tag the target
language.

4 Corpora

The Luyia corpora used for this analysis are extracted from a Fieldworks database (International, 2018)
manually annotated by language documentation researchers (Green et al., 2018). For this analysis, the
corpus was filtered to include only sentences where all words were labeled with POS tags. The size of
the filtered Luyia corpora are displayed in table 4. All three corpora are roughly the same size with Tiriki
being slightly larger than the other two by about 1,000 words.

The Swahili corpus used for comparison with the Luyia corpora differs significantly in terms of anno-
tation methods, composition and size. The Helsinki Corpus of Swahili is a large, automatically annotated
corpus using a two-level finite state morphology. This corpus consists of parliamentary proceedings and
newspaper articles in contrast to the personal narratives that comprise the Wanga corpus. In addition,
the full Helsinki Corpus consists of 25 million words and is much larger than the Wanga corpus. Due
to my limited access to the Helsinki Corpus, in this study I use a much smaller sampling taken from
70 files consisting of 1,000 sentences each. These files were collected by searching for the top 10 most
common words in the corpus4 and collecting a number of JSON files5 for each using the web interface
to the annotated corpus.

5 Methods

The following sections describe methods for tagging Wanga data using a modified version of the Helsinki
Corpus of Swahili tagset (Hurskainen and Department of World Cultures, University of Helsinki, 2016)6.
All experiments used Wanga as the target language. The test set was kept the same for all experiments.
The training dataset was slightly over half of the filtered Wanga corpus at 591 sentences and 3274 words.
In this study, I seek to determine how well one variety of Luyia can be used to tag another variety of Luyia
directly and how effectively one variety can augment a small training corpus from the target language. In
essence, how much data in the target language is required? The first set of experiments uses no data from
the target language while the other experiments use various amounts of target language data mixed with
data from another variety of Luyia. Table 3 displays the size of the datasets at different training splits.
A Support Vector Machine (SVM) is a geometric supervised learning method that takes labeled data and

4Determined using the unannotated version of the Helsinki corpus which can be downloaded in its entirety.
5The number of JSON files downloaded for each seed word differed based upon how independent the words are. For

example, one of the most common words was Mhesimiwa which means ‘honorable’, a title that precedes many names in the
parliamentary proceedings portion of the corpus. The files from this search term contain a sampling of the corpus heavily
biased towards proper nouns. A small number of files were used for Mhesimiwa while a larger number were used for more
grammatically neutral terms like na, meaning ‘and’.

6All punctuation was reduced to a single ‘PUNCT’ tag instead of having separate parts of speech for each punctuation mark
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Training
Proportion Wanga Words Tiriki Words Bukusu Words Swahili Words Sentences

0.05 378 379 545 1404 59
0.1 758 785 1054 2973 118
0.2 1431 1648 2057 5779 236
0.5 3686 4247 4800 14914 590

Table 3: Number of words and sentences for various training dataset sizes

learns a hyperplane to separate one class from another 7.
The features extracted for each word were the following:

• Character unigrams, bigrams, trigrams and 4-grams internal to the word

• The first 3 characters of the preceeding word or the whole word if less than 3 characters 8

• The first 3 characters of the following word or the whole word if less than 3 characters 9

The set of all attested features were collected from the training data for each experiment and then filled
in the counts of each feature for each word in a kind of “count-hot” encoding. Only features found in the
training set were used to extract features from the test set. Two sets of SVM models were employed in
this study. First a Luyia language by itself is used to train a model and then evaluate on the test portion
of the Wanga dataset. Next, a combination of the source Luyia language and the Wanga training set are
used to train a model and then evaluate on that same Wanga test dataset.

5.1 Direct Source to Wanga

For this set of experiments features were extracted and then those features were used to train on the
different training dataset sizes described in table 3 The model created was then used to predict part of
speech labels for the Wanga training set.

5.2 Wanga and Source Mixture to Wanga

After establishing the baseline of using Wanga character n-grams alone to tag Wanga, the Wanga data
was combined in a 2 to 1 ratio with the source language data. Thus, four training sets were created which
were composed of 5, 10, 20 and 50% of the Wanga Corpus. Half the number of sentences used in the
Wanga Corpus were extracted from the source language corpus and mixed in with the Wanga data. For
example, with the Wanga dataset containing 59 sentences, 30 randomly sampled Tiriki sentences were
mixed in. This was done because I wanted to ensure that the Wanga data was not overwhelmed by the
source language data10. The features discussed in section 5 were extracted from these combined training
sets and the SVM models were trained. The resulting models were used to tag the test set.

