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Preface

Welcome to the 5th Workshop on Natural Language Processing Techniques for Educational Applications
(NLPTEA 2018), with a Shared Task on Chinese Grammatical Error Diagnosis.

The development of Natural Language Processing (NLP) has advanced to a level that affects the research
landscape of many academic domains and has practical applications in many industrial sectors. On the
other hand, educational environment has also been improved to impact the world society, such as the
emergence of MOOCs (Massive Open Online Courses). With these trends, this workshop focuses on the
NLP techniques applied to the educational environment. Research issues in this direction have gained
more and more attention, examples including the activities like the workshops on Innovative Use of NLP
for Building Educational Applications since 2005 and educational data mining conferences since 2008.

This is the fifth workshop held in the Asian area, with the first one NLPTEA 2014 workshop being held
in conjunction with the 22nd International Conference on Computer in Education (ICCE 2014) from
Nov. 30 to Dec. 4, 2014 in Japan. The second edition NLPTEA 2015 workshop was held in conjunction
with the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (ACL-IJCNLP 2015) from July 26- 31 in Beijing,
China. The third version NLPTEA 2016 workshop was held in conjunction with the 26th International
Conference on Computational Linguistics (COLING 2016) from December 11- 16 in Osaka, Japan.
The fourth edition NLPTEA 2017 workshop was held in conjunction with the 8th International Joint
Conference on Natural Language Processing (IJCNLP 2017) from November 27- December 1 in Taipei,
Taiwan. This year, we continue to promote this research line by holding the workshop in conjunction
with the ACL 2018 conference and also holding the fourth shared task on Chinese Grammatical Error
Diagnosis. We receive 33 valid submissions for research issues, each of which was reviewed by at least
two experts, and have 12 teams participating in the shared task and submitting their task reports. In total,
there are 10 oral papers and 20 posters accepted. We also organize a keynote speech in this workshop.
The invited speaker Professor Yuji Matsumoto is expected to deliver a great talk entitled as "Multi-word
Expressions in Second Language Learning".

We would like to thank the program committee members for their hard work in completing the review
tasks. Their collective efforts achieved quality reviews of the submissions within a few weeks. Great
thanks should also go to the speaker, authors, and participants for the tremendous supports in making
the workshop a success.

Welcome you to the Melbourne city, and wish you enjoy the city as well as the workshop.

NLPTEA 2018 Workshop Chairs
Yuen-Hsien Tseng, National Taiwan Normal University
Hsin-Hsi Chen, National Taiwan University
Vincent Ng, The University of Texas at Dallas
Mamoru Komachi, Tokyo Metropolitan University
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Invited Speaker

Yuji Matsumoto, Professor of Information Science, Nara Institute of Science and Technology

Title:

Multi-word Expressions in Second Language Learning

Abstract:

Multi-word Expressions (MWEs) pose difficult problems to the learners of a second language. Ef-
fective learning of MWEs is important for them to become fluent speakers or writers. In this talk,
I will discuss what kinds of resource and functionality are useful in computational assistance to
language learners, and present our experiences on construction of MWE resources, MWE usage
classification, MWE-aware error correction and proper usage suggestion.

Biography:

Yuji Matsumoto is currently a Professor of Information Science, Nara Institute of Science and
Technology, and a Team Leader of the Knowledge Acquisition Team at Riken AIP. He received
his M.S. and Ph.D. degrees in information science from Kyoto University in 1979 and in 1989.
He joined Machine Inference Section of Electrotechnical Laboratory in 1979. He has then experi-
enced an academic visitor at Imperial College of Science and Technology, a deputy chief of First
Laboratory at ICOT, and an associate professor at Kyoto University. His main research interests
are natural language understanding and machine learning. He is an ACL fellow and a fellow of
Information Processing Society of Japan.
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Abstract

We propose a technique for generating
complex reading comprehension questions
from a discourse that are more useful
than factual ones derived from assertions.
Our system produces a set of general-
level questions using coherence relations.
These evaluate comprehension abilities
like comprehensive analysis of the text
and its structure, correct identification of
the author’s intent, thorough evaluation of
stated arguments; and deduction of the
high-level semantic relations that hold be-
tween text spans. Experiments performed
on the RST-DT corpus allow us to con-
clude that our system possesses a strong
aptitude for generating intricate questions.
These questions are capable of effectively
assessing student interpretation of text.

1 Introduction

The argument for a strong correlation between
question difficulty and student perception comes
from Bloom’s taxonomy (Bloom et al. (1964)). It
is a framework that attempts to categorize question
difficulty in accordance with educational goals.
The framework has undergone several revisions
over time and currently has six levels of percep-
tion in the cognitive domain: Remembering, Un-
derstanding, Applying, Analyzing, Evaluating and
Creating (Anderson et al. (2001)). The goal of
a Question Generation (QG) system should be to
generate meaningful questions that cater to the
higher levels of this hierarchy and are therefore
adept at gauging comprehension skills.

The scope of several QG tasks has been severely
restricted to restructuring declarative sentences
into specific level questions. For example, con-
sider the given text and the questions that follow.

Input: The project under construction will raise
Las Vegas’ supply of rooms by 20%. Clark county
will have 18000 new jobs.
Question 1: What will raise Las Vegas’ supply of
rooms by 20%?
Question 2: Why will Clark County have 18000
new jobs?

From the perspective of Bloom’s Taxonomy,
questions like Question 1 cater to the ‘Remem-
bering’ level of the hierarchy and are not apt for
evaluation purposes. Alternatively, questions like
Question 2 would be associated with the ‘Analyz-
ing’ level as these would require the student to
draw a connection between the events, ‘increase in
room supply in Las Vegas’ and ‘creation of 18000
new jobs in Clark County’. Further, such ques-
tions would be more relevant in the context of an
entire document or paragraph; and serve as better
reading comprehension questions.

This paper describes a generic framework for
generating comprehension questions from short
edited texts using coherence relations. It is or-
ganized as follows: Section 2 elaborates on pre-
viously designed QG systems and outlines their
limitations. We also discuss Rhetorical Structure
Theory (RST), which lays the linguistic founda-
tions for discourse parsing. In Section 3, we ex-
plain our model and describe the syntactic trans-
formations and templates applied to text spans for
performing QG. In Section 4, we discuss experi-
ments performed on the annotated RST-DT corpus
and measure the quality of questions generated by
the system. Proposed evaluation criteria address
both the grammaticality and complexity of gener-
ated questions. We have also compared our system
with a baseline to show that our system is able to
generate complex questions. Finally, in Section 5,
we provide our conclusions and suggest potential
avenues for future research.
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2 Related Work

2.1 Previous QG systems
Previous research work done in QG has primar-
ily focused on transforming declarations into in-
terrogative sentences, or on using shallow seman-
tic parsers to create factoid questions.

Mitkov and Ha (2003) made use of term ex-
traction and shallow parsing to create questions
from simple sentences. Heilman and Smith (2010)
suggested a system that over-generates questions
from a sentence. Firstly, the sentence is simpli-
fied by discarding leading conjunctions, sentence-
level modifying phrases, and appositives. It is then
transformed into a set of candidate questions by
carrying out a sequence of well-defined syntactic
and lexical transformations. Then, these questions
are evaluated and ranked using a classifier to iden-
tify the most suitable one.

Similar approaches have been suggested over
time to generate questions, like using a recursive
algorithm to explore parse trees of sentences in
a top-down fashion (Curto et al. (2012)), creat-
ing fill-in-the-blank type questions by analyzing
parse trees of sentences and thereby identifying
answer phrases (Becker et al. (2012)); or using
semantics-based templates (Lindberg et al. (2013);
Mazidi and Nielsen (2014)). A common drawback
associated with these systems is that they create
factoid questions from single sentences and focus
on grammatical and/or semantic correctness, not
question difficulty.

The generation of complex questions from mul-
tiple sentences or paragraphs was explored by
Mannem et al. (2010). Discourse connectives
such as ‘because’, ‘since’ and ‘as a result’ sig-
nal explicit coherence and can be used to gener-
ate Why-type questions. Araki et al. (2016) cre-
ated an event-centric information network where
each node represents an event and each edge rep-
resents an event-event relation. Using this net-
work, multiple choice questions and a correspond-
ing set of distractor choices are generated. Ol-
ney et al. (2012) suggested the use of concept
maps to create inter-sentential questions where
knowledge in a book chapter is represented as
a concept map to generate relevant exam ques-
tions. Likewise, Papasalouros et al. (2008) and
Stasaski and Hearst (2017) created questions uti-
lizing information-rich ontologies.

Of late, several encoder-decoder models have
been used in Machine Translation (Cho et al.

(2014)) to automatically learn the transformation
rules that enable translation from one language to
another. Yin et al. (2015) and Du et al. (2017) ar-
gue that similar models can be used to automat-
ically translate narrative sentences into interroga-
tive ones.

2.2 Rhetorical Structure Theory

In an attempt to study the functional organization
of information in a discourse, a framework called
Rhetorical Structure Theory (RST) was proposed
by Thompson and Mann (1987). The framework
describes how short texts written in English are
structured by defining a set of coherence relations
that can exist between text spans. Typically, re-
lations in RST are characterized by three param-
eters: the nucleus, the satellite and the rhetorical
interaction between the nucleus and the satellite.
The nucleus is an action; the satellite either de-
scribes this action, provides the circumstance in
which this action takes place or is a result of the
performed action. Notable exceptions are rela-
tions such as Contrast, List, etc. which are multi-
nuclear and do not involve satellites.

In order to describe the complete document,
these relations are expressed in the form of a dis-
course graph, an example of which is shown in
Figure 1 (O’Donnell, 2000).

We simplify the task of QG by focusing only on
the relations given in Table 1. We have condensed
some of the relations defined in the RST manual
(Thompson and Mann, 1987) and grouped them
into new relation types as shown. A complete def-
inition of these relation types can be found in Carl-
son et al. (2003).

Relation (N,S) Obtained from

Explanation (N,S)
Evidence, Reason, Expla-
nation

Background (N,S) Background, Circumstance
Cause (N,S) Cause, Purpose
Result (N,S) Result, Consequence

Solutionhood (N,S) Problem-Solution
Condition (N,S) Condition, Hypothetical
Evaluation (N,S) Evaluation, Conclusion

Table 1: Set of relations used by our system. Here,
N represents the Nucleus and S represents the
Satellite

2



Figure 1: An example of discourse graph for a text sample from the RST-DT corpus

3 Approach

3.1 System Description

The text from which questions are to be gener-
ated goes through the pipeline shown in Figure 2.
A detailed description of each module/step in the
pipeline is described in the subsequent subsec-
tions.

Figure 2: System pipeline

3.1.1 Data Preparation
Here the discourse graph associated with the doc-
ument is input to the system, which in turn extracts
all relevant nucleus-satellite pairs. Each pair is
represented as the tuple: Relation (Nucleus, Satel-
lite).

Prior to applying any syntactic transforma-
tions on the text spans, we remove all leading
and/or trailing conjunctions, adverbs and infinitive
phrases from the text span. Further, if the span be-
gins or ends with transition words or phrases like

‘As a result’ or ‘In addition to’, we remove them
as well.

The inherent nature of discourse makes it dif-
ficult to interpret text spans as coherent pockets
of information. To facilitate the task of QG, we
have ignored text spans containing one word. Fur-
ther, in several cases, we observe that the ques-
tions make more sense if coreference resolution
is performed: this task was performed manually
by a pair of human annotators who resolved all
coreferents by replacing them with the concepts
they were referencing. Two types of coreference
resolution are considered: event coreference res-
olution (where coreferents referring to an event
are replaced by the corresponding events) and en-
tity coreference resolution (where coreferents re-
ferring to entities are replaced by the correspond-
ing entities). Also, to improve the quality of gener-
ated questions, annotators replaced some words by
their synonyms (Glover et al. (1981); Desai et al.
(2016)).

3.1.2 Text-span Identification
We associate each text span with a Type depend-
ing on its syntactic composition. The assignment
of Types to the text spans is independent of the co-
herence relations that hold between them. Table 2
describes these Types with relevant examples.

3.1.3 Syntax transformations
If the text span is of Type 1 or Type 2, we analyze
its parse tree and perform a set of simple surface
syntax transformations to convert it into a form
suitable for QG. We first use a dependency parser
to find the principal verb associated with the span,
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Figure 3: Syntactic transformations applied on text spans. These transformations convert the spans to a
form suitable for QG.

Span
type

Characteristic
of span Example

Type 0
A group of

many sentences

A bomb
exploded in the

building. It
destroyed its
installations.

Type 1

One sentence,
or a phrase or

clause not
beginning with

a verb, but
containing one

The bomb
destroyed the

building.

Type 2
Phrase or clause
beginning with

a verb

destroyed the
buildings

Type 3
Phrase or clause

that does not
contain a verb

destruction of
the building

Table 2: Text span Types with relevant examples

its part-of-speech tag and the noun or noun phrase
it is modifying. Then, according to the obtained
information, we apply a set of syntactic transfor-
mations to alter the text. Figure 3 describes these
transformations as a flowchart.

No syntactic transformations are applied on text
spans of Type 0 or Type 3. We directly craft ques-
tions from text spans that belong to these Types.

3.1.4 Question Generation
Upon applying the transformations described in
Figure 3, we obtain a text form suitable for QG. A
template is applied to this text to formulate the fi-
nal question. Table 3 defines these templates. The
design of the chosen templates depends on the re-
lation holding between the spans, without consid-
ering the semantics or the meaning of the spans.
This makes our system generic and thereby scal-
able to any domain.

3.2 Example

As an example, consider the same discourse graph
from Figure 1. We show how our system will gen-
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Relation Template for type 0 Template for
type 1

Template for
type 2

Template for
type 3

Explanation

[Nucleus]. What
evidence can be

provided to support
this claim?

Why [Nucleus]? What [Nucleus]?
What caused
[Nucleus]?

Background
[Nucleus]. Under

what circumstances
does this happen?

Under what
circumstances

[Nucleus]?

What
circumstances

[Nucleus]?

What
circumstances led

to [Nucleus]?

Solutionhood
[Nucleus]. What is the

solution to this
problem?

What is the
solution to
[Nucleus]?

What solution
[Nucleus]?

What is the
solution to the

problem of
[Nucleus]?

Cause
[Satellite]. Explain the

reason for this
statement.

Why [Satellite]? What [Satellite] ?
Explain the
reason for
[Satellite]?

Result
[Nucleus]. Explain the

reason for this
statement.

Why [Nucleus]? What [Nucleus] ?
Explain the
reason for
[Nucleus]?

Condition
[Nucleus]. Under

what conditions did
this happen ?

Under what
conditions
[Nucleus]?

What conditions
[Nucleus] ?

What conditions
led to [Nucleus]?

Evaluation
[Nucleus]. What lets
you assess this fact?

What lets you
assess [Nucleus]?

What assessment
[Nucleus]?

What assessment
can be given for

[Nucleus]?

Table 3: Templates for Question Generation.

erate questions for a causal relation that has been
isolated in Figure 4.

For the given relation, we begin by associating
the satellite: “destroying a major part of its instal-
lations and equipment” with Type 2. The princi-
pal verb ‘destroying’ is changed to past tense form
‘destroyed’ and the pronoun ‘it’ is replaced by the
entity it is referencing i.e. ‘the offices of El Es-
pecatador’, to obtain the question stem: ‘destroyed
a major part of the installations and equipment of
the offices of El Especatador’.

We use the template for the cause relation for
Type 2 to obtain the question: “What destroyed
the installations and equipment of the offices of El
Especatador?”. Similar examples have also been
provided in Table 4.

4 Experimental Results

4.1 Data

For the purpose of experimentation, we used the
RST-DT corpus (Carlson et al. (2003)) that con-
tains annotated Wall Street Journal articles. Each

article is associated with a discourse graph that
describes all the coherence relations that hold be-
tween its components. We used these discourse
graphs for generating questions. As described in a
previous section, we filtered certain relations, and
did not consider those relations in which the tem-
plate is to be applied to text spans containing only
one word.

4.2 Implementation

Part-of-Speech tagging and Dependency parsing
were performed using Stanford’s Part-of-Speech
tagger (Toutanova et al. (2003)) and Dependency
Parser (Nivre et al. (2016); Bird (2006)) respec-
tively. We used the powerful linguistics library
provided by NodeBox (Bleser et al. (2002)) to
convert between verb forms. We have used a heav-
ily annotated corpus and made several amend-
ments ourselves, by performing coreference reso-
lution and paraphrasing. This is due to the inabil-
ity of modern discourse parsers to perform these
tasks with high accuracy. While advances have
been made in discourse parsing (Rutherford and
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Figure 4: Example of a cause relation from the document

Metric type Relation Generated
Question Evaluation

Nature of
coherence
relation

Nucleus: they are going to
be in big trouble with union-
ists over any Jaguar deal.
Satellite: If they try to build
it somewhere else in Europe
besides the U.K.,
Relation: Condition

Under what
conditions are

General Motors
and Ford Motor
Co. going to be in
big trouble with

unionists over any
Jaguar deal?

This is an example of an
explicit relation, made

apparent through the use of
discourse connective ‘If’ in

the satellite

Nature of
question

Nucleus: As a result,
Colombia will earn $500
million less from its coffee
this year than last.
Satellite: The 27-year old
coffee cartel had to be for-
mally dissolved this sum-
mer.
Relation: Result

Why will
Colombia earn

$500 million less
from its coffee this

year than last?

Here, both the question and
answer are derived from text
spans belonging to different
sentences. Thus the score

assigned will be 1.

Number of
inference

steps

Nucleus: Then, when it
would have been easier to
resist them, nothing was
done
Satellite: and my brother
was murdered by the mafia
three years ago
Relation: Explanation

Why was the
author’s brother

killed by the mafia
three years ago?

The student should be able
to correctly resolve the

pronoun ‘my’ to ‘the author’
and know that ‘killed’ is a
synonym of ‘murdered’.

Thus two semantic concepts,
paraphrase detection and

entity co-reference
resolution, are tested here.

Table 4: Examples for metric evaluation

Xue (2014); Li et al. (2014)), such models make
several simplifying assumptions about the input.
Likewise, coreference resolution (Bengtson and
Roth (2008); Wiseman et al. (2016)) is also an up-
hill task in discourse parsing.

4.3 Evaluation Criteria

To evaluate the quality of generated questions,
we used a set of criteria that are defined below.
We considered and designed metrics that measure
both the correctness and difficulty of the question.

All the metrics use a two-point scale: a score of 1
indicates the question successfully passed the met-
ric, a score of 0 indicates otherwise.

• Grammatic correctness of questions: This
metric checks whether the question generated
is only syntactically correct. We do not take
into account the semantics of the question.

• Semantic correctness of questions: We ac-
count for the meaning of the generated ques-
tion and whether it makes sense to the reader.
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It is assumed if a question is grammatically
incorrect, it is also semantically incorrect.

• Superfluous use of language: Since we are
not focusing on shortening sentences or re-
moving redundant data from the text, gener-
ated questions may contain information not
required by the student to arrive at the an-
swer. Such questions should be refined to
make them shorter and sound more fluent or
natural.

• Question appropriateness: This metric judges
whether the question is posed correctly i.e.
we check if the question is not ambivalent
and makes complete sense to the reader.

• Nature of coherence relation: Coherence re-
lations are classified into two categories: ex-
plicit (the relations that are made apparent
through using discourse connectives) and im-
plicit (the relations that require a deep un-
derstanding of the text). Questions generated
through explicit coherence relations are eas-
ier to attempt as compared to the ones gen-
erated via implicit coherence relations. We
assign a score of 1 to a question generated
from an implicit coherence relation and 0 to
that generated from an explicit relation.

• Nature of question: We check for the nature
of generated question: If both the answer and
question are derived from the same sentence,
we assign a score of 0, otherwise the score
will be 1.

• Number of inference steps (Araki et al.
(2016)): To evaluate this metric, we consider
three semantic concepts: paraphrase detec-
tion, entity co-reference resolution and event
co-reference resolution. We consider a score
for each concept: 1 if the concept is required
and 0 if not. We take the arithmetic mean of
these scores to get the average number of in-
ference steps for a question.

4.4 Example

As an example, consider some of the tuples ob-
tained from the RST-DT corpus. Table 4 explains
how the generated questions evaluate against some
of our criteria.

4.5 Results and Analysis

We generated questions for the entire corpus using
our system. For the 385 documents it contains, a

total of 3472 questions were generated. Table 5
describes the statistics for the questions generated
for each relation type.

Relation type Fraction of
generated questions

Explanation 0.282
Background 0.263

Solutionhood 0.014
Cause 0.164
Result 0.156

Condition 0.067
Evaluation 0.054

Table 5: Statistics for Generated Questions

For evaluating our system (represented as QG),
we considered the system developed by Heilman
and Smith (2010) as a baseline (represented as
MH). We sampled 20 questions for each relation
type. Note that we did not consider the last four
metrics for comparison purposes as these met-
rics were designed keeping question complexity in
mind: MH never addressed this issue and hence
such a comparison would be unfair. Table 6 sum-
marizes the results obtained for our system against
each relation type. The process was done by two
evaluators who are familiar with the evaluation cri-
teria, and are well versed with the corpus and na-
ture of generated questions. The table reports the
average scores, considering the evaluation done by
each evaluator.

An analysis of the results reveals that many
questions are syntactically and semantically well-
formed and our results are comparable to that of
MH. QG does outperform MH in several cases:
however these performance gains are incremental.
Issues commonly arose due to errors made by the
parser; and the inability of NodeBox to convert be-
tween verb forms. Additionally, in some cases, the
templates designed were unable to handle all text
span Types either due to poor design or because
the text span did not follow either definition of the
defined Types. For example, some text spans were
phrased as questions and some had typographical
errors (originally in the text): this led to the gen-
eration of unnatural questions. Further, some text
spans were arranged in a way such that the main
clause appeared after the subordinate clause (For
example, the sentence ‘If I am hungry, I will eat a
cake’): handling such text spans would require us
to modify the text such that the subordinate clause
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Evaluation criteria System R1 R2 R3 R4 R5 R6 R7 Average

Grammatical Correctness
MH 0.95 0.94 0.91 0.98 0.98 0.9 0.84 0.95
QG 0.95 0.92 0.91 0.98 0.97 0.87 0.8 0.94

Semantic Correctness
MH 0.95 0.91 0.97 0.88 0.94 0.88 0.8 0.93
QG 0.93 0.91 0.98 0.92 0.94 0.87 0.8 0.91

Superfluity of language
MH 0.84 0.81 0.77 0.82 0.71 0.9 0.83 0.66
QG 0.81 0.69 0.78 0.82 0.68 0.96 0.8 0.7

Question Appropriateness QG 0.93 0.83 0.95 0.75 0.78 0.87 0.6 0.85
Nature of coherence relation QG 0.79 0.38 1.0 0.33 0.27 0.22 0.94 0.52

Nature of Question QG 0.71 0.37 1.0 0.24 0.24 0.4 0.88 0.45
Average no. of inference steps QG 0.43 0.46 0.42 0.56 0.39 0.33 0.27 0.42

Table 6: Average score for the evaluation criteria. Here R1: Explanation, R2: Background, R3: Solu-
tionhood, R4: Cause, R5: Result, R6: Condition, R7: Evaluation. The average scores for each criterion
are indicated in the last column.

follows the main clause (In this example’s case, ‘I
will eat a cake if I am hungry’). However, to the
best of our knowledge, there are no known trans-
formations that allow us to achieve this rearrange-
ment.

Table 7 provides some statistics on common er-
ror sources that contributed to semantic (and/or
grammatical) errors in generated questions.

Source of Error
Percentage of

incorrect
questions

NodeBox
errors

6.7%

Parsing
errors

8.3%

Poor template
design

13.3%

Incorrect Type
Identification

13.3%

Clause
rearrangement

57.3%

Other minor
errors

1.0%

Table 7: Common error sources: The percentage
of incorrect questions is the ratio of incorrect to
total questions with semantic/grammatic errors.

Superfluity of language is of concern, as gener-
ated questions often contained redundant informa-
tion. However, identifying redundant information
in a question would require a deep understanding
of the semantics of the text spans and of the rela-
tion that holds between them. Currently, modern

discourse parsers are inept at handling this aspect.
The latter four metrics depend heavily on the

corpus, and not the designed system. QG, be-
cause of its ability to create inter-sentential ques-
tions and handle complex coherence relations, was
given a moderate to good score by both evalua-
tors. Depending on the text and its relations, these
scores may vary. We expect these scores to in-
crease considerably for a corpus containing many
implicit relations between text spans that are dis-
placed far apart in the text.

5 Conclusions and future work

We used multiple sources of information, namely
a cognitive taxonomy and discourse theory to gen-
erate meaningful questions. Our contribution to
the task of QG can be thus summarized as:

• As opposed to generating questions from sen-
tences, our system generates questions from
entire paragraphs and/or documents.

• Generated questions require the student to
write detailed responses that may be as long
as a paragraph.

• Designed templates are robust. Unlike previ-
ous systems which work on structured inputs
such as sentences or events, our system can
work around mostly any type of input.

• We have considered both explicit coherence
relations that are made apparent through dis-
course connectives (Taboada (2009)), and
implicit relations that are difficult to realize.

• Our system generates inter-sentential ques-
tions. To the best of our knowledge, this is
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the first work to be proposed that performs
this task for a generic document.

There are several avenues for potential research.
We have focused only a subset of relations mak-
ing up the RST-DT corpus. Templates can also be
defined for other relations to generate more ques-
tions. Further, Reed and Daskalopulu (1998) ar-
gue RST can be complemented by defining more
relations or relations specific to a particular do-
main. We also wish to investigate the effectiveness
of encoder-decoder models in obtaining questions
from Nucleus-Satellite relation pairs. This might
eliminate the need for manually performing coref-
erence resolution and/or paraphrasing.

We also wish to investigate other performance
metrics that could allow us to measure question
complexity and extensibility. Further, we have
not addressed the task of ranking questions ac-
cording to their difficulty or complexity. We wish
to come up with a statistical model that analyzes
questions and ranks them according to their com-
plexity or classifies them in accordance with the
levels making up the hierarchy of Bloom’s taxon-
omy (Thompson et al. (2008)).
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Abstract 

Teaching reading comprehension in K – 
12 faces a number of challenges. Among 
them are identifying the portions of a text 
that are difficult for a student, compre-
hending major critical ideas, and under-
standing context-dependent polysemous 
words. We present a simple, unsupervised 
but robust and accurate syntactic method 
for achieving the first objective and a 
modified hierarchical lexical method for 
the second objective. Focusing on pin-
pointing troublesome sentences instead of 
the overall readability and on concepts 
central to a reading, we believe these 
methods will greatly facilitate efforts to 
help students improve reading skills. 

1 Introduction 

Teaching reading comprehension and readability 
research are related but also different. Readability 
research generally focuses on ranking the difficult 
level of a passage while reading comprehension 
education more directly aims at helping students 
read better. 

Although readability metrics offer a good indi-
cation of a passage’s difficulty level, a more use-
ful approach for teaching comprehension is to 
pick out those difficult sentences for specific, tar-
geted learning.  Although vocabulary is an im-
portant factor in making a sentence difficult, it al-
so often happens that a sentence, either with no 
unknown words or after all the words have been 
looked up, is still difficult to understand. The fol-
lowing is an example from a 6th grade history 
reading:  

“Nor have legitimate grounds ever failed a 
prince who wished to show colorable excuse for 
the non-fulfillment of his promise.”1 
                                                   
1 Niccolo Machiavelli, The Prince, Chapter XVII. 

Even though the main idea was more or less 
clear, sentences like this were, in general, difficult 
for 6th graders. 

Sufficient background and vocabulary are two 
prerequisites of reading success, but beyond these 
two, what textual features are there that make a 
sentence hard? This is one question this paper ad-
dresses.  The second question is how to help stu-
dents understand all major critical ideas in a read-
ing because in a passage, in addition to the main 
idea, there are major supporting details that are 
crucial to comprehension.  For example, in Martin 
Luther King Jr.’s Beyond Vietnam speech, the 
main idea is to oppose the war in Vietnam and 
there are four major reasons given.  Understand-
ing these four reasons is as integral to the pas-
sage’s comprehension as the main idea.  The third 
question we address is how to help students un-
derstand in-context polysemous words. Together, 
this paper makes the following contributions: 
• A set of simple and accurate statistics that 

identifies, within a passage, the sentences that 
are challenging. 

• A set of interesting findings about the stand-
ardized reading tests. 

• A modified hierarchical lexical clustering 
method to find critical concepts in a reading. 

• A word2vec application for selecting in-
context meaning of a word. 

2 Previous Work 

One focus of the previous NLP work on accessing 
text difficulties is readability ranking. For exam-
ple, Lexile (Lennon, 2004), Flesch-Kincaid (Kin-
caid, 1975), Dale-Chall (Dale, 1948), Coleman-
Liau (Coleman, 1975), and SMOG (McLaughlin, 
1969) largely rely on words and sentence length. 
Since one or two long sentences or difficult words 
do not necessarily make a passage difficult, those 
systems give rankings for an entire passage or a 
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book and are not aimed at pinpointing difficult 
sentences. 

Recently, Pitler et. al. (2008), Peterson et. al. 
(2009), Kate et. al. (2010), Feng (2010), and 
Dascalu et. al. (2013) addressed the readability 
problem using supervised data and a richer set of 
linguistic features. However, their systems still fo-
cus on giving a readability score of the overall ar-
ticle, not individual sentences from which stu-
dents can improve their reading comprehension. 
Pitler et. al. (2008) and Tanaka-Ishii et. al. (2010) 
also built comparators to decide relative difficulty 
between two sentences.  Both and Tanaka-Ishii et. 
al. (2010) especially make heavy use of lexical 
features. All these models also require supervised 
data and vocabulary acquisition. 

Works by François et. al. (2014), Siddharthan 
et. al. (2014), and Vajjala et. al. (2014) have fo-
cused on sentence simplification instead of sen-
tence selection for the purpose of teaching reading 
comprehension.  This paper provides a simple and 
robust method for identifying difficult sentences 
in a reading passage. We incorporate some of the 
standard features seen in previous work such as 
tree depth, but we also devise new features such 
as abstract appositives.  While much of the previ-
ous research has made use of both lexical and syn-
tactic features, our focus is on an in-depth study 
on syntax phenomena that contribute to sentence 
complexity. 

In addition to individual sentences that are hard 
to read, scattered concepts are also challenging to 
a reader.  An author often develops a critical idea 
in several paragraphs using paraphrases, syno-
nyms, and related ideas. When a reader cannot see 
the relation among these words and phrases, he 
will have difficulty grasping that concept.  For this 
problem, we propose a word2vec-based (Mikolov, 
2013) modified hierarchical clustering model to 
find clusters of concepts in a reading passage. 

3 The Syntactic Features 

We present a set of simple and robust features able 
to identify the difficult sentences in a reading.  We 
show the efficacy of these features in a series of 
tests on grade-level readings. 

3.1 The Features 

Figures 1a – 1f depict each feature in action.  In 
the figure, each rectangular box describes what 
the feature is and how the feature is determined. 

3.2 Feature Performance 

Our goal is to find candidate sentences that are 
challenging for a young reader. This task is diffi-
cult to evaluate for two reasons: the lack of la-
beled data at sentence level and probably more 
importantly, the lack of a methodology for creat-
ing such a dataset.  The creation of supervised da-
ta involves judgment from a young reader (under 
16 years of age). First, young children often can-
not articulate what they find difficult. Second, 
they sometimes think they understand a sentence 
while they don’t. An attempt was made at a local 
tutoring center for children 11-16. Fifty-two chil-
dren were given a grade-level passage and an 
above-grade passage (e.g. a hard SAT passage).  
They were asked to pick out the sentences they 
didn’t understand.  For both passages, more than 
80% of the children either said they understood 
everything or they found the passage hard but 
couldn’t tell where the difficulties were. They 
were then given multiple-choice questions.  Fewer 
than 5% of the children who claimed they under-
stood everything scored perfectly on the test.  For 
more than 50% of the mistakes made, more than 
half the children claimed that it was not because 
they didn’t understand the passage but because 
they were careless.  This attempt showed that hu-
man judgment from a young reader is hard to ob-
tain.  Secondly, an approximation of difficulty via 
test performance is problematic. Perhaps, a possi-
ble approach is to convene expert reading teachers 
and ask them to, based on their field experiences, 
rank each sentence’s difficulty level for each 
grade. This would require these teachers to have 
intimate knowledge of how children process sen-
tences. For these reasons, we first evaluate the 
features by measuring how well they correspond 
to the changes in reading levels. We then use the 
features to rank the difficulty of each sentence and 
perform a qualitative assessment. 
     For the first part of the evaluation, we look for 
data that correlate well with grade levels. Repre-
sentative grade-level readings are not easy to col-
lect because readers in each grade vary greatly in 
their reading abilities2. We thus use passages in 
standardized tests. In this section, we present data 
from passages on the New York State ELA tests, 
which are annual tests given to students from 
grades 3 to 8. For high school reading data, we 
                                                   
2 For example, according to Lexile, the range for 7th grade 
reading is 300L to 1330L, a difference between Three Billy-
Goats Gruff (340L) and Understanding Hume (1290L). 
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use the SAT test, a national test for high school 
students. Thus, the data represent standard reading 
levels of grades 3 to high school. We first run the 

Stanford parser (Manning et. al.,2014).  We then col-
lect statistics of the nine features on each sentence. 
The data statistics and feature performance are

 
(a) Delay, NPVP Pairs, and Depth 

 
(b) Interruption 

 
 

(c) Parallelism 

 
(d) Inversion and Negation 

 
(e) Abstract Appositive 

 
(f) PP Fronting 

Figure 1. Syntactic Features 

presented in Table 1 and Figures 2a-2c. p-values 
of t-test at α=0.05 are shown in Tables 2a – 2c. 
For example, the increase in Delay from Grade 5 

to Grade 6 is 95% statistically significant (p-value 
0.003 < 0.05 in Table 2a).  All significant changes 
are in bold. While the general trend is increasing 
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through grades, sometimes decreases are observed 
in two adjacent grades. Many of the decreases are  
statistically insignificant such as the decrease in 
Delay from G3 to G4 with p-value of 0.13.    
     It is noticeable that in grades 3 – 12, standard 
readings contain virtually none of the more spe-
cialized features of 1c-1f.  These features are more 
prominent in older and more mature readings such 
as those in 19th-century literature.  In section 5, we 
use only features in 1a and 1b.   

 
Grade Test Year #Sentences #Tokens 
3 2006 – 10 975 9,967 
4 2006 – 10 1,729 20,533 
5 2006 – 10 1,131 14,972 
6 2006 – 10 1,145 17,306 
7 2006 – 10 1.296 20,256 
8 2006 – 10 1,636 26,812 
9+ 2009,12, 16 1,397 35,415 

Table 1. Data Statistics 
 
Grade Delay Pair NP-VP Depth 
3à4 0.13 1.76e-11 3.47e-11 

4à5 0.48 0.035 1.48e-7 

5à6 0.003 0.002 0.002 
6à7 0.38 0.011 0.011 

7à8 0.59 0.68 0.68 

8à9+ 2.64e-9 1.09e-38 2.26e-55 

Table 2a. p-values 
 

Grade Inversion Parallel Interruption 
3à4 0.10 0.61 0.20 
4à5 0.25 0.015 0.008 

5à6 0.31 0.31 0.04 
6à7 0.08 0.08 0.58 
7à8 0.83 0.83 0.05 

8à9+ 1.80e-14 1.80e-14 3.10e-6 

Table 2b. p-values 
 

Grade Negation Abstract 
Appositive 

PP 
Fronting 

3à4 0.07 0.008 0.10 
4à5 0.45 0.08 0.83 
5à6 0.28 0.33 0.75 
6à7 0.06 0.76 0.14 
7à8 0.30 0.35 0.24 

8à9+ 9.52e-12 0.87 7.68e-9 
Table 2c. p-values 

 
Figure 2a. Depth 

 
 

 
Figure 2b. Delay, NPVP, Interruption, Parallel, 

and Negation 
 

 
Figure 2c. Inversion, Abstract Appositive, and PP 

Fronting 
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     Next we rank the sentences. Each sentence has 
a vector of nine feature scores.  Although many 
different weighing schemes are possibilities, we 
take the simple approach of uniform weights.  We 
compare the top-3 most difficult sentences ranked 
by the nine features to those ranked by sentence 
length and tree depth.  For lower-grade texts, there 
is almost no difference in the order.  But for more 
complex passages, more significant differences 
start to show.  Through this exercise, we also find 
a qualitative value of the nine features.  Even 
when the rankings by our nine features agree with 
the length-based rankings, we can point out more 
specifically what makes these sentences difficult.  
These specifics are shown as Notes in Table 3.  
We believe the ability to locate these syntax phe-
nomena for students should be helpful in improv-
ing their reading skills. 
 
Rank Sentence 
Top 1 
by both 

Deeming that a serene and unconscious 
contemplation of him would best beseem 
me, and would be most likely to quell his 
evil mind, I advanced with that expression 
countenance, and was rather congratulating 
myself on my success, when suddenly the 
knees of Trabb's boy smote together, his 
hair uprose, his cap fell off, he trembled 
violently in every limb, staggered out into 
the road, and crying to the populace, "Hold 
me!” 

Notes:  Specifically, in addition to a depth of 17 
levels, two long delay (underlined), and a 
parallel phrase (double underlined). 

Top 2 
by 
length 
and 
depth 

Words cannot state the amount of aggrava-
tion and injury wreaked upon me by 
Trabb's boy, when, passing abreast of me, 
he pulled up his shirt collar, twined his 
side-hair, stuck an arm akimbo, and 
smirked extravagantly by, wriggling his el-
bows and body, and drawling to his attend-
ants, "Don't know yah, don't know yah, 
'pon  my soul don't know yah!" 

Top 2 
by nine 
features 

The disgrace attendant on his immediately 
afterwards taking so crowing and pursuing 
me across the bridge with crows, as from 
an exceedingly dejected fowl who had 
known me when I was a blacksmith, cul-
minated the disgrace with which I left the 
town, and was, so to speak, ejected by it in-
to the open country. 

Notes:  a long interruption of 18 words (under-
lined), one parallel phrase (“crowing and 
pursuing”, double underline), and one PP 
fronting (“with which”, italicized).   

Top 3 
by both 

One or two of the tradespeople even darted 
out of their shops, and went a little way 
down the street before me, that they might 
turn, as if they had forgotten something, 
and pass me face to face – on which occa-
sions I don't know whether they or I made 
the worse pretence; they of doing it, or I of 
not seeing it. 

Notes: Specific features are PP fronting (itali-
cized) and one parallel phrase (underlined). 

Table 3. Sentence Ranking Example 

4 The Lexical Approach 

We now turn to finding critical ideas in a reading.  
Our concern is to find related and paraphrased 
words that contribute to the same idea.  

4.1 An Example 

We distinguish critical ideas from the main idea of 
a reading.   Critical ideas are any ideas that the au-
thor develops to some extent.  A crude definition 
is that a critical idea is an idea that the author 
mentions more than once. They may or may not 
be the main idea, but they should all contribute to 
the main idea.  In the following short passage, 
there is one main idea and several critical ideas. 

“Black holes are the most efficient engines of de-
struction known to humanity. Their intense gravity is 
a one-way ticket to oblivion, and material spiraling 
into them can heat up to millions of degrees and 
glow brightly. Yet, they are not all-powerful. Even 
supermassive black holes are minuscule by cosmic 
standards. They typically account for less than one 
percent of their galaxy's mass. Accordingly, astron-
omers long assumed that supermassive holes, let 
alone their smaller cousins, would have little effect 
beyond their immediate neighborhoods. So it has 
come as a surprise over the past decade that black 
hole activity is closely intertwined with star for-
mation occurring farther out in the galaxy.” (SAT 
2009 Practice Test) 

The main idea is the last sentence of the pas-
sage, but the many critical ideas that the author 
develops are: “black holes”, “destruction”, and 
“intertwined with star formation”.  

4.2 Finding Critical Ideas 

The word2vec model (Mikolov, 2013) has been 
a widely used statistical model for encoding word 
meanings.  We use a modified hierarchical cluster-
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ing algorithm using word2vec3 as a representation 
of each word.  First, cosine distances are comput-
ed on every word pair in the passage (after remov-
ing stopwords), resulting in an ! × ! matrix 
where n is the number of words.  Unlike the tradi-
tional hierarchical clustering where the end result 
is a tree structure, our clustering is more flat and 
does not build a hierarchy.  The linking criteria are 
two: (1) the distance between two words must ex-
ceed a minimum and (2) the distance between a 
word and an existing cluster must exceed a mini-
mum percentage of the best pair in the cluster.  
The algorithm is in Figure 3. 
 

 
Figure 3. Word2Vec Modified Clustering 

 

5 Applications, Experiments and Re-
sults 

In addition to identifying troublesome sentences, 
there are many other useful things possible with 
these features. Interesting experiments include 
comparing tests across many dimensions such as 
across geography and across standards. 