6 Results

First, I discuss results for training a model one of the source languages and then directly applying this
model to predict parts of speech for the Wanga test data. Then, language mixture models are discussed.

7The particular implementation used for this work (Pedregosa et al., 2011) employed 1 versus 1 for multiclass-classification.
One versus rest classification is also common

8These character sequences were appended to “BEG ” making these features distinct. The three initial characters of the
preceding word are used because Bantu languages (including Luyia) make heavy use of prefixes for inflectional markers. By
using initial characters, I aim to make use of these inflectional markers without adding significantly to the dimensionality of the
training vectors.

9These character sequences were appended to “AFT ” making these features distinct.
10However, some trials with larger and smaller mixing ratios were also conducted. These yielded worse results.
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Training Set Size Swahili Tiriki Bukusu Wanga
0.05 26.91 57.76 54.51 76.36
0.1 27.46 60.84 58.67 81.89
0.2 29.61 62.47 56.22 86.10
0.5 25.56 63.07 62.49 91.06

Table 4: Accuracy of training on one language

Training Set Size Swahili Tiriki Bukusu Wanga
0.05 76.45 78.40 77.30 76.36
0.1 80.58 82.66 79.94 81.89
0.2 86.76 86.49 85.88 86.10
0.5 90.34 90.04 90.20 91.06

Table 5: Accuracy of language mixture models

6.1 Direct Source to Target Tagging
Table 4 displays the accuracies obtained by applying the models trained on data from one language to
label parts of speech for the Wanga test set. Swahili is provided as a baseline while Wanga itself is
provided as an upper bound. The training set size proportion is with reference to the Wanga corpus.

Surprisingly, Tiriki, the more distantly related variety, is more effective at tagging Wanga than Bukusu.
The accuracy of the taggers trained on Tiriki are higher across the board. In addition, the accuracy of
the tagger trained on Tiriki consistently rises as the amount of training data increases. For training on
Bukusu, the tagger benefits from having access to more data overall. However, the drop at 0.2 may
indicate that the machine learner is overfitting on Bukusu data and is not able to generalize to predicting
on the Wanga test data.

Though the tagger trained on Tiriki performs much worse than the upper bound, the highest dataset
size for Tiriki is approaching the accuracy obtained for the smallest Wanga training set. A new corpus
for a Luyia language could get preliminary POS tags by training on a large portion of another Luyia
language. Future research will have to investigate if the trends observed here, where the more distantly
related of two varieties is most effective, generalizes to other source-target pairs.

6.2 Language Mixture Tagging
Now we turn to results obtained by training on a mixture of the Wanga training dataset and the source
language dataset. Table 5 displays the accuracies of predictions using combination models of different
sizes. The Wanga values listed are the prediction accuracies from training on Wanga alone. They repeat
the Wanga data in table 4. The entries in bold represent cases where the accuracy was considerably
higher than the accuracy of training on Wanga alone.

Once again, Tiriki performs better than Bukusu despite the fact that Bukusu is more closely related to
Wanga. The combination model that uses Bukusu is only considerably higher than the baseline for the
lowest training set size. In addition, the combination model that incorporates Tiriki data outperforms the
baseline by a wider margin in this case. The Tiriki combination model also performs much better than
the baseline for the 0.1 training set size.

Overall, augmenting Wanga taggers with data from another variety of Luyia is beneficial at smaller
training set sizes. However, this augmentation has no effect or even a slightly negative effect on perfor-
mance for larger training set sizes.

7 Analysis

Tiriki outperforming Bukusu on the combination tagging task is somewhat unsurprising: if Bukusu and
Wanga are extremely similar varieties, the Bukusu data may contribute nothing new. However, if Bukusu
and Wanga are so similar, Bukusu would be expected to perform better on the direct tagging task. The
fact that Tiriki is still performing better on this task is very surprising.
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Training Set Size Swahili Tiriki Bukusu Wanga
0.05 25.33 47.75 41.62 58.17
0.1 25.85 49.77 46.54 64.24
0.2 28.47 51.31 43.21 68.12
0.5 22.74 49.75 51.08 72.68

Table 6: Out of Vocabulary accuracy for source-Wanga

Training Set Size Swahili Tiriki Bukusu Wanga
0.05 58.84 63.47 62.38 58.17
0.1 63.31 66.51 62.60 64.24
0.2 70.13 70.66 70.78 68.12
0.5 70.73 74.66 72.72 72.68

Table 7: Out of Vocabulary accuracy for language mixture tagger

Performance on out of vocabulary (OOV) terms is higher for Tiriki than Bukusu. In tables 6 and 7 the
accuracy of the Tiriki tagger is higher than or approximately the same as the Bukusu accuracies11.