 

                                                   
3 This is the Google News word2vec at 
https://github.com/mmihaltz/word2vec-GoogleNews-
vectors 

5.1 State Difference? 

The National Assessment of Educational 
Progress, or NEAP offers reading assessments to 
4th and 8th graders nationwide. In 2015, all 52 
states participated. A state may score higher than 
another state for a variety of reasons, economic, 
political, etc. In this experiment, we’re interested 
in seeing if there might be any meaningful corre-
lation at all between a state’s NAEP score and the 
difficulty level of its state ELA4 tests. To this end, 
we select Massachusetts, the top-ranking state 
whose NAEP score of 235 is considerably higher 
than the national average of 221, and compare its 
state ELA passages to those of New York whose 
score is 223. The data comparison is shown in Ta-
ble 4a. The metrics are shown in Tables 4b and 4c 
where p-values are at 95% and the bold values in-
dicate statistical significance. Again, the more 
specialized feature ‘Inversion’ is not a significant 
factor in 4th and 8th grade readings5. 

 
Grade Sentences Words 
NY 4th  1,729 20,533 
MA 4th 1,093 16,593 
NY 8th 1,636 26,812 
MA 8th 908 17,594 

Table 4a. NY and MA ELA Passages 
 

Metric NY 4th MA 4th p-value 
Delay 1.551 2.083 9.26e-5 

Interruption 0.180 0.527 3.54e-7 
Pairs NP VP 1.484 1.765 7.68e-11 

Depth 7.723 8.662 1.85e-15 
Inversion 0.002 0.002 0.80 

Table 4b. NY and MA 4th grade comparison 
 

Metric NY 8th MA 8th p-value 
Delay 2.110 2.613 0.016 

Interruption 0.557 1.116 1.71e-6 
Pairs NP VP 1.778 2.074 5.46e-7 

Depth 9.114 9.809 1.26e-5 
Inversion 0.004 0.007 0.46 

Table 4c. NY and MA 8th grade comparison 
 
It’s interesting to see that for both 4th and 8th 
grades, there is a progression of text difficulty 
from NY’s ELA tests to MA’s ELA tests. There 
are many reasons, both educational and non-
educational, that come into play to influence one 

                                                   
4 English Language Arts 
5 At the time of the paper, only the 4th and 8th grade ELA 
from Massachusetts tests are publically available online. 
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state’s performance.  Perhaps this could be a first 
step in better understanding the impact of in-
creased level of difficulty on student reading per-
formance.  
 

5.2 SAT or ACT? 

The SAT and the ACT are standardized tests col-
lege-bound juniors and seniors take. One common 
section in both tests is the Reading section where 
students are given passages to read and multiple-
choice questions to answer. Students and parents 
have long wondered which test is easier. A simple 
online search of “SAT reading vs. ACT reading” 
yields many comparisons. The question of which 
test is easier depends on many factors such as tim-
ing, question types, and so on. What this paper is 
concerned with is not necessarily the simple 
yes/no answer to the question of which test is eas-
ier, but rather with comparing the passages on 
each reading test. From a simple survey at a local 
test preparation center, students who choose ACT 
all report that the ACT passages are more straight-
forward than those on the SAT, and those who 
take the SAT report that some SAT passages are 
harder to read, specifically in genres such as pre-
1900 fictions and history. This fact does not di-
rectly lead to a judgment of which test is easier, 
simply that the ACT passages are easier to read6. 
To test this hypothesis and to quantify how much 
easier or harder the reading passages differ on 
each test, we collect passages from both tests and 
run the feature analysis on them.  The data infor-
mation is presented in Table 5a. 

 

Test Year of 
Test 

Number 
of pas-
sages 

Number of 
words 

SAT 
2015 – 16 
Official 
Practice 

40 26,862 

ACT 
2015 – 17 

Official Re-
leased Tests 

40 28,752 

Table 5a. SAT and ACT Passage Data 
 
 
 

                                                   
6 Independent of the level of the passages, the questions can 
still be hard. Therefore, the level of passages is but one fac-
tor among many that a student takes into account in decid-
ing which test to take. 

Feature SAT ACT p-value 
Delay 3.364 2.570 0.0006 

Interruption 1.552 1.214 0.014 
Pairs NP-VP 2.502 2.068 2.92e-12 

Depth 11.403 10.264 1.92e-12 
Inversion 0.009 0.008 0.728 

Table 5b. SAT and ACT 
 

Feature SAT ACT 
Delay 2.397 1.248 

Interruption 1.349 0.841 
Pairs NP VP 0.893 0.425 

Depth 2.179 1.490 
Inversion 0.031 0.021 
Table 5c. SAT and ACT Standard Deviation 

 
The results of the analysis are shown in Table 

5b. ACT passages score uniformly lower than 
those on the SAT with majority of the difference 
being statistically significant. Table 5c shows that 
the standard deviations of the SAT are higher, in-
dicating that the SAT passages have more varia-
tions. The two excerpts from each test in Table 6 
give a qualitative view of the phenomenon where 
* indicates an example of increased complexity. 
 

ACT Hu-
manities 

In 2008, the prodigiously gifted bass-
ist, singer, and composer Esperanza 
Spalding released her major-label de-
but. Esperanza, which she recorded as 
a twenty-three-year-old instructor at 
the Berklee College of Music. 

ACT Sci-
ence 

Pikas, a diminutive alpine-dwelling 
rabbit relative. are unique among al-
pine mammals in that they gather up 
vegetation throughout summer—
including flowers, grasses, leaves, ev-
ergreen needles, and even pine cones 
– and live off the hay pile throughout 
winter, rather than hibernating or 
moving downslope. 

* SAT Hu-
manities:  

But of all relations, that between men 
and women, being the nearest and 
most intimate, and connected with the 
greatest number of strong emotions, 
was sure to be the last to throw off the 
old rule, and receive the new; for, in 
proportion to the strength of a feeling 
is the tenacity with which it clings to 
the forms and circumstances with 
which it has even accidentally become 
associated … 

SAT Sci-
ence 

Nearly a half-century ago, Peter Higgs 
and a handful of other physicists were 
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trying to understand the origin of a 
basic physical feature: mass. You can 
think of mass as an object’s heft or, a 
little more precisely, as the resistance 
if offers to having its motion changed. 

Table 6. SAT and ACT Passage Difference Examples 
 

5.3 Automatic Vocabulary Response 

It is labor intensive to manually evaluate 
the efficacy of the word2vec-based lexical ap-
proach.  While we annotate data for further re-
search, we meanwhile evaluate the idea on vocab-
ulary questions on the 8 released SAT official tests 
(CollegeBoard, 2009).  These vocabulary ques-
tions ask the meaning of a word in the context of a 
given passage.  The majority of the choices con-
sist of one word each.  Our baseline approach is to 
measure the vector cosine score between the word 
in question and the words in each choice.  The 
choice with the greatest similarity score is chosen 
as the answer.  When a choice has more than one 
word, we first remove the function words and then 
take the average of the vector scores.   
     We then apply a contextual word2vec model to 
the questions.  For each word in a vocabulary 
question, we locate the sentence that the word oc-
curs in and add up the vectors of all the content 
words in that sentence. The resultant vector is then 
compared to each choice in the vocabulary ques-
tion.  Table 7 shows that the context model out-
performs baseline significantly.  This experiment 
shows the power of combining context and a 
computable meaning representation such as the 
word2vec. 
 

28 Vocabulary Questions from 8 official SAT tests 
Method Num. Correct Accuracy 
Baseline 5 17.86% 
Context 20 71.43% 

Table 7. Word2Vec-based Vocabulary Perfor-
mance 
 

One reason the baseline performs poorly is 
that almost all words tested in the SAT vocabulary 
questions are polysemous.  The word2vec is 
trained on mostly news data which biases the 
meaning of a word toward a typical news-oriented 
meaning.  For example, the word ‘consumption’, 
without context, is most intuitively associated 
with consumer and commerce. In this question, of 
the five choices, “destruction”, “viewing”, “ero-
sion”, “purchasing”, and “obsession”, the most 

likely context-independent choice is “purchasing” 
and that is what the baseline model chooses.  In 
the given passage, however, the enclosing sen-
tence is “According to [this thesis], television 
consumption leads above all to moral dangers.” 
After adding up all the vectors of the contextual 
words, the correct answer “viewing” surfaces and 
the context-model is able to answer that question 
correctly.  This model makes concrete what the 
English teachers have meant when they instruct 
the students to look at the context.  It also repre-
sents nicely the idea that the meaning of a word is 
selected by its surrounding words (the context).   

6 Conclusion and Future Work 

We present a set of straightforward and novel 
features to identify difficult sentences in a reading 
passage. In our experiments, the features correlate 
well with the actual grade of each text. We are al-
so able to quantify and make more concrete of the 
differences between Common Core and pre-
Common Core standards, and between different 
states. In the future, we hope to not only put all in 
an application for real use but also to incorporate 
general-purpose lexical features to further enhance 
reading comprehension education.  Secondly, we 
intend to continue to investigate using word2vec 
as a stepping stone to distributed meaning repre-
sentation.  For example, extend critical ideas to 
multi-word phrases and tackle reading compre-
hension questions such as those on the SAT.  
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Abstract

Advances in automatic readability assess-
ment can impact the way people consume
information in a number of domains. Ara-
bic, being a low-resource and morphologi-
cally complex language, presents numer-
ous challenges to the task of automatic
readability assessment. In this paper, we
present the largest and most in-depth com-
putational readability study for Arabic to
date. We study a large set of features
with varying depths, from shallow words
to syntactic trees, for both L1 and L2 read-
ability tasks. Our best L1 readability ac-
curacy result is 94.8% (75% error reduc-
tion from a commonly used baseline). The
comparable results for L2 are 72.4% (45%
error reduction). We also demonstrate the
added value of leveraging L1 features for
L2 readability prediction.

1 Introduction

The purpose of studies in readability is to develop
and evaluate measures of how well a reader can
understand a given text. Computational readabil-
ity measures, historically shallow and formulaic,
are now leveraging machine learning (ML) mod-
els and natural language processing (NLP) fea-
tures for automated, in-depth readability assess-
ment systems. Advances in readability assessment
can impact the way people consume information
in a number of domains. Prime among them is
education, where matching reading material to a
learner’s level can serve instructors, book publish-
ers, and learners themselves looking for suitable
reading material. Content for the general public,
such as media and news articles, administrative,
legal or healthcare documents, governmental web-
sites and so on, needs to be written at a level ac-

cessible to different educational backgrounds. Ef-
forts in building computational readability mod-
els and integrating them in various applications
continue to grow, especially for more resource-
rich languages (Dell’Orletta et al., 2014a; Collins-
Thompson, 2014).

In this paper, we present a large-scale and in-
depth computational readability study for Arabic.
Arabic, being a relatively low-resource and mor-
phologically complex language, presents numer-
ous challenges to the task of automatic readabil-
ity assessment. Compared to work done for En-
glish and other European languages, efforts for
Arabic have only picked up in recent years, as
better NLP tools and resources became available
(Habash, 2010). We evaluate data from both Ara-
bic as a First Language (L1) and Arabic as a Sec-
ond or Foreign Language (L2) within the same ex-
perimental setting, to classify text documents into
one of four levels of readability in increasing order
of difficulty (level 1: easiest; level 4: most diffi-
cult). This is a departure from all previously pub-
lished results on Arabic readability, which have
only focused on either L1 or L2. We examine
a larger array of predictive features combining
language modeling (LM) and shallow extraction
techniques for lexical, morphological and syntac-
tic features. Our best L1 Readability accuracy re-
sult is 94.8%, a 75% error reduction from a base-
line feature set of raw and shallow text attributes
commonly used in traditional readability formu-
las and simpler computational models (Collins-
Thompson, 2014). The comparable results for L2
are 72.4%, a 45% error reduction from the corre-
sponding baseline performance in L2. We lever-
age our rich Arabic L1 resources to support Ara-
bic L2 readability. We increase the L2 accuracy to
74.1%, an additional 6% error reduction, by aug-
menting the L2 feature set with features based on
L1-generated language models (LM).
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Corpus Depth of Features LM Results
Size (tokens) L1 L2 Raw Morph Syn Features Reported

Al-Khalifa and Al-Ajlan (2010) 150 docs (57,089) D D D Accuracy: 77.8%
Al Tamimi et al. (2014) 1,196 docs (432,250) D D Accuracy: 83.2%
Cavalli-Sforza et al. (2014) 114 docs (49,666) D D D Accuracy: 91.3%
Forsyth (2014) 179 docs (74,776) D D D F-Score: 71.9%
Saddiki et al. (2015) 251 docs (88,023) D D D F-Score: 73.4%
El-Haj and Rayson (2016) 73,000 lines ( 1,8M) D D D Spearman R: .329
Nassiri et al. (2017) 230 docs ( 60,000) D D D F-Score: 90.5%

Our Work
L1: 27,688 docs ( 6.9M)
L2: 576 docs (186,125)

D D D D D D
L1 Accuracy: 94.8%
L2 Accuracy: 72.4%

Table 1: Comparative summary of recent work and our current study on computational readability for
Arabic in terms of corpus size, focus on L1 or L2, use of shallow vs. deep features requiring heavier
processing for extraction from the text, use of language models in generating features. Results reported
are presented for reference rather than direct comparison.

2 Background and Related Work

Computational readability assessment presents a
growing body of work leveraging NLP to extract
complex textual features, and ML to build read-
ability models from corpora, rather than relying on
human expertise or intuition (Collins-Thompson,
2014). Approaches vary depending on the purpose
of the readability prediction model, e.g., mea-
suring readability for text simplification (Aluisio
et al., 2010; Dell’Orletta et al., 2014a; Al Khalil
et al., 2017), selecting more cognitively-predictive
features for readers with disabilities (Feng et al.,
2009) or for self-directed language learning (Bein-
born et al., 2012). Features used in predicting
readability range from surface features extracted
from raw text (e.g. average word count per line),
to more complex ones requiring heavier text pro-
cessing such as syntactic parsing features (Heil-
man et al., 2007, 2008; Beinborn et al., 2012;
Hancke et al., 2012). The use of language models
is increasingly favored in the literature over simple
frequency counts, ratios and averages commonly
used to quantify features in traditional readabil-
ity formulas (Collins-Thompson and Callan, 2005;
Beinborn et al., 2012; François and Miltsakaki,
2012). We evaluate features extracted using both
methods in this study.

There is a modest body of work on readability
prediction for Arabic with marked differences in
modeling approaches pursued, feature complexity,
dataset size and type (L1 vs. L2), and choice of
evaluation metrics. We build our feature set with
predictors frequently used for Arabic readability
studies in the literature, and augment it with fea-
tures from work carried out on other languages.

We do organize our feature set on two dimensions:
(a) the way features are quantified: basic statistics
for frequencies and averages, or language model-
ing perplexity scores; (b) the depth of processing
required to obtain said features: directly from raw
text, morphological analysis, or syntactic parsing.
In Table 1, using these two dimensions, we situate
ours and previous work and establish a common
baseline of raw base features (i.e. traditional mea-
sures (DuBay, 2004)) to compare to.

Use of Language Modeling Features such as
frequency counts, averages and other ratios seem
to dominate the literature for Arabic readability.
These are usually referred to as traditional, shal-
low, basic or base features in the literature for their
simplicity. In contrast, Al-Khalifa and Al-Ajlan
(2010) add word bi-gram perplexity scores to their
feature set, a popular readability predictor in En-
glish and other languages.

Depth of Features The set of features used in
previous readability studies exhibit a range of
complexity in terms of depth of processing needed
to obtain them. While some studies have relied on
raw text features requiring shallow computations
(Al-Khalifa and Al-Ajlan, 2010; Al Tamimi et al.,
2014; El-Haj and Rayson, 2016), most augment
their feature set with lexical and morphological in-
formation by processing the text further and ex-
tracting features such as lemmas, morphemes, and
part-of-speech tags (Cavalli-Sforza et al., 2014;
Forsyth, 2014; Saddiki et al., 2015; Nassiri et al.,
2017). We add another level of feature complexity
by extracting features from syntactic parsing, used
in readability assessment for other languages but
so far untried for Arabic (Table 1).
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3 Features for Readability Prediction

Textual features associated with degree of read-
ability range from surface attributes such as text
length or average word length, to more com-
plex ones quantifying cohesion or higher-level text
pragmatics. Naturally, the shallower attributes are
also the easiest and least costly to extract from a
text, as opposed to the deeper and more computa-
tionally challenging features.

Notation We define the notation used in the re-
mainder of this paper to describe features, ranges
of features and classification feature sets:

• An individual feature is expressed as F[i], i ∈
[1, 146] is a number assigned to the feature as
defined in Table 2; e.g., F[1] for number of
characters per document

• A feature range is expressed as F[i-j], 1 ≤
i ≤ j ≤ 146 and indicates a group of fea-
tures similar in nature with numbers assigned
to them as defined in Table 2

• A classification feature set or subset is ex-
pressed as FEAT

Superscript
Subscript . The super-

script indicates whether the set contains fea-
tures that are {Raw, Morph, Syn or all three
Raw.Morph.Syn}. The subscript indicates
whether the features are computed as {Base,
LM, or both Base.LM} quantities.

The feature list we have compiled (Table 2) is
inspired by previous work for Arabic and other
languages, and is organized by category as dis-
cussed in the previous section.

Base features FEAT Base range from shallow
estimates, like word count or average sentence
length, to others requiring more advanced process-
ing, e.g. average parse tree depth for sentences in
a document. LM-based features FEAT LM are a
range of 12 perplexity scores obtained on n-gram
models (uni-, bi- and tri-grams) built per level of
readability. For instance, the first 3 features in the
range F[51-62] are the following: F[51] Level 1
character unigrams, F[52] Level 1 character bi-
grams, F[53] Level 1 character trigrams.

We also distinguish three category labels for the
depth of NLP-based processing required to extract
the different features:

• FEAT Raw : raw text extraction with mini-
mal processing: Several formulas making use
of raw text features have been successfully

8 FEAT Raw
Base *

F[1] Characters F[5] Tokens
Sentences

F[2] Tokens F[6] Al-Heeti Formula
F[3] Characters/Tokens F[7] ARI Formula
F[4] Sentences F[8] AARI Formula

20 FEAT
Morph
Base *

F[9] Morphemes F[19] V erbs
Tokens

F[10] Lemma Types F[20] Pronouns
Tokens

F[11] LemmaTypes
Tokens F[21] Psv. Verbs

F[12] Morphemes
Sentences F[22] PsvV erbs

Tokens

F[13] Open-class Tokens F[23] Perf. Verbs
F[14] Closed-class Tokens F[24] PerfV erbs

Tokens

F[15] Nouns F[25] Imperf. Verbs
F[16] Verbs F[26] ImperfV erbs

Tokens

F[17] Pronouns F[27] Cmd Verbs
F[18] Nouns

Tokens F[28] CmdV erbs
Tokens

10 FEAT
Syn
Base

F[29-36] CATiB dependency
F[37] Average parse tree breadth
F[38] Average parse tree depth

24 FEAT Raw
LM

F[39-50] LM perplexity of Characters
F[51-62] LM perplexity of Words *

48 FEAT
Morph
LM

F[63-74] LM perplexity of morphemes
F[75-86] LM perplexity of lemmas
F[87-98] LM perplexity of POS
F[99-110] LM perplexity of lemma-POS mix

36 FEAT
Syn
LM

F[111-122] LM perplexity of CATiB POS
F[123-134] LM perplexity of CATiBx POS
F[135-146] LM perplexity of CATiB dependency

Table 2: Our feature set organized by category. All
features are calculated per document, and sentence
level features are averaged per document. Feature
sets or features marked by an * are inspired by pre-
vious work on Arabic readability.

adopted and adapted in English and other lan-
guages, their appeal largely due to them be-
ing easy to understand and compute.

• FEAT Morph : morphological analysis pro-
viding lexical and morpho-syntactic infor-
mation: Readability is heavily influenced
by vocabulary and word-level information
(DuBay, 2007). Having word-level lexical
and morpho-syntactic information can better
inform the predictions.

• FEAT Syn : syntactic parsing providing parse
tree information and dependencies: Syntac-
tic features have shown promise in improving
readability prediction, especially for L2 read-
ing. (Hancke et al., 2012) (Heilman et al.,
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VRB
ÐY�®K
 yqdm

‘offers’

MOD

PNX
. .
‘.’

OBJ

NOM
@Q�
�J» kθyrA

‘plenty’

MOD

PRT
	áÓ mn

‘from’

OBJ

NOM
�ðPYË@ Aldrws

‘lessons’

MOD

PRT
+ð w+
‘and’

OBJ

NOM
�HA 	¢ªË@ AlςĎAt

‘sermons’

MOD

PRT
È l
‘to’

OBJ

NOM
A 	K+ +nA

‘us’

SBJ

NOM
t�'
PA�JË @ AltAryx

‘History’

Word Morph POS6 English
Lemma Morph POS POS34

1 AltAryx Al+tAriyx+u NOM history
tAriyx DET+NOUN noun

+CASEDEF.NOM

2 yqdm yu+qad∼im+u VRB offers
qad∼am IV3MS+IV verb

+IVSUFFMOOD:I

3 lnA la+nA PRT to, for
li PREP prep us

+PRON1P

4 kθyrA kaθiyr+Aã NOM plenty,
kaθiyr ADJ adj many

+CASEINDEF.ACC

5 mn min PRT from, of
min PREP prep

6 Aldrws Al+duruws+i NOM lessons
dars DET+ NOUN noun

+CASEDEF.GEN

7 wAlςĎAt wa+Al+ςiĎ+At+i NOM sermons
ςiĎah̄ CONJ+DET+NOUN noun

+NSUFFFEM.PL

+CASEDEF.GEN

8 . . PNX .
. PUNC punc

FEAT Raw
Base Features computed for the example sentence

F[1] Characters 35 F[5] Tokens
Sentences 8.0

F[2] Tokens 8 F[6] Al-Heeti Formula F [3]× 4.414− 13.468 5.8
F[3] Characters

Tokens 4.4 F[7] ARI Formula F [3]× 4.71 + F [5]× 0.5− 21.43 3.2
F[4] Sentences 1 F[8] AARI Formula F [1]×3.28+F [3]×1.43+F [5]×1.24+472.42

1046.3 0.6

Figure 1: TOP: Example of linguistic annotations for the sentence . �HA 	¢ªË@ð �ðPYË@ 	áÓ @Q�
�J» A 	JË ÐY�®K
 t�'
PA�JË @
‘History offers us plenty of lessons and sermons.’; BOTTOM: Table of FEAT Raw

Base feature values com-
puted for the example sentence given.

2007)

In Table 2, most base features are computed
simply by counting occurrences within the doc-
ument. Ratios are expressed as mathematical
fractions, such as F[3], F[5], F[11] and so on.
LM perplexity is computed per readability level(1,
2, 3, and 4) on (uni-, bi- and tri-)grams lan-
guage models, generating 4 level scores per n-
gram and a total of 12 perplexity scores per fea-
ture. Figure 1 gives an idea of the linguistic an-
notation extracted for an example sentence and il-
lustrates how feature values are computed for the
FEAT Raw

Base subset. The annotation was generated
using the CamelParser. POS tagsets used are POS6
(Habash and Roth, 2009) and a higher granularity
POS34 (Habash et al., 2012). We refer the user to
Shahrour et al. (2016) for further details.

We elaborate next on the feature names in Ta-
ble 2:

• F[6] Al-Heeti readability formula for Ara-
bic as presented by Al-Khalifa and Al-Ajlan

(2010) and other subsequent work.

• F[7], F[8] represent the Automated Readabil-
ity Index (ARI) readability formula for En-
glish, and the Arabic ARI (AARI) readability
formula for Arabic, both discussed at length
by Al Tamimi et al. (2014).

• F[9] Morphemes - approximated by counting
proclitics+ enclitics+ stem for any given
token, first explored by Cavalli-Sforza et al.
(2014) and Forsyth (2014), further tested by
Saddiki et al. (2015) and Nassiri et al. (2017).

• All features in FEAT
Morph
Base.LM follow the

MADAMIRA POS34 tag set (Pasha et al.,
2014).

• F[13], F[14] Open and closed class tokens are
determined by POS34 tag

• F[21], F[22] Marking passive voice as one
of the few cases where diacritic marks are
typically provided for disambiguation in oth-
erwise undiacritized text intended for adult
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readers of Arabic. It is also a frequently used
indicator of difficult or poor readability in
other languages (DuBay, 2007; Aluisio et al.,
2010).

• F[23-28] Marking verb aspect (perfective,
imperfective, imperative) as an indicator
used with some success in other languages
(Dell’Orletta et al., 2014a).

• F[29-36] Columbia Arabic Treebank
(CATiB) tagset (Habash and Roth, 2009).

• F[63-74] A morpheme language model is
generated with the higher granularity Morph-
POS tagset (illustrated in Figure 1) based on
(Buckwalter, 2002).

• F[99-110] A lemma-POS mixed language
model is generated with the lemma of open-
class tokens and the POS34 (Habash et al.,
2012) for closed-class tokens.

• F[111-122] A POS-based language model
is generated with the CATiB POS tagset
(Habash and Roth, 2009).

• F[123-134] A POS-based language model
is generated with the extended CATiB POS
tagset presented in (Marton et al., 2013).

• F[135-146] A dependency language model is
generated on the CATiB dependency tags in
F[29-36] to get different levels of dependency
context information, the most salient one be-
ing dependency information for parent-child
nodes in the parse tree.

4 Modeling Readability

We evaluate readability prediction as a classifica-
tion problem on a large feature set for documents
in two text corpora designed for L1 and L2 read-
ing, and labelled with readability levels 1, 2, 3 and
4 in increasing difficulty.

4.1 L1 and L2 Data

We leverage the L1 leveled reading corpus built
by Khalil et al. (2018) based on grades 1 through
12 of an Arabic school curriculum and a collec-
tion of adult-level fiction. The corpus was split
across 4 levels of readability in increasing order of
difficulty: level 1 (905 documents), level 2 (1,192
documents), level 3 (2,054 documents) and level
4 (18,089 documents). The first three levels are
sourced from curricular texts, grades 1-4, 5-8 and

9-12. The fourth considerably larger level contains
novels suitable for post-secondary readers.

For L2, we work with an augmented version of
the corpus used by Forsyth (2014), Saddiki et al.
(2015) and Nassiri et al. (2017). It is comprised
of 576 documents, leveled according to the Intera-
gency Language Roundtable (ILR) scale for for-
eign language proficiency.1 With documents in
the L2 corpus averaging 250 words, the L1 cor-
pus was split accordingly for better comparability
in our experiments.

Both the L1 and L2 datasets underwent an 80-
10-10 random stratified split over the four levels
for training (80%), development (10%) and testing
(10%). The L1 corpus, partially sourced from text-
book material from three different subjects, was
also split across the three subjects to ensure a bal-
anced sample of all three: Arabic, Social Studies,
Islamic Studies.

4.2 Feature Extraction
The datasets are first enriched with several layers
of linguistic annotation (e.g. Fig. 1) in prepara-
tion for feature extraction. Then, both raw text
and annotations from the training set are used to
build LMs for each of the 4 levels of readability
(Table 3) with the SRILM toolkit (Stolcke et al.,
2002). At this point, we begin extracting features
from the various configurations of annotation and
language models we generated:

• FEAT Raw
Base.LM features are extracted directly

from the raw text, e.g. total number of char-
acters in a document.

• FEAT
Morph
Base.LM text is annotated with morpho-

logical, lexical and morpho-syntactic infor-
mation using the MADAMIRA tool (Pasha
et al., 2014) for morphological disambigua-
tion.

• FEAT
Syn
Base.LM text is annotated with syn-

tactic parsing information using the Camel-
Parser tool (Shahrour et al., 2016).

All FEAT
Raw.Morph.Syn
Base features are obtained

from computing occurrences, averages and other
ratios over: raw text (FEAT Raw

Base); lemmatiza-
tion, tokenization and morpho-syntanctic annota-
tion (FEAT

Morph
Base ); syntactic parsing annotation

(FEAT
Syn
Base). All FEAT

Raw.Morph.Syn
LM features

1The scale goes from 0 (no proficiency) to 5 (native
or bilingual proficiency) with + designation for interme-
diate levels, for further details http://www.govtilr.org/skills
/ILRscale1.htm
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L1 Corpus L2 Corpus
Level Source Docs Tokens Level Source Docs Tokens

1 K12 grades 1-4 (textbooks) 1,230 297,772 1 0 or 0+ (No proficiency) 31 2,462
2 K12 grades 5-8 (textbooks) 1,683 412,942 2 1 or 1+ (Elementary proficiency) 177 40,816
3 K12 grades 9-12 (textbooks) 2,553 628,978 3 2 or 2+ (Limited working proficiency) 290 105,277
4 Original literary texts (novels) 22,222 5,594,310 4 3 or 3+ (Professional working proficiency) 78 37,570

27,688 6,934,002 576 186,125

Table 3: Descriptive corpus statistics for our L1 and L2 data.

are obtained from computing perplexity scores per
document over the LMs generated using either raw
text or text annotation (lemmas, POS, etc).

In total, there were 146 features extracted for
each document. We perform three main experi-
ments, described next, to determine their efficacy
in the classification task for L1 and L2.

4.3 Experiment Setup
First, we build classifiers on the full feature set
FEAT

Raw.Morph.Syn
Base.LM to determine best perfor-

mance for L1 and L2. All classification exper-
iments are carried out within the WEKA envi-
ronment (Hall et al., 2009). We test classifica-
tion algorithms used with some success in previ-
ous work (D.Tree decision tree, Rnd.F random for-
est, kNN k-nearest-neighbour, SVM support vector
machine). We include two baseline classifiers for
reference: zeroR (a simple classifier predicting the
majority class for all instances) and oneR (a 1-rule
classifier using the feature with least error to pre-
dict the correct class).

Then, we test the performance of the feature
subsets to assess the predictive power of different
feature configurations for L1 and L2. We perform
feature selection in two ways:
• Manually, following the categorization we

defined in Table 2 and resulting in 12 com-
binations of feature sets to be tested: feature
subsets (i, j) with i in {Raw, Morph, Syn} and
j in {Base, LM} with FEAT Raw

Base as the per-
formance baseline for evaluating all feature
subsets; composite subsets (i) with i in {Raw,
Morph, Syn} or (j) in {Base, LM}; and fi-
nally the full feature set FEAT

Raw.Morph.Syn
Base.LM .

• Automatic feature selection using
correlation-based feature selection (CFS)
FEAT Correl

Base.LM implemented as CfsSubsetE-
val in WEKA with a BestFirst backward
search through the feature space (Hall,
1999).

Finally, we experiment with the potential of us-
ing L1 FEAT

Raw.Morph.Syn
LM to improve L2 read-

ability predictions. First, we calculate perplexity
scores for L2 documents using L1 LMs. We add
these perplexity scores as features to the original
L2 feature set, bringing the total set size to 254
features. Then, using this FEAT

Raw.Morph.Syn
Base.LM.LML1

feature set, we: (1) rerun the classifier perfor-
mance experiment to see if any overall perfor-
mance improvement is achieved; (2) run CFS fea-
ture selection on the L1-based LM subset to ex-
amine which features correlate the most with L2
readability classes. All experiments are reported
in terms of F-score in addition to % Accuracy and
F-score to give a better sense of prediction perfor-
mance while accounting for class imbalance in the
corpus.

5 Results and Discussion

In this section we present and discuss the results of
experiments previously described in Section 5.3,
which we organize as follows: results to optimize
for classifier choice, results to optimize for fea-
tures choice, and finally results on leveraging L1-
based features for L2 readability prediction.

5.1 Classifier Choice Optimization
The classification results in Table 4 show that
SVM performs best on overall accuracy for both
L1 and L2 predictions. For L1, SVM achieves er-
ror reduction of 76% to the zeroR baseline, 64 %
to the oneR baseline, while outperforming other
classifiers from the literature by varying degrees.
Performance over the 4 levels of readability, mea-
sured in precision, recall and F-score, is as fol-
lows:

• Precision: Level 1 (78.3%), Level 2 (81.8%),
Level 3 (89.4%) and Level 4 (97.5%)

• Recall: Level 1 (78.8%), Level 2 (68.9%),
Level 3 (81.7%) and Level 4 (100%)

• F-score: Level 1 (78.5%), Level 2 (74.8%),
Level 3 (85.4%) and Level 4 (98.7%)

Taking a closer look at misclassified documents,
mostly from Levels 1, 2 and 3, we find the ma-
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L1 FEAT
Raw.Morph.Syn
Base.LM L2 FEAT

Raw.Morph.Syn
Base.LM

Accuracy Average F1 Accuracy Average F1
ZeroR 77.9 21.9 ZeroR 50.0 16.7
OneR 85.4 52.1 OneR 34.5 24.4
D.Tree (C=0.25, M=12) 72.2 50.4 D.Tree (C=0.25, M=2) 31.0 21.7
Rndm Frst (I=500) 94.6 83.6 Rndm Frst (I=100) 50.0 55.0
kNN (k=9) 93.8 80.4 kNN (k=2) 67.2 61.1
SVM (C=5.0, rbfKernel) 94.8 84.4 SVM (C=1.0, rbfKernel) 72.4 60.5

Table 4: Comparison of different classifiers using the full feature set FEAT
Raw.Morph.Syn
Base.LM for L1 (left)

and L2 (right). Baseline performance is that of classifiers ZeroR and OneR. Performance is reported in
terms of Accuracy (%) and F1-score (%) averaged over the 4 classification levels.

L1 SVM Classifier
Feature Subset Accuracy Average F1
FEAT

Raw.Morph.Syn
Base.LM 94.8 84.4

FEAT
Raw.Morph.Syn
LM 94.3 83.3

FEAT
Morph
Base.LM 94.3 83.1

FEAT
Morph
LM 93.8 81.6

FEAT Raw
Base.LM 88.6 61.4

FEAT Raw
LM 87.2 50.5

FEAT Correl
Base.LM 85.3 42.6

FEAT
Raw.Morph.Syn
Base 83.4 40.7

FEAT
Syn
Base.LM 82.7 39.7

FEAT
Syn
LM 82.0 37.3

FEAT
Morph
Base 81.8 33.7

FEAT Raw
Base 79.3 28.1

FEAT
Syn
Base 78.0 22.5

Table 5: Comparison of different feature subsets
using SVM Classifier for L1 (based on best per-
formance results from Table 4). Baseline perfor-
mance is that of subset FEAT Raw

Base. Performance
is reported in terms of Accuracy (%) and F1-score
(%) averaged over the 4 classification levels.

jority mostly off by no more than 1 level. For
intance, the bulk of misclassified documents for
Level 1 are labeled as Level 2. This can be in
part due to the high similarity between the high-
est grade in Level 1 (Grade 4) and the lowest
grade in Level 2 (Grade 5), considering that Level
2 contains both Primary and Preparatory grades.
Another typically misclassified document type is
one containing mainly instructional text and in-
tended learning outcomes for the lessons. This
is a language and style of writing that is particu-
lar to textbooks and repeated throughout the cur-
riculum. Level 2 shows more dispersion in the
misclassifications across other levels. Considering
that Level 2 combines a portion of upper Primary
and lower Preparatory grades, we expect some in-
terference from the proximity in style and content
in Grade4-Grade5 and Grade8-Grade9. The inclu-

L2 SVM Classifier
Feature Subset Accuracy Average F1
FEAT

Raw.Morph.Syn
Base.LM 72.4 60.5

FEAT
Raw.Morph.Syn
Base 70.7 38.6

FEAT
Raw.Morph.Syn
LM 67.2 53.7

FEAT Correl
Base.LM 67.2 37.3

FEAT
Morph
Base.LM 67.2 36.4

FEAT
Syn
Base.LM 67.2 35.7

FEAT Raw
Base.LM 63.8 35.1

FEAT
Morph
LM 63.8 34.6

FEAT Raw
LM 60.3 33.2

FEAT
Morph
Base 51.7 19.6

FEAT
Syn
LM 50.0 16.9

FEAT Raw
Base 50.0 16.7

FEAT
Syn
Base 50.0 16.7

Table 6: Comparison of different feature subsets
using SVM Classifier for L2 (based on best per-
formance results from Table 4). Baseline perfor-
mance is that of subset FEAT Raw

Base. Performance
is reported in terms of Accuracy (%) and F1-score
(%) averaged over the 4 classification levels.

sion of more excerpts of original literary texts, es-
pecially in the Preparatory grades, could help ex-
plain why Level 4 predictions were obtained for
some documents. Level 3 classification errs pre-
dominantly towards Level 4, this is also a plausible
outcome considering that Arabic textbooks delve
further into literature and include much longer ex-
cerpts of original fiction, and keeping in mind that
some works of fiction are plausibly accessible to
readers nearing the end of their K12 education.

Results for L2 remain consistent with 45% and
58% error reduction to the zeroR and oneR base-
lines, respectively.

We find that all misclassified documents are
only off by 1 level and often due to the interme-
diate proficiency levels marked by a ’+’ being too
close in difficulty to the next level up (e.g. a ’1+’
proficiency document misclassified as ’2’ accord-
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L2 FEAT
Raw.Morph.Syn
Base.LM L2 FEAT

Raw.Morph.Syn
Base.LM.LML1

Accuracy Average F1 Accuracy Average F1
ZeroR 50.0 16.7 50.0 16.7
OneR 34.5 24.4 34.5 24.4
D.Tree 31.0 21.7 31.0 21.7
R.Forest 50.0 55.0 72.4 67.9
kNN 67.2 61.1 74.1 66.2
SVM 72.4 60.5 72.4 60.5

Table 7: L2 results with different classifiers
on FEAT

Raw.Morph.Syn
Base.LM.LML1

. Comparison of differ-
ent classifiers using the augmented feature set
FEAT

Raw.Morph.Syn
Base.LM.LML1

for L2 (L2 features + L1 LM
features). Baseline performance is that of classi-
fiers ZeroR and OneR. Performance is reported in
terms of Accuracy (%) and F1-score averaged over
the 4 classification levels.

ing to the scale in 3). Evaluating L2 readability is
a worthwile experiment which is hindered mostly
by data sparsness.

5.2 Feature Optimization

Feature optimization experiments are carried out
with SVM classification using the best perform-
ing parameter configurations for L1 and L2. Ta-
bles 5 and 6 show performance results of various
feature subsets in comparison with the baseline
FEAT Raw

Base. We make the following noteworthy
observations:

• A combination of LM-based, NLP-based and
traditional features FEAT

Raw.Morph.Syn
Base.LM per-

forms best in readability prediction: 75% and
45% error reduction on FEAT Raw

Base for L1 and
L2 respectively

• LM Features FEAT
Raw.Morph.Syn
LM are better

predictors than base features: performance is
second-best for L1 and third-best for L2

• NLP-based features (FEAT
Raw.Morph.Syn
LM ,

FEAT
Morph
Base.LM , FEAT

Syn
Base.LM ) are bet-

ter predictors than raw shallow features
FEAT Raw

Base: this is true overall, with heavier
influence in L2 prediction

• Features based on syntactic parsing
FEAT

Syn
Base.LM inform readability pre-

dictions, more so for L2 than for L1: 16%
and 34% error reduction on FEAT Raw

Base for
L1 and L2 respectively

FEAT Correl
Base.LM for L1 is a subset of 10 features2

achieving 29% error reduction on the FEAT Raw
Base

2L1 CFS-based subset of 10 features: F[41, 56, 58, 61,
62, 68, 71, 86, 123, 141], numbered according to Table 2

baseline. All features are LM-based, with 50%
of them extracted from raw text, ideal for low-
cost performance with minimal NLP effort. This
can be useful in lightweight web-based readabil-
ity tools. We also noted with interest an 80%-
20% split into vocabulary-based and syntax-based
features, suggesting that vocabulary plays a more
dominant role in readability than grammar.

FEAT Correl
Base.LM for L2 achieves 34% error reduc-

tion on the FEAT Raw
Base baseline with 29 features,3

dominated largely by LM-based attributes. Some
interesting predictive features from FEAT

Morph
Base

are lemma type count per document indicating lex-
ical richness, Verb-to-Token ratio and Pronoun-
to-Token ratio. Mixed LMs built with lemmas
of open-class tokens and the POS of closed-class
tokens for readability levels 2, 3 and 4 correlate
highly with L2 predictions but did not figure in
L1 FEAT Correl

Base.LM which relied more on raw word
LMs.

5.3 L1-based Features for L2 Readability

Table 7 presents the results of augmenting L2 with
L1 LM-based features. Adding L1 features to the
L2 feature set did not degrade performance for any
of the classifiers. While D.Tree and SVM classifi-
cation did not show any significant improvement,
the L1 features drastically improved prediction ac-
curacy and F-score for Random Forest (Accuracy:
45% error reduction, F-score: 28.6% error reduc-
tion) and kNN (Accuracy: 21% error reduction,
F-score: 13% error reduction) classification.

Looking into LM-based L1 features4 that cor-
relate the most with L2 readability levels, we
find that the most predictive of these features are
mostly based on L1 readability levels 1 and 4, and
distributed among raw character features, word
features (raw and lemma), POS features, and pars-
ing dependency features. Results from L2 using
L1 encourage further exploration of L1 feature use
in L2 readability prediction. It is worthwhile to
explore the performance of classifying L1 docu-
ments on an L2 scale validated by expert judg-
ment. Given the considerably smaller size of L2
resources in comparison with L1 texts, we can po-
tentially mine L1 for L2-suitable material, thereby
increasing the pool of texts available to L2 readers.

3L2 CFS-based subset of 29 features: F[10, 19, 20, 26,
37, 41, 47, 50, 55, 56, 58, 59, 62, 65, 67, 68, 73, 74, 82, 83,
86, 97, 103, 107, 109, 113, 124, 134, 137].

4L2 subset of L1-based features: F[46-50, 53, 55, 76, 85,
87, 92, 112, 120, 122-124, 126, 132, 141, 144-146].
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6 Conclusion and Future Work

We have presented the largest and most in-depth
computational readability study for Arabic to date.
We studied a wide set of features with varying
depths from shallow words to syntactic trees for
both L1 and L2 readability tasks. Our best L1
Readability accuracy result is 94.8% (75% error
reduction from a commonly used baseline). The
comparable results for L2 are 72.4% (45% error
reduction). We demonstrated the added value of
using L1 features for L2 readability prediction by
increasing the L2 accuracy to 74.1% (an additional
6% error reduction).

The next step in improving model robustness
and performance would be to address the dataset
imbalance among the four levels for both L1 and
L2 by adjusting sampling (He and Garcia, 2009).
We are also considering a cost-sensitive prediction
model: for instance, by assigning different costs
to misclassification scenarios, we can penalize the
model more heavily for errors in sparser levels.

In the future, we plan to employ our best results
in the development of online tools to support an
effort for text simplification for pedagogical pur-
poses. Going forward in this direction, we expect
to widen our range to include different levels of
document granularity: 500-word to 1K-word size
documents, as well as sentence-level readability
(Dell’Orletta et al., 2014b).
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Abstract

This paper investigates what differentiates
effective tutorial sessions from less effec-
tive sessions. Towards this end, we charac-
terize and explore human tutors’ actions in
tutorial dialogue sessions by mapping the
tutor-tutee interactions, which are streams
of dialogue utterances, into streams of ac-
tions, based on the language-as-action the-
ory. Next, we use human expert judgment
measures, evidence of learning (EL) and
evidence of soundness (ES), to identify ef-
fective and ineffective sessions. We per-
form sub-sequence pattern mining to iden-
tify sub-sequences of dialogue modes that
discriminate good sessions from bad ses-
sions. We finally use the results of sub-
sequence analysis method to generate a tu-
torial Markov process for effective tutorial
sessions.

1 Introduction

Identifying effective instructional strategies, i.e.,
strategies that induce learning gains, has been
a key research question in the Intelligent Tutor-
ing Systems (ITSs) community. There are two
common approaches used to address this research
question: (1) hypothesize and validate through
experimentation strategies guided by sound ped-
agogical theory (Aleven et al., 2001; Rus et al.,
2017a) and (2) discover strategies employed by
expert tutors (Boyer et al., 2011; Rus et al., 2015;
Ohlsson et al., 2007). In our work, we adopt the
latter approach which typically consists of mining
patterns associated with successful tutorial ses-
sions in large collections of recorded human tu-
toring sessions. (Boyer et al., 2011; Cade et al.,
2008; Rus et al., 2015; Ohlsson et al., 2007).

It is important to note that discovering effective

tutoring strategies by studying the strategies used
by expert tutors is challenging because what char-
acterizes tutoring expertise is still an open ques-
tion to some degree (Rus et al., 2015). A tutor who
employs sound strategies may appear less expert
when working with students having low abilities
or lacking in motivation. On the other hand, an
average tutor may seem expert if s/he only works
with high ability and highly motivated students.
We lack student ability and prior knowledge infor-
mation in our data and therefore focus on effective
tutoring rather than expert tutoring. Effective tu-
toring refers to tutoring that yields learning gains.
In sum, we study in this paper strategies of effec-
tive tutors as reflected in effective tutorial sessions.

In this paper, we worked with an annotated cor-
pus of human tutoring sessions from which we
identified effective sessions based on human ex-
pert judgments (see Section 5). We mapped tu-
torial sessions onto sequences of dialogue acts
and dialogue modes (Cade et al., 2008), explained
later, using a predefined coding taxonomy (see
Section 3). We then conducted sub-sequence pat-
tern mining to identify sub-sequences of dialogue
modes that occur in effective tutoring sessions
but not in ineffective tutoring sessions. We used
these distinctive sub-sequences of modes to build a
Markov process for effective tutorial sessions. Fi-
nally, using the tutorial Markov process, we ana-
lyzed and searched for dialogue mode patterns as-
sociated with effective tutoring sessions.

2 Related Work

Discovering the structure of tutorial dialogues and
tutors’ strategies has been a main goal of the in-
telligent tutoring research community from the
very beginning because such tutorial session struc-
tures and strategies must be understood in order
to be replicated in the development of effective
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ITSs. Graesser et al. (1995) proposed a five-step
general structure of collaborative problem solv-
ing during tutoring. Cade et al. (2008) examined
likely sequences of dialogue modes in expert tu-
toring. Boyer and colleagues (2009; 2010) applied
hidden Markov models to discover effective dia-
logue modes inherent in the tutoring sessions. Rus
et al. (2017b) used a supervised machine learning
method to automatically map tutorial sessions into
dialogue acts, sub-acts and modes and then ana-
lyzed human tutoring sessions using profile com-
parison and sequence logos to discover effective
tutorial strategies in terms of dialogue acts and
modes. Our work further contributes to this area
of research by characterizing effective tutorial ses-
sions in terms of dialogue mode sequential pat-
terns and tutorial Markov processes.

3 Coding Taxonomy

The role of the coding taxonomy is to help us
map tutors and tutees’ utterances in tutorial di-
alogues onto actions, i.e., dialogue acts, based
on the language-as-action theory (Austin, 1975;
Searle, 1969) according to which when we say
something we do something. For example, the ut-
terance: “There is an useful idea called ‘conserva-
tion of energy”’ is categorized as an Assertion dia-
logue act, i.e., the utterance is making an assertion.
Because the assertion is about “conservation of
energy”, a Concept, we consider this as a special-
ized assertion about a concept, i.e., an Assertion-
Concept dialogue act-subact combination.

We group sequences of dialogue acts and sub
acts into higher level constructs, i.e., dialogue
modes. Dialogue modes represent contiguous
sequences of dialogue acts-subacts that together
serve particular pedagogical purposes, e.g., a se-
quence of hints in the form of questions may re-
flect a scaffolding instructional strategy in which
the tutee works mostly by herself on the current
instructional task while the tutor offers help, when
needed, through such hints.

The dialogue act and mode taxonomies are
adapted to our context from a set of earlier tax-
onomies which were created to analyze a large
corpus of online tutoring sessions conducted by
human tutors in the domains of Algebra and
Physics (Morrison et al., 2014). There are 17
top level expert-defined dialogue act categories.
Each dialogue act category may have 4 to 22
subcategories or sub-acts. For example, we dis-

Annotation Agreement (%) Kappa
Act 77 0.72
Act-subact 62 0.60
Mode 44 0.37
Mode∗ 53.8 0.48
Mode∗∗ 64.3 0.60

Table 1: Average Inter Annotator Agreement Be-
tween Two Independent Annotators. Mode∗ and
Mode∗∗ represent dialogue mode agreement be-
tween verifier and first annotator and, verifier and
second annotator respectively.

tinguish Assertions that reference aspects of the
tutorial process itself (Assertion:Process); do-
main concepts (Assertion:Concept), or the the
use of lower-level mathematical calculations (As-
sertion:Calculation). Further, we have a set of
17 dialogue modes: Assessment, Closing, Fad-
ing, ITSupport, Metacognition, MethodID, Mod-
eling, OffTopic, Opening, ProblemID, ProcessNe-
gotiation,RapportBuilding, RoadMap, SenseMak-
ing, Scaffolding, SessionSummary and Telling. A
detailed description of the dialogue modes is de-
scribed by Morrison and colleagues (Morrison
et al., 2014).

4 Data

A large corpus of about 19K tutorial sessions
between professional human tutors and actual
college-level, adult students on Algebra domain
was collected via an online human tutoring ser-
vice. 500 tutorial sessions containing 31,299 ut-
terances were randomly selected for annotation.
The sessions were manually labeled by a team of 6
subject matter experts (SMEs). They were trained
on the taxonomy of dialogue acts, sub-acts, and
modes. Each session was manually tagged by two
independent annotators without looking at each
other’s tags to eliminate any labeling bias prob-
lems. The tags of the two independent annotators
were double-checked by a verifier who resolved
discrepancies in tags, if any. It should be noted
that though the average inter-annotator agreement
is apparently low, the final agreement of annota-
tors with the verifier is higher (see Table 1). The
verifier also happened to be the designer of our
dialogue taxonomy. In this paper, dialogue mode
should be interpreted as dialogue mode-switch.
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Mode sub-sequences (p-value in bracket)
Fading-Closing (0.0002)
Scaffolding-Scaffolding (0.0008)
Fading (0.0009)
Scaffolding-Fading (0.0055)
Fading-Fading (0.01)
ProblemID-Fading (0.02)
ProblemID-Scaffolding-Scaffolding(0.0362)
Closing (0.05)
Fading-RapportBuilding (0.05)
Fading-ProcessNegotiation (0.06)
Fading-Scaffolding (0.07)
Fading-ProcessNegotiation-Closing (0.07)
Fading-Fading-Scaffolding (0.08)
ProblemID-Fading-Scaffolding (0.10)
Fading-Scaffolding-Fading (0.14)
Scaffolding-Closing (0.15)
Opening-ProblemID-Fading (0.18)
RapportBuilding (0.18)
Fading-Scaffolding-Closing (0.18)
Scaffolding-Fading-Scaffolding (0.20)
Scaffolding-RapportBuilding (0.23)
Fading-Scaffolding-ProcessNegotiation (0.26)
RapportBuilding-Closing(0.37)

Table 2: Discriminant mode sub-sequences.

5 Markov Analysis of Tutorial Sessions

In order to identify effective sessions, the SMEs
also rated each tutorial session using a 1-5 scale (5
being best score) along two dimensions: evidence
of learning (EL) and evidence of soundness (ES).
The ES score is supposed to measure the degree to
which the tutor applied pedagogically sound tac-
tics. On the other hand, the EL score indicates
whether there is strong evidence that the student
learned from the tutoring session. The ES and EL
distinction was designed in order to separate con-
founding factors such as learners’ engagement in
the session. For instance, a tutor may apply sound
pedagogy but the student may not learn as all they
might be interested is to find a quick answer to
their (homework) problem. It should be noted that
most of the sessions we had access to were in the
context of homework help. That is, students start a
session by asking for help with a particular prob-
lem. While EL and ES were supposed to cap-
ture different things, the EL and ES scores were
found to be highly correlated (Pearson co-efficient
of 0.7).

We used both EL and ES to capture overall qual-

ity of tutoring sessions. We categorized all ses-
sions having ES and EL scores ≤ 2 as ineffective,
and all sessions rated with ES = 5 and EL ≥ 4 as
effective.

We conducted discriminant mode sub-sequence
analysis using Traminer package in R. It should
be noted that a sub-sequence is not necessarily
a contiguous sequence of observations, however,
the order of the observations is preserved. For ex-
ample, (Fading)-(Closing) is a valid sub-sequence
of dialogue modes formed from the (Fading)-
(ProcessNegotiation)-(Closing) contiguous ses-
sion fragment. We generated sub-sequences up to
length 7 from all annotated tutorial sessions.

The Traminer algorithm first finds the most
frequent sub-sequences by counting their distinct
occurrences and then applies a Chi-squared test
(Bonferroni-adjusted) to identify sub-sequences
that are statistically more (or less) frequent in each
group. We used a p-value < 0.4 to generate a suf-
ficient number of likely distinctive sub-sequences
of modes (Table 2). Once the significant sub-
sequences were identified, we generated a state
transition matrix, explained next.

5.1 State Transition Matrix

We created a state transition matrix with modes
as the states. We ignored sub-sequences of
unit length as they don’t indicate an observed
transition. For sub-sequences spanning more
than two states, we split them into multiple bi-
gram sub-sequences. For example, we obtained
bigram sub-sequences Opening-ProblemID and
ProblemID-Fading from the Opening-ProblemID-
Fading sub-sequence. We discarded self-transition
paths since modes are actually mode switches
in our case. Therefore, we discarded transition
path Scaffolding-Scaffolding from the ProblemID-
Scaffolding-Scaffolding sub-sequence.

We used confident scores of discriminant sub-
sequences to compute transition probabilities. The
confidence score of a discriminant sub-sequence
is the probability that the sub-sequence is com-
ing from an effective session, i.e., 1 - p-value.
We computed a confidence score of a path as
the confidence score of the discriminant sub-
sequence the path belongs to. For example,
for Opening-ProblemID-Fading (0.18), the con-
fidence score of paths Opening-ProblemID and
ProblemID-Fading is 1-0.18 = 0.82. We weighted
an edge as the cumulative sum of its confi-
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Figure 1: Tutorial Markov Process for effective tutorial sessions.

dence scores from all the sub-sequences where the
path is present. For example, path ProblemID-
Fading is present in sub-sequences ProblemID-
Fading (0.02) and Opening-ProblemID-Fading
(0.18). So, the weight of the path ProblemID-
Fading is: 0.98 + 0.82 = 1.8. Finally, we nor-
malized the weight of each path A-B to represent
transition probability by dividing it by the sum
of the weights of all possible transitions from A.
For example, the weight of the path ProblemID-
Fading is normalized by dividing it by the sum
total of weights of all the transitions from Prob-
lemID state.

5.2 Tutorial Markov Interpretation
Figure 1 shows the state transition graph of the
underlying Markov process corresponding to the
above state transition matrix. In the figure, the
states are dialogue modes whereas transitions
are generated using only the discriminant sub-
sequences of modes. Each path has been labeled
with the corresponding transition probabilities.

The Markov process reveals that any sequence
of modes it can generate starts with an Open-
ing and ends with a Closing state and is likely
to have a large number of Scaffolding - Fad-
ing switches/transitions. This result partly sup-
ports theoretical expert tutoring models based
on the modeling-scaffolding-fading paradigm (Ro-
goff and Lave, 1984). The high occurrences of
these modes provide evidence that effective tu-
tors monitor and engage students more and pro-
vide help only when needed. Cade et al. (2008)
also found that Scaffolding was a highly occur-

ring mode in expert tutoring. They found a rela-
tively low occurrence of the Fading mode, which
they suggested might be explained by time con-
straints, i.e. the tutoring session prevented tutors
from spending too much time in the Fading mode.

The Markov process also resembles to some
degree Graesser’s (Graesser et al., 1995) 5-step
dialogue framework, which captures the tutorial
phases prevalent in collaborative problem-solving
tutoring: i) Tutor asks question, ii) Student an-
swers question, iii) Tutor gives short feedback,
iv)Tutor and student collaboratively improve the
quality of the answer, v) Tutor assesses student’s
understanding. One probable effective tutorial
path from the Markov process, which might be
comparable to Graesser’s framework, is Opening
- ProblemId - Fading - Scaffolding - Fading -
ProcessNegotiation - Closing. Indeed, the sub-
path ProblemId - Fading - Scaffolding - Fading
- ProcessNegotiation resembles Graesser’s 5-step
framework.

The first 3 phases in Graesser’s framework don’t
align with the initial modes of the suggested learn-
ing path. This might be because of the differ-
ence in the tutoring environment. Graesser as-
sumed tutor-driven sessions, which with a tutor
first asking a question or presenting a problem for
the learner to solve, followed by a student answer,
etc. In our case, it is the students who are seeking
help from tutors on specific problems. Initially, in
our case, the tutor works together with the student
to understand the problem (ProblemId). Then, the
tutor fades, allowing the student to work on the
problem by herself (Fading). The tutor may switch
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between Scaffolding and Fading to provide help
(Scaffolding), only when needed. In this sense,
the last two elements in Graesser’s framework can
be considered to be aligned with the Scaffolding -
Fading pattern.

The additional benefit of this Markov process
representation is that it suggests multiple possible
paths or meta-strategies that can lead to learning
gains.

6 Conclusion

We used human expert judgment scores to iden-
tify effective and ineffective tutoring sessions. We
conducted discriminant mode sub-sequence anal-
ysis based on which we generated a Markov pro-
cess for effective tutorial sessions. We found that
sequences of dialogue modes derived from the
Markov process are most likely to have many Scaf-
folding and Fading modes. Furthermore, the in-
ferred Markov process suggests a new model for
tutoring when students ask for help as opposed to
tutor-driven sessions, which was modeled in the
past. Our future work is to expand our understand-
ing of the effective strategies in effective tutorial
sessions while accounting for other factors such
as students’ prior knowledge.
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Abstract

Essays have two major components for
scoring - content and style. In this pa-
per, we describe a property of the essay,
called goodness, and use it to predict the
score given for the style of student essays.
We compare our approach to solve this
problem with baseline approaches, such
as language modeling and also a state-of-
the-art deep learning system, proposed by
Taghipour and Ng (2016). We show that,
despite being quite intuitive, our approach
is very powerful in predicting the style of
the essays.

1 Introduction

The first Automatic Essay Grading (AEG) sys-
tem was Project Essay Grade developed by Ellis
Page in 1966 (Page, 1966). Page (1966) believed
that there are two major components to an essay,
namely content (what the essay is about) and style
(how well the essay is written). Style consists
of two major parts, namely sentence fluency and
word choice.

In 2012, a competition was organized by Kag-
gle. This competition, called the Automated Stu-
dent Assessment Prize (ASAP), had multiple es-
says written by high school students of classes 7
to 10. The dateset for this competition has led to
a large amount of research in AEG and automatic
short-answer scoring in the last few years.

In this paper, we discuss one of the aspects of
essay-writing, namely style, and how we can pre-
dict it automatically. In addition, we also look
at two of the major components of style, namely
word choice and sentence fluency. Style is nec-
essary for providing a rich and diverse structure
to the writing of the essay. Proficient and crisp
vocabulary, as well as good sentence fluency is a

mark of a writer being able to express his / her
thoughts in the language of their writing.

Style is necessary for providing a rich and di-
verse structure to the writing of the essay. Profi-
cient and crisp vocabulary, as well as good sen-
tence fluency is a mark of a writer being able to
articulate his / her thoughts well in the language
of their writing.

There has been a fair bit of recent work in pre-
dicting other aspects of the essay, such as coher-
ence (Somasundaran et al., 2014), organization
(Persing et al., 2010), etc. However, not much
work has been done for grading either style, sen-
tence fluency, or word choice in student essays.

The central contribution of our paper is the def-
inition of goodness and its use in predicting the
style, word choice and sentence fluency scores of
student essays. We define the goodness of a word
(or phrase) as the weighted average of the count of
the word (or phrase), weighted by score of the es-
say (either style, or word choice, or sentence flu-
ency). In this way, words or phrases that occur
more often in essays with a better score, get scored
higher. Using this property, we show a significant
improvement over our baseline measures, as well
as a state-of-the-art deep learning system, devel-
oped by Taghipour and Ng (2016).

The rest of the paper is organized as follows.
Section 2 defines the problem statement of our
paper - in particular the terms style, word choice
and sentence fluency. Section 3 describes our ap-
proach to predict the goodness scores of essays.
Section 4 describes other features that we use, as
well as a state-of-the-art system. Section 5 de-
scribes the dataset used. Section 6 describes the
experiments that we performed. Section 7 gives
our results and provides an analysis on the good-
ness of words and other features, and how they
impact the sentence fluency score of essays. We
also use ablation tests to find out which is the most
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important feature set. Section 8 describes related
work in solving this problem. We conclude the
paper in Section 9.

2 Problem Definition

We define style as the quality that measures how
well the essay is written with respect to its lan-
guage, vocabulary, sentences, etc. Hence, we say
that style consists of 2 parts, namely word choice
and sentence fluency.

Word choice is a quality in the essay where pre-
cise vocabulary is used. For example an essay us-
ing the word “express” (“Sally Yates expressed her
concern about Michael Flynn’s ties with Russia.”)
has a better word choice than if it were to use the
word “say” (“Sally Yates said that she was con-
cerned about Michael Flynn’s ties with Russia.”).

Sentence fluency is the quality of an essay that
measures the writer’s command of the language
that they are writing in. A writer who is profi-
cient in writing, will be able to form good quality
phrases, construct sentences quite easily, and show
a flow between the sentences that they write.

We model each of these as an ordinal classifica-
tion problem, where each score point corresponds
to a class.

3 Goodness

We hypothesize that essays with a better score in
style, word choice or sentence fluency make use
of words and phrases that have a higher goodness
score. Goodness of a word (or phrase) W , is de-
fined as the weighted average of W , weighted by
the score of the essay. Hence, goodness is calcu-
lated using the formula:

Goodness(W ) =

∑
i

i∗Ci(W )

∑
i

Ci(W )
,

where Goodness(W ) is the goodness of the word
(or phrase) W , Ci(W ) is the count of word (or
phrase), in essays scored with a score of i with re-
spect to the relevant task (either style, word choice
or sentence fluency).

For training, we run two passes over our dataset.
In the first pass, we assign each word the same
score of the essay (i.e. all words are assigned a
score of i in essays with a score of i). Once this
is done, we then construct the vocabulary in the
second pass. In the second pass, we assign a score
for each word in the vocabulary as the mean of the
scores of the word throughout its occurrence in the

training data. In this way, we learn the goodness
scores of words and phrases.

For an unknown essay, we first score each word
with the same score it has in the training data, it
occurs in the training data set. Unknown words
(or phrase) are scored as follows:

1. In case it is an unknown word, we find the
most similar word to the unknown word using
GloVe word vectors (Pennington et al., 2014)
that is also present in the training data.

2. In case it is a spelling mistake. In case an un-
known word does not exist in our set of word
embeddings, we tag such a word as a spelling
mistake, and assign a goodness score of 0.

3. In case it is an unknown phrase. In case
there is a phrase that is not present in the
training data, then it is marked as an unknown
phrase. The score given to it is the mean
score of its corresponding words.

We calculate the overall goodness score of the
essay as the mean of the goodness scores of all the
relevant words and phrases in the essay.

4 Additional Features

In addition to calculating the goodness, we also
include the following add-on features to help im-
prove our predictions of style, word choice and
sentence fluency:

4.1 Essay statistics

These are length-based statistics about the essays,
namely the number of words and sentences. We
use these statistics because we observed that es-
says which were scored low (i.e. getting a 1)
have a very low length, as compared to the aver-
age length of the essay. Similarly, essays that are
scored high have a large number of words and sen-
tences as well.

4.2 Punctuation features

In addition to the length-based features, we also
count the number of commas, explanation points,
question marks, and quotations. We believe that
usage of these punctuation marks will help in de-
tecting different kinds of sentences, like questions,
exclamations, etc.
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Prompt ID Score Range Essays Average Length Quantities Predicted
7 1-4 1569 250 Style
8 1-6 723 600 Word Choice & Sentence Fluency

Table 1: Properties of the data that we used.

4.3 Complexity features
Complexity measures, like the Flesch Reading
Ease Score (FRES) are also used as features
in our system. In addition to those, we also
looked at parse tree features, like the average parse
tree depth and the number of subordinate clauses
(SBAR) in the text.

4.4 Language modeling features
These are language modeling features of the es-
say using the English Wikipedia from the Leipzig
corpus (Goldhahn et al., 2012). These features are
the output from the SRILM toolkit (Stolcke et al.,
2002). We use the following features:

1. Number of sentences per essay.

2. Number of words per sentence.

3. Number of OOVs in the sentence.

4. Language model score.

5. Perplexity of the text.

6. Average perplexity per words of the text.

4.5 Coherence-based Features
We define sentence flow as the content word sim-
ilarity between two adjacent sentences. For every
pair of adjacent sentences, we find out MaxSim
and MeanSim, which are the maximum and
mean similarity values between the content words
of the 2 sentences (Pitler et al., 2010). We use the
GloVe pre-trained word embeddings (Pennington
et al., 2014) for the vectors of the content words.

In addition to the above, we also construct PoS-
tag and lemma vectors of each of the sentences,
and calculate the average similarity between adja-
cent sentences (Pitler et al., 2010).

We also look at entity grid features (Barzilay
and Lapata, 2005). An entity grid is a 1-0 grid of
sentences × entities. A cell (E[i][j]) in the grid is
a 1 if the entity i is present in the sentence j, and
0 otherwise. We count the number of sequences
of length between 2 to 4, that have at least one 1
and use them as features. A sequence of multi-
ple 1s denote that an entity is referred to in a lot

of consecutive sentences. On the other hand, se-
quences with a solitary 1 mean that the entity is
mentioned just once, and never again in the adja-
cent sentences. The length of the sequence deter-
mines how many adjacent sentences we are con-
sidering at a time.

4.6 LSTMs - The State-of-the-Art

Deep learning networks, like LSTMs are quite
good in predicting the score of the essays. We
perform the experiments done by Taghipour and
Ng (2016)1. We ran multiple configurations of
their system. We used the default hyperparame-
ters as described in Section 5.1 of Taghipour and
Ng (2016). For pre-trained word embeddings, we
ran experiments using

1. No pre-trained word embeddings

2. The same word embeddings that Taghipour
and Ng (2016) used; and

3. GloVe word embeddings (Pennington et al.,
2014)

The word-embeddings dimension for the look-
up table layer was 50 for the first 2 experiments,
and 300 for the experiment using GloVe.

5 Dataset

The complete ASAP training data set consists
of nearly 13,000 essays, across 8 different essay
prompts. The essays were written by students
from classes 7 to 10. Things like dates, times, per-
centages, numbers, etc. were also anonymized.

Despite the fact that there are nearly 13,000 es-
says that have been graded in the data set, there are
only two prompts (prompts #7 and #8) of 1569 and
723 essays, in which individual scores are given
for each attribute or the essay. Since the scoring
range is between 0 - 3 for prompt #7, we trans-
form it to a range of 1 - 4, so that we can assign a
goodness score of 0 to spelling errors, rather than
to words belonging to the lowest-scoring essays.

1The system can be downloaded from
https://github.com/nusnlp/nea
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Experiment Style Word Choice Sentence Fluency
Baseline Experiments
Taghipour and Ng (2016) 0.4902 0.2511 0.3463
All features other than Goodness 0.5485 0.3433 0.3886
Goodness
Goodness using only content words 0.2259 0.3323 0.3586
Goodness using all words 0.2821 0.3557 0.3984
Goodness using all words and content phrases 0.0792 0.1785 0.2241
ALL features 0.5617 0.4233 0.4443
Other human rater 0.5444 0.4816 0.5091

Table 2: Results of our experiments. These are the mean QWK scores. Numbers in bold denote the best
system (excluding the human inter-rater agreement).

Table 1 describes the properties of the different
different from which we score style, word choice
and sentence fluency. Each of these scores were
assigned by 2 annotators. For our experiments,
we make use of Cohen’s Kappa with Quadratic
Weights - the Quadratic Weighted Kappa (QWK)
(Cohen, 1968). The human inter-annotator agree-
ment for style was 0.5444, word choice was
0.4816, and sentence fluency was 0.5091 between
the human raters.

6 Experiment Setup

We model this problem as an ordinal classification
problem where we consider each score to corre-
spond to a class. We then classify the essay into
the appropriate class that corresponds to its score.

This is not a run-of-the-mill classification prob-
lem as the values of the scores are ordered (1 <
2 < 3 < ...), and not independent. This is also not
a regression problem, because the scores are dis-
crete variables, and not continuous values. In re-
gression, for instance, we could end up with scores
higher than the maximum score possible. For in-
stance, if the highest score was 4, if we are to use
regression, we could end up scoring that essay 4.5!

We make use of the Ordinal Class Classifier
(Frank and Hall, 2001) on Weka (Frank et al.,
2016). The Ordinal Class Classifier is a meta-
classifier that pre-processes the input data and
transforms the input classes from ordinal to cate-
gorical classes before running the classification on
an internal classifier. We ran our experiments us-
ing three classifiers, namely a Naı̈ve Bayes Clas-
sifier (John and Langley, 1995), a Random For-
est Classifier (Breiman, 2001), and a Multinomial
Logistic Regression Classifier (le Cessie and van
Houwelingen, 1992) as the internal classifier. The

best classifiers were the Naı̈ve Bayes Classifier for
measuring style, and the Random Forest Classifier
for measuring word choice and sentence fluency.
We use stratified five-fold cross-validation. The
results of our classification are given in Table 2.

7 Results and Analysis

The results of the 5-fold cross-validation of the
training set are as shown in Table 2. The first block
is the baseline experiments. The reported result for
the neural network corresponds to the best neu-
ral network architecture - namely an LSTM with a
CNN layer using GloVe pre-trained word embed-
dings due to space constraints. Block 2 features
only goodness, and block 3 shows the results with
all the features and compares it to the agreement
with the other human rater.

In 2 out of the 3 tasks, using goodness without
any additional features, we are able to outperform
the baseline and Taghipour and Ng (2016)’s sys-
tem. In the third task, while goodness is not able to
outperform the baseline as well as the deep learn-
ing system, with the aid of language modeling, we
are able to outperform the baseline when predict-
ing style. This is because language modeling is
able to reward / penalize style by itself.

7.1 Analysis of Goodness Scores

Table 3 gives examples of different words and
their corresponding goodness scores for a single
training fold for sentence fluency. Words with the
lowest goodness scores tend to be spelling mis-
takes or out-of-context words. For instance, the
word computers has the lowest goodness score of
1. This is because, in that fold it only occurs in
a single training essay with word choice and sen-
tence fluency scores of 1.
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Range Example Words Example Phrases
1 - 2 ower, rumers, computers sameting funing, adefokil stoeshi, feel happy we
2 - 3 tho, trash, reward love laughter, a good thing, laugh that much
3 - 4 ok, fair, forever make me happy, a joke, love to laugh
4 - 5 cherish, role, obvious cherish forever, the center of attention
5 - 6 dire, aggressively, anguish one of utter sarcasm, went on similarly, something ridiculous

Table 3: Example words with goodness scores for a single training fold in sentence fluency.

An interesting feature with respect to phrases is
that the constituents of a phrase may have a lower
score as compared to the overall goodness score
of the phrase. For example, the words cherish and
forever have mean goodness scores of 4.4 and 3.9
respectively, while the phrase cherish forever has
a mean goodness score of 4.5.

7.2 Predictions Using Goodness Scores

If an essay contains a significant number of
spelling errors (like rumers), or out-of-context
words (like computers), the goodness score of the
essay will be lowered and it will be predicted to
have a lower style, word choice and sentence flu-
ency score.

Unknown word handling allows us to handle
spelling errors, as well as score words that are not
present in the training data. For example aggres-
sively has a mean goodness score of 5.5 across all
training folds for both reviewers in the task of sen-
tence fluency (out of 6). However, there may be a
training fold in which it is not present. In one such
fold, the synonym was vigorously, which also had
a very high score of 4.5. In the absence of un-
known word handling, we would skip it entirely.

When it came to using phrases, one of the chal-
lenges that we faced was data sparsity. For ex-
ample, a phrase with a goodness score of 4.5, like
cherish forever was ignored because the only es-
says that it occurred in were in the same fold.
Hence, when any of those essays were encoun-
tered in testing, the phrases were tagged as an un-
known phrase and skipped. Because of this, the
results degraded when we used phrases.

To find out which of the feature sets worked
best, we also ran ablation tests. We found out,
that for style and word choice, goodness was the
most important feature, and was the second-most
important feature after the entity grid feature set,
for sentence fluency.

Overall, we were able to consistently outper-
form the State-of-the-Art system, by using all our

features in all three tasks.

7.3 Adversarial Essays

An adversarial essay is one where a human rater
would rate it low but our system would be fooled
into rating it high. A key question to ask here is:
Can a cunning student easily con the entire system
into giving a good grade by submitting rubbish?
The answer is probably no. At least not easily.
While it is possible for the writer to write an essay
using only good words, this may not necessarily
translate to a higher score than what he would have
scored had he written the essay sincerely.

There are many ways to generate adversarial es-
says. Taghipour (2017) suggests using context-
free grammars, and language modeling to create
spurious essays, before trying to detect whether an
input essay is spurious or not. Farag et al. (2018)
construct adversarial essays by permuting the sen-
tences of good scoring essays.

We created our own version of adversarial es-
says, by constructing essays that were long, but
contained only “good” words (i.e. words with a
high goodness score).

In order to see if such a thing would be pos-
sible we generated a set of 100 essays (50 from
each prompt). These essays were generated from
a vocabulary of good words, having above aver-
age length sentences and a reasonably large word
count. We then graded these essays, using the
original ASAP data for training. Table 4 shows
how much is the average score, over the median
score of the original essays.

Output Goodness Goodness++
Style 1.20 0.42
Sentence Fluency 1.96 1.22
Word Choice 2.05 1.36

Table 4: Adversarial Essays Average score in-
crease using ONLY goodness scores (Goodness)
and ALL features (Goodness++).
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From this table we see that using all our fea-
tures tends to make an average gain in score of
about 1 point (out of 6 in sentence fluency and
word choice) and 0.42 points (out of 4 in style)
when we make use of all our features. In short,
the easiest way for a cunning student to beat our
system is for him / her to write well.

8 Related Work

As mentioned in Section 1, one of the major com-
ponents of an essay is its style. While there
has been work done in evaluating different sub-
problems with respect to style, there hasn’t been
too much work done with respect to evaluating
style.

With respect to sentence fluency, Chae and
Nenkova (2009) came up with a set of syntactic
features to predict sentence fluency. They focused
mainly on machine translation and articles written
by people. However, the source of their articles
was published articles from the Wall Street Journal
(WSJ). WSJ articles are written by adults, proof-
read, and edited before publication. We focus on
essays written by children studying in class 10 as
is without any proof-reading or editing. Hence,
they are expected to have a large number of errors,
as compared to WSJ articles, which can serve as a
discriminating factor between well and badly writ-
ten essays.

In sentiment analysis, properties of adjectives
have been used to predict the intensity of senti-
ment of a review as well (i.e. does the review
just like the item or does he really like the item).
Sharma et al. (2015) showed how intensity of ad-
jectives could be a good predictor of deciding how
positive or negative something is. Our approach -
measuring the goodness of words / phrases to pre-
dict the style score of essays - is analogous to the
Weighted Normal Polarized Intensity (WNPI) that
they used.

In recent years, there has been a reasonable
amount of research work done using deep learn-
ing to solve the problem of overall essay grading.
However, not much has been done in the area of
style, word choice or sentence fluency. Dong and
Zhang (2016) describe a system for calculating the
overall essay score using CNNs while Taghipour
and Ng (2016) use LSTMs for predicting the over-
all score of essays.

9 Conclusions

We have defined a property of the essay called the
goodness score, and use it as a way to score the
style, word choice and sentence fluency of essays.
We show that, by using goodness, we are able to
predict the scores of the essays significantly better
than the state-of-the-art system in essay grading,
namely Taghipour and Ng (2016)’s essay grad-
ing system. Our system was able to achieve re-
sults that were close to human inter-rater agree-
ment with respect to sentence fluency and word
choice, and outperformed the human raters with
respect to style.
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Abstract 

This paper presents the NLPTEA 2018 

shared task for Chinese Grammatical Error 

Diagnosis (CGED) which seeks to identify 

grammatical error types, their range of 

occurrence and recommended corrections 

within sentences written by learners of 

Chinese as foreign language. We describe 

the task definition, data preparation, 

performance metrics, and evaluation results. 

Of the 20 teams registered for this shared 

task, 13 teams developed the system and 

submitted a total of 32 runs. Progress in 

system performances was obviously, 

reaching F1 of 36.12% in position level and 

25.27% in correction level. All data sets 

with gold standards and scoring scripts are 

made publicly available to researchers. 

1 Introduction 

Automated grammar checking for learners of 

English as a foreign language has achieved 

obvious progress. Helping Our Own (HOO) is a 

series of shared tasks in correcting textual errors 

(Dale and Kilgarriff, 2011; Dale et al., 2012). The 

shared tasks at CoNLL 2013 and 2014 focused on 

grammatical error correction, increasing the 

visibility of educational application research in 

the NLP community (Ng et al., 2013; 2014).  

Many of these learning technologies focus on 

learners of English as a Foreign Language (EFL), 

while relatively few grammar checking 

applications have been developed to support 

Chinese as a Foreign Language(CFL) learners. 

Those applications which do exist rely on a range 

of techniques, such as statistical learning (Chang 

et al, 2012; Wu et al, 2010; Yu and Chen, 2012), 

rule-based analysis (Lee et al., 2013), neuro 

network modelling (Zheng et al., 2016; Zhou et al., 

2017) and hybrid methods (Lee et al., 2014). 

In response to the limited availability of CFL 

learner data for machine learning and linguistic 

analysis, the ICCE-2014 workshop on Natural 

Language Processing Techniques for Educational 

Applications (NLP-TEA) organized a shared task 

on diagnosing grammatical errors for CFL (Yu et 

al., 2014). A second version of this shared task in 

NLP-TEA was collocated with the ACL-IJCNLP-

2015 (Lee et al., 2015), COLING-2016 (Lee et al., 

2016). Its name was fixed from then on: Chinese 

Grammatical Error Diagnosis (CGED). As a part 

of IJCNLP 2017, the shared task was organized 

(Rao et al., 2017). In conjunction with NLP-TEA 

workshop in ACL 2018, CGED is organized again. 

The main purpose of these shared tasks is to 

provide a common setting so that researchers who 

approach the tasks using different linguistic 

factors and computational techniques can 

compare their results. Such technical evaluations 

allow researchers to exchange their experiences to 

advance the field and eventually develop optimal 

solutions to this shared task. 

The rest of this paper is organized as follows. 

Section 2 describes the task in detail. Section 3 

introduces the constructed datasets. Section 4 

proposes evaluation metrics. Section 5 reports the 

results of the participants’ approaches. 

Conclusions are finally drawn in Section 6. 

2 Task Description 

The goal of this shared task is to develop NLP 

techniques to automatically diagnose (and furtherly 

correct) grammatical errors in Chinese sentences 

written by CFL learners. Such errors are defined as 
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PADS: redundant words (denoted as a capital “R”), 

missing words (“M”), word selection errors (“S”), 

and word ordering errors (“W”). The input 

sentence may contain one or more such errors. The 

developed system should indicate which error 

types are embedded in the given unit (containing 1 

to 5 sentences) and the position at which they occur. 

Each input unit is given a unique number “sid”. If 

the inputs contain no grammatical errors, the 

system should return: “sid, correct”. If an input unit 

contains the grammatical errors, the output format 

should include four items “sid, start_off, end_off, 

error_type”, where start_off and end_off 

respectively denote the positions of starting and 

ending character at which the grammatical error 

occurs, and error_type should be one of the defined 

errors: “R”, “M”, “S”, and “W”. Each character or 

punctuation mark occupies 1 space for counting 

positions. Example sentences and corresponding 

notes are shown as Table 1 shows. This year, we 

only have one track of HSK. 

 

HSK (Simplified Chinese) 

Example 1 

Input: (sid=00038800481)  我根本不能了解这妇女辞职回家的现象。在这个时代，为什么放弃自己的工作，就

回家当家庭主妇？ 
Output: 00038800481, 6, 7, S 

      00038800481, 8, 8, R 

(Notes: “了解”should be “理解”. In addition, “这” is a redundant word.) 

 

Example 2 

Input: (sid=00038800464)我真不明白。她们可能是追求一些前代的浪漫。 

Output: 00038800464, correct 

 

Example 3 

Input: (sid=00038801261)人战胜了饥饿，才努力为了下一代作更好的、更健康的东西。 

Output: 00038801261, 9, 9, M 

      00038801261, 16, 16, S 

(Notes: “能” is missing. The word “作”should be “做”. The correct sentence is “才能努力为了下一代做更好的”) 

 

Example 4 

Input: (sid=00038801320)饥饿的问题也是应该解决的。世界上每天由于饥饿很多人死亡。 

Output: 00038801320, 19, 25, W 

(Notes: “由于饥饿很多人” should be “很多人由于饥饿”) 

Table 1: Example sentences and corresponding notes 

 

 

3 Datasets  

The learner corpora used in our shared task were 

taken from the writing section of the HSK (Pinyin 

of Hanyu Shuiping Kaoshi, Test of Chinese Level) 

(Cui et al, 2011; Zhang et al, 2013). 

Native Chinese speakers were trained to 

manually annotate grammatical errors and 

provide corrections corresponding to each error. 

The data were then split into two mutually 

exclusive sets as follows.  

(1) Training Set: All units in this set were used 

to train the grammatical error diagnostic systems. 

Each unit contains 1 to 5 sentences with annotated 

grammatical errors and their corresponding 

corrections. All units are represented in SGML 

format, as shown in Table 2. We provide 402 

training units with a total of 1,067 grammatical 

errors, categorized as redundant (208 instances), 

missing (298), word selection (474) and word 

ordering (87). 
In addition to the data sets provided, participating 

research teams were allowed to use other public data 

for system development and implementation. Use of 

other data should be specified in the final system 

report.  

 

#Units  #Correct #Erroneous 
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3,549 (100%) 1,562 (44.01%) 1,987 (55.99%) 

Table 3:  The statistics of correct sentences in 

testing set. 

 

Test Set: This set consists of testing units used for 

evaluating system performance. Table 3 shows 

statistics for the testing set for this year. According to 

the sampling in the writing sessions in HSK, over 

40% of the sentences contain no error. This was 

simulated in the test set, in order to test the 

performance of the systems in false positive 

identification. The distributions of error types (shown 

in Table 4) are similar with that of the training set. The 

proportion of the correct sentences is sampled from 

data of the online Dynamic Corpus of HSK1. 

 

Error Type  

#R 
1,119 

(22.20%) 

#M 
1,381 

(27.40%) 

#S 
2,167 

(43.00%) 

#W 
373 

(7.40%) 

#Error 
5,040 

(100%) 

Table 4: The distributions of error types in 

testing set. 