One possibility is that the Wanga and Tiriki corpora themselves have more in common, even if the
varieties themselves do not. This does seem to be the case. Table 8 displays the percentage of words
in each of the source corpora that are within the specified Levenshtein distance of a word in the Wanga
corpus.

The Tiriki corpus has a three percent higher rate of absolute matches compared to Bukusu. While
Bukusu has a higher percentage of words within a distance of 2, the large number of exact matches
between Tiriki and Wanga is likely to blame for the increased performance of Tiriki relative to Bukusu12.

Upon further analysis of the words that Tiriki gets correct but Bukusu does not (using the 0.05 training
set size), it appears that the Tiriki classifier has a beneficial bias towards nouns and verbs. The Bukusu
tagger tends to incorrectly predict closed classes like pronouns and conjunctions when the Tiriki classifier
correctly predicted noun and verb tags. Most mistaken conjunction tags in Bukusu are for short words:
all of these mistaken conjunctions and pronouns are less than the median word length of 9. The Tiriki
classifier is more heavily biased towards predicting open class parts of speech than the Bukusu classifier.

Some of the Tiriki corpus’s advantages originate from sources of ambiguity. Infinitive verbs like
okhushina share some aspects of both verbs and nouns: they are part of the noun class system (class
15) and can trigger agreement with nominal modifiers like demonstratives, numerals and adjectives.
However, they are semantically verbal and can take verbal morphemes like passive markers and causative
markers. The Bukusu tagger consistently labels these as verbs while the Tiriki tagger tends to label them
as nouns. The Wanga corpus uses the noun label more often for these infinitives resulting in higher
performance for Tiriki.

Only a small handful of the cases where Tiriki outperforms Wanga appear to be due to errors in the
gold standard labels. However, a more thorough investigation of the errors should be conducted using
judgements from a native speaker of Wanga.

11An exception to this is in the application of the largest non-mixed models. Bukusu outperforms Tiriki by 1.33% for this
scenario

12Though how this should be interpreted in light of the higher out of vocabulary scores for Tiriki is still unclear

Levenshtein Distance Tiriki Bukusu
Threshold

0 31.82% 28.46%
1 55.67% 57.15%
2 78.89% 78.19%

Table 8: Percentage of source corpus within specified distance of any word in Wanga corpus
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One last source of Tiriki’s higher performance relative to Bukusu is due to borrowed words. The
words that Tiriki predicts correctly but Bukusu misses are frequently loan words from English or Swahili.
Words like i-proverb and i-nursery are borrowed from English with the addition of an augment prefix
from Wanga. Swahili borrowed words are pervasive including coordinating conjunctions like lakini,
meaning ‘but’ and numerals like saba13. The character n-gram model used in this work can rely on
morphological clues to determine parts of speech for Luyia words. However, for borrowed words, these
morphological queues are likely not strong enough. The Tiriki tagger’s training data likely had tokens
similar to or identical to these borrowed words.

8 Future Work

I intend to implement this research for the other two other pairings given the three Luyia languages for
which data is available at the moment. The findings discussed herein are for using Tiriki and Bukusu to
tag Wanga. What differences emerge when using Bukusu and Wanga to tag Tiriki or Wanga and Tiriki to
tag Bukusu? In addition, certain parts of speech benefit more with the mixed language models described
in section 5.2. What kind of accuracy can be obtained by combining finite-state and machine learning
approaches using machine learning for open class parts of speech and

9 Conclusion

Wanga, a Luyia language can be tagged more effectively by using data from other varieties of Luyia.
However, this effectiveness has a few stipulations. The variety that is effective is not necessarily the
variety that is closest to Wanga. In these experiments, Tiriki, the more distantly related language fared
better than Bukusu in both the direct tagging tasks and the combination tasks. A number of factors led
to this advantage including vocabulary overlap between the Wanga and Tiriki corpora and a bias towards
predicting open class parts of speech using the Tiriki tagger. In addition, while the introduction of data
in the combination models can help, this effect is limited to cases where the training set size is small. As
there are no annotated corpora at all for the 20 Luyia languages not used in this document, these findings
could be used to create annotated corpora. This could be done either by using all available annotated
data from another Luyia variety11 to annotate the new variety or by annotating a very small corpus from
the new variety and then creating a mixture model.
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