4 Performance Metrics 

Table 5 shows the confusion matrix used for 

evaluating system performance. In this matrix, TP 

(True Positive) is the number of sentences with 

grammatical errors are correctly identified by the 

developed system; FP (False Positive) is the 

number of sentences in which non-existent 

grammatical errors are identified as errors; TN 

(True Negative) is the number of sentences without 

grammatical errors that are correctly identified as 

such; FN (False Negative) is the number of 

sentences with grammatical errors which the 

system incorrectly identifies as being correct.  

The criteria for judging correctness are 

determined at three levels as follows. 

(1) Detection-level: Binary classification of a 

given sentence, that is, correct or incorrect, should 

                                                      
1 http://bcc.blcu.edu.cn/hsk 

be completely identical with the gold standard. All 

error types will be regarded as incorrect.  

(2) Identification-level: This level could be 

considered as a multi-class categorization problem. 

All error types should be clearly identified. A 

correct case should be completely identical with 

the gold standard of the given error type.  

(3) Position-level: In addition to identifying the 

error types, this level also judges the occurrence 

range of the grammatical error. That is to say, the 

system results should be perfectly identical with 

the quadruples of the gold standard.  

Besides the traditional criteria in the past share 

tasks, Correction-level was introduced to CGED 

2018. 

(4) Correction-level: For the error types of 

Selection and Missing, recommended corrections 

are required. At most 3 recommended corrections 

are allowed for each S and M type error. In this 

level the amount of the corrections recommended 

would influent the precision and F1 in this level. 

The trust of the recommendation would be test. 

The following metrics are measured at all levels 

with the help of the confusion matrix. 

 False Positive Rate = FP / (FP+TN) 

 Accuracy = (TP+TN) / (TP+FP+TN+FN) 

 Precision = TP / (TP+FP) 

 Recall = TP / (TP+FN) 

F1 = 2*Precision*Recall / (Precision + Recall) 

 False Positive Rate (FPR) = 0 (=0/1)  

 Detection-level 

 Accuracy = 1 (=4/4) 

 Precision = 1 (=3/3) 

 Recall = 1 (=3/3) 

 F1 = 1 (= (2*1*1)/(1+1)) 

 Identification-level 

 Precision = 0.8 (=4/5) 

 Recall = 0.8 (=4/5) 

 F1 = 0.8 (= (2*0.8*0.8)/(0.8+08)) 

 Position-level 

 Precision = 0.3333 (=2/6) 

 Recall = 0.4 (=2/5) 

 F1=0.3636 

(=(2*0.3333*0.4)/(0.3333+0.4)) 

 Correction-level 

 Precision = 0.125 (=1/8) 

 Recall = 0.3333 (=1/3) 

 F1=0.1818 

(=(2*0.3333*0.125)/(0.3333+0.1

25)) 
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 Correction-level (Top3) 

 Precision = 0.3333 (=1/3) 

 Recall = 0.3333 (=1/3) 

 F1=0.3333 

(=(2*0.3333*0.3333)/(0.3333+0.

3333)) 

<DOC> 

<TEXT id="200307109523200140_2_2x3"> 

因为养农作物时不用农药的话，生产率较低。那肯定价格要上升，那有钱的人想吃多少，就

吃多少。左边的文中已提出了世界上的有几亿人因缺少粮食而挨饿。 

</TEXT> 

<CORRECTION> 

因为种植农作物时不用农药的话，生产率较低。那价格肯定要上升，那有钱的人想吃多少，

就吃多少。左边的文中已提出了世界上有几亿人因缺少粮食而挨饿。 

</CORRECTION> 

<ERROR start_off="3" end_off="3" type="S"></ERROR> 

<ERROR start_off="22" end_off="25" type="W"></ERROR> 

<ERROR start_off="57" end_off="57" type="R"></ERROR> 

</DOC> 

 

<DOC> 

<TEXT id="200210543634250003_2_1x3"> 

对于“安乐死”的看法，向来都是一个极具争议性的题目，因为毕竟每个人对于死亡的观念都

不一样，怎样的情况下去判断，也自然产生出很多主观和客观的理论。每个人都有着生存的

权利，也代表着每个人都能去决定如何结束自己的生命的权利。在我的个人观点中，如果一

个长期受着病魔折磨的人，会是十分痛苦的事，不仅是病人本身，以致病者的家人和朋友，

都是一件难受的事。 

</TEXT> 

<CORRECTION> 

对于“安乐死”的看法，向来都是一个极具争议性的题目，因为毕竟每个人对于死亡的观念都

不一样，无论在怎样的情况下去判断，都自然产生出很多主观和客观的理论。每个人都有着

生存的权利，也代表着每个人都能去决定如何结束自己的生命。在我的个人观点中，如果一

个长期受着病魔折磨的人活着，会是十分痛苦的事，不仅是病人本身，对于病者的家人和朋

友，都是一件难受的事。 

</CORRECTION> 

<ERROR start_off="46" end_off="46" type="M"></ERROR> 

<ERROR start_off="56" end_off="56" type="S"></ERROR> 

<ERROR start_off="106" end_off="108" type="R"></ERROR> 

<ERROR start_off="133" end_off="133" type="M"></ERROR> 

<ERROR start_off="151" end_off="152" type="S"></ERROR> 

</DOC> 
Table 2: A training sentence denoted in SGML format. 

 

Confusion Matrix 
System Results 

Positive (Erroneous) Negative(Correct) 

Gold Standard 
Positive TP (True Positive) FN (False Negative) 

Negative FP (False Positive) TN (True Negative) 

Table 5: Confusion matrix for evaluation. 

 

 

5 Evaluation Results  

Table 6 summarizes the submission statistics for 

the 12 participating teams including 10 from 

universities and research institutes in China 

(AutoNLP, BUPT, CYUT-III, ECNU, HFL, CMMC, 

NCYU, NTOU, PkU_ICL), 1 from the U.S. (UIUC) 

and 1 from India (IIT). Two teams (HFL and 

DM_NLP) of enterprises are all from China. In the 

official testing phase, each participating team was 

allowed to submit at most three runs. Of the 12 

registered teams, 8 teams submitted their testing 

results in Correction-level, for a total of 32 runs. 
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Participant (Ordered by names) #Runs Correction-level 

AutoNLP 3 √ 

BUPT 3 √ 

CYUT-III 3 √ 

DM_NLP 3 √ 

ECNU 3 - 

HFL 3 √ 

IIT (BHU) 1 √ 

CMMC-BDRC 3 √ 

NCYU 3 √ 

NTOU 1 - 

PkU_ICL 3 √ 

UIUC 2 - 

Walker 1 - 

Table 6: Submission statistics for all participants. 
 

Table 7 shows the testing results of the 

CGED2018. The CYUT-III achieved the lowest 

false positive rate (denoted as “FPR”) of 0.0499, 

about half of the lowest FPR in the CGED 2017. 

Detection-level evaluations are designed to detect 

whether a sentence contains grammatical errors or 

not. A neutral baseline can be easily achieved by 

reporting all testing sentences containing errors. 

According to the test data distribution, the 

baseline system can achieve an accuracy of 

0.5599. However, not all systems performed 

above the baseline. The system result submitted 

by HFL achieved the best detection accuracy of 

0.7578 and CMMC-BDRC in F1 of 0.7563. For 

identification-level evaluations, the systems need 

to identify the error types in a given unit. The 

system developed by HFL provided the highest F1 

score of 0.5503 for grammatical error 

identification. For position-level evaluations, 

HFL achieved the best F1 score of 0.3612. 

Perfectly identifying the error types and their 

corresponding positions is difficult in part 

because no word delimiters exist among Chinese 

words in the given sentences. 

In correction-level, DM_NLP achieved best 

precision (0.2932 and 0.3077) in correction and 

top3 correction track. HFL’s runs reached best F1 

of 0.1723 and 0.2527. 

10 participants submitted 11 reports on their 

systems. Though neural networks achieved good 

performances in various NLP tasks, traditional 

statistic models and pipe-lines were still widely 

implemented in the CGED task. LSTM+CRF has 

been a standard implementation. Unlike CGED 

2017, participants began to rethink the importance 

of the feature selection and statistics. 
In summary, none of the submitted systems 

provided superior performance using different 

metrics, indicating the difficulty of developing 

systems for effective grammatical error diagnosis, 

especially in CFL contexts. From organizers’ 

perspectives, a good system should have a high F1 

score and a low false positive rate. Overall, HFL, 

DM_NLP, and CMMC-BDRC achieved relatively 

better performances. 

 

TEAM Runs FPR 
Detection Identification Position 

Acc. pre rec F1 pre re F1 pre rec F1 

AutoNLP run1 0.3301  0.5131  0.6349  0.4232  0.5079  0.4792  0.1995  0.2817  0.1185  0.0442  0.0644  

 run2 0.1642  0.4897  0.6698  0.2494  0.3634  0.5139  0.1323  0.2105  0.1585  0.0331  0.0547  

 run3 0.4715  0.4996  0.6346  0.5426  0.5850  0.4735  0.2646  0.3395  0.1129  0.0609  0.0792  

BUPT run1 0.8412  0.5711  0.5752  0.8953  0.7004  0.3506  0.5663  0.4331  0.0482  0.0882  0.0623  

 run2 0.5019  0.6005  0.6331  0.6809  0.6562  0.4134  0.3519  0.3802  0.0608  0.0504  0.0551  

 run3 0.5480  0.6236  0.6377  0.7584  0.6929  0.4084  0.4161  0.4122  0.0630  0.0609  0.0620  

CYUT-III run1 0.0499  0.4683  0.6953  0.0896  0.1587  0.5426  0.0418  0.0776  0.0586  0.0032  0.0060  

 run2 0.1780  0.6016  0.7535  0.4282  0.5461  0.5433  0.2790  0.3687  0.1470  0.0711  0.0959  

46



 
 
 
 

   

 run3 1.0000  0.4728  0.5805  0.8448  0.6881  0.2589  0.2640  0.2614  0.0070  0.0173  0.0100  

DM_NLP run1 0.3214  0.6131  0.6897  0.5617  0.6191  0.4038  0.3657  0.3838  0.2924  0.1842  0.2260  

 run2 0.2183  0.6174  0.7399  0.4882  0.5882  0.5943  0.3113  0.4086  0.3900  0.1777  0.2441  

 run3 0.2279  0.6238  0.7390  0.5073  0.6016  0.5877  0.3242  0.4179  0.3855  0.1850  0.2500  

ECNU run1 0.3470  0.5923  0.6663  0.5445  0.5993  0.4767  0.2836  0.3556  0.1238  0.0667  0.0867  

 run2 0.3873  0.5796  0.6452  0.5536  0.5959  0.4452  0.2740  0.3392  0.0901  0.0506  0.0648  

 run3 0.1255  0.5762  0.7760  0.3417  0.4745  0.6139  0.1818  0.2805  0.3745  0.0858  0.1397  

HFL run1 0.1613  0.7101  0.8276  0.6090  0.7017  0.7107  0.4173  0.5259  0.5341  0.2729  0.3612  

 run2 0.7554  0.6436  0.6171  0.9572  0.7504  0.3931  0.7331  0.5118  0.1441  0.3886  0.2102  

 run3 0.1754  0.7278  0.8254  0.6517  0.7283  0.6874  0.4588  0.5503  0.4752  0.2906  0.3606  

IIT (BHU) run1 0.4190  0.4483  0.5668  0.3889  0.4613  0.2737  0.1705  0.2102  0.0071  0.0030  0.0042  

CMMC-

BDRC 
run1 0.5314  0.6889  0.6736  0.8621  0.7563  0.4834  0.5952  0.5335  0.2741  0.3177  0.2943  

 run2 0.3547  0.6988  0.7266  0.7408  0.7336  0.5831  0.4955  0.5357  0.3839  0.2966  0.3346  

 run3 0.3470  0.6630  0.7109  0.6709  0.6903  0.4853  0.4096  0.4442  0.2482  0.1814  0.2096  

NCYU run1 0.9987  0.5596  0.5598  0.9985  0.7174  0.2381  0.9749  0.3828  0.0030  0.0390  0.0056  

 run2 0.9994  0.5599  0.5599  0.9995  0.7177  0.2382  0.9752  0.3828  0.0030  0.0384  0.0056  

 run3 0.9994  0.5599  0.5599  0.9995  0.7177  0.2382  0.9752  0.3828  0.0030  0.0380  0.0055  

NTOUA run1 0.9481 0.5323 0.5497 0.9099 0.6854 0.3297 0.5812 0.4207 0.0065 0.0191 0.0096 

PkU_ICL run1 0.5538  0.6388  0.6448  0.7901  0.7101  0.4483  0.4737  0.4607  0.1642  0.1605  0.1624  

 run2 0.2298  0.6317  0.7432  0.5229  0.6139  0.5567  0.3018  0.3914  0.2868  0.1309  0.1797  

 run3 0.5679  0.6267  0.6359  0.7796  0.7004  0.4433  0.4710  0.4567  0.1615  0.1615  0.1615  

UIUC run1 0.1274  0.5540  0.7519  0.3035  0.4324  0.6311  0.1696  0.2673  0.2385  0.0536  0.0875  

 run2 0.1274  0.5540  0.7519  0.3035  0.4324  0.6311  0.1696  0.2673  0.2385  0.0536  0.0875  

walker run1 0.9309  0.5441  0.5562  0.9179  0.6926  0.3144  0.6266  0.4187  0.0078  0.0189  0.0110  

Table7. Results of CGED 2018 in Detection-level, Identification-level and Position-level 

 

TEAM Runs Correction Top3 Correction 

  pre rec F1 pre F1 

AutoNLP run1 0.1667  0.0110  0.0206  0.1667  0.0206  

 run2 0.1626  0.0113  0.0211  0.1626  0.0211  

 run3 0.1626  0.0113  0.0211  0.1626  0.0211  

BUPT run1 0.0046  0.0093  0.0062  0.0046  0.0062  

 run2 0.0033  0.0028  0.0030  0.0033  0.0030  

 run3 0.0092  0.0087  0.0090  0.0092  0.0090  

CYUT-III run1 0.0040  0.0008  0.0014  0.0040  0.0014  

DM_NLP run1 0.2603  0.0161  0.0303  0.2701  0.0314  

 run2 0.2932  0.0158  0.0299  0.3077  0.0314  

 run3 0.2700  0.0180  0.0338  0.2832  0.0355  

HFL run1 0.2087  0.1468  0.1723  0.3059  0.2527  

 run2 0.0386  0.1696  0.0629  0.0722  0.1177  

 run3 0.1509  0.1400  0.1453  0.2391  0.2301  
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IIT (BHU) run1 0.0000  0.0000  0.0000  0.0000  0.0000  

CMMC-

BDRC 
run1 0.1364  0.1651  0.1494  0.1432  0.1569  

 run2 0.1852  0.1609  0.1722  0.1934  0.1798  

 run3 0.2126  0.1395  0.1685  0.2190  0.1735  

NCYU run1 1.2079E-05 0.0003  2.3164E-05 3.6236E-05 6.9493E-05 

 run2 3.6235E-05 8.4531E-04 6.9490E-05 1.0870E-04 2.0847E-04 

 run3 3.6235E-05 8.4531E-04 6.9490E-05 1.0870E-04 2.0847E-04 

PkU_ICL run1 0.0296  0.0775  0.0429  0.0822  0.1189  

 run2 0.0556  0.0662  0.0604  0.1522  0.1655  

 run3 0.0316  0.0814  0.0456  0.0881  0.1270  

Table 8. Results of CGED 2018 in Correction-level 
 

6 Discussions  

Table 9 summarizes the approaches and 

resources for each of the submitted systems, 

according to their 1st draft of system reports (some 

details were not clearly described yet). PkU_ICL, 

NCYU and IIT(BHU) did not submit reports on 

their systems. Though neural networks achieved 

good performances in various NLP tasks, 

traditional pipe-lines were still widely 

implemented in the CGED task. CRF, as a 

sequence labelling model with flexible feature 

space, was chosen by DM_NLP, CMMC, ECNU, 

HFL, walker and UIUC in their system pipe-lines. 

Further, UIUC applied its pipe-line only with 

CRF and post processing, achieving comparable 

results. NTOU conducted their runs based on 

frequent subsentences matching in internet corpus.  

For LSTM modelling, feature choice played an 

important role, influencing the system 

performance a lot. Besides character and word, 

part of speech (POS) based on the segmentation, 

are widely selected. ePMI, cPMI, Adjacent Word 

Collocation (AWC), Dependent Word 

Collocation (DWC), Contextualized Char 

Representation are newly implemented features in 

this task. 

For LSTM itself, AutoNLP applied policy 

gradient in modelling. Some participant added 

additional memory gate in the neuro, a quite 

normal trick in machine translation, helping their 

system achieve high F1 score over 50% in 

position-level and over 40% in correction-level. 

The submissions were withdrawn, due to the 

suspected overfitting of testing set. Although it 

cannot reflect the real achievement in this task, the 

phenome is still meaningful in particular context, 

like computer assistant essay correction2. 

In correction-level, DM_NLP applied rule-

based, NMT and SMT models and merge the 

generated results in hybrid pipe-line. HFL also 

followed the strategy of multi-model merging, 

using PMI scoring and a seq2seq network Their 

pipelines are shown in Fig.1. 

More various additional resources appeared in 

CGED 2018. Besides Gigawords and Wikipedia 

Corpus, Google Ngram, People’s Daily, Chinese 

5gram are newly introduced resources in this task. 

More impressively, CMMC utilized domain 

dictionary in L2 teaching to form pseudo writing 

data for training set enhancement, improving their 

performances in all aspects.  

 

Team Approach Features Correction Model 
Additional 

Resources 

Ali_GM BiLSTM+CRF 
Char, POS, 

AWC, DWC 

Rule-System, NMT, 

SMT 
Gigawords, Lang8 

AutoNLP 
Policy Gradient 

LSTM model 
 

 
 

                                                      
2 In the widely existing scenario of large scale examination 

correction, users may manually correct some submissions for 

pre-training, then the model with additional memory 

mechanism can automatically finish the rest with a high F1 

score. 
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BUPT bi-LSTM 

Contextualized 

Char 

Representation 

 

Wiki Corpus 

CMMC 

LSTM+CRF 

(Seq2Seq & Seq 

Label) 

Char, POS 

 People's Daily, Domain 

Dictionaries in L2 

Teaching, Self-generated 

corpus 

CYUT-III LSTM Word   

ECNU LSTM+CRF 

Char, POS, 

Dependency, 

BOW5 

 

 

HFL BiLSTM+CRF 

Gaussian ePMI, 

POS, PMI, 

BOW 

PMI Scoring, Seq2Seq 

Networks 
external corpus (unclear), 

Zuowen & Baike (unpublic) 

NTOU Rule-system 
Frequent string 

matching 

 
Chinese Web 5-grams 

UIUC CRF+Rule-system Word, Char 
 

Google Chinese N-grams 

walker BiLSTM+CRF  
 

 

Table 9: Summary of approaches and additional resources used by the submitted systems. 

 

 

 
Fig.1 Pipe-lines of the HFL (up) and DM_NLP
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7 Conclusion  

This study describes the NLP-TEA 2018 

shared task for Chinese grammatical error 

diagnosis, including task design, data 

preparation, performance metrics, and 

evaluation results. Regardless of actual 

performance, all submissions contribute to 

the common effort to develop Chinese 

grammatical error diagnosis system, and the 

individual reports in the proceedings provide 

useful insights into computer-assisted 

language learning for CFL learners. 

We hope the data sets collected and annotated 

for this shared task can facilitate and expedite 

future development in this research area. 

Therefore, all data sets with gold standards and 

scoring scripts are publicly available online at 

http://www.cged.science. 
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Abstract 

This paper describes our system at 

NLPTEA-2018 Task #1: Chinese 

Grammatical Error Diagnosis. Gram-

matical Error Diagnosis is one of the 

most challenging NLP tasks，which is 

to locate grammar errors and tell error 

types. Our system is built on the model 

of bidirectional Long Short-Term 

Memory with a conditional random 

field layer (BiLSTM-CRF) but inte-

grates with several new features. First, 

richer features are considered in the 

BiLSTM-CRF model; second, a prob-

abilistic ensemble approach is adopted; 

third, Template Matcher are used dur-

ing a post-processing to bring in hu-

man knowledge. In official evaluation, 

our system obtains the highest F1 

scores at identifying error types and 

locating error positions, the second 

highest F1 score at sentence level error 

detection. We also recommend error 

corrections for specific error types and 

achieve the best F1 performance 

among all participants. 

1 Introduction 

Chinese Language is commonly regarded as one 

of the most complicated languages. Its sentence 

structures are not so strict like English. Also, 

word segmentation usually has to be processed 

before deeper analysis, since word boundaries 

are not explicitly given in Chinese which is also 

different from English. In recent years, more and 

more people coming from overseas become in-

terested in learning Chinese as a second language. 

The complicatedness of Chinese language makes 

it challenging to learn it well for the ones with 

different language and knowledge background.  

The learners are unavoidable to make grammati-

cal errors during learning. Therefore, it is neces-

sary to develop automated tools help identifying 

and correcting grammatical errors. Such tools not 

only benefit learners also release the burden of 

teachers. 

Deep Learning-based models (Hinton and 

Salakhutdinov, 2016) has recently become popular 

due to its powerful capability of capturing features 

automatically, which demonstrates its excellency in 

many areas especially in huge-scale data mining. 

Such models also gain superior performance in pre-

vious Grammatical Error Diagnosis system (Zheng 

et al.,2016). However, prior knowledge is also im-

portant，especially when the scale of available data 

is limited. 

This paper introduces our system at NLPTEA-

2018 Chinese Grammatical Error Diagnosis task. 

We will describe how to combine the knowledge 

that learned from large scale text data and handcraft 

heuristics with deep learning framework. Different 

ensemble strategies are also discussed, which have 

different preferences and achieves variant perfor-

mances. 

2 Chinese Grammatical Error Diagnosis  

This shared task aims at developing new NLP 

techniques to automatically diagnose Chinese 

grammatical errors in sentences written by Chi-

52



 
Figure 1: Sample training unit.  

 

nese as a Foreign Language(CFL) learners. The 

error types include R (redundant words), M 

(missing words), S (word selection), and W 

(word ordering errors). The target of the task is 

to detect the error type and its position exactly.  

The performances of each team will be 

evaluated based on the confusion matrix. TP 

(True Positive) means the number of error-

sentences that are correctly identified; FP (False 

Positive) is the number of error-sentences that 

are incorrectly identified as correct sentences; 

TN (True Negative) is the number of correct-

sentences that are correctly identified; FN (False 

Negative) is the number of correct-sentences that 

are incorrectly identified as containing grammat-

ical errors. The metrics that are used to measure 

a system’s performance has three levels: detec-

tion, identification, and position. Each level is 

evaluated with the help of the confusion matrix 

based on these metrics (Lee et al.,2016): 

 

 FPR = FP/(FP+TN) 

 Accuracy = (TP+TN)/(TP+FP+TN+FN) 

 Precision = TP/(TP+FP) 

 Recall = TP/(TP+FN) 

 F1 = 2*Precision*Recall/(Precision+Recall) 

 

For instance, the format of the Training Set is 

shown in Figure 1. Each unit inside was used to 

train the CGED system.  

3 Methodology 

3.1 BiLSTM-CRF 

The combination of a bidirectional Long Short-

Term Memory (Bi-LSTM) network (Hochreiter 

and Schmidhuber,1997) and a conditional ran-

dom field (CRF) network (Yu and Chen, 2012) 

to form a BiLSTM-CRF model can efficiently 

use past and future information via a Bi-LSTM 

layer and connecting consecutive output layers 

from Bi-LSTM via a CRF layer such that the se-

quence tagging problems can be solved better. 

Two kinds of potentials are defined in the 

BiLSTM-CRF model (Huang et al.,2015): emis-

sion and transition potentials. The emission po-

tential P is the matrix of scores output by the Bi-

LSTM network, of size    , where k in the size 

of distinct tags. Specifically,      represents the 

emission score of the     word to the     tag in an 

input sequence. The transition potential A is the 

matrix of transition scores that correspond to the 

transitions among tags. For instance,      repre-

sents the transition score from the     tag to     

tag. The score of a sequence of predictions is de-

fined as 

                

 
          

 
         (1) 

Hence the conditional probability computed by 

the CRF layer can be defined in favor of the predic-

tive score illustrated above 

       
               

                      

        (2) 

where    corresponds to all possible tag se-

quences for an input sequence X. The training 

process maximizes the log-probability of the 

conditional probability computed above upon the 

correct tag sequence. 

             

                                 
   (3) 
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Figure 2: Flowchart of whole forwarding process. Feature-based Inputs are processed firstly via 

trained single models, whose LSTM-outputs are weighted before producing the tags via CRF-layer. 

The CRF-outputs are merged and post-processed using our novel methods, generating the desired pre-

dictions.

Dynamic programming and Viterbi Decoding 

(Huang et al., 2015) are used to compute the sum-

mation in above equation, and to predict the output 

tag sequence that obtains the maximum score. The 

entire training data is divided into batches whose 

units are processed one by one at each epoch. Each 

batch contains a list of sentences or sequence-forms. 

We first run this model forward to obtain the emis-

sion matrix P that contains relations between each 

tag and each position that corresponds to each input 

word. Then Back-propagation (Hecht-Nielsen, 1992) 

along with Viterbi Decoding process in the learning 

phase, updating the network parameters that include 

the transition matrix A, the weights for Bi-LSTM, 

and the randomized embedding for input features. 

Figure 2 shows the flowchart of our  proposed 

method.  

3.2 Novel Features 

The task heavily depends on the prior knowledge 

that can be represented by the selection of fea-

tures. In practice, feature selection is straightfor-

ward phase to affects the model’s performance. 

Better task-specific features simplify the com-

plexity of a model, whereby improve the perfor-

mance in all levels. Besides the feature engineer-

ing introduced by ALI team (Yang et al., 2017), 

we design several additional features that will be 

discussed next. 

Word Segmentation. we found that sentences in 

segments are essential to solving the grammatical 

task due to Chinese’s words being combined 

without segmented spaces that help to indicate 

the exact meaning of the sentence without ambi-

guity. We used LTP segmenter
1
 to split the input 

sentences and label each char-gram with the 

combination of its corresponding segment (word-

gram) and its position indicator using BIO-

tagging scheme. E.g., a Chinese sequence 

               that can be segmented to 

                    , then the segmenting 

feature for char    shall be 

                   , likewise the segmenting 

feature for char    shall be 

                 . 

Gaussian ePMI. we use trainable weighted 

Gaussian distribution to leverage words’ distance.  

                

                                   (4) 

The ePMI (exact PMI) measures the co-

occurrence of words    and    when the word in-

terval between them is j - i exactly. We trained six 

GSeP matrices using an external data consisting of 

millions of student essays, which store the GSeP 

scores of each word-pairs varying in distance. Posi-

tion indicators are also attached to the feature, note 

that we adjust the scattering rate when mapping the 

scores into discrete embedding labels based on 

model’s performance. For a target word, we com-

pute ePMI together with neighbor words and map 

them to discrete value internals as features. 

Combination of POS and PMI. our intuition is 

that the efficiency of PMI-score (Church and Hanks, 
                                                      
1 http://www.ltp-cloud.com/  
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1990) between words is more relevant to what their 

POSs (Ferraro et al., 2014) exactly are; PMI-scores 

for different POS-pairs have different meaning, 

even though the POS-pairs have identical PMI score. 

To avoid this ambiguity, we take 

                           as a supplemen-

tary PMI-feature. E.g., for char    from word B 

whose POS is n, and its left-adjacent word A whose 

POS is v, right-adjacent word C whose POS is d, the 

compound-PMI feature for char    shall be de-

scribed as 

          
            
            

               (5) 

We concatenate the adjacent ePMIs into one 

single label using the same mapping method as the 

other feature. 

3.3 Ensemble Mechanism 

To maximize the performance of single 

BiLSTM-CRF model, we design two ensemble 

strategies including the probabilistic-ensemble 

method and the ranking-based merge method. 

Probabilistic-Ensemble. To alleviate the scat-

tering pattern of the LSTM predictive outputs for 

each tag that will efficiently improve the model’s 

performance on precision-related metrics, we in-

tegrate the LSTM-outputs probabilities with 

weighted sum based on each model’s characteris 

tics. Specifically, given n different trained single 

BiLSTM-CRF models that might have various 

hyperparameters setting during training phase.  

                                (6) 

And an input sequence      in matrix form, 

where k is the number of tag the sequence contains, 

and l is the total size of each tag’s dimension. We 

randomly initialize a grouping vector      unique-

ly belongs to the n models group and responsible 

for optimizing their ensemble performance via dot 

product. For each tag      from     , the corre-

sponding ensemble LSTM output from all single 

models is defined as 

      
        

     
                (7) 

Then the weighted LSTM outputs are passed 

onto the fixed CRF-layer, which describes the tran-

sition matrix among target tags, as its input features. 

Given a group of fixed single models, we first train 

their grouping vector      via strategy above, then 

we save this      with these single models, and 

next time when we need the probabilistic-ensemble 

results of these models we will run this architecture 

forward to obtain the desired high-precision tagging 

predictions. 

Ranking-based Output Ensemble. This strategy 

was inspired by ALI team in 2017. We found that 

the single models trained via Adam optimizer 

(Kingma and Ba, 2014) perform better on recall-

related metrics compared with the ones trained with 

Stochastic Gradient Descent(SGD). According to 

experimental results, the Adam-trained models ap-

pear to have obvious advantage over the SGD-

trained models on both Detection and Identification 

levels, however, merging-all the results straightfor-

wardly from Adam-trained models lead to drastic 

decrease on precision-related scores. We tackle this 

issue with applying ranking method vertically and 

horizontally on the merge-to-be results upon each 

input sequence. To be clear, given each prediction 

with a CRF-score, we keep the top-40% predictions 

generated by single models and delete the others for 

each sentence (vertical ranking), and we delete the 

final-20% predictions for each model such that 

those low-confidence noisy predictions can be 

smoothed over (horizontal ranking). Since the SGD-

based model is precision-prone due to its stochastic 

properties capable of capturing detailed task-

specific features, we additionally merge the results 

obtained from selected BiLSTM-CRF models 

trained with SGD optimizer, improving the ensem-

ble results on precision-related metrics upon all 

evaluating levels. An input sequence will not be la-

belled as ‘correct’ unless all candidate models tag it 

with a correct label. This correct-tagging scheme 

successfully balances the evaluating metrics via im-

proving the overall recall-related metrics based on 

our experimental results. 

3.4 Model Selection 

Due to random initialization and various manual 

seeds, as well as different hyperparameters set-

ting, each model has its unique properties toward 

the task and performs distinctively on each se-

quential testing unit. More models shall be 

trained to obtain better ones that capable of 

achieving higher performance. Generally, we 

trained 240 SGD-based models and 240 Adam-

based models in total using 10 different 

hyperparameters groups and 24 different manual 

seed for each optimizer group. Then we selected 
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40 best models based on customized evaluating 

criterion on development datasets for each opti-

mizer, calling them 40-SGD group and 40-Adam 

Group. Next, we applied probabilistic-Ensemble 

method on each group’s models with 4-model, 5-

model, and 6-model combinational settings re-

spectively; for each setting, we tried hundreds of 

combinations and finally we obtained 120 best 

probabilistic-Ensemble model-groups (pEMGs) 

each optimizer group. We permutated each 

pEMG to find out three groups of IEMGs with 

merging methods, specifically, 

 group of 30 best pEMGs being merged-all 

on P-Level from 120 SGD-IEMGs. 

 group of 30 best pEMGs being merged-all 

on I-Level from 120 Adam-pEMGs. 

 group of 30 best pEMGs being rank-merged 

on P-Level from all 240 pEMGs. 

3.5 Post-Processing 

When we obtain the results generated by our 

deep learning models, we will post-process them 

explicitly using following approaches to tackle 

with the issues caused by ensemble mechanism. 

 Template Matcher 

We found that many essential grammatical 

rules cannot be learnt thoroughly from automatic 

learning process via deep learning models due to 

the restriction of training data provided. There-

fore, we handcrafted several rule-based matchers 

to add high-precision predictions based on prior 

knowledge about Chinese grammar, i.e., for a se-

quence “快乐 的 吃” (“eat happy”), we know 

that “快乐” is an adjective and “吃” is a verb, 

and we also definitely know the grammatical rule 

that an adjective and a verb shall be connected 

with the word “地” rather than “的” or “得”, 

thereby the word “的 ” is definitely a Mis-

Selection error and shall be replaced by “地”. We 

built hundreds of grammatical matchers based on 

actual Chinese grammar rules; this approach 

heavily depends on the excellency of POS-

tagging toolkit, the mis-tagging of which would 

directly interfere with the Template Matcher per-

formance. 

 Dealing with Ensemble Overlaps 

Merging-all the results from different mod-

els can cause overlaps. For instance, one model 

predicts an error with position from 4 to 8, an-

other one predicts it as 6 to 9, however, it is ob-

vious that one of them is incorrect since gram-

matical errors are considered as independent. 

Hence, we need strategies to make decision that 

which predicted error shall be kept.  

When overlap happens, we first confirm the 

overlapping region, then we delete those errors 

that violate the word segmentations, i.e., we shall 

delete an error whose positional prediction is 4 to 

8 while more than one segmented words exist 

within this positional range. Subsequently we 

make decision about the error via voting method; 

the error that has heaviest vote shall be kept. 

3.6 Error Correction 

Compared with previous CGED-task, this year 

the systems are also required to recommend cor-

rections for S-type and M-type errors. We apply 

two methods to deal with this. The generated re-

sults of these two methods are merged and sorted 

based on their corresponding confidence-value 

via a voting mechanism. 

 PMI-based Approach 

For each input Chinese sequence, we first 

locate the error position, then we generate a list 

of recommended word candidates based on the 

ePMI values of the neighbor words within a spe-

cific window size. We used a student essay da-

taset (ten million Chinese essay sentences written 

by Chinese high school students), Baike datasets 

(two million sentences obtained from Encyclo-

pedia of China), and past CGED training datasets 

to build the ePMI matrices. Each neighbor word 

(root-word) recommend a list of collocational 

supplements (child-word) based on the scores via 

looking up its corresponding ePMI matrices. 

Next, we organize all the recommended candi-

dates based on the weights of their root words, 

generating the final sorted correction list. 

 Seq2Seq with Attention Mechanism 

In order to memorize fixed collocations, we 

also used Seq2Seq (Sutskever et al., 2014) net-

work, in which two RNNs are combined together 

to store information from input to output. The 

encoder RNN reads an input sequence and output 

its corresponding contextual vector, which is de-

coded via the decoder RNN to produce an output 

sequence. We also utilize Attention mechanism 

to alleviate the burden of the contextual vector 

by focusing on specific part of the encoder’s out-

put for every step of decoding phase. This ap-
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proach efficiently stores sentences provided in 

training datasets, helping the system produce ex-

act correction on high precision. 

4 Experiment 

4.1 Data preparation 

We trained our single models using training units 

that contain both the erroneous and the corrected 

sentences from 2016, 2017 and 2018 training da-

tasets provided. Furthermore, we collected the 

sentences from 2016 and 2017 testing datasets, 

and for each correct-labelled sentence, we ran-

domly handcrafted its erroneous form based on 

basic Chinese grammatical errors patterns and 

used it as one of the training units. We pre-

trained char embedding, word embedding, and 

bigram embedding via external datasets that in-

clude five million sentences from Chinese essays 

written by Native Chinese high school students 

in their daily assignment and fine-tuned them 

during training phase.  

Table 1:  Validation Results using single models and ensemble methods. “S” denotes for SGD-based 

single model, “A” denotes for Adam-based single model, “P” denotes for probabilistic-ensemble 

method, “M” denotes for simply merge-all, “RM” denotes for ranking-based output ensemble. 

 Detection Level Identification Level Position Level 

Precision Recall F1 Precision Recall F1 Precision Recall F1 

baseline 0.8212 0.5673 0.671 0.6086 0.4092 0.4894 0.463 0.2559 0.3296 

ePMI 0.821 0.6092 0.6994 0.6034 0.4525 0.5172 0.4815 0.2693 0.3454 

ePMI+Matcher 0.8322 0.6095 0.7036 0.6008 0.4723 0.5289 0.4712 0.2962 0.3637 

Table 2:  Matcher and ePMI Performances of Single model on our Validation dataset. The baseline 

model is the basic BiLSTM-CRF model described in this article without ePMI feature. 

4.2 Validation Results 

To demonstrate contributions of our novel fea-

tures, ensemble mechanism and post-processing 

approach, we used collections from 2017 Testing 

datasets, 2016 Testing datasets and other hand-

crafted datasets based on HSK past topics to cus-

tomize our validation sets. Table 1 and Table 2 

show our results on validation sets. The SGD-

based single model performs well on precision-

related metrics at all levels and performs much 

better with probabilistic-Ensemble method. The 

Adam-based models are superior in recall-related 

metrics and achieve best D and I scores among 

all methods. Generally, we found that SGD-

based single models being processed with proba-

bilistic-Ensemble method achieve highest preci-

sion-related scores at all levels and applying 

Rank-Merge method on both SGD-based and 

Adam-based models achieve highest recall-

related metrics at all levels. Except for the Ad-

am-based with probabilistic-ensemble, each oth-

er ensemble method achieves at least one highest 

score.   

We also evaluated the contributions of the 

proposed novel features, i.e. the ePMI feature 

 
Detection Level Identification Level Position Level 

Precision Recall F1 Precision Recall F1 Precision Recall F1 

S 0.8321 0.6070 0.7019 0.6032 0.4547 0.5185 0.4903 0.2967 0.3697 

A 0.5271 0.8993 0.6646 0.3957 0.7829 0.5257 0.2016 0.4136 0.2711 

S+P 0.8574 0.5678 0.6832 0.6428 0.3948 0.4892 0.5703 0.2832 0.3785 

A+P 0.5542 0.8043 0.6562 0.4366 0.7041 0.5390 0.2568 0.3841 0.3078 

S+P+M 0.8568 0.6123 0.7142 0.6322 0.4596 0.5323 0.5437 0.3052 0.3909 

S+A+P+RM 0.6519 0.9233 0.7642 0.4259 0.8021 0.5564 0.2074 0.4908 0.2916 
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and Template matchers. Table 2 shows the re-

sults. We can see that adding ePMI features can 

improve the performance at all levels. Using 

template machers at the post processing phase 

gains further improvements. This confirms the 

effectiveness of the proposed strategy. It also 

implies that exploiting external data resource and 

bringing in humor knowledge are promising for 

this task. 

4.3 Testing Results 

As shown in Table 3, our system achieves the best 

F1 scores at all levels except for the detection lev-

el and achieves the best Precision scores at all lev-

els except for the correction level. Instead of Run 

#3, our Run #1 has best F1 score at P level, and 

precision scores at all levels, revealing that the 

testing results can be affected by the components 

of the provided testing datasets. Although we 

achieve the highest P-level F1 score at 0.3612 

among all teams, there still has wide gap for this 

task-specific system to overcome in actual NLP 

application. The reason includes that this task is 

pretty hard and more than one correction for each 

sentence shall be considered. 

 

 Detection Level Identification Level Position Level 

Precision Recall F1 Precision Recall F1 Precision Recall F1 

Run #1 0.8276 0.6090 0.7017 0.7107 0.4173 0.5259 0.5341 0.2729 0.3612 

Run #2 0.6171 0.9572 0.7504 0.3931 0.7331 0.5118 0.1441 0.3886 0.2102 

Run #3 0.8254 0.6517 0.7283 0.6874 0.4588 0.5503 0.4752 0.2906 0.3606 

Best Team 0.8276 0.9995 0.7563 0.7107 0.9752 0.5503 0.5341 0.3886 0.3612 

 

 Correction Top-3 Correction 

Precision Recall F1 Precision Recall F1 

Run #1 0.2087 0.1468 0.1723 0.3059 \ 0.2527 

Run #2 0.0386 0.1696 0.0629 0.0722 \ 0.1177 

Run #3 0.1509 0.1400 0.1453 0.2391 \ 0.2301 

Best Team 0.2932 0.1696 0.1723 0.3077 \ 0.2527 

Table 3:  Performances of Submitted Runs on Official Evaluation Testing datasets. Yellow-labelled 

scores represent the best scores we have achieved among all participant teams. “Best Team” row rec-

ords the best scores among all participant teams at each task-specific evaluating metric.  

5 Conclusion and Future Work 

This paper describes our system on NLPTEA-

2018 CGED task, which combines deep learning 

mechanism and prior knowledge. We also de-

signed model selection and several ensemble 

strategies to maximize the model’s capability. At 

all four evaluating levels, we have the best F1 

scores in three levels, and the second-highest F1 

score in the detection level. 

In the future, we are planning to build a more 

powerful grammatical error diagnosis system 

with more training data and improve the sys-

tem’s ability with more detailed Template 

Matchers.  
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Abstract

This paper introduces the DM NLP team’s
system for NLPTEA 2018 shared task
of Chinese Grammatical Error Diagnosis
(CGED), which can be used to detect and
correct grammatical errors in texts written
by Chinese as a Foreign Language (CFL)
learners. This task aims at not only de-
tecting four types of grammatical errors
including redundant words (R), missing
words (M), bad word selection (S) and
disordered words (W), but also recom-
mending corrections for errors of M and
S types. We proposed a hybrid system
including four models for this task with
two stages: the detection stage and the
correction stage. In the detection stage,
we first used a BiLSTM-CRF model to
tag potential errors by sequence labeling,
along with some handcraft features. Then
we designed three Grammatical Error Cor-
rection (GEC) models to generate correc-
tions, which could help to tune the detec-
tion result. In the correction stage, can-
didates were generated by the three GEC
models and then merged to output the final
corrections for M and S types. Our system
reached the highest precision in the correc-
tion subtask, which was the most challeng-
ing part of this shared task, and got top 3
on F1 scores for position detection of er-
rors.

1 Introduction

More and more people are learning a second or
third language as an interest, a career plus, or even
a challenge to oneself. Chinese is one of the oldest
and most versatile languages in the world. Many

∗Equal Contribution
†This work was done while the author at Alibaba Group

people choose to learn Chinese, and the number of
CFL leaner grows rapidly.

However, it would be difficult to learn Chinese,
because Chinese has a lot of differences from other
languages. For example, Chinese has neither the
change of singular and plural, nor the tense change
of the verb. It has quite flexible expressions and
loose structural grammar. These traits bring a lot
of trouble to CFL learners, so the demands for
Chinese Grammatical Error Diagnosis (CGED) as
well as Correction (CGEC) is growing rapidly.
GEC for English has been studied for many years,
with many shared tasks such as CoNLL-2013 (Ng
et al., 2013) and CoNLL-2014 (Ng et al., 2014),
while those kinds of studies on Chinese is less yet.

This CGED shared task (Gaoqi et al., 2017;
Lee et al., 2016, 2015; Yu et al., 2014) gives re-
searchers an opportunity to build the system and
exchange opinions in this field. It could make
the community more flourish which benefits all
CFL learners. Compared with previous years, this
year’s NLPTEA CGED shared task requests par-
ticipants to generate candidate corrections for er-
rors of M and S types. This correction subtask is
more challenging and valuable, so we focused on
this subtask and got the highest precision in this
subtask.

This paper is organized as follows: Section 2
describes some related works in English as well
as Chinese. Dataset will be described in Section
3. Section 4 illustrates our hybrid system with two
stages, including four models. Section 5 shows
the evaluation and discussion of the hybrid model.
Section 6 concludes the paper and discusses the
future work.

2 Related Work

Earlier attempts to GEC involve rule-based models
(Heidorn et al., 1982; Bustamante and León, 1996)
and classifier-based approaches (Han et al., 2004;
Rozovskaya and Roth, 2011), which can cope with

60



Table 1: Typical examples for four types of errors

Error Original Sentence Correct Sentence

M 中国已成了世界拥有最多“烟民”的国家。 中国已成了世界上上上拥有最多“烟民”的国家。
R 孩子的教育不能只靠一个学学学校校校老师。 孩子的教育不能只靠一个老师。
S 父母对孩子的爱爱爱情情情是最重要的。 父母对孩子的关关关爱爱爱是最重要的。
W 生产率较低，那肯肯肯定定定价价价格格格要上升。 生产率较低，那价价价格格格肯肯肯定定定要上升。

only specific type of errors.

As a sentence may contain multiple errors of
different types, a practical GEC system should be
able to cope with most of those errors, which is
difficult to be achieved by rule-based or classifier
models alone. The combination of rule-based and
classifier models (Rozovskaya et al., 2013) can
correct multiple errors, but it is useful only when
the errors are independent of each other, which
means that it is unable to solve the problem of de-
pendent errors.

To address more complex errors, MT models
are proposed and developed by many researchers.
Statistical Machine Translation (SMT) has been
dominant for the past two decades. In the work
of Brockett et al. (2006), they propose an SMT
model used for GEC, and later the round-trip
translation is also used in GEC (Madnani et al.,
2012). A POS-factored SMT system is proposed
(Yuan and Felice, 2013) to correct five types of er-
rors in the text. In the work of Felice et al. (2014),
they propose a pipeline of the rule-based system
and a phrase-based SMT system augmented by a
sizeable web-based language model. The word-
level Levenshtein distance between source and tar-
get can be used as a translation model feature
(Junczys-Dowmunt and Grundkiewicz, 2014) to
enhance the model. Rule-based method and n-
gram statistical method are combined (Wu et al.,
2015) to get a hybrid system for CGED shared
task. Recently Napoles and Callison-Bursh (2017)
propose a lightweight approach to GEC called
Specialized Machine translation for Error Correc-
tion.

Nevertheless, Neural Machine Translation
(NMT) systems have achieved substantial
improvements in this field (Sutskever et al.,
2014; Bahdanau et al., 2014). Inspired by this
phenomenon, Sun et al. (2015) utilize the Con-
volutional Neural Network (CNN) for the article
error correction. The Recurrent Neural Network
(RNN) is also used (Yuan and Briscoe, 2016) to

map the sentence from learner space to expert
space. Recently Ji et al. (2017) propose a hybrid
neural model with nested attention layers for
GEC.

3 Dataset Description

The dataset is provided by the 5th Workshop on
Natural Language Processing Techniques for Ed-
ucational Applications (NLPTEA) 2018 with a
Shared Task for CGED. The NLPTEA CGED has
been held since 2014, and it provides several sets
of training data for this field.

Each instance in the CGED training dataset is
composed of an original sentence with a unique
sentence number ‘sid’, some ‘target edits’, and a
correction sentence. The original sentence con-
tains grammatical errors in Chinese sentences
written by CFL learners. All errors are divided
into four types, including redundant words (de-
noted as R), missing words (M), word selection
errors (S), and word ordering errors (W). Some
typical examples are shown in Table 1.

Each edit in the ‘target edits’ indicates the error
type and the position at which it occurs in the orig-
inal sentence. If an input sentence contains one or
more grammatical errors, the ‘target edits’ will in-
clude many items, each of which is in the form
of [start-off, end-off, error-type], where start-off
and end-off respectively denote the starting and
ending position of the grammatical error, and the
error-type is in the set of R, M, S, and W. For each
original sentence given in the test dataset, the de-
veloped system should predict the ‘target edits’ in
the format which is same as the training set, and
for the error type of S and M, the system should
predict the candidate corrections.

We also used an external dataset Lang-81 to
train our GEC models, which contains more than
700,000 items, and each item consists of an orig-
inal sentence and corresponding corrected sen-
tences. Each original sentence has k correction

1provided by NLPCC 2018 GEC shared task
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Figure 1: The pipeline of our hybrid system
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sentences, where k ≥ 0.

4 System Description

We proposed a hybrid system for the CGED
shared task this year, which contained two stages:
the detection stage and the correction stage. In
the detection stage, given a sentence si, which
is composed of characters as [c1, c2, ..., cn], our
system generates an edit set Ei which contains
one or more errors of this sentence in the form
of [sid, start, end, err], where start and end de-
note a specific part of this sentence [cstart, cend]
has the error of type err. Then, in the correction
stage, for the err ∈ {M,S}, our system can gen-
erate candidate corrections for [cstart, cend]. If err
is M, cstart must be equal to cend, and the correc-
tion will be inserted at this position. The whole
pipeline of our hybrid system is shown in Figure
1.

Our model consists of four models, including
the BiLSTM-CRF model for tagging possible er-
rors by sequence labeling at the detection stage,
and three GEC models to convert the Chinese
sentence from the ‘learner space’ to the ‘expert
space’. Those GEC models not only generate can-
didate corrections for M and S errors at the correc-
tion stage, but also help the BiLSTM-CRF model
to tag the possible error position at the detection
stage. The three GEC models are Rule-based
model, NMT model, and SMT model, which are
able to cope with different types of grammatical
errors.

4.1 BiLSTM-CRF
In the detection stage, we treated the error detec-
tion problem as a sequence labeling problem and
utilized the BiLSTM-CRF model (Huang et al.,
2015) to get the corresponding label sequence in
the form of BIO encoding (Kim et al., 2004). More
specifically, given an input sentence which is com-
posed of characters as [c1, c2, ..., cn], we utilized
this model to predict the label Li of ci, for i ∈
1, 2, ..., n. Since the prior knowledge can be used
in this task, we incorporated many additional fea-
tures for this sequence labeling problem, includ-
ing Char Bigram, Part-of-speech (POS) tagging,
POS score, Adjacent Word Collocation (AWC),
Dependent Word Collocation (DWC), as used in
(Xie et al., 2017).

4.2 Rule-based Model
The rule-based model starts by segmenting Chi-
nese characters into chunks, which incorporates
useful prior grammatical information to identify
possible out-of-vocabulary errors. The segments
are looked up in the dictionary built by Gigawords
(Graff and Chen, 2005), and if a segment is out of
vocabulary, it will go through the following steps:

1. If the segment consists of two or more char-
acters, and turn out to be in the dictionary by
permuting the characters, it will be added to
the candidate list.

2. If the concatenation with a previous or next
segment is in the dictionary, it will be added
to the candidate list.

3. All possible keys in the dictionary with
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the same or similar Pinyin (the Romaniza-
tion system for Standard Chinese) or similar
strokes to the segment are generated. The
generated keys for the segment itself, con-
catenated with those of previous or next seg-
ments, will be added to the candidate list of
possible corrections.

After the steps, a candidate list of all possible
corrections will be processed to identify whether
there might be out-of-vocabulary error and it’s
probability using a language model. The negative
log likelihood of a size-5 sliding window suggests
whether the top-scored candidate should be a cor-
rection of the original segment.

4.3 NMT GEC Model

The NMT model can capture complex relation-
ships between the original sentence and the cor-
rected sentence in GEC. We used the encoder-
decoder structure (Bahdanau et al., 2014) with the
general attention mechanism (Luong et al., 2015).
We used two-layer LSTM model for both encoder
and decoder. To enhance the ability of NMT mod-
els, we trained four NMT models with different
parallel data pairs and configurations as described
in Section 5.1. Those four NMT models were de-
noted as Nj , where j ∈ {1, 2, 3, 4} was the model
index. The correction result of sentence si gener-
ated by Nj was denoted as CiNj .

We used the character-based NMT because
most characters in Chinese has its meaning, which
is quite different from English characters, and the
Chinese word’s meaning often depends on the
meaning of its characters. For example, we have
two characters昨天 (yesterday), and we can split
it as [yester] + [day]. As in English, the second
character 天 means day, and the first one is not a
word if taken alone. But it is sufficiently unique
to give the whole word its meaning. On the other
hand, the errors in original sentences can make the
word-based tokenization worse, which will intro-
duce larger and lower quality vocabulary list. So,
we chose to use char-based NMT for the CGEC
problem.

4.4 SMT GEC Model

The SMT model consists of two components. One
is a language model and the other one is a transla-
tion model. The language model is learned from a
monolingual corpus of the target language, while
the parameters of the translation model are calcu-

lated from the parallel corpus. We used the noisy
channel model (Brown et al., 1993) to combine the
language model and the translation model, and in-
corporated beam search to decode the result.

To explore the ability of SMT models with dif-
ferent configurations, we trained six SMT mod-
els with different data granularity and monolin-
gual dataset as described in Section 5.1. Those
six SMT models were denoted as Sj , where j ∈
{1, 2, 3, 4, 5, 6} was the model index. The correc-
tion result of sentence si generated by Sj was de-
noted as CiSj .

4.5 Grammatical Error Detection and
Correction

For the detection stage, we used the BiLSTM-CRF
model as described in Section 4.1 to tag possible
errors, by generating labels for each character in
sentence si. Then each sequence labeling was con-
verted to the editing format [sid, start, end, err].
Next, we used the correction results generated by
our three different GEC models to help to tune
the detection result. For an original sentence si,
we predicted the corrected sentence CiM with our
GEC model M , where M could be NMT Nj or
SMT Sj . After getting the predicted correction
sentence, we converted it to the editing format
[sid, start, end, err], which was consistent with
the detection result of the BiLSTM-CRF model.

The conversion from CiM to editing format is
based on the minimum editing distance, and we
only focused on the error whose type is R, M, or S.
On one side, these three types of errors are simple
and clear, which can be generated by comparing
the si and CiM with high confidence. On the other
side, the error of type W is more complicated, and
the diversity of our GEC model would introduce
a great number of noises into the original result
on this type of error. Considered that there may
exist many kinds of edit trace between a specific
pair of si and CiM , we kept tracing the edit list
which minimized the editing distance between si
and CiM .

With the edits eij of sentence si, which are
generated by BiLSTM-CRF and GEC models, the
next step of our system is to ensemble all those
edits. When it comes to the ensemble, we tried
two methods. One is merging, which combines all
detections generated by BiLSTM-CRF model as
well as those GEC models, and take the union of
their editing sets. The other is voting, in which we
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Table 2: Configurations of four NMT models

Model Network Embed Dataset

N1 LSTM no dataed
N2 BiLSTM enc-dec dataed
N3 BiLSTM enc-dec dataall
N4 BiLSTM dec dataall

set a voting threshold thre and accept the edit with
Tij ≥ thre, where Tij is the times of appearance
of edit eij for sentence si.

In the correction stage, we used the editing set
Ei generated in the detection subtask. For the edit
eij in Ei whose error type is M or S, we selected
the candidate characters in the corresponding cor-
rection sentence predicted by our GEC models.
Finally, all candidates of corrections generated
by different GEC models will be collected and
merged to create the submission file with detec-
tions as well as corrections.

5 Evaluation and Discussion

5.1 Data Split and Experiment Setting

To train the BiLSTM-CRF model, we collected
several datasets of CGED, which are 2015, 2016,
2017, and 2018. We split 20% of the 2017 train-
ing data as the validation dataset, which is denoted
as ‘17-dev’, and all the rest as training. We used
the character embeddings and word embeddings
pre-trained on the Gigawords and fixed them. For
other parameters, we initialized them randomly.

To train our GEC models, we used the exter-
nal Lang-8 dataset as explained in Section 3. Be-
cause each original sentence could have more than
one corrected sentences, we used two approaches
to generate parallel data pairs to train our GEC
models. The first choice is to use only the cor-
rect sentence whose edit distance is smallest from
the original sentence. The training data generated
by the first choice is denoted as dataed. The sec-
ond choice is to use all the correct sentences of the
corresponding original sentence. The training data
generated by the first choice is denoted as dataall.

For the NMT model, we used the pre-trained
embedding in different parts of the model. The
first choice was to use it for the whole model,
which forced the model to learn a proper embed-
ding by itself. Considering the dataset is not large
enough for the model to learn the embedding from
scratch, we also tested the pre-trained embedding

Table 3: Configurations of six SMT models

Model Granularity Corpus Dataset

S1 char Gigawords dataall
S2 char ChineseWiki dataall
S3 char CGED+NLPCC dataall
S4 phrase Gigawords dataall
S5 phrase ChineseWiki dataall
S6 phrase CGED+NLPCC dataall

used for both encoder and decoder parts. But the
embedding was trained on the Gigaword (Graff
and Chen, 2005), which was quite different from
the sentences written by CFL learners, so we also
used the pre-trained embedding only in the de-
coder part. The configurations of our four different
NMT GEC models Nj , j ∈ {1, 2, 3, 4} are shown
in Table 2. For the ‘Network’ column, the ‘BiL-
STM’ means bi-directional LSTM (Schuster and
Paliwal, 1997), and for the ‘Embed’ column, the
’enc-dec’ means using pre-trained embedding for
both encoder and decoder part in our model.

For the SMT model, we trained the language
model part on different corpora, including the Gi-
gaword, the Chinese Wikipedia corpus (Denoyer
and Gallinari, 2006), and the corpus consists of
CGED as well as Lang-8 correct sentences which
are constructed by ourselves. Besides, we also
tested different granularities of the model, which
means, used char-level or phrase-level translation
model. It is worth to mention that we found that
using dataall outperformed dataed significantly,
so we only did detailed experiments on dataall be-
cause of the time limitation of the contest. The
configurations of our six different SMT models
Sj , j ∈ {1, 2, 3, 4, 5, 6} are shown in Table 3

Many excellent tools can emancipate us from
the heavy burden of implementing models from
scratch. For those NMT GEC models, we im-
plemented it with the OpenNMT (Klein et al.,
2017) toolkit, and for those SMT GEC models,
we implemented the language model with KenLM
(Heafield, 2011) toolkit and translation model with
Moses (Koehn et al., 2007).

For the Lang-8 dataset, we found that in those
717,241 lines data, 474,638 lines contained tra-
ditional Chinese. The traditional Chinese cannot
convey more information than its corresponding
simplified Chinese, but will make the size of vo-
cabulary much larger. So, we used the opencc
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Table 4: Experiments of Grammatical Error Detection on 17-dev dataset by merging eleven models. The
corresponding configuration of the models in ’NMT-type’ and ’SMT-type’ can be found in Table 2 and
Table 3. The values for ’Detection’, ’Identification’, and ’Position’ columns are all F1 values.

NMT-type SMT-type FP-rate Detection Identification Position

N2 S2 0.7868 0.6721 0.3511 0.1846
N3 S3 0.8032 0.6747 0.3512 0.1853
N2 S6 0.8160 0.6719 0.3566 0.1834
N3 S2 0.8028 0.6746 0.3513 0.1856

Table 5: Experiments of Grammatical Error Detection on 17-dev dataset by voting eleven models. The
corresponding configuration of the models in ’NMT-type’ and ’SMT-type’ can be found in Table 2 and
Table 3. The values for ’Detection’, ’Identification’, and ’Position’ columns are all F1 values.

Threshold NMT-type SMT-type FP-rate Detection Identification Position

2 N4 S2 0.3336 0.6414 0.4597 0.2648
2 N1 S6 0.3452 0.6472 0.4669 0.2643
2 N3 S6 0.3560 0.6494 0.4656 0.2643
4 N4 S2 0.1036 0.4799 0.3435 0.2297

toolkit to convert all the traditional Chinese to sim-
plified Chinese.

5.2 Experiment Result
The evaluation metrics for NLPTEA CGED
shared task consists of four subtasks: ‘Detection’
(determine if the sentence contains errors), ‘Iden-
tification’ (determine the error types), ‘Position’
(determine the position of errors), and ‘Correc-
tion’ (determine the candidate corrected words for
M and S error types). Those four subtasks are from
easy to hard, and the last metric is the most valu-
able, which will be paid more attention by us. The
former three metrics are related to the detection
stage, and the last metric is related to the correc-
tion stage.

Grammatical Error Detection
We used different parameters and initial states of
BiLSTM-CRF model to get eight different results
on detection stage. Each of three GEC models
can generate the result in the editing format as de-
scribed in Section 4.5. We utilized different meth-
ods to ensemble those eleven models, including
merging and voting as explained in Section 4.5.
Because both NMT and SMT models have dif-
ferent configurations, we tried all combinations of
Nj , j ∈ {1, ..., 4} and Sj , j ∈ {1, ..., 6}, with the
fixed rule-based model, and part of the experiment
result with merging is shown in Table 4, while vot-
ing method is shown in Table 5.

It’s shown in Table 4 and 5 that voting method
is more powerful than the merging method on all
metrics except for the ‘Detection’, which is the
easiest subtask. We also found out that different
combinations of models can cope with different
types of errors, and can generate results good at
different subtasks. To better utilize the correction
generated by our translation model, we preferred
the model which performs best on the ‘Position’
metric, so we chose to use the voting method with
threshold 2 to operate on the test dataset with N2

and S4.

Grammatical Error Correction
We found that our GEC models can focus on dif-
ferent type of errors, as shown in the Table 6 on the
official testing data of CGED 2018, which is de-
noted as ‘18-test’. The Table 7 shows some cases
in which our different models generated various
types of corrections for the original sentence.

As shown in Table 6, the rule-based model
can correct those word selection errors which
share similar morphology or pronunciation with
the ground truth characters. The rule-based model
focuses on the correction of word selection errors,
so it is able to yield high precision for the error
correction problem. The SMT model can handle
some errors whose type is R, even that part seems
reasonable in the local context. The NMT model
is good at correcting many types of errors, includ-
ing simple errors of word missing or word redun-
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Table 6: The cases which can be corrected by our GEC model

Model Original Sentence Translation Sentence

Rule 我就会完全知道他的性格，他的爱好，
和不好的密密密秘秘秘。

我就会完全知道他的性格，他的爱好，
和不好的秘秘秘密密密。

Rule 学生早恋这问题是很难结结结决决决的。 学生早恋这问题是很难解解解决决决的。

Rule 不过我觉得没有个性的文化是是是也也也没有意
义的。

不过我觉得没有个性的文化也也也是是是没有意
义的。

Rule 没有人可以帮帮帮住住住我，我是多么的辛苦，
多么的劳累啊！

没有人可以帮帮帮助助助我，我是多么的辛苦，
多么的劳累啊！

NMT 我们能能能会会会做做做到到到得得得！ 我们能能能做做做到到到！

NMT 这种措施对个人健康和公众利益有所好好好
的的的影影影响响响。

这种措施对个人健康和公众利益有所好好好
处处处。

NMT 这个问题真是个难以解决的。 这个问题真是个难以解决的问问问题题题。

NMT 这表示你的肺部不是正正正常常常。 这表示你的肺部不是正正正常常常的的的。

NMT 我们从父母学会很多事情 我们从父母那那那里里里学会很多事情

NMT 我想也也也抽抽抽烟烟烟不好，但是不能这样对烟
民。

我想抽抽抽烟烟烟也也也不好，但是不能这样对烟
民。

NMT 随着社会的变化两代人之间的差异越来
越大了。

随着社会的变化，，，两代人之间的差异越
来越大了。

NMT 我觉得父母给孩子的的的最最最主主主要要要东西应该是
极强的思维方式和美好的内心。

我觉得父母给孩子最最最主主主要要要的的的东西应该是
极强的思维方式和美好的内心。

SMT 从小我也也也学学学会会会有好的爱清洁的习惯。 从小我学学学会会会有好的爱清洁的习惯。

SMT 因为化肥和农药，空气污染了了了很严重。 因为化肥和农药，空气污染很严重。

SMT 有些流行歌曲，或是些个体，出的歌曲
的的的中中中带有不文明的话与语言。

有些流行歌曲，或是些个体，出的歌曲
中中中带有不文明的话与语言。

Table 7: The same original sentence corrected by different GEC models

Model Original Sentence Translation Sentence

Rule 青少年看他们抽烟，引起自己的好奇，
后来试抽一次，再抽一次，已经瘾瘾瘾上上上
了。

青少年看他们抽烟，引起自己的好奇，
后来试抽一次，再抽一次，已经上上上瘾瘾瘾
了。

SMT 青少年看他们抽烟，引起自己的好奇，
后来试抽一次，再抽一次，已经瘾瘾瘾上上上
了。

青少年看他们抽烟，引起自己的好奇，
后来试抽一次，再抽一次，已经迷迷迷上上上
了。

NMT 下面我来具具具体体体的的的写一下我的理由。 下面我来具具具体体体地地地写一下我的理由。

SMT 下面我来具具具体体体的的的写一下我的理由。 下面我来具具具体体体写一下我的理由。

NMT 我想想想这样的态度是对自己和国家都不
好。

我认认认为为为这样的态度对自己和国家都不
好。

SMT 我想这样的态度是是是对对对自自自己己己和国家都不
好。

我想这样的态度对对对自自自己己己和国家都不好。
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Table 8: Ablation Tests of Correction Subtask
Method Precision Recall F1

Rule 0.215 0.00395 0.00775
N4 0.299 0.0124 0.0238
S2 0.348 0.0178 0.0338
N4 + S2 0.303 0.0248 0.0459
Rule+N4 0.281 0.0161 0.0304
Rule+ S2 0.313 0.0217 0.0406
Rule+N4 + S2 0.292 0.0285 0.0519

dancy. It is worth mentioning that the NMT model
can correct some more complicated problems in-
cluding phrase editing and word reordering. For
example, it can correct 能会做到得 to 能做到,
and also can correct也抽烟不好 to抽烟也不好.
It can also add punctuations in the middle of the
original sentence.

In Table 7, it shows that in some cases, given an
original sentence, different GEC models can give
different corrections. For the first two rows, the
rule-based model and the SMT model give differ-
ent corrections for the same position of the origi-
nal sentence, and both of those corrections are rea-
sonable. For the last two rows, the NMT model
and the SMT model give corrections at different
positions of the original sentence. The ensemble
of those models could be helpful because they can
generate corrections for many parts of the original
sentences, and if they produce different candidates
for the same position, we use the voting method to
determine the final output.

We explored the ablation test after the release of
CGED 2018 ground truth labels. Given error de-
tection results generated by BiLSTM-CRF in the
detection stage, we used different combination of
three GEC models to generate the candidate cor-
rections for errors of S and M. As we mentioned
before, we picked the model combination that per-
formed best on the ‘Position’ metric in Table 5 to
better utilize the candidates generated by our GEC
models. It’s worth to mention that our rule-based
GEC model is not customized for this dataset and
the errors made by CFL learners are quite differ-
ent from native speakers, which leads to relatively
low precision. The result of the combination of all
three models is slightly better than the version we
submitted to CGED shared task because we fixed
a small bug in the GEC model. From the abla-
tion study, it showed that the combination of three
GEC models improved the F1 score of Correction

Subtask significantly.

6 Conclusion and Future Work

This paper describes our system approach in
NLPTEA 2018 shared task of CGED. We pro-
posed a two-stage hybrid system which combined
the BiLSTM-CRF model and three GEC models.
In the detection stage, we utilized the correction
results generated by GEC models to tune the error
tags generated by the BiLSTM-CRF model. While
in the correction stage, outputs of our GEC mod-
els were merged to generate candidate corrections
for errors whose type were S or M. Our system
achieved the highest precision in the ‘Correction’
subtask, which is the most challenging part of this
shared task and got top 3 on F1 scores for position
detection of errors.

In the future, we will further explore the
strengths as well as limitations of three GEC mod-
els in our system and find a better method to com-
bine them.
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Abstract

In this study, we employ the sequence
to sequence learning to model the task
of grammar error correction. The sys-
tem takes potentially erroneous sen-
tences as inputs, and outputs correct
sentences. To breakthrough the bot-
tlenecks of very limited size of man-
ually labeled data, we adopt a semi-
supervised approach. Specifically, we
adapt correct sentences written by
native Chinese speakers to generate
pseudo grammatical errors made by
learners of Chinese as a second lan-
guage. We use the pseudo data to pre-
train the model, and the CGED data
to fine-tune it. Being aware of the sig-
nificance of precision in a grammar er-
ror correction system in real scenarios,
we use ensembles to boost precision.
When using inputs as simple as Chi-
nese characters, the ensembled system
achieves a precision at 86.56% in the
detection of erroneous sentences, and a
precision at 51.53% in the correction of
errors of Selection and Missing types.

1 Introduction
An inter-language is an idiolect developed by a
learner of a second language (or L2). It is char-
acteristic that it preserves some features of the
first language (or L1), and can overgeneral-
ize some L2 linguistic rules. An investigation
on the grammatical errors made by L2 learn-
ers will disclose the error patterns, which are
beneficial to the teaching and learning process.
On the other hand, it will promote the devel-
opment of systems which can correct gram-
matical errors made by L2 learners automati-

cally.
The rest of this paper is organized as follows:

Section 2 briefly introduces the definition of
the NLP-TEA CGED Shared Task 2018. Sec-
tion 3 gives a quick review on previous studies.
Section 4 describes the generation of pseudo
data in detail. Section 5 introduces the mod-
eling of the correction task using sequence to
sequence learning. Section 6 analyses the ex-
perimental results. Finally, conclusions and
prospects are drawn in Section 7.

2 NLP-TEA CGED Shared Task
2018

The goal of Chinese Grammar Error Diag-
nosis (CGED) Shared Task in NLP Tech for
Education Application (NLP-TEA) is to de-
velop NLP techniques to automatically cor-
rect grammatical errors in Chinese sentences
written by L2 learners. The shared task fa-
cilitate researchers using different linguistic
knowledges and computational techniques to
compare their results on the basis of common
datasets and evaluation frameworks.

Grammatical errors made by speakers as a
second language consist of different types. In
CGED, the errors are defined as four types:
Missing words (”M”), Redundant words (”R”),
word Selection errors (”S”), and Word order-
ing errors (”W”). It is noticeable that this
categorization is different from that of a tra-
ditional linguistic point of view, in which the
errors are typically categorized into mis-usages
of determiners, prepositions, noun forms, verb
forms and subject-verb agreement etc. The
categorization of errors in CGED tasks cor-
respond to the four operations, i.e. inser-
tions, deletions, substitutions, and transposi-
tions, as defined in Damerau–Levenshtein dis-

70



tance (Bard, 2006), respectively. These opera-
tions are used to edit a sequence into another.

A developed system should indicate types
and positions of the errors, and propose correc-
tions for the errors of S and M types. A system
is to be evaluated using four tasks, including
the detection of errors, the identification of er-
ror types, the identification of positions, and
the corrections.

3 Previous Solutions: A Quick
Review

Lee et al. (2013) employed handcrafted linguis-
tic rules to detect grammatical errors made
by learners of Chinese as a second language.
Their system is further integrated with N-
gram models to detect the errors (Lee et al.,
2014). Most previous studies take the diagno-
sis of grammatical errors as a sequence label-
ing problem. They generally assign a B/I/O
tag to each word in an input sentence, or each
character in a word, to detect the errors. Yu
and Chen (2012) proposed to use Conditional
Random Field (CRF) (Lafferty et al., 2001) to
detect Chinese word ordering errors. In 2014,
Cheng et al. (2014) adopted a Support Vec-
tor Machine (SVM) (Hearst et al., 1998) to
identify Chinese word ordering errors. In re-
cent years, Long-short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) has been
a popular neural network model used for this
task (Zheng et al., 2016; Yang et al., 2017).

Various features have been taken as the in-
puts into sequence labeling models, includ-
ing characters, words, Part-of-Speech (POS)
tags (Zheng et al., 2016), dependency infor-
mation, and Point-wise Mutual Information
(Yang et al., 2017), among many others.

4 Pseudo Labeling

The manually labeled dataset for the task
of grammar error correction is of very lim-
ited size. Since manual labeling is both la-
bor and time consuming, the size of the data
set has been a bottleneck for the performances
of automatic error correction systems. There
have been several approaches to tackling this
problem. Cahill et al. (2013) and Grund-
kiewicz and Junczys-Dowmunt (2014) use the
error corrections extracted from Wikipedia re-
vision history as training corpora. Further-

more, many studies adopt a semi-supervised
approach to automatically generating a large
scale pseudo data set and have reported
promising results (Foster and Andersen, 2009;
Rozovskaya and Roth, 2010; Dickinson, 2010;
Imamura et al., 2012; Felice and Yuan, 2014;
Rozovskaya et al., 2017).

4.1 Error Types
In our study, the pseudo data are generated
based on a close observation on the errors col-
lected from the manually labeled dataset.

4.1.1 Missing
It is observed that missing words are often
functional words. As shown in Sentence 1, in
which a particle and a preposition are missing.
(The erroneous sentence is represented with
E; and the correct sentence, C. The erroneous
phrases are in bold.) Sentences 2 and 3 show
another type of missing errors, which are
caused by improper uses of ellipses.
(1-E) 认识到结婚 Ø 过程不满六个月，也可
以说 Ø 我的故事中我是主动的。
(1-C) 认识到结婚的过程不满六个月，也可以
说在我的故事中我是主动的。
(2-E) 所以家长会在孩子很小的时候就让其接
受各种各样的学校教育，使 Ø 还很脆弱的心
理和生理都受到很多压力。
(2-C) 所以家长会在孩子很小的时候就让其接
受各种各样的学校教育，使孩子还很脆弱的心
理和生理都受到很多压力。
(3-E) 在韩国最近很流行不允许 Ø 的电视节
目，这节目说公共场所抽烟是不道德的行为。
(3-C) 在韩国最近不允许抽烟的电视节目很流
行，这些节目说在公共场所抽烟是不道德的行
为。

4.1.2 Redundant
Of all the redundant errors in CGED data
set, functional words are among the most
frequent. For instance, the particle and the
conjunction in Sentences 4-5 are redundant.
(4-E) 如何处理现在在做香烟的工厂的人的以
后的生活。
(4-C) 如何处理现在在香烟工厂工作的人的以
后的生活。
(5-E) 大家在手术间里，合作无间而救了那位
病人。
(5-C) 大家在手术间里，合作无间救了那位病
人。
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4.1.3 Selection
Selection errors often occur when near-
synonyms are misused, as shown in Sentences
6-7. The differences of the usages between
these near-synonyms are subtle.
(6-E) 他们知不道吸烟对未成年年的影响会造
成的各种害处。
(6-C) 他们不知道吸烟对未成年人会造成的各
种伤害。
(7-E) 从此，父母亲就会教咱们爬行、走路、
叫爸爸妈妈。
(7-C) 从此，父母亲就会教我们爬行、走路、
叫爸爸妈妈。

4.1.4 Word Order
Word ordering errors are typically related to
the modification of verbs. For instance, the
modifiers of the verbs, the auxiliary verb and
the adverbs, are misplaced in Sentences 8-10.
(8-E) 采取几种方法应该帮助他们。
(8-C) 应该采取几种方法帮助他们。
(9-E) ……但还是年轻的学生需要大人的支持
和指导……
(9-C) ……但年轻的学生还是需要大人的支持
和指导……
(10-E) 我走路时常常想抽烟，可能另外抽烟者
也想这样。
(10-C) 我走路时常常想抽烟，可能别的抽烟
者也这样想。

4.2 Data Generation
Based on the above observations, we adapt
the sentences written by native Chinese speak-
ers to generate ungrammatical sentences. The
canonical sentences come from 12 serials of
textbooks for students learning Chinese as a
second language, 7 serials of textbooks for
native Chinese students, and People’s Daily
newspapers. The sentences are filtered with a
length threshold and the controlled vocabular-
ies for teaching Chinese as a second language
(Hanban, 2001, 2010). These sentences are to-
kenized using LTP (Che et al., 2010). And
then, the errors of redundant words, missing
words, word selection errors and word ordering
errors are generated using the operations of in-
sertions, deletions, substitutions, and transpo-
sitions, respectively. All adaptations are done

in terms of words. 2 millions sentences are
adapted in this way.

4.2.1 Missing
(1) To make erroneous sentences with missing
words, we randomly select a position in
the input sentence. (2) If the word in that
position is a functional word, or it is a content
word with an antecedent in that sentence,
drop this word. Example sentences are shown
below.
(11-E) 一天，庙里来 Ø 一个瘦和尚。
(11-C) 一天，庙里来了一个瘦和尚。
(12-E) 他不仅爱收集动植物标本，还阅读了许
多描写 Ø 的书。
(12-C) 他不仅爱收集动植物标本，还阅读了
许多描写动植物的书。

4.2.2 Redundant
(1) Randomly select a position in the input
sentence. (2) Randomly select a word accord-
ing to word frequencies. (3) Insert the word
into that position.
(13-E) 达尔文妈妈喜欢种花的。
(13-C) 达尔文妈妈喜欢种花。

4.2.3 Selection
(1) Randomly select a position in the input
sentence. (2) Select a near-synonym of the
word in that position based on their similari-
ties computed using word embeddings. (3) Re-
place the word in that position with the near-
synonym.
(14-E) 老鼠又去咬蜡烛，蜡烛倒了，庙里爆炸
了。
(14-C) 老鼠又去咬蜡烛，蜡烛倒了，庙里着火
了。

4.2.4 Word Order
(1) Randomly select a position in the input
sentence. (2) Swap the word in that position
with its neighbor.
(15-E) 这些剪纸的技艺，都是人们世代一代手
把手地下来传的。
(15-C) 这些剪纸的技艺，都是人们世代一代手
把手地传下来的。

5 Ling@CASS Solution:
Methodology and System
Development

A new task, the corrections of the errors of
missing and selection types, has been intro-
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duced to CGED 2018. We accordingly need
a reconsideration of the appropriateness of us-
ing sequence labeling models (Sakaguchi et al.,
2017). Unlike the B/I/O tag set which is close,
the corrections of the missing, and selection
types of errors form an open set. In addi-
tion, the corrections generally give rise to out-
put sentences with lengths different from in-
put ones. Therefore, the correction task has
gone beyond the capabilities of sequence la-
beling models.

Sequence to sequence learning (seq2seq)
maps an input sequence to an output sequence
of varying lengths. It has been the main-
stream model for machine translation nowa-
days (Klein et al., 2017). The correction task
can be modeled as a translation task, in which
the ungrammatical sentences are from an orig-
inal language, and the corrections are from a
target language. The translation model has
been used in several previous studies on gram-
mar error corrections (Schmaltz et al., 2016;
Chaitanya, 2017; Yuan and Felice, 2013).

The state-of-the-art performances on ma-
chine translation are presented by FairSeq in
terms of both accuracy and speed (Gehring
et al., 2017). FariSeq significantly differs from
previous seq2seq models in that its architec-
ture is based entirely on Convolutional Neu-
ral Networks (CNN), instead of the prevalent
Recurrent Neural Networks (RNN), so that
computations can be fully parallelized during
training and optimization.

In our study, we employ the FairSeq model.
The Fairseq models are pre-trained with the
pseudo labeled data, and fine-tuned with the
manually labeled data delivered in CGED.
The inputs to Fairseq models are as simple as
Chinese characters and POS tags of charac-
ters. The POS are tagged using LTP (Che
et al., 2010). We use the default settings of
FairSeq, except that we use 512 dimensions of
character embeddings. The embeddings are
randomly initialized and we do NOT use any
other resources.

6 Ling@CASS Solution: the
Outcome

6.1 Evaluation on Corrections
As shown in Table 1, we have four basic sys-
tem configurations. These configurations are

different in the use of pseudo corpus and POS
tags. The evaluation in Table 1 reveals that
the use of pseudo data has improved both pre-
cision and recall in the correction task of the
word selection errors and missing errors, while
that of POS tags does not make a significant
contribution.

In real scenarios of grammar error diag-
noses, the evaluation metrics of precision, re-
call and F1 are not of the same importance. A
teacher would always prefers a grammar error
correction system with high precision, even if
it has a low recall, than a system returns lots of
noises. Being aware of the significance of pre-
cision in a grammar error correction system
in practice, we further use ensembles to boost
precisions. The tag ”(>1)” indicates that the
correction has been confirmed by at least two
basic systems; and ”(>2)”, at least three. The
ensembled systems steadily achieve a precision
greater than 50%, with a recall greater than
8%. These performances are much higher than
the best in CGED 2018 submissions, where the
precision is 29.32%, and recall is 1.58%.

The official submission of our team to
CGED 2018 is the result of an ensemble of the
systems 3 and 4, where the results are simply
merged.

6.2 Evaluation on Detections,
Identifications of Error Types, and
Positions

Figure 1: Impacts of Pseudo Data

We also evaluated the systems on the detec-
tions, and the identifications of error types and
positions. Figure 2 shows a detailed analysis
on the precision of the identification of error
positions for all four types of errors. It reveals
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ID Pseudo corpus CGED corpus Character POS P R F1
1 Y Y 0.2678 0.0984 0.1439
2 Y Y Y 0.2657 0.1060 0.1515
3 Y Y Y 0.2830 0.1153 0.1638
4 Y Y Y Y 0.2672 0.1139 0.1597

1+3 (>0) 0.2149 0.1313 0.1631
3+4 (>0)

Submission 0.2126 0.1395 0.1685
1+2 (>1) 0.5153 0.0806 0.1394
3+4 (>1) 0.5056 0.0896 0.1523
1+3 (>1) 0.5105 0.0823 0.1417

1+2+3+4 (>2) 0.5080 0.0896 0.1524

Table 1: Performances on Corrections

FPR Detection Identification Position
Acc. P R F1 P R F1 P R F1

3+4 (>0)
Submission 0.3470 0.6630 0.7109 0.6709 0.6903 0.4853 0.4096 0.4442 0.2482 0.1814 0.2096
1+2 (>1) 0.064 0.5342 0.8127 0.2184 0.3443 0.6653 0.1436 0.2362 0.4861 0.0906 0.1528
3+4 (>1) 0.0512 0.5599 0.8632 0.2542 0.3927 0.7015 0.1663 0.2688 0.5024 0.1006 0.168
1+3 (>1) 0.0448 0.5475 0.8656 0.227 0.3596 0.6853 0.1463 0.2411 0.5104 0.0932 0.1577

1+2+3+4 (>2) 0.0544 0.5545 0.8524 0.2471 0.3831 0.6819 0.1600 0.2592 0.5030 0.0996 0.1663

Table 2: Performances on Detections, Identifications of Error Types & Positions

Figure 2: Difficulties of Error Types

that the current pseudo data has a positive im-
pact on the precision of all error types, except
for the word ordering errors. It indicates the
word ordering pseudo data has much room for
improvements.

Figure 1 shows that the identification of the
positions of these errors is of different diffi-
culties to the systems. While the ensembled
systems are proficient in handling word order-
ing errors, they have the most difficulties in
handling redundant errors.

Table 2 shows the ensembled system 1+3
(>1) achieves a False Positive Rate (FPR) at
4.48% and a precision of 86.56% the detection
of erroneous sentences, which are better than
the best FPR 4.99% and the best precision

82.76% in CGED 2018 submissions, respec-
tively.

7 Conclusion and Future Work

In CGED 2018, we employ the sequence to se-
quence learning to model the task of grammar
error correction. We adopt a semi-supervised
approach to breakthrough the bottlenecks of
very limited size of manually labeled data.
Specifically, we adapt correct sentences writ-
ten by native Chinese speakers to generate
pseudo grammatical errors made by learners
of Chinese as a second language. The pseudo
data is used to pre-train the model and gives
rise to improvements in both precision and re-
call. Being aware of the significance of preci-
sion in a grammar error correction system in
real scenarios, we use ensembles to boost pre-
cision. The use of pseudo data has a positive
impact on the identification of missing errors,
redundant errors, and word selection errors.

In the future work, we will use multi-task
to jointly optimize the four tasks all together
(Luong et al., 2015). In addition, we will in-
vestigate more sophisticated techniques for the
generation of pseudo data.
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Abstract

Chinese Grammatical Error Diagnosis
(CGED) is a natural language process-
ing task for the NLPTEA2018 workshop
held during ACL2018. The goal of this
task is to diagnose Chinese sentences con-
taining four kinds of grammatical errors
through the model and find out the sen-
tence errors. Chinese grammatical er-
ror diagnosis system is a very important
tool, which can help Chinese learners au-
tomatically diagnose grammatical errors
in many scenarios. However, due to the
limitations of the Chinese language’s own
characteristics and datasets, the traditional
model faces the problem of extreme im-
balances in the positive and negative sam-
ples and the disappearance of gradients.
In this paper, we propose a sequence la-
beling method based on the Policy Gradi-
ent LSTM model and apply it to this task
to solve the above problems. The results
show that our model can achieve higher
precision scores in the case of lower False
positive rate (FPR) and it is convenient to
optimize the model on-line.

1 Introduction

In English and many other languages , the space is
a good approximation of a word divider (word de-
limiter), a sentence separated by spaces into mul-
tiple words. Unlike the English, Chinese does
not have a separator on the written scripts, a sen-
tence consists of Chinese characters that are next
to each other, where sentences but not words are
delimited. This is very difficult for the machine
or learner without a Chinese foundation to ana-
lyze Chinese grammar, because it first has to face
the problem of Chinese word segmentation (Xue,

2003). Compared to English, Chinese has neither
singular/plural change, nor the tense changes of
the verb, and it uses more short sentences but less
clauses. In addition, the same word may express
different meanings in different contexts, namely
ambiguity. All these problems make learning Chi-
nese very difficult. Most non-native Chinese lan-
guage learners usually need professional Chinese
teachers to guide them and correct grammatical
errors. However, online teaching has recently
become the main channel for language learning,
which requires the system to automatically diag-
nose and give advice to a large number of learners’
grammatical errors. Therefore, the study of Chi-
nese grammatical error automatic diagnosis sys-
tem is very important. The goal of Chinese Gram-
matical Error Diagnosis (CGED) is to build a sys-
tem that can automatically diagnose errors in Chi-
nese sentences. Such errors are defined as re-
dundant words (denoted as a capital ”R”), miss-
ing words (”M”), word selection errors (”S”), and
word ordering errors (”W”). Evaluation includes
three levels, which are detection level, identifica-
tion level and position level.

At present, most methods regard the Chinese
grammatical error diagnosis task as a sequence
labeling task (Settles and Craven, 2008), such
as using a conditional random field construction
sequence labeling model (Lafferty et al., 2001)
and a sequence labeling model constructed
using LSTM (Hochreiter and Schmidhuber,
1997). However, the characteristics of Chi-
nese language leads to a obvious problem in
constructing Chinese grammatical error diag-
nosis model, which is the imbalance between
positive and negative samples. For example,
a sentence to be labeling is: ”人战胜了饥
饿，才努力为了下一代作更好的、更健康
的东西。” , The correct labeling result should be:
”NNNNNNNNPNNNNNNPNNNNNNNNNNN”,
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where N denotes a negative label, ie there is no
wrong label, P denotes a positive label, ie there
is a wrong label. We can see that the proportion
of positive and negative sample labels in a not
very long sentence is seriously unbalanced, in
the above example, the ratio is 2:27, which is a
serious problem faced by the Chinese grammatical
error diagnosis model. In order to solve the above
problems, we propose a Policy Gradient-based
model to tag Chinese sentences. Similar to the
recent work, we also use the LSTM model to
handle this task as a sequence labeling problem
(Zheng et al., 2016). Moreover, we use the Policy
Gradient method to deal with the imbalance of
positive and negative samples. The results show
that our method can achieve better results.

This paper is organized as follows. Section 2
introduces some related work . Section 3 briefly
describes the CGED Shared Task. Section 4 il-
lustrates our methodology, including data prepa-
ration, model description and the details of policy
gradient method. Section 5 shows the experiment
settings and results. And finally, section 6 con-
cludes the paper and presents future work.

2 Related works

The English Grammatical Error Correction task
has been held for two consecutive years as one
of the natural language processing tasks of the
Conference on Computational Natural Language
Learning (CoNLL). The researchers used many
different methods to study the task and achieved
good results (Tou et al., 2017). where (Junczys-
Dowmunt and Grundkiewicz, 2014) usesd phrase-
based translation optimized for F-score using a
combination of kb-MIRA and MERT with aug-
mented language models and task-specific fea-
tures, and got a good result. As a universal
language model, the Long Short-Term Memory
network (LSTM) (Hochreiter and Schmidhuber,
1997) has achieved good results in many tasks in
natural language processing in recent years, in-
cluding text classification tasks, machine transla-
tion tasks, and sequence annotation tasks. (Yuan
and Briscoe, 2016) used the Encoder-Decoder
model similar to neural machine translation to
process the English Grammatical error correction
Task and achieved good results. Compared with
English, the research time of Chinese grammati-
cal error diagnosis system is short, the data sets
and effective methods are lacking. (Yu and Chen,

2012) uses the CRF-based model to construct a
Chinese word ordering error detection model and
obtains a higher accuracy on the experimental data
set. In recent years, Chinese grammatical er-
ror diagnosis has been cited as a shared task of
NLPTEA CGED. Many researchers in the field
of natural language processing have researched
and proposed several effective methods (Yu et al.,
2014; Lee et al., 2015, 2016). HIT propose a
CRF+BiLSTM model based on character embed-
ding on bigram embedding, on the CGED-HSK
dataset of NLP-TEA-3 shared task, their system
presents the best F1-scores in all the three levels
(Zheng et al., 2016).

3 CGED Task Description

The goal of The NLPTEA CGED task is to use a
model to perform a grammar diagnosis on a data
set containing Chinese sentences, these datasets
are written by Chinese Foreign Language (CFL)
leaner. These datasets contain the following four
errors, such errors are defined as redundant words
(denoted as a capital ”R”), missing words (”M”),
word selection errors (”S”), and word ordering er-
rors (”W”). The input sentence may contain one or
more such errors, and there may also be no errors.
The developed system should indicate which error
types are embedded in the given sentence and the
position at which they occur. Some typical exam-
ples are shown in Table 1:

Sentence
人战胜了饥饿，才努力为了下一
代作更好的、更健康的东西。

Correction
人战胜了饥饿，才能努力为了下
一代做更好的、更健康的东西。

Errors
9, 9, M,能
16, 16, S,做

Table 1: Typical Error Examples

Table1 shows the CGED shared task input data
and output data samples. Each sentence contains
a single id, each output error contains the sentence
id, and the number in Errors indicates the index
of the error location. The criteria for judging cor-
rectness are determined at three levels as detection
level, identification level and position level.

4 Methodology

In this section, we will introduce our entire pro-
cess of the CGED task, including data preprocess-

78



ing, model construction, and the construction of
objective functions based on the Policy Gradient.
Same as previous work, we treat the CGED task
as a sequence labeling problem. Such as given a
sentence x, our model generates a corresponding
label sequence y. Each label in y is a token from a
specific tag set. We use ”O” to indicate the correct
character’s tag, ‘B-X’ indicating the beginning po-
sitions for errors of type ‘X’ and ‘I-X’ as middle
and ending positions for errors of type ‘X’.

First, we will introduce our CGED task data
preprocessing process, including Bigram feature
construction, POS data annotation, and data label
settings. Second, we will introduce the construc-
tion of the ensemble model that combines Big-
gram feature, POS feature, and character embed-
ding. Finally, we will introduce the idea and math-
ematical formula of the objective function based
on the Policy Gradient.

4.1 Data Preparation

First, we use the Word2vec tool to train the Bi-
grams of all Chinese sentences in the data set into
word vectors. These word vectors will be used
to generate input sentence features during model
building. we first convert the original character
sequence to a bigram sequence. Then we can
train bigram embeddings readily using word2vec
(Mikolov et al., 2013) on the resulting bigram se-
quences.

We use the Part-of-speech (POS) feature to im-
prove the performance of the system. Therefore,
we use the part-of-speech (POS) feature to gen-
erate a corresponding POS tag sequence for each
Chinese sentence sequence of the data set, B-pos
indicating the beginning character’s POS tag while
I-pos indicating the middle and end characters’.

We define each character in the sentence as a
separate tag that contains the character’s position
in the word. We use ”O” to indicate the correct
character’s tag, ‘B-X’ indicating the beginning po-
sitions for errors of type ‘X’ and ‘I-X’ as middle
and ending positions for errors of type ‘X’. In the
CGED task, we will get 8 labels: B-W, I-R, B-
R, B-M, I-S, I-W, B-S, O. After the data is pre-
processed, each sample can be represented as the
structure shown by Table 2. The input of each
sample during training is composed of three parts
as shown in the inputs features of Table 2, and the
label sequence of each sample is composed of 8
pre-defined labels.

4.2 Model Description
We regard the Chinese grammatical error diag-
nosis task as a sequence labeling task, and first
use LSTM to construct a sequence labeling model.
LSTM network is a variant of recurrent neural net-
work (RNN) and have better ability to capture long
term dependencies. Given a sequence of input
vectors X = x1, x2, . . . , xT = {xt}T1 , a recur-
rent unit H computes a sequence of hidden vec-
tors h=h1, h2, . . . , hT = {ht}T1 and a sequence of
output symbols Ŷ = ŷ1, ŷ2, . . . , ŷT = {ŷt}T1 by
iterating the following equations,

ht =H(xt, ht−1) (1)

ŷt =argmax(softmax(Whyht)) (2)

where softmax(zm) = ezm/
∑

i e
zi , The

LSTM recurrent unit H represents the calculation
process of the LSTM network. A typical LSTM
network consists of input gates, oblivion gates,
output gates, and memory cells. Which input gate
controls the current time step which information
will be input into the memory cell, the forgot-
ten gate controls the current time step which his-
tory information will be forgotten by the memory
cell, and the output gate controls which informa-
tion will be output as ht according to the current
memory cell state. Each gate consists of a sig-
moid neural net layer and a point-wise multiplica-
tion operation.

Figure 1: An illustration of LSTM model

In this work, we denote the input of the time
step i as:

xt = σ(Wx(ct, bt, pt)) (3)

Where σ represents the nonlinear activation
function, ct is the character embeddings that are
initialized immediately, bt represents the bigram
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Sentence 我根本不能了解这妇女辞职回家的现象。

Char 我根本不能了解这妇女辞职回家的现象。

Bigram <s>我我根根本本不不能能了了解解这这妇妇女女辞辞职职回回家家的
的现现象象。。</s>

POS B-r B-d I-d B-d B-v B-v I-v B-r B-n I-n B-v I-v B-v I-v B-u B-n I-n B-wp

Label O O O O O B-S I-S B-R O O O O O O O O O O

Table 2: A snapshot of our training data after the pre-processing

vector of the current time step, and pt represents
the POS discrete feature. These three simple fea-
tures are combined as the input vector for the time
step t. The ensemble model is shown in Figure 1.

4.3 Policy Gradient

Deep Reinforcement Learning (DRL) is divided
into Value-Based Deep RL (Mnih et al., 2015) and
Policy-Based Deep RL (Lillicrap et al., 2015) in
terms of implementation[16]. Value-Based Deep
RL is a Neural Network usually used as a Q func-
tion to estimate the return of an action which can
be obtained in the current environment, namely
Deep Q-network (DQN). Such as (Mnih et al.,
2013) present the first deep learning model to
successfully learn control policies directly from
high-dimensional sensory input using reinforce-
ment learning, model is a convolutional neural net-
work, trained with a variant of Q-learning. The
Policy-Based Deep RL is Represent policy by
deep network with weights u, as shown below:

a = π(a|s,u) or a = π(s, u) (4)

Where π is the policy expressed by the neural
network and u is the network learning parameter.
Define objective function as total discounted re-
ward:

L(u) = E[r1 + γr2 + γ2r3 + ...|π(·,u)] (5)

L(u) denotes the objective function, r1, r2, ...
denotes the returns obtained in each step. In this
paper, the value of the return of the tagged result of
each token is indicated. γ ∈ [0, 1] is the discount
factor, which indicates the importance of future re-
turns. In this article we set γ = 0.9. To make
high-value actions more likely, the gradient of a
stochastic policy π(a|s, u) is given by:

∂L(u)

∂u
= E[

∂ log π(a|s,u)
∂u

Qπ(s, a)] (6)

Where Qπ is a function value that measures the
return of each action. In this article, we define
that the return value of the tag ”O” is successfully
marked as 1, and the return value of the failed tag
is -1. Defining all other error labels ”B-W, I-W, B-
M, I-W ...” is marked with a score of 10 for a suc-
cessful return, and a return of -10 for a failed tag.
Finally, update parameters u by stochastic gradient
ascent. Our ensemble model is shown in Figure 2.

Figure 2: An illustration of Policy Gradient-based
LSTM model

Where Qπ(X) represents the reward after label
”X” was tagged, for example, the ”X” is ”B-R”,
ŷt represents the policy obtained by the network.
Finally, the final output π(a|s,u)Qπ(s, a) of the
network is obtained with the policy π and reward
Q known. This output is used to calculate the pol-
icy gradient ∂L(u)∂u , and then the gradient is used to
update the network parameters.

5 Experiments

In this section, we introduce the entire process of
the experiment. First of all, we introduce the use
of data sets and division, and then briefly intro-
duce the CGED experimental results evaluation
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method. Finally, we introduce the results on the
validation dataset and the results from the evalua-
tion dataset based on our proposed model.

5.1 Dataset and criteria

During the training of the model, we use the col-
lection of training set of CGED2017 and train-
ing set of CGED2018 as the training dataset. In
CGED2017 training set, provide 10,449 training
units with a total of 26,448 grammatical errors,
categorized as redundant (5,852 instances), miss-
ing (7,010), word selection (11,591) and word or-
dering(1,995). In the CGED2018 training set, con-
tain total of 1,067 grammatical errors, categorized
as redundant (208 instances), missing (298), word
selection (87) and word ordering(474). In addi-
tion, use CGED2017’s test set as the validation set
during training, it’s contain total of 4,871 gram-
matical errors, categorized as redundant (1,060 in-
stances), missing (1,269), word selection (2,156)
and word ordering(386). Table 3 shows the data
distribution in the training data.

R error M error S error W error
Train 6060 7308 11678 2469

Validation 1060 1269 2156 386

Table 3: Data statistics

The criteria for judging correctness are deter-
mined at three levels, (1)Detection-level: Binary
classification of a given sentence, that is, correct
or incorrect, should be completely identical with
the gold standard. All error types will be regarded
as incorrect. (2)Identification-level: This level
could be considered as a multi-class categoriza-
tion problem. All error types should be clearly
identified. A correct case should be completely
identical with the gold standard of the given error
type. (3)Position-level: In addition to identifying
the error types, this level also judges the occur-
rence range of the grammatical error. That is to
say, the system results should be perfectly identi-
cal with the quadruples of the gold standard. The
False Positive Rate(FPR), Accuracy (Acc), Preci-
sion (Pre), Recall (Rec) and F1 score(F1) are mea-
sured at all levels with the help of the confusion
matrix.

5.2 Experiment results

We use the above data partitioning to train and
converge the training set based on our proposed

Policy Gradient-based model, the trained model
was tested on the validation set and evaluation set.

5.2.1 Results on Validation Dataset
We refer to the model’s results on the valida-
tion dataset and select the best hyper-parameters
model. Table 4 shows the results.

5.2.2 Results on evaluation Dataset
We testing on the final evaluation dataset for
CGED2018 test set, the result showing with table
5. As we can see, our model can obtain better iden-
tification score and position score while obtaining
a better detection level score.

Our model obtains good results at three levels,
and the Policy Gradient-based model can be eas-
ily applied to online tasks to optimize the network
structure through continuous interaction and at-
tempting to obtain maximum rewards.

5.3 Conclusion and Future Work
This paper proposes a method based on policy
gradient applied to NLPTEA 2018 CGED shared
task. We use the value function method of deep re-
inforcement learning to map the labeling results to
rewards to solve the problem of imbalanced posi-
tive and negative samples in Chinese grammatical
error diagnosis. Moreover, our system can be ap-
plied to online optimization as easily as a depth-
enhanced model. In this paper, we verify the ef-
fectiveness of the Policy Gradient through experi-
ments on the validation dataset and the evaluation
dataset.

In the future, we hope to betterly solve the prob-
lem of serial labeling with imbalanced positive
and negative samples in Chinese grammatical er-
ror diagnosis through deep reinforcement learn-
ing strategies. In terms of Policy Gradients, we
hope to be able to define reward functions that are
more in line with the mission requirements and op-
timize the entire network. In addition, we hope to
optimize the network through multiple rounds of
online annotation results and further conduct rele-
vant online experiments. Ultimately, the network
can achieve good labeling results while also being
able to cope with the challenges posed by online
data changes.
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Abstract

Verbal communication — and pronunci-
ation as its part — is a core skill that
can be developed through guided learn-
ing. An artificial intelligence system can
take a role in these guided learning ap-
proaches as an enabler of an application
for pronunciation learning with a recom-
mender system to guide language learn-
ers through exercises and feedback system
to correct their pronunciation. In this pa-
per, we report on a user study on language
learners’ perceived usefulness of the ap-
plication. 16 international students who
spoke non-native English and lived in Aus-
tralia participated. 13 of them said they
need to improve their pronunciation skills
in English because of their foreign accent.
The feedback system with features for pro-
nunciation scoring, speech replay, and giv-
ing a pronunciation example was deemed
essential by most of the respondents. In
contrast, a clear dichotomy between the
recommender system perceived as useful
or useless existed; the system had fea-
tures to prompt new common words or old
poorly-scored words. These results can be
used to target research and development
from information retrieval and reinforce-
ment learning for better and better rec-
ommendations to speech recognition and
speech analytics for accent acquisition.

1 Introduction

Pronunciation Learning Aid (PLA) is a system for
learning to pronounce better. Pronunciation learn-
ing is needed because speaking is a hard task for
the human brain (Levelt, 1993). In the process of
learning, a person uses another person, a book, or
another resource to get the knowledge they need.
PLA is one of those facilities that enables a learn-
ing experience by giving a practice module.

A number of use cases for PLA exist in real
life. They encompass the entire spectrum from
supporting teachers’ work flow in classrooms to
computer-assisted virtual learning environments
(Figure 1). That is, more and more learning can
happen from home and teachers’ time can be used
more sparingly.

In this short paper, we are introducing an En-
glish PLA prototype with a Recommender System
(RS) and Feedback System (FS). RSs are com-
monly used to recommend movies, books, mu-
sic, or similar items (Lü et al., 2012), but their
applications to language learning are only emerg-
ing. On the contrary, FSs for language learning are
more established (e.g., using visual feedback (Wen
et al., 2006) or Speech Recognition applied to pro-
nunciation evaluation (Abdou et al., 2006)). These
two systems could work together to facilitate a
language learner to do self-practicing as follows:
The RS can give specialized guidance to the lan-
guage learner (Adomavicius and Tuzhilin, 2005)
which in our case translates to the PLA users be-
ing guided through a series of exercises that are
fit for them. After this, the user can practice
by reading and pronouncing these recommended
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Figure 1: Illustration of replacing teaching role to PLA

word/phrases. One of the best options to learn pro-
nunciation is by listening to an example (Leather,
1983). Consequently, providing an audio example
is one of the feedback features in our FS.

The focus of the paper is on the result of our
user study regarding the importance of each sys-
tem feature in our PLA. Instead of assuming that
both the RS and the FS are needed, we need ac-
tual evaluation data to inform our judgment and
decision-making regarding the features to include.

The rest of the paper is organized as follows:
First, in Section 2, we describe our materials and
methods. Then, in Sections 3 and 4, we present
and discuss our results, respectively. Finally, in
Section 5, we conclude the paper.

2 Materials and Methods

The PLA prototype had the following two main
data elements: item and user. Item [word] was
the recommended option, which was populated
by using the Ogden’s basic word list (Ogden and
Halász, 1935). Each word was also associated
with a commonness status by counting its oc-
currences in the Europarl corpus (Koehn, 2005).
User referred to a specific language learner and
user data to this person’s recorded pronunciation
history (i.e., the past learning experience while us-
ing the system) and demographic data (e.g., first
language, nationality, and age). These recordings
were enriched by comparisons to other users’ data.

The prototype included the following features.
The RS produced the recommendation choices of
1) a New Common Word, 2) an Old Poorly-Scored
Word, and 3) a New Word from Others’ Poorly-

scored Words. The FS had the feedback features of
1) a Speech Replay, 2) a Pronunciation Example,
and 3) a Pronunciation Score. Each of the six fea-
tures was implemented using a different process-
ing method but based on the same data available
in the system.

2.1 Processing Methods

Some of the methods were as simple as reading or
counting the data such as counting word frequency
whilst others used more advanced machine learn-
ing algorithms. In the RS, the New Common Word
feature combined the word commonness and the
user history to find the most common word that the
user has not seen yet. For the Old Poorly-Scored
Word feature, it only used the user history to rec-
ommend a word with the poorest pronunciation
score by the FS. The last feature (i.e., New Word
from Others’ Poorly-scored Words) analyzed all
users’ history and demographic data: First, us-
ing the K-Nearest Neighbors algorithm (Bobadilla
et al., 2013), it found similar users to the current
user, followed by applying two equally weighted
spaces as follows: users’ history space with each
word score as a dimension and demographic space
with demographics as dimensions. Second, the
RS built a list of words that were poorly scored
in other similar users’ histories but not yet seen
by the current user. Each of the three RS methods
ran once to initialize interaction with the user and
again every time the user finished an exercise.

In FS, once one of the three recommendation
options was chosen, the system generated three
feedback features for that specific word option.
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Table 1: Kano conclusion table

The Pronunciation Example feature worked by
playing a stored example (i.e., sound file) for the
word. Both the Speech Replay and Pronuncia-
tion Score feedback were available after the user
had recorded their own speech: The Speech Re-
play feature simply replayed the recording. The
Pronunciation Score feature was similar to Auto-
matic Pronunciation Scoring (Kim et al., 1997).
However, due to the time constraint of our re-
search, we had to use random scoring instead in
the user study.

2.2 Evaluation Methods

After obtaining the proper ethics approvals and re-
search permissions, we evaluated the importance
of each feature in our prototype by conducting a
user study. We asked 16 international students to
complete our questionnaire after they had tried us-
ing the prototype. We used a scenario for each
feature so that every respondent had the same ex-
perience but with freedom to continue practicing
as they wished.

For our questions, we used the Kano Model (Ya-
dav, 2016) that built a positive and negative ques-
tion for each feature to allow concluding whether
the user likes a given feature or not. For example,
a positive question was “How do you feel if the
system is able to replay your recorded speech?”
and a negative question was “How do you feel if
the system cannot replay your recorded speech?”.

To make conclusions from the question pairs for
each feature, we used Table 1 (Yadav, 2016). One
example of the conclusion was Delighting, which
meant that the existence of the feature is good. The
conclusion of Reverse meant that the system is bet-
ter without the feature.

At the end of the questionnaire, we also asked
open questions as follows: “Do you need help to
learn pronunciation?”, “What difficulties are you
having?”, “What do you think about the PLA?”,
“What improvements would you like to see?”.

Figure 2: The importance of the RS as a whole

Figure 3: The importance of each RS feature

3 Results

In order to have a realistic case where the language
learners are using their own personal computers
or laptops, we used an online questionnaire in the
user study. Alongside the questionnaire link, we
provided the respondents a link to download the
prototype. The prototype was built in Java and
each respondent had to install it on their device.

Before assessing the importance of each feature,
we addressed the importance of the RS and FS.
Most of the respondents were feeling indifferent
about the existence of RS (Figure 2). The same
number of respondents were feeling delighted and
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Figure 4: The importance of the FS as a whole

Figure 5: The importance of each FS feature

reverse delighted, and the same conclusion held
for the basic and reverse basic. The trends for
the features in RS and FS were similar (Figure 3).
Most respondents were feeling indifferent and the
numbers of respondents feeling delighted and re-
versely delighted were approximately the same.

We asked the importance of FS in PLA and got
the result that a clear majority of respondents were
feeling satisfied without anyone feeling the reverse
(Figure 4). A similar trend also occurred in the
result of each FS feature (Figure 5); most respon-
dents felt satisfied without any reverse feeling.

Based on the answers to the open questions,
thirteen respondents needed help to learn pronun-
ciation with the main reason of their accent. Most
respondents felt the usefulness of PLA and espe-
cially the FS features were desirable. The respon-
dents were keen to use a PLA not only for English
but also for Mandarin and French.

4 Discussion

From the result we can see that most respon-
dents were having difficulties with their pronun-
ciation learning, mainly because their foreign ac-
cent. They welcomed help from any source, in-
cluding PLA, to correct their pronunciation.

The role of RS in PLA was somewhat unclear.
The results diverged between the RS being needed
or not needed with the same number of respon-
dents in both sides while most of them felt indif-
ferent. Some respondents did not know how to
begin the exercises and needed the guide to do so.
Otherwise, some respondents felt the system rec-
ommendation was not the best for them to learn
and they know better what they should learn.

For each recommendation options, a new com-
mon word was not preferred. The respondents pre-
ferred to choose on their own because they did
not want to just learn common words. Possibil-
ities to practicing poorly-scored words were re-
quested for.

Including the FS in the PLA was crucial but the
RS features could be optional. None of the re-
spondents said that the PLA would be better with-
out the entire FS or any of its features. Their
key expectation was to receive feedback. Hav-
ing examples and replay options was also expected
but having correctness scoring as a pronunciation
feedback functionality was not an expectation but
rather a bonus.

5 Conclusion

As expected, our technology-assisted approach for
pronunciation learning was perceived as useful but
surprisingly, recommendations were not a key fea-
ture for a good system. Instead, receiving feed-
back was essential in a PLA. However, sixteen re-
spondents is a small sample, and this limits the
generalizability of these conclusions.
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Abstract

PerspectivesX is a multi-perspective elab-
oration tool designed to encourage learner
submission and curation across a range
of collaborative learning activities. In
this paper, it is shown that the learning
design objectives of collaborative learn-
ing activities can be evaluated using NLP
techniques, but that careful analysis of
learner impact and pedagogical intent are
required in order to select appropriate
techniques. In particular, this paper fo-
cuses on the NLP techniques required to
deliver an instructor dashboard, personal-
ized learner feedback and content recom-
mendation within multi-perspective elabo-
ration activities. Key NLP techniques con-
sidered for inclusion include summariza-
tion, topic modeling, paraphrase detection
and diversified content recommendation.

1 Introduction

PerspectivesX is a multi-perspective elaboration
tool that allows instructors to create grid activities
where students are able to both submit their own
ideas and curate diverse ideas from other learn-
ers (i.e., add ideas submitted by other learners to
their own list) using a declarative user interface.
PerspectivesX allows instructors to either select
a multi-perspective elaboration template such as
Strengths Weaknesses Threats and Opportunities
(SWOT) analysis, Six Thinking Hats (De Bono
and Pandolfo, 1999) or define a custom template.
PerspectivesX incorporates ideas from Computer
Supported Collaborative Learning (CSCL) and the
Knowledge Community of Inquiry (KCI) model
(Slotta and Najafi, 2013). The tool adheres to the
key principles of KCI by providing a knowledge
base of student perspective submissions (Principle

1), including curation mechanics (Principle 2&3)
and facilitating instructor moderation (Principle
4) (Slotta and Najafi, 2013). The tool develop-
ment has been directed by clear design guidelines
(Bakharia and Lindley, 2018).

NLP techniques have the potential to play an
important role in collaborative learning activities,
particularly at scale when a large number of learn-
ers are participating (i.e., in MOOCs or within
large on-campus courses with enrollments exceed-
ing a thousand students). In this paper, the do-
main of multi-perspective elaboration is used to
illustrate that while Natural Language Processing
(NLP) techniques are able to aid in the evaluation
and implementation of key tool learning design
objectives, that principled and critical analysis of
learner impact is required in order to select appro-
priate techniques.

2 PerspectivesX Functionality

The PerspectivesX learner interface is shown in
Figure 1. Each perspective is displayed as a grid
element. Learners are able to submit new items
and specify whether the item is shared with other
learners, submitted as an anonymous submission
or not shared. Learners are also able to view a
full list of submissions for a perspective from all
other learners and are able to curate items for in-
clusion in their own grid (i.e., perspective). On
each perspective grid, the items that a learner has
submitted are clearly distinguished from their list
of curated items. PerspectivesX encourages ac-
tive participation, idea sharing and learner knowl-
edge growth. In particular curation, should lead to
learner knowledge diversification.

The PerspectivesX tool has been implemented
using React and the Django web application
framework. PerspectivesX is open source and in-
tegrates with edX and other learning management
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Figure 1: The learner multi-perspective activity submission interface.

systems via the LTI specification (LTI, 2015).

3 Learning Design Objectives

Learning design objectives are targeted statements
about the expected student performance when par-
ticipating in a learning activity. In the case of
multi-perspective elaboration, the learning design
objectives define the pedagogical intent of learner
interaction within the PerspectivesX tool. The aim
of the PerspectivesX tool is to support the follow-
ing learning design objectives:

1. Encourage students to submit ideas across all
perspectives

2. Encourage students to curate a list of diverse
ideas within and across perspectives

3. Trigger discussion among learners in a post-
activity forum

4. Encourage students to start sharing ideas
(even if they initially submit ideas as anony-
mous or choose not to share ideas)

At scale when hundreds of learners are partic-
ipating in a learning activity, it becomes difficult
for instructors and learning designers to evaluate
whether more complex learning design objectives
are being met. NLP techniques may therefore be
required to serve as computational aids. Learning
Design Objectives 1, 3 and 4 are clearly able to be
evaluated using simple statistical clickstream anal-
ysis. The evaluation of Learning Design Objective

2, however, requires the use of NLP techniques.
In the sections that follow, NLP techniques will be
discussed and selected to assist both instructors in
evaluating learning design objectives and learners
in meeting the desired learning design objectives.

4 Learner Item Recommendation

The curation of diverse, original and innovative
items is an intrinsic requirement of learner partic-
ipation in a multi-perspective elaboration activity.
NLP techniques are required to help the learner
navigate the knowledge base consisting of ideas
submitted by other learners.

Multiple learners may submit the same ideas but
use slightly different phrases. Within the MOOC
context where a cohort may reach sizes exceeding
100,000, the submission of similar items presents
an information retrieval issue. The learner may
need to read multiple pages of similar learner
submissions. Either paraphrase detection (Socher
et al., 2011) or clustering algorithms can be used
in PerspectivesX. Similar student responses can be
grouped together, with only the centroid submis-
sion shown to learners.

While the activity is progressing, if a learner is
unable to curate a diverse list of items within and
across perspectives, one of the techniques consid-
ered was diversified item recommendation. Nu-
merous techniques and algorithms exist to find
a diversified and novelty list of items in a cor-
pus. Simply suggesting items for inclusion in the
learner’s curation list, however, would make the
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activity too easy and not require any effort from
the learner. The activity only becomes beneficial
to learners if they are able to view others submis-
sions and actively decide on the items that need to
be curated. Curation in itself is a key 21st-century
literacy that depends on critical inquiry and explo-
ration (Mihailidis and Cohen, 2013).

The use of a new algorithm that uses the out-
put of a topic modeling algorithm provides a good
solution to suggest a topic that a learner needs to
curate items on, without suggesting the exact item.
Topic modeling algorithms such as Latent Dirich-
let Allocation (Blei et al., 2003) and Non Negative
Matrix Factorization (Xu et al., 2003) are able to
find the topics within a document collection. An
item to word matrix needs to be created from stu-
dent submissions and passed to the topic modeling
algorithm. The output of the topic modeling algo-
rithm is a topic defined by the top words and top
documents that belong to the topic.

The algorithm implemented in PerspectivesX,
matches a learners submissions to topics and sug-
gests topics that the learner has not submitted or
curated items on. As only a few top words in a
topic are shown to the learner, the learner is still
required to explore the knowledge base. For a fu-
ture release, a topic labeling technique (Mei et al.,
2007) will be included as some topics can be hard
to interpret from only the top words.

5 The Instructor Dashboard

Submission count distributions are included for
each perspective to support the evaluation of
Learning Design Objective 1. The instructor dash-
board currently includes a timeline chart with a
series for each sharing option (i.e., shared with
other learners, shared anonymously or not shared).
The timeline gives the instructor an indication of
learner sharing behavior over time to support the
evaluation of Learning Design Objective 4. NLP
techniques are however required to aid in the eval-
uation of Learning Design Objective 2 (i.e., “En-
courage students to curate a list of diverse ideas
within and across perspectives”). In order to eval-
uate Learning Design Objective 2, instructors re-
quire the ability to gain a high-level overview of
student submissions.

Summarization, either abstractive (Luo et al.,
2016) or subtractive (Rush et al., 2015), was ini-
tially considered to provide a high-level overview
of learner contributions and curated items. Sum-

marization techniques were however found to be
inappropriate because usually only a top sentence
is returned. Instructors need an indication of how
learners as a group are contributing and the top-
ics that are being covered. Topic modeling was
selected as the high-level overview of topics was
found to be more conducive to the aims of instruc-
tors.

Topic modeling algorithms, by returning the
key topics in a collection of documents, provide
a high-level overview of the topics encapsulating
the items submitted by learners to a perspective.
As topic modeling algorithms return both the top
words and top documents (i.e., items) in a topic,
the instructor is given an indication of the number
of learner submissions per topic. As the top words
in a topic may be hard for the instructor to inter-
pret, the top n items are displayed where n can be
specified.

While providing a high-level overview of the
topics covered by learner submissions, the topic
modeling algorithms (both NMF and LDA) are not
able to directly return the number of students that
have contributed to a topic. This is, however, de-
termined by linking the top documents in a topic to
the author (i.e., learner) of the item. Once the top-
ics that a learner has contributed to has been deter-
mined, a distribution of the number of topics learn-
ers have contributed to, can be calculated. The
distribution of learner submissions to topics pro-
vides useful insight to the instructor on whether a
diverse range of topics is being addressed by learn-
ers for each perspective.

Topic modeling can also be applied to curated
items as well. In particular, the topics of submitted
items can be compared to the topics that are being
curated. The comparison of topics gives a good
indication of the level of originality in learner sub-
missions and how ideas have diversified after cu-
ration.

6 Instructor Provided Feedback

The high-level overview of topics, generated by a
topic modeling algorithm provides a good founda-
tion for providing personalized feedback for learn-
ers. As learner submissions can be mapped to
a topic, the instructor is able to identify com-
mon topics that learners have not been addressing.
An interface for instructors to filter learners based
upon submissions to a topic and send personalised
feedback to learners is provided. Feedback can ei-
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ther be displayed on the learner’s submission grid
or sent via email.

Instructor feedback also needs to address mis-
conceptions. Topic modeling algorithms, how-
ever, will include both the correct and incorrect
items in the same topic if they use similar words.
Providing keyword-in-context functionality will
help the instructor to inspect word usage. The
inclusion of keyword-in-context functionality has
been shown to aid in the interpretation of topic
models and allow the user to gather supporting ev-
idence (Bakharia, 2018). Instructors are able to
view and click on top words in a topic with the top
words highlighted within the text of student sub-
mitted items. Paraphrase detection and clustering
can also be used to group similar learner submit-
ted items within a topic, making it easier for in-
structors to gain an overview of the range of items
that are placed in the topic. Once misconceptions
are identified, they can be linked back to contribut-
ing or curating learners, with appropriate feedback
provided.

Instructor feedback can either direct learners to
submit additional items for a perspective or pro-
vide guidance on the types of items that must be
curated.

7 Discussion

While NLP techniques are able to support key
learning design objectives, critical analysis of ped-
agogical intent must be conducted. The exam-
ples presented in this paper have shown that con-
tent (i.e., item) recommendation distracts from the
purpose of curation (i.e., critical inquiry and ex-
ploration) and that a hybrid topic modeling and
recommendation algorithm is instead able to meet
pedagogical intent.

Both abstractive and subjective summarization
were also considered as NLP options to provide
instructors with a high-level overview of learner
submissions per perspective. Summarization algo-
rithms, however, produce a single sentence which
would not provide the instructor with an overview
of all topics being discussed and a count of learner
contributions across topics. Topic modeling algo-
rithms were selected for inclusion on the instructor
dashboard but required enhancements. The output
of topic modeling algorithms in particular, need to
link items (i.e., documents) back to their authors
(i.e., learners) to enable learner contribution and
curation distribution counts per perspective to be

calculated.
Topic modeling was also found to be useful in

helping the instructor identify student misconcep-
tions but only if the keyword-in-context function-
ality was included.

8 Conclusion

In this paper, the rationale underpinning the selec-
tion of NLP techniques for PerspectivesX, a col-
laborative multi-perspective elaboration and cura-
tion tool were discussed. NLP techniques were re-
quired to support and aid in the evaluation of a key
learning design objective (“Encourage students to
curate a list of diverse ideas within and across per-
spectives”). NLP techniques were considered for
inclusion in an instructor dashboard, to help the in-
structor provide feedback and to recommend con-
tent items for learners to curate. Paraphrase de-
tection and clustering were able to be used to help
group together similar student submissions. A hy-
brid topic modeling algorithm was found to pro-
vide a viable solution for providing a high level
overview of the topics learners were contributing
to within a perspective for instructors. Diversified
content recommendation algorithms were found to
detract from the pedagogical intent of curation by
making the selection of items too simplistic for
learners. A hybrid topic modeling and recommen-
dation algorithm was selected instead to recom-
mend topics that the learner had to curate item on
rather than the actual items to curate. Summariza-
tion algorithms were not selected as their single
sentence output did not provide instructors with
an appropriate high-level overview for analysing
student contributions.
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Abstract

In this paper we present a qualitatively en-
hanced deep convolution recurrent neural
network for computing the quality of a text
in an automatic essay scoring task. The
novelty of the work lies in the fact that
instead of considering only the word and
sentence representation of a text, we try to
augment the different complex linguistic,
cognitive and psychological features asso-
ciated within a text document along with
a hierarchical convolution recurrent neu-
ral network framework. Our preliminary
investigation shows that incorporation of
such qualitative feature vectors along with
standard word/sentence embeddings can
give us better understanding about im-
proving the overall evaluation of the input
essays.

1 Introduction

The quality of text depends upon a number of lin-
guistic factors, corresponding to different textual
properties, such as grammar, vocabulary, style,
topic relevance, clarity, comprehensibility, infor-
mativeness, lexical diversity, discourse coherence,
and cohesion (Crossley et al., 2008)(McNamara
et al., 2002). In addition, there are deep cogni-
tive and psychological features, such as types of
syntactic constructions, grammatical relations and
measures of sentence complexity, that make auto-
matic analysis of text quality a non-trivial task.

Developing tools for automatic text quality
analysis have become extremely important to
organizations that need to assess writing skills
among adults and students on a regular basis. Be-
cause of the high participation in such assess-
ments, the amount of time and effort required to
grade the large volume of textual data generated
is too high to be feasible by a human evaluator.

Manual evaluation processes by multiple evalua-
tors may also be prone to erroneous judgments
due to mutual disagreements between the eval-
uators. Therefore, developing a means through
which such essays can be automatically scored,
with minimum human interference, seem to be the
best way forward to meet the growing demands of
the education world, while keeping inter-evaluator
disagreements to a minimum. Automatic Essay
Scoring (AES) systems have thus been in the re-
search focus of multiple organizations to counter
the above issues (Landauer, 2003).

A typical AES system takes as input an essay
written on a specific topic. The system then as-
signs a numeric score to the essay reflecting its
quality, based on its content, grammar, organiza-
tion and other factors discussed above.

A plethora of research have been done to
develop AES systems on various languages
(Taghipour and Ng, 2016; Dong et al., 2017;
Alikaniotis et al., 2016; Attali and Burstein, 2004;
Chen and He, 2013; Chen et al., 2010; Cummins
et al., 2016). Most of these tools are based on re-
gression methods applied to a set of carefully de-
signed complex linguistic and cognitive features.
Knowledge of such complex features have been
shown to achieve performance that is indistin-
guishable from that of human examiners. How-
ever, since it is difficult to exhaustively enumerate
all the multiple factors that influence the quality
of texts, the challenge of automatically assigning
a satisfactory score to an essay still remains.

Recent advancement in deep learning tech-
niques have influenced researchers to apply them
for AES tasks. The deep multi-layer neural net-
works can automatically learn useful features from
data, with lower layers learning basic feature de-
tectors and upper levels learning more high-level
abstract features. Deep neural network models,
however, do not allow us to identify and extract
those properties of text that the network identi-
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fies as discriminative (Alikaniotis et al., 2016). In
particular, deep network models fail to take into
account integral linguistic and cognitive factors
present in text, which play an important role in
an essay score assigned by experts. Such models
emphasizes a simple uniform paradigm for NLP:
”language is just sequences of words”. While this
approach has rapidly found enormous popular-
ity and success, its limitations are now becoming
more apparent. Gradually researchers stressing to-
wards the importance of linguistic structure and
the fact that it reduces the search space of possible
outputs, making it easier to generate well-formed
output (Lapata, 2017). Dyer (Dyer, 2017) also ar-
gued for the importance of incorporating linguistic
structure into deep learning. He drew attention to
the inductive biases inherent in the sequential ap-
proach, arguing that RNNs have an inductive bias
towards sequential recency, while syntax-guided
hierarchical architectures have an inductive bias
towards syntactic recency. Several papers noted
the apparent inability of RNNs to capture long-
range dependencies, and obtained improvements
using recursive models instead (Chen et al., 2017).

In order to overcome the aforementioned is-
sues, in this paper we propose a qualitatively en-
hanced deep convolution recurrent neural network
architecture for automatic scoring of essays. Our
model takes into account both the word-level and
sentence-level representations, as well as linguis-
tic and psychological feature embeddings. To the
best of our knowledge, no other prior work in this
field has investigated the effectiveness of combin-
ing word and sentence embeddings with linguistic
features for AES tasks. Our preliminary investiga-
tion shows that incorporation of linguistic feature
vectors along with standard word/sentence embed-
dings do improve the overall scoring of the input
essays.

The rest of the paper is organized as follows:
Section 2 describes the recent state of art in
AES systems. Our proposed Linguistically in-
formed Convolution LSTM model architecture is
discussed in Section 3, while section 4 has fur-
ther details on generation of linguistic feature vec-
tors. In section 5, we cover the experimentation
and evaluation technique, reporting the obtained
results in section 6, and finally concluding the pa-
per in section 7.

2 Related Works

A plethora of attempts have been taken to develop
AES systems over the years. A detailed overview
of the early works on AES is reported in (Valenti
et al., 2003). An Intelligent Essay Assessor (Foltz
et al., 1999) was proposed more recently that uses
Latent Semantic Analysis to compute the seman-
tic similarity between texts. Lonsdale and Strong-
Krause (Lonsdale and Strong-Krause, 2003) used
the Link Grammar parser (Sleator and Temperley,
1995) to score texts based on average sentence-
level scores calculated from the parser’s cost vec-
tor. In Rudner and Liang’s Bayesian Essay Test
Scoring System (Rudner and Liang, 2002), stylis-
tic features in a text are classified using a Naive
Bayes classifier. Attali and Burstein’s e-Rater (At-
tali and Burstein, 2004), includes aspects of gram-
mar, vocabulary and style among other linguistic
features, whose weights are fitted by regression.
A weakly supervised bag-of-word approach was
proposed by Chen et al. (Chen et al., 2010). A
discriminative learning based approach was pro-
posed by Yannakoudakis et al. (Yannakoudakis
and Cummins, 2015) that extracts deep linguis-
tic features and employs a discriminative learning-
to-rank model that out-performs regression. Re-
cently, Farra et al. (Farra et al., 2015) utilized
variants of logistic and linear regression and de-
veloped scoring models. McNamara et al.’s hier-
archical classification approach (McNamara et al.,
2015) uses linguistic, semantic and rhetorical fea-
tures. Despite the existing body of work, at-
tempts to incorporate more diverse features to
text scoring models are ongoing. (Klebanov and
Flor, 2013) demonstrated improved performance
by adding information about levels of association
among word pairs in a given text. (Somasundaran
et al., 2014) used the interaction of lexical chains
with discourse elements for evaluating the qual-
ity of essays. Crossley et al. (Crossley et al.,
2015) identified student attributes, such as stan-
dardized test scores, and used them in conjunc-
tion with textual features to develop essay scoring
models. Readability features (Zesch et al., 2015)
and text coherence have also been proposed as a
source of information to assess the flow of infor-
mation and argumentation of an essay (Chen and
He, 2013). A detailed overview of the features
used in AES systems can be found in (Zesch et al.,
2015). Some attempts have been made to address
different aspects of essay writing, like argument
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strength and organization, independently, through
designing task-specific features for each aspect
(Persing et al., 2010; Persing and Ng, 2015). There
has been a lot of recent work in deep neural net-
work models based on continuous-space represen-
tation of the input and non-linear functions. Re-
cently, deep learning techniques have been ap-
plied to text analysis problems including AES sys-
tems (Alikaniotis et al., 2016; Dong and Zhang,
2016; Dong et al., 2017; Taghipour and Ng, 2016),
giving better results compared to statistical mod-
els with handcrafted features (Dong and Zhang,
2016). Both recurrent neural networks (Williams
and Zipser, 1989; Mikolov et al., 2010) and convo-
lution neural networks (LeCun et al., 1998; Kim,
2014) have been used to automatically score input
essays. In comparison to the work of Alikaniotis et
al. (Alikaniotis et al., 2016) and Taghipour and Ng
(Taghipour and Ng, 2016) that uses single-layer
LSTM (Hochreiter and Schmidhuber, 1997) over
the word embeddings for essay scoring, and Dong
and Zhang (Dong and Zhang, 2016) used a two-
level hierarchical CNN structure to model sen-
tences and documents separately. More recently,
(Dong et al., 2017) et al. proposed a hierarchical
attention based CNN-LSTM model for automatic
essay scoring.

Although the deep learning based approaches
are reported to be performing better than the previ-
ous approaches, the performance may yet be bet-
tered by the use of the complex linguistic and
cognitive features that are important in modeling
such texts. Our proposed system, takes into ac-
count both word and sentence level embeddings,
as well as deep linguistic features available within
the given text document and together learns the
model. The detail architecture and working of the
model is depicted in the following sections.

3 The Qualitatively Enhanced
Convolution Recurrent Neural
Network

As mentioned earlier, neural network based mod-
els are capable of modeling complex patterns in
data and do not depend on manual engineering of
features, but they do not consider the latent lin-
guistic characteristics of a text. In this section, we
will present a deep neural network based model
that takes into account different complex linguis-
tic, cognitive and psychological features associ-
ated within a text document along with a hierar-

chical convolution network connected with a bidi-
rectional long-short term memory (LSTM) model
(Hochreiter and Schmidhuber, 1997) (Schmidhu-
ber et al., 2006). We will begin the model archi-
tecture by first explaining about generating the lin-
guistic and psychological feature embeddings that
will in turn be used by the neural network archi-
tecture.

3.1 Generating Linguistic and Psychological
Feature Embeddings

We have used different linguistic and psycholog-
ical features available within a text to augment
them with the deep neural architecture.

The psychological features used in this work
are mostly derived from Linguistic Information
and Word Count (LIWC) tool (Tausczik and Pen-
nebaker, 2010). The rapid development of AI, In-
ternet technologies, social network, and elegant
new statistical strategies have helped usher in a
new age of the psychological study of language.
By drawing on massive amounts of text, it is in-
deed possible to link everyday language use with
behavioral and self-reported measures of personal-
ity, social behavior, and cognitive styles (Tausczik
and Pennebaker, 2010). LIWC is a text analysis
tool that counts words in psychologically mean-
ingful categories. Empirical results using LIWC
already demonstrated its ability to detect meaning
in a wide variety of experimental settings, such as
to show attentional focus, emotionality, social re-
lationships, thinking styles, and individual differ-
ences.

The linguistic features we use to make our
model linguistically informed are: Part of
Speech(POS) (Manning et al., 2014), Universal
Dependency relations (De Marneffe et al., 2006)
, Structural Well-formedness, Lexical Diversity,
Sentence Cohesion, Causality and Informative-
ness of the text.

The lexical diversity of a given text is defined
as the ratio of different unique word stems (types)
to the total number of words (tokens). According
to Jarvis’s model (Jarvis, 2002), lexical diversity
includes six properties that are measured by the
indices discussed in Table 1.

We device a novel algorithm to determine cohe-
sion between sentences in a document. The algo-
rithm follows the following steps: a) identify the
GloVe word embeddings(Pennington et al., 2014)
of each constituent word of two sentences S1, /S2.
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Figure 1: Overview of the qualitatively enhanced convolution recurrent neural network for AES.

Table 1: Lexical Diversity Indices
Property Measure
Variability Measure of Textual Lexical Diversity (MTLD)
Volume Total number of words in the text
Evenness Standard deviation of tokens per type
Rarity Mean BNC rank
Dispersion Mean distance between tokens of type
Disparity Mean number of words per sense

b) create sentence embeddings by computing a
tensor product between the individual word em-
beddings. For example, given two sentences S1
and S2 S1 = w1, w2..., wi and S2 = w′1, w

′
2, ...w

′
j ,

where w1, w2, ...wk and w′1, w
′
2...w

′
k are the word

embeddings of S1 and S2. Sentence embedding
SE(S1) is (w1

⊗
w2)

⊗
w3)...

⊗
wk). Where⊗

refers to the tensor product of each adjacent
word embedding pairs in S1. Similarly for sen-
tence S2. c) define A and B as the number of
word embeddings in S1 andS2 respectively. d)
the cohesion score between S1 and S2 can be
computed as coh(S1, S2) = (S′+Sim(p1,p2))

N1+1 The
expression N1 represents A ∪ B. S′ and S′′

are computed as: S′ =
∑
∀wi∈C1

Swi Where,
Swi = max∀w′

j∈C2
(Sim(wi, w

′
j)) p1 and p2 are

sentence embeddings of S1 and S2 respectively,
and Sim(x, y) is the cosine similarity between
two vector Vi and Vj .

To indicate presence of causality, we use the
semantic features as identified by Girju (Girju,
2003) - nine noun hierarchies (H(1) to H(9)) in
WordNet, namely, entity, psychological feature,
abstraction, state, event, act, group, possession,
and phenomenon. A single feature Primary Causal

Class (PCC) is defined for a word wi. If wi ∈
Hi where Hi is as defined, PCC = Hi, else
PCC = null. Another feature, Secondary Causal
Class(SCC) is also defined. This takes value H(i)
if any WordNet synonym of the word belongs to
H(i), and is Null otherwise.

The informativeness of a text refers to how
much information is present in a text with re-
spect to a given collection. We have introduced
an information theoretic approach towards deter-
mining such informativeness in text. We consider
each document d, represented by a bag-of-word
as, < (q1, w1), (q2, w2), ..., (qn, wn) > where qi
is the ith unique term in document d and wi is the
corresponding weight computed with respect to a
collection of documents C. The Informativeness
score NS(d,C) of each new text document d, is
computed with respect to the collection C, indi-
cating the informativeness of d amongst C. In the
described context, we declare a document di as in-
formative when the corresponding NS(di, C) is
higher than a threshold θ. We have defined the in-
formativeness of d in terms of its information con-
tent (IC). Information content is a heuristic mea-
sure for term specificity and is a function of term
use. Our idea is to therefore use it as an estima-
tor of informativeness an informative document
is more likely to use unique vocabulary than other
documents. We compute the information content
of a document in terms of its Entropy. We de-
fine the entropy of a text T , with N words out
of which n are unique, as:ET (p1, p2, ..., pn) =
1
N

∑n
i=1(pi∗(log10N− log10 pi). pi(i = 1...n) is
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the probabilistic measure of the specificity of the
ith word in the T . The technique to compute term
specificity is discussed below. In order to avoid
the problem of zero probabilities, we have used
linear interpolation smoothing, where document
weights are smoothed against the set of the docu-
ments in the corpus. Then the probabilities are de-
fined as:θdn(q) = λ∗θd(q)+(1−λ)∗θd1 ...θdn(q).
Where, λ ∈ [0, 1] is the smoothing parameter and
is the probability of term q in the corpus C. In our
experiments, λ was set to 0.9.

As discussed earlier, the cornerstone of our
informativeness prediction engine is to compute
the rarity of a document, which can, in turn, be
computed by determining the rarity of individual
terms. Accordingly, we have applied the principle
of Inverse Document Frequency (IDF) (Karkali
et al., 2014). Aggregating all the IDF of the terms
of a given document may led us to a better estima-
tor of the documents Informativeness. IDF is orig-
inally defined as,IDF (q, C) = log( Ndfq ) where, q
is the term in hand, dfq is the document frequency
of the term q across the corpus C and N is the
total number of documents in the collection. On
the other hand, in probabilistic terms IDF can be
computed as:IDFp(q, c) = log(

N−dfq
dfq

).

3.2 Model architecture

The proposed linguistically informed convolution
recurrent neural network architecture that we have
used in this paper is illustrated in Figure 1. In the
next few subsections, we describe each layer in de-
tail.

Generating Embeddings: Pre-trained GloVe
word vector representations of dimension 300
have been used for this work (Pennington et al.,
2014) for the word embeddings. Similarly we
have constructed a pre-trained sentence vectors.
The Sentence vectors from each input essay is ap-
pended with the vector formed from the linguistic
features identified for that particular sentence.

Convolution Layer: Since convolution net-
works works best in determining local features
from texts, it is important to feed each of the gen-
erated word embeddings to a convolution layer.
Accordingly, the convolution layer applies a lin-
ear transformation to all K windows in the given
sequence of vectors. We perform a zero padding to
ensure the same dimensionality between the input
and output vectors. Therefore, given a word rep-
resentations X1, X2, ...Xl, the convolution layer

first concatenates these vectors to form a vec-
tor x̄ of length l.dLT and then uses Conv(x̄) =
W.̄(x) + b to calculate the output vector of length
dc. Where, W and b are the weights that the net-
work learns.

Long short-term memory In AES systems,
the surrounding context is of paramount informa-
tion. While typical LSTMs allow the preceding
elements to be considered as context for an ele-
ment under scrutiny, we prefer to use bidirectional
LSTMs (Bi-LSTM) networks (Graves et al., 2012)
that are connected so that both future and past se-
quence context (i.e. both preceding and succeed-
ing elements) can be examined. Corresponding to
each input text, we determine the word embedding
representation (We) of each word of the text and
the different linguistic feature embeddings (Wl).
The input to the Bi-LSTM unit is an embedding
vector E which is the composition of We and Wl,
i.e.
−→
E =

−→
We

⊗−→
Wl

Activation layer: After obtaining the inter-
mediate hidden layers from the Bi-LSTM layer
h1, h2, ..., hT , we use an attention pooling layer
over the sentence representations. The attention
pooling helps to acquire the weights of sentence
contribution to final quality of the text. The at-
tention pooling over sentences is represented as:
ai = tanh(Wa.hi + ba), αi = ewα.ai∑

ewα.ai , O =∑
(αi.hi). Where Wa, wα are weight matrix and

vector respectively, ba is the bias vector, ai is at-
tention vector for i-th sentence, and αi is the at-
tention weight of i-th sentence. O is the final text
representation, which is the weighted sum of all
the sentence vectors.

The Sigmoid Activation Function: The linear
layer performs a linear transformation of the input
vector that maps it to a continuous scalar value.
We apply a sigmoid function to limit the possi-
ble scores to the range [0, 1]. The mapping of the
linear layer after applying the sigmoid activation
function is given by s(x) = sigmoid(w.x + b).
Where, x is the input vector, w is the weight vec-
tor, and b is bias value. We normalize all gold-
standard scores to [0, 1] and use them to train the
network. However, during testing, we rescale the
output of the network to the original score range
and use the rescaled scores to evaluate the system.
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Table 2: Statistics of the Kaggle dataset;
Range:score range and Med: median scores.

Set #Essays Genere Avg. Len. Range Med.
1 1783 ARG 350 2-12 8
2 1800 ARG 350 1-6 3
3 1726 RES 150 0-3 1
4 1772 RES 150 0-3 1
5 1805 RES 150 0-4 2
6 1800 RES 150 0-4 2
7 1569 NAR 250 0-30 16
8 723 NAR 650 0-60 36

Table 3: Hyper-parameters
Layer Parameter Name Parameter Value
Lookup Word embedding dim 50
CNN Window size 5

No. of filters 100
Bi-LSTM Hidden units 100
Dropout Dropout rate 1.0

Epochs 200
Batch size 10
Initial learning rate η 0.001
Momentum 0.9

4 Experiments

4.1 Dataset

An Automated Student Assessment Prize (ASAP)
contest was hosted at Kaggle in 2012. It was
supported by the Hewlett Foundation, aiming to
explore the capabilities of automated text scor-
ing systems (Shermis and Burstein, 2013). The
dataset released consists of around twenty thou-
sand texts (60% of which are marked), pro-
duced by middle-school English-speaking stu-
dents, which we use as part of our experiments to
develop our models. In order to train and test the
proposed models, we have used the same dataset
as published at the Kaggle challenge. Table 2 re-
ports some of the basic statistics about the dataset.
Due to the unavailability of the testing set, we
have performed a 7-fold cross validation to eval-
uate our proposed models. In each fold, 80% of
the data is used for training, 10% as the develop-
ment set, and 10% as the test set. We train the
model for a fixed number of epochs (around 8000)
and then choose the best model based on the de-
velopment set. We have used the NLTK toolkit to
perform various NLP tasks over the given dataset.
For ease of experimentation, we have further nor-
malized the expert scores (gold-standard scores) to
the range of [0, 1]. During testing, we rescale the
system-generated normalized scores to the origi-
nal range of scores and measure the performance.

4.2 Training and parameter estimation

For a given learning function our goal is to min-
imize the mean squared error (MSE) rate. Ac-
cordingly, we have used the RMSProp optimiza-
tion algorithm (Dauphin et al., 2015) to mini-
mize the mean squared error (MSE) loss func-
tion over the training data. This is represented
as: MSE(s∗, s) = 1

N ∗
∑N

i=1(si − s∗i )2. There-
fore, given N training samples and their corre-
sponding expert generated scores p∗i normalized
within a range of [0.1], the model computes the
predicted scores pi for all training essays and then
updates the network parameters such that the mean
squared error is minimized.

The 10% data kept for development is used
to identify the different hyper-parameters for the
models. There are several hyper-parameters that
need to be set. We use the RMSProp optimizer
with decay rate (ρ) set to 0.9 to train the net-
work and we set the base learning rate to 0.001.
The mini-batch size is 64 in our experiments and
we train the network for 400 epochs. We have
also make use of dropout regularization (Srivas-
tava et al., 2014) to avoid over-fitting. We also clip
the gradient if the norm of the gradient is larger
than a threshold. We do not use any early stop-
ping methods, instead, we train the neural network
model for a fixed number of epochs and monitor
the performance of the model on the development
set after each epoch. Once training is finished, we
select the model with the best QWK score on the
development set. During training, the norm of the
gradient is clipped to a maximum value of 10. We
set the word embedding dimension (dLT ) to 50
and the output dimension of the recurrent layer
(dr) to 300. For the convolution layer, the win-
dow size (l) is set to 5 and the output dimension
of this layer (dc) is set to 50. The details of the
hyper-parameters are summarized in Table 3.

4.3 Evaluation

In past literature, a number of techniques were
used to measure the quality of AES systems. This
includes Pearson’s correlation r, Spearman’s rank-
ing correlation ρ, Kendall’s Tau and kappa, and
quadratic weighted kappa (QWK). (Alikaniotis
et al., 2016) proposed to evaluate their model in
terms of the first three parameters, whereas works
of (Taghipour and Ng, 2016; Dong and Zhang,
2016; Dong et al., 2017) uses QWK as the evalua-
tion criteria. This is primarily due to the fact that
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Table 4: Comparing the performance of the present system with that of the state-of-the-art

Models/Prompts 1 2 3 4 5 6 7 8
AVG
QWK

EASE (BLRR) 0.761 0.606 0.621 0.742 0.784 0.775 0.730 0.617 0.705
CNN 0.797 0.634 0.646 0.767 0.746 0.757 0.746 0.687 0.722
LSTM 0.775 0.687 0.683 0.795 0.818 0.813 0.805 0.594 0.746
LSTM-CNN 0.821 0.688 0.694 0.805 0.807 0.819 0.808 0.644 0.761
LSTM-MoT 0.818 0.688 0.679 0.805 0.808 0.817 0.797 0.527 0.742
CNN-CNN-MoT 0.805 0.613 0.662 0.778 0.800 0.809 0.758 0.644 0.734
LSTM-CNN-att 0.822 0.682 0.672 0.814 0.803 0.811 0.801 0.705 0.764
Qe-C-LSTM 0.799 0.631 0.712 0.711 0.801 0.831 0.815 0.695 0.786

Table 5: Comparing performance of the proposed model taking all the prompts together with that of the
existing models

Models Pearson’s r Spearman’s ρ RMSE Cohen’s κ
doc2vec 0.63 0.62 4.43 0.85
SVM 0.77 0.78 8.85 0.75
LSTM 0.60 0.59 6.80 0.54
Bi-LSTM 0.5 0.70 7.32 0.36
word2vec + Bi-LSTM 0.86 0.75 4.34 0.85
SSWE+ Bi-LSTM 0.92 0.80 3.21 0.95
SSWE+ Two-layer Bi-LSTM 0.96 0.91 2.40 0.96
Qe-C-LSTM 0.97 0.94 2.1 0.97

the Automated Student Assessment Prize (ASAP)
competition official criteria takes QWK as evalua-
tion metric.

The QWK statistics or its other variants are
widely used to measure inter-rater agreement of
the annotators or experts. In our case inter-raters
refer to the human rater and the system predicted
ratings. QWK is modified from kappa which takes
quadratic weights. The quadratic weight matrix in
QWK is defined as: Wi,j = (i−j)2

(R−1)2 , where i and
j are the reference rating (assigned by a human
rater) and the system rating (assigned by an AES
system), respectively, and R is the number of pos-
sible ratings.

An observed agreement score O is calculated
such that Oi,j refers to the number of essays that
receive a rating i by the human rater and a rat-
ing j by the AES system. An expected score E is
calculated as the outer product of the two ratings.
Finally, given the three matrices W,O, and E, the
QWK value is calculated as:κ = 1−

∑
(Wi,j∗Oi,j)∑
(Wi,j∗Ei,j)

5 Results

We evaluate the performance of our proposed
model by comparing it with some of the well

known state-of-the-art models. These models are:
a) the publicly available ’Enhanced AI Scoring
Engine’ (EASE1). EASE is based on hand-crafted
linguistic features and regression methods includ-
ing support vector regression (SVR) and Bayesian
linear ridge regression (BLRR). In the present pa-
per we have used only the BLRR model as our
baseline systems due to its improved performance
in comparison to the SVR model. b) The LSTM-
MoT models proposed by (Taghipour and Ng,
2016). c) the Attention-based Recurrent Convo-
lution Neural Network model proposed by (Dong
et al., 2017). d) The hierarchical CNN (CNN-
CNN-MoT)(Dong and Zhang, 2016) and e) the hi-
erarchical CNN layer with LSTM along with an
additional attention layer (CNN-LSTM-att) (Dong
and Zhang, 2016) (Dong et al., 2017) as our base-
lines.

The LSTM-MoT uses one layer of LSTM over
the word embeddings, and takes the average pool-
ing over all time-step states as the final text repre-
sentation, which is called Mean-over-Time (MoT)
pooling (Taghipour and Ng, 2016). Next, a lin-
ear layer with sigmoid function follows the MoT

1https://github.com/edx/ease
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layer to predict the score of an essay script. On
the other hand, CNN-CNN-MoT uses two layers
of CNN, in which one layer operates over each
sentence to obtain representation for each sentence
and the other CNN is stacked above, followed by
mean-over-time pooling to get the final text rep-
resentation. Similarly, the CNN-LSTM-att model
uses hierarchical architecture with the CNN layer
followed by an LSTM layer attached with an at-
tention layer instead of the MoT layer(Dong et al.,
2017).

Table 4 reports the comparison of the perfor-
mance of our system and the existing baselines by
taking the eight prompts from the Kaggle ASAP
dataset individually. In general we can observe
that our proposed performance of the proposed
Qe-CLSTM model is comparable to that of the ex-
isting baseline systems. However, in certain cases
it outperforms all the base-line models. For ex-
ample, in prompt 3, 6 and 7 we have achieved an
QWK of 0.712, 0.831 and 0.815 respectively as
compared to the best reported average QWK score
of 0.694, 0.827 and .0.811 respectively for the 10
fold run of CNN-LSTM and LSTM only.

It is worth mentioning here that all these mod-
els are compared with respect to the QWK score.
On the other hand, we have also used evalua-
tion matrices like, Pearson’s correlation r, Spear-
man’s ranking correlation ρ, RMSE scores in or-
der to compare our model with systems proposed
by (Alikaniotis et al., 2016).

Table 5 shows the comparison of the perfor-
mance of our system and the existing baselines by
taking all the prompts together. We have compared
the systems with respect to the different models as
discussed in 5. We found that that in terms of all
these parameters our system performs better than
the existing, LSTM, Bi-LSTM and EASE mod-
els. We have achieved a Pearson’s and Spearman’s
correlation of 0.94 and 0.97 respectively as com-
pared to that of 0.91 and 0.96 in (Alikaniotis et al.,
2016). We also achieved and RMSE score of 2.09.
We also compute a pair wise Cohen’s κ value of
0.97.

Apart from scoring each of the individual es-
says, we also tried to analyze some of the typical
cases where our model fails to predict the desired
output. Figure 2 shows the general distribution of
difference in average expert score and the system
predicted score. We observe a minimum differ-
ence of 0 and maximum difference of 20 with me-

Figure 2: Distribution of difference in predicted
scores with respect to the actual score

dian of 1 and average of 1.08. In 82% cases the
difference lies between the range of [0,1].

6 Conclusion

In this paper, we have proposed a novel technique
that uses deep neural network model to perform
Automatic Essay Assessment task. The tradi-
tional way of applying deep neural nets like CNN,
LSTM or their other forms fails to identify the
interconnection between the different factors in-
volved in assessing the quality of a text. To ad-
dress this issue, our method not only rely upon
the pre-trained word or sentence representations
of text, but also takes into account qualitatively
enhanced features such as, lexical diversity, infor-
mativeness, cohesion, well-formedness etc., that
have proved to be important in determining text
quality. Further, we have explored a variety of
neural network model architectures for automated
essay scoring and have achieved significant im-
provements over baseline in certain cases. We
would like to conclude that it is indeed possible
to enhance the performance of such AES system
by intelligently incorporating the supporting lin-
guistic features into the model. One of the limi-
tations of the present approach is that all the lin-
guistic and qualitative features used in this work
are computed off-line and then fed into the deep
learning architecture. However, in principle deep
learning models are supposed to learn these fea-
tures apriori and perform accordingly. Therefore,
one possible future directions of this work is to de-
velop or modify the existing intermediate scores in
such a way that the task specific models can auto-
matically learn these features.
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Abstract

This paper describes two models that em-
ploy word frequency embeddings to deal
with the problem of readability assessment
in multiple languages. The task is to de-
termine the difficulty level of a given doc-
ument, i.e., how hard it is for a reader
to fully comprehend the text. The pro-
posed models show how frequency infor-
mation can be integrated to improve the
readability assessment. The experimental
results testing on both English and Chi-
nese datasets show that the proposed mod-
els improve the results notably when com-
paring to those using only traditional word
embeddings.

1 Introduction

Readability assessment is the task of determin-
ing how difficult a given document is to under-
stand. It is useful in many applications such as
selecting learning material for children of differ-
ent grade levels, for language learners, for com-
prehension tests, skills training, text summarisa-
tion, simplification systems and so on. Readability
assessment has a long research history, and many
methods have been developed in the last couple
of decades (Dale and Chall, 1948; Mc Laughlin,
1969; Kincaid et al., 1975; Chall and Dale, 1995;
Si and Callan, 2001; Heilman et al., 2007; Jiang
et al., 2015; Wang and Andersen, 2016). These ap-
proaches, however, rely on hand-crafted features
that depend heavily on the languages and require
adjustment when applying to a new language. Our
aim is to develop a universal method that can be
used in a multilingual setting, which involve little
effort when extending to other languages.

Recent machine learning techniques, such as
convolutional neural networks (CNN) (Collobert

et al., 2011) typically do not have to be supplied
with hand-crafted features. These models often
use pre-trained word embeddings for NLP tasks
and have been proven to achieve good results on
multiple benchmarks (Mikolov et al., 2013b; Pen-
nington et al., 2014; Mikolov et al., 2013a). The
pre-trained word embeddings are generally de-
signed in a way that they can capture word mean-
ing and topics. Though they are useful since top-
ics are good indications of whether a document is
difficult to comprehend, word embeddings do not
directly reflect the frequency levels of words.

In our scenario, it is desirable that the sys-
tem can take into account the frequency level of
words rather purely focusing on their meanings.
It is based on the assumption that more frequent
words are supposed to be easier to understand. We
therefore propose two models that jointly repre-
sent words based on their meanings with tradi-
tional word embeddings and their frequency levels
with the so-called frequency embeddings. These
two embedding layers are employed in a CNN ar-
chitecture to determine the readability level of a
given document. Since this model does not depend
on hand-crafted features, it can be easily adapted
to multiple languages.

2 Related Work

Readability assessment methods can be classi-
fied into two categories, the traditional approach
and data driven approach. The traditional ap-
proach include (Dale and Chall, 1948), FOG In-
dex (Gunning, 1952), SMOG (Mc Laughlin, 1969)
and Flesch-Kincaid Index (Kincaid et al., 1975),
(Chall and Dale, 1995). These early studies evalu-
ated text difficulty based on shallow features such
as word difficulty levels, the average sentence
length, the average number of syllables. Though
considered quick and easy to compute, these tra-
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ditional metrics/formulae are designed with some
specific language in mind, and thus they may not
work well when applying to other languages.

The data driven approach treats readability as-
sessment as a machine learning problem, that is to
automatically learn the mapping from documents
to difficulty levels based on training examples (Si
and Callan, 2001; Heilman et al., 2007; Jiang
et al., 2015; Wang and Andersen, 2016). In these
studies, documents are represented by different
types of features such as bag of words, lexical and
grammatical features extracted from parse trees
(Heilman et al., 2007), grammatical templates
(Wang and Andersen, 2016), word frequency
smoothed by correlation information (Jiang et al.,
2015). Most of these studies however require
hand-crafted, language-dependent features, and
not readily applicable to multilingual setting.

3 Our method

While traditional methods are simple to imple-
ment, they focus mostly on Latin languages such
as English. These methods are not easily trans-
ferred to other languages especially Asian. Moti-
vated by the recent success of Convolutional Neu-
ral Network (CNN) models in many text classifi-
cation tasks, we employ the models for learning
and classifying a given text to its difficulty level.

Word embeddings are used transferrably in
many general NLP tasks. They take into account
the context in which a word appears to learn the
representation of words. Although they can reflect
word meaning and topics, they do not take directly
frequency information of a word into account. In
the readability assessment scenario, frequency in-
formation is important in deciding whether a doc-
ument is hard to read or not (Jiang et al., 2015).

From this observation, we propose a model that
takes into account also word frequency informa-
tion besides word embeddings. Our hypothesis
is that the model can learn better from knowing
words’ difficulty levels besides their meanings.
Word embeddings help associating the topics of
documents, which are important to assess the read-
ability levels (e.g., there are topics that are more
difficult to understand than others from their na-
tures). In addition, frequency information plays
the role of pointing out which words are more dif-
ficult to understand1.

1We have not taken into account rare words that are easy
to understand, for examples names, locations

The three common metrics representing word
frequency information are raw counts (number of
times a word appears in the whole corpus), rank-
ing (i.e., rank 0 for the most common word) and
frequency classes. We take these metrics directly
as an embedding vector represents words in the
corpus. Among these metrics, the word frequency
class information is the most generalised one.

In particular, the frequency class FC(w) of a
word w describes the frequency freq(w) of the
word in relation to the frequency freqmax of the
most frequent word, i.e., the word with ranking 0
(Sabine Fiedler and Quasthoff, 2012):

FC(w) = log2
freqmax

freqw
(1)

Our architecture is slightly different from the
CNN architecture presented in (Kim, 2014). In
particular, we propose two models (Figure 1)
WFE-COM (left) and WFE-SEP (right).
WFE-COM Model. In this model, the filters are
applied to the concatenated embeddings of word
and frequency. The network learns these filters’
weights that activate features extracted from the
these embeddings.
Let xwi ∈ Rkw and xfi ∈ Rkf , where xi is a word
in a sentence of length n, kw is the word embed-
ding dimension and kf is the frequency embed-
ding dimension. xwi represents the word embed-
dings of word wi while xfi represents its frequency
embeddings.
Note that in the frequency embeddings, instead of
randomly assigning values to unknown words as
in word embeddings, we set them to the highest
frequency class adopted from the training corpus.
The sentence with length n is then represented by
a matrix:

[xw1 ⊕ xf1 , ..., x
w
i ⊕ xfi , ..., x

w
n ⊕ xfn] (2)

and xEi = xwi ⊕xfi represents the final embedding
of word xi, which is a concatenation of word and
frequency embeddings. A feature map is gener-
ated using filters of window size h to the sentence
matrix in Eq. 2, where a feature ci is obtained us-
ing a non-linear activation function f :

ci = f(w · xEi:i+h−1 + b) (3)

where xi:i+h−1 represents the matrix which com-
poses of vectors from xi to xi+h−1. This convo-
lution operation in Eq. 4 is applied on the win-
dow size h from xi to xi+h−1, and the weights
w ∈ Rhke where ke = kw + kf and b is the bias.
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Figure 1: Convolutional Neural Network architecture with word frequency embedding

We then apply max-over-time pooling opera-
tions in the feature map.

WFE-SEP Model. In this model, word em-
beddings and frequency embeddings are learned
separately before being fetched into a fully con-
nected layer. Convolutional layers and max pool-
ings are applied to the word embeddings as these
layers help finding and representing features of
interests, while these layers are omitted for fre-
quency embeddings.

The feature map extracted from applying the fil-
ters on word embeddings is then computed as:

ci = f(w · xwi:i+h−1 + b) (4)

Finally this feature map is concatenated with the
frequency embeddings, and then use dropout for
regularisation similar to the architecture described
in (Kim, 2014) (see section 4.2).

4 Evaluation

4.1 Dataset
We evaluate our methods for English and Chinese
readability assessment on two datasets collected
by (Jiang et al., 2015). The first dataset, ENCT,
was built with four reading levels from English
New Concept textbook. The second dataset, CPT,
was collected from Chinese primary textbook and
contains six difficulty levels. In total, there are 279
documents with 4671 sentences in ENCT and 637
documents with 16145 sentences in CPT. In both
datasets, the difficulty levels were assigned by hu-
man experts. We split randomly the dataset 70%
for training, 27% for testing and 3% for a devel-
opment set.

4.2 Experiment setup

NDC-Level. The New Dale-Chall Readability
level (Chall and Dale, 1995) is a traditional read-
ability test. PDW is the percentage of difficult
words in a document, calculated as the number
of difficult words divided by the total number of
words in the document. Raw score Φ is calculated

as: Φ = 0.1579 × PDW + 0.0496 × nw

ns
where

nw is the number of words and ns is the number

of sentences in the whole corpus, hence
nw

ns
rep-

resents the average sentence length in the corpus.
Finally, if PDW is above 5%, then add 3.6365 to
the raw score Φ to get the adjusted score.

We implemented the New Dale-Chall Readabil-
ity level (NDC) and converted the raw score Φ to
corresponding readability levels as follows:

Φ Dale-Chall Notes English Chinese
≤4.9 Grade 4 and Below level 1 level 1

5.0 to 5.9 Grades 5 - 6 level 1 level 2
6.0 to 6.9 Grades 7 - 8 level 2 level 3
7.0 to 7.9 Grades 9 - 10 level 3 level 4
8.0 to 8.9 Grades 11 - 12 level 3 level 5
9.0 to 9.9 College level 4 level 6
≥10 College Graduate level 4 level 6

Word embeddings (WE). For English, we used
the pre-trained word2vec by (Mikolov et al.,
2013b) on Google News. For Chinese, we col-
lected a dataset consisting of news (≈ 320K doc-
uments) and Wikipedia, tokenised and trained the
word embeddings on it.
Frequency embeddings. We used the pre-
trained frequency lists for English obtained from
(Sabine Fiedler and Quasthoff, 2012), and created
our own Chinese frequency lists using the same
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Model English Chinese
NDC-Level 55 17

Random-WE 64 32
Static-WE 80 41

Non-Static-WE 74 37
Multichannel-WE 76 37

Static-FE-class 75 39
Static-WFE-COM 77 40

Static-WFE-class-COM 83 42
Static-WFE-class-SEP 93 49

Table 1: Accuracy of readability assessment with
different settings

dataset used for Chinese word embeddings.
CNN architecture. We followed the setting as
suggested in (Kim, 2014). The filter windows’
sizes are 3, 4, 5 with 100 feature maps each. We
used rectified linear units as activation functions
for the convolutional layers, dropout rate of 0.5
and mini-batch size of 50.
Static and non-static WE. These two settings fol-
lowed the method in (Kim, 2014), where all words
are kept either static (in static setting) or updated
(in non-static setting) including the unknown ones
while others parameters are learned.
Random-WE. All words are randomly initialised
and modified while training.
Multichannel-WE. Each static and non-static WE
is treated as one channel while gradients are back-
propagated only through one of the channels.
Static-FE. Only frequency embeddings are used
in this setting (without word embeddings).
Word Frequency Embeddings (WFE). We con-
catenate the pre-trained word embeddings and the
frequency embeddings as explained in section 3.
In the WFE setting, we use the three frequency
metrics: raw counts, ranking and frequency class,
while in the WFE-class setting, we use only the
frequency class metric. In both settings, the fre-
quency embeddings are kept static during training.

4.3 Result and discussion
The result shows that the traditional method NDC
works much better for English dataset (50%) than
for Chinese (17%), which is probably explained
by the fact that the formulae was originally de-
signed for English language. Their results are
still much lower than the CNN methods using pre-
trained frequency and word embeddings.

The random-WE method works better for En-
glish and much better for Chinese in compared

to the NDC, but lower than when using pre-
trained frequency and word embeddings. It shows
that pre-trained embeddings play an important
role in determining the difficulty levels. Among
three WE methods (using pre-trained word em-
beddings), the static model achieves the best re-
sults. Non-static model is supposed to fine-tune
to the specific given task. However, in our case, it
does not work as well as when keeping the embed-
ding vectors static for both English and Chinese.

When using all frequency levels, word ranks
and number of occurrences together for frequency
embedding, the results are better than other mod-
els. This model is however worse than when using
only frequency class information. Since frequency
class information is more representative than word
counts and word ranks, it perhaps helps the model
learn to classify the difficulty levels better in more
general cases.

The result suggests that model WFE-SEP works
better than WFE-COM. It means that it is not nec-
essary to apply filters and max poolings on the fre-
quency embeddings and the frequency and word
embeddings can be learned separated and finally
concatenate before going to the fully connected
layer. Finally, it shows that the frequency embed-
dings help improving the results in both English
(to 93% ) and Chinese (to 49%) when we con-
catenate the frequency embeddings and word em-
beddings, using the frequency class information.
It proves our hypothesis that frequency informa-
tion is useful in judging the difficulty level of a
document. This method is extensible and can eas-
ily be applied to different languages without prior
knowledge about these languages.

5 Conclusion

In this paper, we have proposed two models that
employ both word and frequency embeddings for
the readability assessment task. The experimen-
tal results show that (1) using frequency class
metric can represent frequency information bet-
ter than using other common metrics such as raw
counts or ranking; (2) the model that integrates
the frequency embeddings directly to the fully-
connected layer performs better than applying fil-
ters on the concatenated word frequency embed-
dings and (3) both proposed models outperform
the baseline (the traditional NDC method) and the
CNN models without using frequency information
in both English and Chinese datasets.
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Abstract

MULLE is a tool for language learning
that focuses on teaching Latin as a for-
eign language. It is aimed for easy in-
tegration into the traditional classroom set-
ting and syllabus, which makes it distinct
from other language learning tools that
provide standalone learning experience. It
uses grammar-based lessons and embraces
methods of gamification to improve the
learner motivation. The main type of exer-
cise provided by our application is to prac-
tice translation, but it is also possible to
shift the focus to vocabulary or morpho-
logy training.

1 Introduction

Computer-assisted language learning is a growing
field that is also more and more in the focus of
the general public thanks to popular tools such as
Duolingo1 or Rosetta Stone.2 In combination with
the rise of the smartphone it has become possible
to learn languages almost any time and anywhere
in an entertaining way.

Text input on mobile devices equiped with
touch screens as the primary input device can
be difficult, but is relevant to language learning
tasks. This general problem led to the develop-
ment of several alternative input methods (Ward
et al., 2002; Kumar et al., 2012; Felzer et al.,
2014; Shibata et al., 2016) including Ljunglöf’s
method of grammar-backed word-based text edit-
ing (2011).

We present the MUSTE3 Language Learning
Environment (MULLE)4, an application for lan-

1https://www.duolingo.com/
2http://www.rosettastone.eu/
3http://www.cse.chalmers.se/˜peb/

muste.html
4https://github.com/MUSTE-Project/MULLE

guage learning that combines several techniques:
tree-based sentence modification, controlled nat-
ural language grammars for the exercise creation
as well as concepts of gamification.

The goal of our system is to provide a tool that
enriches the traditional language learning setting
in an enjoyable way and helps to avoid problems
with learner motivation that can be encountered in
language classes.

2 Previous and related work

MULLE is based on an underlying theory of
word-based grammatical text editing by Ljunglöf
(2011).

The software used to translate between the sur-
face text and the syntax trees is the Grammatical
Framework (GF) (Ranta, 2009b, 2011). It is a
grammar formalism and parsing framework based
on type theory. On top of this formalism, a multi-
lingual library of grammars is build, the so-called
Resource Grammar Library (RGL) (Ranta, 2009a)
which covers more than 30 languages including
Latin (Lange, 2017). It provides an interface
that can be used to implement more application-
specific grammars similar to an Application Pro-
gramming Interface (API) in computer program-
ming.

An important aspect of CALL is the factor of
both long and short-term motivation for which
the concept of gamification is relevant (Deterd-
ing et al., 2011). Several approaches are pos-
sible, of which we focus on GameFlow by Sweeter
and Wyeth (2005) and MICE by Lafourcade (de-
scribed in Fort et al. (2014, section 4)). Game-
Flow translates the more general Flow approach
(Csikszentmihalyi, 1990) to computer games.

Finally, comparison to other language systems
is relevant for our work. Most language systems
share common features, especially translation ex-
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ercises seem quite similar across different sys-
tems. Still there are major differences in the way
these systems work and the use cases they are de-
veloped for. Duolingo for example heavily relies
on text input created by the user, uses a mixture of
user-generated content and machine learning tech-
niques (Horie, 2017) and is meant for open inde-
pendent online learning mostly for modern lan-
guages. MULLE on the other hand uses resources
created by experts, does not require text input cre-
ated by the user, and is intended for, but not restric-
ted to, accompanying language classes in a closed
classroom setting.

3 Creation of interactive exercises from a
Latin textbook

The idea of grammar-based text modification led
us to the creation of MULLE. It is game-like
and the player solves language learning exercises
focusing on translation. Each exercise consists
of two sentences in different languages, one lan-
guage that the user already knows (i.e. the meta-
language), and the language to be learned (i.e. the
object language). Both sentences differ in some
respect, depending on the grammatical features
that the lesson is focusing on.

Using GF together with the RGL helps us to cre-
ate domain-specific grammars in a straightforward
way. Such grammars can be designed to catch
exactly the complexity of the lessons in a classic
textbook. That way we can mirror the same les-
son structure in MULLE, at the same time adding
more flexibility and giving the possibility of gen-
erating a large supply of interactive exercises with
plenty of variation using vocabulary and concepts
familiar from class and textbook.

A textbook for language learning is usually split
into a sequence of lessons with texts and exer-
cises of growing syntactical complexity. This is
the case for textbooks both at high-school and uni-
versity levels (e.g. Lindauer et al. (2000); Ehrling
(2015)). Typically, each chapter consists of a text
part, a vocabulary list, some grammatical explana-
tion and additional exercises. The growing vocab-
ulary and increase in complexity helps the stu-
dent learn the whole of a language in a slow pace.
This approach is also common in language learn-
ing applications and can readily be implemented
in MULLE.

Each grammar lesson in MULLE covers a set of
interactive exercises. So we need lesson-specific

grammars that use the same lexicon and grammat-
ical constructions as the corresponding parts of the
textbook. For that we can use the RGL, when writ-
ing a new grammar for a lesson we already have
access to an extensive description of the languages
we want to cover and only have to select the con-
cepts we want to include.

First a lexicon is created that covers exactly the
vocabulary of a lesson. Extensive lexical resources
are already available for GF and they can easily be
extended by the author of the grammar relying on
the morphological component of the grammar to
generate the correct word forms.

Next the grammatical constructions that will be
used in this lesson are selected by exposing only
the parts that are relevant to the planned learning
outcomes. The RGL can be seen as a collection of
grammatical constructions, and each lesson uses a
subset of these concepts. So by only providing a
restricted subset together with the selected vocab-
ulary it is possible control the complexity of the
lessons.

Finally every grammar we create needs to be
multilingual for at least two languages: the meta-
language (e.g. Swedish), and the object language
(e.g. Latin). Since the RGL is inherently multi-
lingual it is straightforward to provide the lessons
in multiple languages; With only minimal adjust-
ments we can cover as many languages as we want
as long as they are already included in the RGL.

The usual size of the lesson grammars we en-
countered so far was between 50 and 100 lexical
items and about 20 syntax rules.

The main focus of our work is on one form of
translation exercises but other forms of exercises
are also useful in the context of language learn-
ing. That usually includes explicit vocabulary ex-
ercises and, in the case of languages with a strong
morphology like Latin, some exercise for practi-
cing word forms.

Practicing vocabulary is possible either by us-
ing lexical categories as top-level categories of the
syntax trees or by using sentences that are almost
correct except for a lexical mismatch in one posi-
tion.

Exercises for morphology involve slightly more
work since our grammar formalism by default
only creates grammatical sentences including cor-
rect word agreement. So to be able to practice
morphology in our setup have to relax these mor-
phological constraints in the grammars. That gives
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Figure 1: Screenshot of the exercise view

us a way to create exercises where the user has to
both identify wrong morphological forms in a sen-
tence and find the right form to replace them with.

4 Implementation

Based on these ideas we have implemented
MULLE which can already be used in language
classes. In order to be independent of certain kinds
of devices and operating systems we provide the
whole application as a browser-based online ap-
plication.

The application is developed independent of the
grammars that can be used. That means that the
whole system can be set up by providing the ap-
plication with a set of lesson grammars and a fully
usable language learning environment is available.

4.1 User interface

The user interface is kept minimalist, as can be
seen in Figure 1, and only provides the user
with the most essential information, including the
current score count, the sample sentence in the
metalanguage and the modifiable sentence in the
object language that has to be altered to match the
sample, and the time elapsed since starting the ex-
ercise as well as clicks spent on the exercise.

Colours are an important aspect of the inter-
face because they indicate progress in solving
the exercise. The background colours of the
words highlight which parts of the two sentences
already match up with each other. In the example
“kejsaren” is a proper translation of “Caesar”
which is shown by highlighting them in the same
colour. The same is the case for both occur-
rences of “Augustus” as well as the pair “vincit”
and “erövrar”. The meaning of the colours is that
phrases in the same colour are are translations of
each other. Only one pair of words, “Africam” and
“Gallien”, is not highlighted, so here some user in-
tervention is needed.

This current design reduces the possible dis-
tractions while supporting the learner. Depending

Cl
NP

CN
N

PN
VP

V2 NP
PN

+ click

+ click

click
kejsaren Augustus erövrar Gallien

Figure 2: Syntax tree including the path through
the tree after several clicks on the word “Gallien”

on the target age group a more elaborate graph-
ics design could have a more positive effect on the
acceptance of the system.

4.2 Gamification
We presented two approaches for gamification in
Section 2, based on which we selected certain as-
pects to be included in our application. For our
application the following features of GameFlow
seem most relevant: Concentration, i.e., minim-
ising the distraction from the task, Challenge by
giving a scoring schema, Control by providing an
intuitive way to modify the sentence, Clear goals
by providing a lesson structure, and Immediate
feedback with the colour schema.

The concept of lessons and exercises is essential
for this kind of language learning because it makes
the learning progress explicit. The completed les-
sons are presented to the student together with the
scores, so that they can see their own progress on
the way to reaching their final goal of learning the
language.

By applying methods from GameFlow, we pos-
itively influence the motivation while learning a
new language. Adding more features of gamifica-
tion, especially involving social aspects, is a pos-
sible extension for the future.

5 User interaction

After logging into the system the user is presented
with a list of lessons and the current status, i.e. the
number of finished exercises for each lesson and
the current score. Some lessons might be disabled
because they require previous lessons to be com-
pleted first. Now the user can choose one of the
enabled lessons to start the exercises.

As soon as a user starts a lesson a set of exer-
cises is selected. These exercises are chosen from
a list of exercises in a database. The exercises
consist of two syntax trees that different in certain
grammatical aspects. Associated with each syntax
tree is one sentence, one in the metalanguage and
one in the object language. The syntax trees are
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hidden from the user and only implicitly influence
the user experience.

The exercises are presented in the form shown
in Figure 1. The background colours of the words
show the state of the translation. When the user
clicks on one of the words in the bottom sen-
tence, they are presented with a list of potential
replacements. This selection is based on where in
the tree the word is introduced. In the example
the user clicked on the word “Gallien”, which is
a proper name, so all proper names contained in
the grammar are presented. By clicking several
times on the same word the focus can be expan-
ded to cover larger phrases, e.g. from proper name
to noun phrase, and so on, by traversing upwards
through the tree (Figure 2). The menu contains
all phrases of the syntactic category selected by
clicking on words. That means that suggestions
can contain more or less words than currently in
focus. So for example if a noun phrase is in focus,
both noun phrases with and without adjectives ap-
pear in the list. Selecting a longer phrase is the
same as inserting words in the sentence and select-
ing shorter phrases corresponds to deleting words
from the phrase.

With these operations, i.e. substitution, inser-
tion, and deletion, the user can modify the sen-
tence to finish their task. When the two sentences
are proper translation of each other, i.e. the two
syntax trees are similar, the user is congratulated
on the success and presented the final score.

Lessons can be interrupted and resumed at any
time as well as repeated to improve the score.

6 Evaluation

For the evaluation of our approach we have de-
signed an experiment setup. The full setup in-
cludes a basic placement test in the beginning
that is repeated at the end of the test period to
provide information about the learning outcome.
The placement test consists of a fixed set of ex-
ercises from all lessons that will be covered dur-
ing the experiment period. Both error rate and
completion time are measured. A questionnaire
controls for factors like learner background, pre-
vious knowledge, etc. It also gives insight into the
learner motivation in the beginning so it can be re-
peated in the end to see any development in this
relevant aspect. Then over the span of the experi-
ment the students can use the software independ-
ently online. The lessons are kept in sync with

the syllabus of the course that is accompanied by
the experiment. In the end the collected data con-
sists of changes in learning outcome and learner
motivation as well as activity of the student in the
system.

In a pilot experiment we tried aspects of this ex-
perimental evaluation. The results were not yet
statistical significant because the course size was
very small and the dropout rate was high. From
the initial 10 Students only 4 finished the course
so we only received complete feedback from two
students out of initially 6 participants. Anyways,
the general interest, both by teachers and students,
in this kind of application is strong.

A larger scale follow-up experiment will focus
on the change in the learner attitude, which is rel-
evant for showing that our tool is suited for tack-
ling potential anxiety in learners, a problem Latin
teachers have pointed out (Dimitrijevic, 2017).
With more participants different kinds of control
and test conditions can be introduced.

7 Discussion

One challenge with the user interface is the se-
mantics of clicks, especially concerning word in-
sertion. Clicking on a gap between two words to
insert words seems more intuitive than clicking on
a word. But where to click might also depend on
the languages involved.

Another important question for the current ap-
plication is the influence of the grammar design
both on the learning experience and the learning
outcome. It is possible to vary the design of the
grammar to change the behaviour of our system.

Related is the role of semantics in the lesson
grammars. The lessons and exercises are meant
for learning the syntax of a language but non-
sensical semantics can be an obstacle for the learn-
ing process. For example the famous sentence
“Colorless green ideas sleep furiously” (Chomsky,
1957, p. 15) is considered grammatical but would
probably distract the learner.

8 Future work

This project is work in progress and we plan to
extend the system in several ways. First, we will
repeat the experiment from Section 6 on a larger
scale. Furthermore we plan to extend our imple-
mentation to become more feature-rich with a spe-
cial focus on investigating the points addressed in
the discussion section. Finally we want to con-
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tinue collaborating both with teachers and students
to improve the system in order to enrich teaching
and learning Latin.
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Abstract

Childhood acquisition of written language
is not straightforward. Writing skills
evolve differently depending on external
factors, such as the conditions in which
children practice their productions and the
quality of their instructors’ guidance. This
can be challenging in low-income areas,
where schools may struggle to ensure ideal
acquisition conditions. Developing com-
putational tools to support the learning
process may counterweight negative envi-
ronmental influences; however, few work
exists on the use of information technolo-
gies to improve childhood literacy.

This work centers around the computa-
tional study of Spanish word and syllable
structure in documents written by 2nd and
3rd year elementary school students. The
studied texts were compared against a cor-
pus of short stories aimed at the same age
group, so as to observe whether the chil-
dren tend to produce similar written pat-
terns as the ones they are expected to in-
terpret at their literacy level. The obtained
results show some significant differences
between the two kinds of texts, pointing
towards possible strategies for the imple-
mentation of new education software in
support of written language acquisition.

1 Introduction

Acquiring literacy is not an easy process. Educa-
tors have to consider many different variables that
may affect student performance, such as their psy-
chological and linguistic development (Flower and
Hayes, 1981; McDonald Connor et al., 2011; De-

fior and Tudela, 1994). The latter is specially rel-
evant when considering that writing isn’t the mere
transcription of vocal sounds, but an abstract en-
deavor of language representation. Thus, teachers
have to assume that an important cognitive effort
is required from the students to understand the nu-
ances of a symbolic encoding, which may be influ-
enced by a myriad of environmental factors (Bis-
sex, 1980; Menn and Bernstein Ratner, 1999).

In this sense, finding an optimal strategy to en-
sure that a group of students will acquire literacy
at the same pace is not straightforward (Bradley,
1988; Anthony and Lonigan, 2004): the learning
conditions of each individual are likely different,
which may prove challenging for the design of
generalized pedagogic approaches (Piaget, 1971;
Rogoff, 1984). This situation can complicate criti-
cal tasks for the teaching process, such as evaluat-
ing the acquisition progress of a group of students.
In this regard, data-driven analyses may provide
new automatic evaluation tools for teachers, mak-
ing it possible to dynamically adapt their teaching
strategies based on data to improve the learning
conditions of specific groups or individuals.

This work presents an exploratory approach
to the computational study of written language,
oriented towards improving literacy acquisition
in school-age children. The idea is to explore
whether written productions made by children
contain patterns that may be indicative of profi-
ciency, in an effort to pursue novel research on
the automatic monitoring of the students’ writing
skills. To this end, some seminal quantitative anal-
yses were performed over two independent Span-
ish corpora of child productions. The obtained re-
sults were compared against a control corpus, rep-
resentative of the level of literacy expected from
children in the same age group. Early results show
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that some regularities exist in the texts produced
by the children, which contrast with the expected
outcome inferred from the control corpus. Identi-
fying these and other possible proficiency indica-
tors may the first step towards the training of ro-
bust written acquisition evaluation models.

2 Related work

Research on the written acquisition of Spanish by
Zamudio Mesa (2008), Flores Hernández (2012)
and Ferreiro & Teberosky (1991) has shown that,
starting the acquisition process, children system-
atically try to codify the words they hear into a
simple interleaving of consonants (C) and vowels
(V). This translates into a disproportionate use of
simple syllabic patters such as CV, VC or CVC,
which tends to decrease as the student progresses.

In an ideal learning environment, as the chil-
dren gain proficiency they should start using more
complex patterns such as VCC, CVCC or CCVC
(Bowey, 2002; Ferroni et al., 2016). However,
some authors claim that, without the proper con-
ditions, children aren’t able to perform this transi-
tion, which affects their overall academic perfor-
mance in the future (Ardila and Rosselli, 2014).

Nonetheless, even though some data exists on
the evolution of the complexity of children writ-
ing in Spanish, as of the authors’ knowledge no
previous work has explored how it can be assessed
automatically by way of a computational method.

Some data on the evolution of reading abil-
ity – Bradley (1988), Ferroni and Diuk (2016),
Anthony and Lonigan (2004) Bowey (2002) –
showed how teachers can prevent future reading
and writing children’s failures. However, they fo-
cused only on speech and not on the complexity of
children’s writing (Casillas and Goikoetxea, 2007;
Levy and Ransdell, 2013).

This paper presents some results obtained with
experiments performed over well-known corpora
of children writing in Spanish. These results di-
rectly contradict the theories of researchers who
have previously approached the problem. We
show how this contradiction between our data and
the language of children as it has been described
in the literature is caused by the way the com-
plexity of the texts was measured. In general, the
perspicuity tests used to classify the texts assume
that writers have a regular proficiency in the use of
written language. However, children’s writing dis-
play phenomena such as lack of punctuation marks

and other conventions that have had an impact in
the results, as it will be discussed below.

3 Methodology

To identify candidate characteristics that may be
indicative of written proficiency, two children-
produced corpora were analyzed:

• CEELE1: Corpus of 300 documents in Span-
ish written by children from 7 to 8 years old.
The corpus was elicited by asking the sub-
jects to describe their school after showing
them an example through a story. Roughly,
this prompted the children to write about their
daily commute and their usual activities in a
normal school day.

• EXCALE2: Corpus of 286 documents in
Spanish written by children from 7 to 13
years old. It was elicited by showing the stu-
dents a series of related images and asking
them to turn them into a short story (Zamu-
dio Mesa, 2016). Originally, the corpus con-
tains only document scans with no transcrip-
tions, which had to be created for the experi-
ments. In that regard, all documents that were
unreadable, incomplete or that didn’t hold a
story structure (e.g. introduction, plot and
conclusion) were discarded.

A third corpus of short stories was collected to
serve as a control. It served to compare how the
children productions fared against adult-written
texts for elementary school literacy level:

• Short Stories: 70 texts of between 200 and
250 words written in Spanish, collected from
public websites oriented to literacy acquisi-
tion in grade school children.

The documents in the three corpora were classi-
fied into seven readability levels as given by the
Sigriszt-Pazos (1993) readability index (P): an
adaptation of the Flesch-Kincaid (1948) readabil-
ity tests for the Spanish language. Equation 1
shows how P is calculated:

P = 206.835− 62.3 · S
P
− P

F
(1)

where:
1http://www.corpus.unam.mx:8080/

unificado/index.jsp?c=ceele
2http://www.inee.edu.mx/index.php/

proyectos/excale/corpus-excale
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- P corresponds to the total number of words
in the document;

- S denotes the total number of syllables; and,

- F is the total number of sentences.

Table 1 shows how documents are classified
into seven readability levels according their P
value. An interpretation of each level is provided
as well.

P LEVEL INTERPRETATION

86-100 1 very easy to read
76-85 2 easy to read
66-75 3 fairly easy to read
51-65 4 plain
36-50 5 fairly difficult to read
16-35 6 difficult to read
0-15 7 very difficult to read

Table 1: Readability level as given by the Sigriszt-
Pazos readability index (P).

Once every document in the three corpora was
assigned to a level in Table 1, the following mea-
sures were calculated for every individual level:

• The average number of words per sentence.

• The average number of syllables per word.

• The average word length.

• The frequency of the syllables per level.

• The frequency of the syllabic patterns appear-
ing in the level.

4 Results

Figure 1 shows three graphs depicting the values
calculated for the average number of words per
sentence (1a); the average number of syllables per
word (1b) and the average word length (1c), for all
seven levels in each corpora.

Each graph in Figure 1 shows groups of side-
by-side bars for the three corpora, in each of the
seven readability levels.

Figure 1a shows that both children produced
corpora—CEELE and EXCALE—tend to hold
more words per sentence in average than the Short
Stories control. Furthermore, the averages per
level in both EXCALE and CEELE always surpass
the ones from the Short Stories corpus. In general,

(a) Average Words per Sentence

(b) Average Syllables per Word

(c) Average Word Length

Figure 1: Word statistics for the three corpora.

a strict order between the averages per level is re-
spected: Short Stories < EXCALE < CEELE.

The generally high number of words per sen-
tence is explained by the lack of punctuation
marks in the children corpora. In general, almost
no instances of full stops nor semi-colons are to be
found in the children’s texts; they tended to write
the entire document into a single phrase. In itself,
this also affected how the documents themselves
were classified by the Sigriszt-Pazos formula, as it
takes into account the number of words per sen-
tence to calculate the difficulty level. The latter
would also help to explain why the correlation be-
tween this value and the readability level seems so
strong.

Table 2 shows the Pearson (ρ) correlation values
between the average number of words per sentence
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and the readability level for each corpus.

CORPUS PEARSON CORRELATION (ρ)
CEELE 0.5456

EXCALE 0.9965
Short Stories 0.8958

Table 2: Correlation between the average number
of words per sentence and readability level.

From Table 2 it can be observed that both
ρ(Short Stories) and ρ(EXCALE) denote stronger
correlation values between the aforementioned
variables than ρ(CEELE).

Figures 1b and 1c show that there are no re-
markable differences across the three corpora in
terms of the average word length (between four
and five characters) or the number of syllables per
word (around two).

(a) Likelihood normalized to one of the 10 most common
syllabic patterns occurring in the corpora.

(b) Likelihood normalized to one of the 10 more common
syllables in the corpora.

Figure 2: Likelihood of occurrence of syllabic pat-
terns and syllables.

Figure 2 shows the likelihood of occurrence of
the 10 most common syllabic patterns (2a) and
syllables (2b) in each readability level of the three
corpora. In particular, Figure 2a shows that syl-
labic patterns tend to occur with similar proba-
bility across every readability level and corpus.

Simple patterns such as CV and CVC are the
most likely to appear with surprisingly regular fre-
quency across corpora. In contrast, Figure 2b
shows that the specific syllable realizations of the
patterns display a higher level of variability: over-
all, the relative probabilities for even the 10 most
common realizations fall below ten percent. This
would indicate that proficient writing skills don’t
necessarily entail the use of complex syllabic pat-
terns; rather, proficiency would lie on the specific
vocabulary used by the speaker, maybe because it
contains more words or because it is perceived to
be more specialized.

Figure 3 shows the likelihoods of occurrence of
the specific realizations for the most frequent pat-
terns: CV (3a), CVC (3b) and V (3c).

Globally, the figure shows that the children in
CEELE tend to favor specific syllables in some
readability levels for the CV and CVC patterns,
such as “mi” and “los” in levels 4 and 7. The EX-
CALE documents show a similar behavior with
syllables “su” and “por”. Also, Figure 3c shows
that CEELE documents tend to disproportionately
favor the use of “e”, “u” and “i” as one-character
syllables, contrasting with the lower variability
shown by both the EXCALE and the control cor-
pus. The results are discussed in the next section.

5 Discussion and Conclusions

The data shows that there might be several
characteristics that could help to automatically
measure written proficiency. According to the
ideas of (Zamudio Mesa, 2008; Flores Hernández
and Ramı́rez Hernández, 2012; Ferreiro and
Teberosky, 1991), we expected that children be-
tween 7 and 12 years old would already have know
how to use punctuation marks and blank spaces
between words—particularly, full stops. Clearly,
these capabilities had not been acquired by the
children whose writing was reported in the cor-
pora, causing very unexpected results.

The more notable deviation corresponds to the
average number of words per sentence, which
seems to be an strong indicator of literacy; in the
CEELE documents, which are expected to show
a lower literacy level than the remaining two, the
number of average words per sentence explodes.
As previously mentioned, the explanation for this
is that the children did not use punctuation marks
throughout the writings, causing the algorithm
to perceive documents as containing only one
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(a) Likelihoods normalized to one of the 5 most common CV
realizations.

(b) Likelihoods normalized to one of the 5 most common
CVC realizations.

(c) Likelihoods normalized to one of the 6 most common V
realizations.

Figure 3: Likelihoods of CV, CVC and V pattern
realizations.

or two sentences. This happens even with the
occurrence of unnaturally long words such as
“CuantosañostienescomoSellamaendondebibes”,
product of the erroneous use of whitespace; in-
tuitively this should shorten sentences, however
the overall average remained high. More analyses
are needed to observe how this variable correlates
with others, such as the use of punctuation marks,
which might be what is pulling the averages up.

Regarding the use of syllables, the corpora pre-
sented instances of invalid Spanish syllabic pat-
terns like strings of consonants without vowels.
These irregularities could credibly be indicators of
a lack of proficiency; however, the observed prob-

abilities are so low (near zero) that few conclu-
sions can be obtained, as they could correspond to
transcription mistakes or else.

For the rest of the patterns, their likelihoods
of occurrence remain consistent across all levels
on every corpora, meaning that their realizations
might give more meaningful information, as ex-
plained by the hypothesis of a specialized or more
diverse vocabulary. In this regard, Figure 3 pro-
vides some evidence that the overuse of simple
words and common syllables might be indicative
of lack of writing skills. Thus, further exploration
is needed on larger corpora, covering written pro-
ductions by persons with different literacy levels
and even learners of Spanish as L2.

Results show that Sigriszt-Pazos readability for-
mula tests productions for expert Spanish writers.
Although it measures the complexity of texts writ-
ten especifically for children, such texts are care-
fully composed for adapting to the capablities of
the readers. However, a child does not have an
idea of the parameters that should be used in order
to make the text easier. Is it clear, then, that stu-
dent’s productions need different parameters witch
calculate their writing proficiency.

In general, more experiments are needed to
reach stronger conclusions. Future work will ex-
plore how syllabic patterns and syllables combine
inside of words, and how this correlates with writ-
ing proficiency. This might provide more useful
information about the literacy level of the students,
rather than just looking at single syllables as it has
been done until now.

Finally, it is expected that these studies will lead
to the creation of writability formulas, which will
measure not how readable a text can be, but how
difficult it is to write. Moreover, we suggest the
creation of a method to measure students’ writing
skills based on these formulas.
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Abstract 

This study assesses an index for measuring 
the pronunciation difficulty of sentences 
(henceforth, pronounceability) based on 
the normalized edit distance from a refer-
ence sentence to a transcription of learn-
ers’ pronunciation. Pronounceability 
should be examined when language teach-
ers use a computer-assisted language 
learning system for pronunciation learning 
to maintain the motivation of learners. 
However, unlike the evaluation of learners’ 
pronunciation performance, previous re-
search did not focus on pronounceability 
not only for English but also for Asian 
languages. This study found that the nor-
malized edit distance was reliable but not 
valid. The lack of validity appeared to be 
because of an English test used for deter-
mining the proficiency of learners. 

1 Introduction 

Research on computer-assisted language learning 
(CALL) has been carried out for learning the pro-
nunciation of European languages as a foreign 
language such as English (Witt & Young 2002, 
Mak et al. 2004, Ai & Xu 2015, Liu & Hung 
2016) and Swedish (Koniaris 2014). CALL re-
search on Asian languages has considered Japa-
nese as a foreign language (Hirata 2004) and 
Chinese as a foreign language (Zhao et al. 2012). 
The primary goal of CALL systems for the learn-
ing of foreign language pronunciation is to re-
solve interference from the first language of 
learners. For instance, a CALL system can ana-
lyze the speech in which a learner reads English 
sentences aloud and presents pronunciation errors 
that a learner must read aloud again for reducing 
the errors. 

Even though the methods of evaluating learn-
ers’ pronunciation performance have received 
considerable attention in previous research, the 
pronunciation difficulty of sentences (henceforth, 

pronounceability) has not been examined exten-
sively. Given that readability and the difficulty of 
listening influence learners’ motivation and out-
comes (Hwang 2005, Lai 2015, Yoon et al. 2016), 
we consider that CALL for pronunciation learning 
should consider pronounceability in evaluating 
learners’ pronunciation. 

Pronounceability can be represented as the 
phonetic edit distance from reference pronuncia-
tion to a learner’s expected pronunciation based 
on the proficiency. Phonetic edit distance can be 
measured using a modified version of the Le-
venshtein edit distance (Wieling et al. 2014) or a 
deep-neural-network-based classifier (Li et al. 
2016). 

This study measured normalized edit distance 
(NED) using the orthographical transcription of 
learners’ pronunciation of reference sentences. An 
advantage of the NED based on orthographic tran-
scription is the availability of data. This is because 
language teachers can obtain orthographical tran-
scription without being trained for phonetic tran-
scription. 

This study measures pronounceability using 
multiple regression analysis considering ortho-
graphic NED as a dependent variable and the fea-
tures of a sentence and a learner as independent 
variables. First, a corpus for multiple regression 
analysis is developed. This corpus includes the da-
ta for NED and the proficiency data in a score-
based scale of Test of English for International 
Communication (TOEIC). TOEIC is a widely 
used English test in Asian countries, and its test 
score ranges from 10 to 990. In previous research 
(Grahma et al. 2015, Delais-Roussarie 2015, Gósy 
et al. 2015), proficiency was demonstrated using a 
point-scale such as the Common European 
Framework of Reference for Languages (six lev-
els from A1 to C2). 

This study assessed our phonetic learner corpus 
data by answering the following research ques-
tions: 
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 How stable is NED as a pronounceability 
index? 

 To what extent does NED classify learn-
ers depending on their proficiency? 

 How strongly does NED correlate with a 
learner’s proficiency? 

 How accurately is NED measurable 
based on linguistic and learner features 
for pronounceability measurement? 

2 Compilation of Phonetic Learner 
Corpus 

2.1 Collection of Pronunciation Data 

Our phonetic learner corpus was compiled by re-
cording pronunciation data for English texts that 
learners read aloud sentence by sentence. In addi-
tion, after reading a sentence aloud, learners sub-
jectively determined the pronounceability of sen-
tences on a five-point Likert scale (1: easy; 2: 
somewhat easy; 3: average; 4: somewhat difficult; 
5: difficult) (henceforth, SBJ). 

The texts for reading aloud (the title of Text I is 
the North Wind and the Sun and that of Text II is 
the Boy who Cried Wolf) were selected from the 
texts distributed by the International Phonetic As-
sociation (International Phonetic Association 
1999). Even though these texts contain only 15 
sentences, they cover the basic sounds of English 
(International Phonetic Association 1999, Deterd-
ing 2006). This enables us to analyze which types 
of English sounds influence learners’ pronuncia-
tion. Deterding (2006) reported that Text I failed 
to cover certain sounds, such as initial and medial 
/z/ and syllable-initial /θ/, and then developed ma-
terial that covered the English pronunciation for 
these sounds by rewriting a well-known fable by 
Aesop (Text II). 

The corpus data were compiled from 50 learn-
ers of English as a foreign language at university 
(28 males, 22 females; mean age: 20.8 years 
(standard deviation, SD, 1.3)). The learners were 
compensated for their participation. In our sample, 
the mean TOEIC score was 607.7 (SD, 186.2). 
The minimum and maximum scores were 295 and 
900, respectively. 

2.2 Annotation of Pronunciation Data 

Our phonetic learner corpus includes NED, the 
linguistic features of sentences, and learner fea-
tures.  

NED was derived as the Levenshtein edit dis-
tance normalized by sentence length. It reflected 
the differences from the reference sentences to the 
transcription of learners’ pronunciation due to the 
substitution, deletion, or insertion of letters. Be-
fore measuring the edit distance, symbols such as 
commas and periods were deleted and expressions 
were uncapitalized in the transcription and refer-
ence data. 

The pronunciation was manually transcribed by 
a transcriber who was a native speaker of English 
and trained to replicate interviews and meetings 
but was unaccustomed to the English spoken by 
learners. The transcriber examined the texts before 
starting the transcription task. The transcriber was 
required to replicate learners’ pronunciation with-
out adding, deleting, and substituting any expres-
sions for improving grammaticality and/or accept-
ability (except the addition of symbols such as 
commas and periods). 

Linguistic features were automatically derived 
from a sentence as follows: Sentence length was 
derived as the number of words in a sentence. 
Word length was derived as the number of sylla-
bles in a word. The number of multiple-syllable 
words in a sentence were derived by calculating 
∑ (𝑆 − 1)ே
ୀଵ , where n was the number of words 

in a sentence, and Si was the number of syllables 
in the i-th word (Fang 1966). This derivation elim-
inated the presence of single-syllable words. Word 
difficulty was derived as the rate of words not 
listed in a basic vocabulary list (Kiyokawa 1990) 
relative to the total number of words in a sentence. 
Table 1 summarizes the linguistic features of the 
texts that learners read aloud, i.e., text length and 

 Text I Text II 
Text length (sentences) 5 10 
Text length (words) 113 216 
Sentence length 
(words) 

22.6 (8.3) 21.6 (7.6) 

Word length 
(syllables) 

1.3 (0.1) 1.2 (0.1) 

Multiple syllable word 
(syllables) 

6.4 (2.8) 5.7 (3.0) 

Word difficulty 0.3 (0.1) 0.2 (0.1) 

Table 1:  Linguistic features of the texts that 
learners read aloud. 
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the mean (standard deviation, SD) values of sen-
tence length, word length, multiple-syllable 
words, and word difficulty. 

Learner features were determined using the 
scores of TOEIC for the current or previous year. 
Even though TOEIC consists of listening and 
reading tests, it is strongly correlated with the 
Language Proficiency Interview, which is a well-
established direct assessment of oral language 
proficiency developed by the Foreign Service In-
stitute of the U.S. Department of State (Chauncey 
Group International 1998).  

3 Properties of Phonetic Learner Cor-
pus 

Our phonetic learner corpus was compiled using 
the method described in Section 2, and this corpus 
included 750 instances (15 sentences read aloud 
by 50 learners). Table 2 shows the descriptive sta-
tistics for NED and SBJ in the phonetic learner 
corpus. 

The relative frequency distributions of NED 
and SBJ, in which NED was classified into five 
levels based on SBJ, are shown in Figure 1. The 
distributions are dissimilar, as the peak of NED 
appears at pronounceability level 2 (“somewhat 
easy”) while that of SBJ appears at pronouncea-
bility level 3 (“average”). If NED appropriately 
accounts for learners’ pronounceability, learners 

appear to overvalue pronounceability. On the con-
trary, if NED fails to explain pronounceability, 
learners appear to undervalue pronounceability. 
This provides a solution for the improvement of 
NED. 

4 Assessment of NED as a Pronouncea-
bility Index 

In Sections 4.1, 4.2, and 4.3, research questions 1–
3 are assessed using the classical test theory 
(Brown 1996). The fourth question is answered in 
Section 4.4. 

4.1 Reliability of NED 

The reliability of NED was examined through in-
ternal consistency in terms of Cronbach’s α 
(Cronbach 1970). Internal consistency refers to 
whether NED demonstrates similar results for sen-
tences with similar pronounceability. Cronbach’s 
α is a reliability coefficient defined by the follow-

ing equation: 𝛼 =


ିଵ
ቀ1 − ∑

ௌ
మ

ௌ
మ


ୀଵ ቁ, where k is 

the number of items (sentences in this study), 𝑆
ଶ 

is the variance associated with item i, and 𝑆்
ଶ is 

the variance associated with the sum of all k item 
values. Cronbach’s α reliability coefficient ranges 
from 0 (absence of reliability) to 1 (absolute relia-
bility), and empirical satisfaction is achieved with 
values above 0.8. 

As reliability depends on the number of items, 
the reliability coefficients were derived individu-
ally for each text (Text I containing 5 sentences 
and Text II containing 10 sentences) and jointly 
for both texts. The reliability coefficients of NED 
and SBJ are shown in Table 3. 

The reliability coefficient of NED exceeded the 
value required for empirical satisfaction (α = 0.8) 
in Text II and Texts I & II. Hence, NED is partial-
ly reliable as a pronounceability index. However, 
NED demonstrated lower reliability compared to 
SBJ. This suggests that NED should be improved 
through modification. 

Figure 1: Distribution of NED and SBJ. 
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 NED  SBJ 
Minimum 0.01 1 
Maximum 0.78 5 
Mean 0.15 3.03 
SD 0.22 0.91 
n 750 750 

Table 2:  Descriptive statistics of NED and 
SBJ. 

 NED SBJ 
Text I 0.72 0.80 
Text II 0.82 0.91 
Text I & II 0.86 0.92 

Table 3:  Cronbach α coefficient of NED and 
SBJ. 
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4.2 Construct Validity of NED 

Construct validity was examined from the 
viewpoint of distinctiveness. If NED appropriately 
reflects learners’ proficiency, NED should demon-
strate a statistically significant difference (p < 
0.01) among learners at different proficiency lev-
els. Our phonetic learner corpus data were classi-
fied into three levels based on the TOEIC scores 
below 490 (beginner level) (n = 240), below 730 
(intermediate level) (n = 240), and 730 or above 
(advanced level) (n = 270). 

Table 4 shows the mean (SD) values of NED 
and SBJ for the three levels. The distinctiveness of 
NED was investigated using ANOVA. ANOVA 
showed statistically significant differences be-
tween the three levels of learners for SBJ (F (2, 
747) = 10.13, p < 0.01) but not for NED (F (2, 
747) = 0.55, p > 0.01). NED failed to demonstrate 
construct validity depending on TOEIC-based 
proficiency. 

4.3 Criterion-related Validity of NED 

Criterion-related validity was examined from the 
viewpoint of the correlation with learners’ profi-
ciency in terms of TOEIC scores. NED should re-
flect learners’ proficiency because pronounceabil-
ity should depend on learners’ proficiency. Then, 
the correlation between NED and TOEIC scores 
and between SBJ and TOEIC scores was exam-
ined. 

NED exhibited weaker correlation with TOEIC 
scores (r = –0.04) compared to SBJ (r = –0.20). 
Owing to this, NED failed to demonstrate criteri-
on-related validity depending on TOEIC-based 
proficiency. 

4.4 Pronounceability Measurement 

Pronounceability was measured through multiple 
regression analysis. NED was the dependent vari-
able, and the linguistic and learner features de-
scribed in Section 2 were the independent varia-
bles. However, multiple-syllable words were not 
used owing to the variance inflation factor (VIF = 
12.3) (Kutner et al. 2002). A significant regression 

equation was found (F (4, 745) = 124.15, p < 
0.01) with an adjusted squared correlation coeffi-
cient (R2) of 0.40, which indicates that the equa-
tion measured approximately 40% of the pro-
nounceability. 

The contribution of linguistic and learner fea-
tures can be observed using standardized particle 
regression coefficients; the contribution increases 
with the absolute value of the coefficients. The 
standardized partial regression coefficients are 
summarized in Table 5. Significant contribution is 
observed in word difficulty but not in the other 
features. This result contradicts the finding of pre-
vious research, which reported the significant con-
tribution of sentence length and word length in 
other modes such as readability (Crossley et al. 
2017) and listening difficulty (Messerklinger 
2006). 

The pronounceability measurement method 
was examined n times (n = 750) using a leave-
one-out cross validation test, considering one in-
stance as test data and n – 1 instances as training 
data. The measured NED exhibited moderate cor-
relation with the observed NED (r = 0.63). NED 
demonstrated a low coefficient of determination 
and low predictability. 

5 Conclusion 

This study assessed whether NED appropriately 
demonstrated pronounceability for learning the 
pronunciation of English as a foreign language. 
The assessment suggests that NED is reliable 
(Section 4.1) but not valid (Sections 4.2 and 4.3). 
The results of pronounceability measurement 
(Section 4.4) suggest that NED was appropriately 
explained by the word difficulty. 

In future, we will work on the improvement of 
pronounceability measurement in English based 
on NED and investigate pronounceability meas-
urement in Asian languages as a foreign language. 

 Beginner 
level 

Intermedi-
ate level 

Advanced 
level 

NED 0.13 (0.21) 0.12 (0.22) 0.11 (0.21) 
SBJ 3.15 (0.95) 3.13 (0.92) 2.83(0.83) 

Table 4:  Descriptive statistics of NED and SBJ  

Variable Coefficient         *p < 0.01 
Sentence length –0.07 
Word length 0.06 
Word difficulty 0.61* 
TOEIC score –0.04 

Table 5:  Standardized partial regression coef-
ficients. 
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Abstract 

In this paper, we report a short answer 

grading system in Chinese. We build a 

system based on standard machine 

learning approaches and test it with 

translated corpus from two publicly 

available corpus in English. The experi-

ment results show similar results on two 

different corpus as in English. 

1 Introduction 

To assess the learning outcomes of students 

with tests in various question types and grading 

methods, short answer question is one type of 

test that can test the level of students’ under-

standing of specific concepts in a subject do-

main. Since grading short answer question re-

quires natural language understanding, the test 

was manually graded by teachers.  

Although technically similar to automatic 

essay grading, automatic short answer grading 

is not as mature as automatic essay grading. 

(Burrows et al., 2015) gives a survey on how the 

automatic short answer grading is dealt by var-

ious researchers. The traditional approach is 

string matching, which could be very efficient 

but not very effective. 

Early work relied on regular expression pat-

terns which were manually extracted from ref-

erence answers (Mitchell et al., 2002). The pat-

terns included keywords in the reference an-

swers. Patterns could also be learnt from the ref-

erence answers (Ramachandran et al., 2015). 

(Sultan et al., 2016) adopted the simpler notion 

of semantic alignment to avoid explicitly gener-

ating complicated patterns. 

Semantic matching had also been proposed 

in early work (Leacock and Chodorow, 2003). 

This approach was also used by many research-

ers (Mohler et al., 2009; Mohler et al., 2011; 

Heilman and Madnani, 2013) in supervised 

learning machine learning. A large set of simi-

larity measures is defined as features for a su-

pervised learning model. Features range from 

word level n-gram overlap to deeper semantic 

similarity measures based on dictionary and dis-

tributional methods.  

The short-text grading in SemEval Semantic 

Textual Similarity (STS) task (Agirre et al., 

2012; Agirre et al., 2013; Agirre et al., 2014; 

Agirre et al., 2015) drew the attention of many 

researchers and provided an evaluation plat-

form. Since then, several systems have been 

proposed for short answer grading based on the 

semantic similarity with given reference an-

swers (Mohler and Mihalcea, 2009; Mohler et 

al., 2011; Heilman and Madnani, 2013; Rama-

chandran et al., 2015).  (Sultan et al., 2016) pre-

sented a simple short answer grading system for 

short answer in English. Given a question and 

its reference answers, a system measures the 

correctness of a student answer by calculating 

the similarity with the correct answers.  

Comparing to the field in English, there are 

very little research projects on short answer 

grading in Chinese, and there is no publicly 

available corpus for short answering grading in 

Chinese. 

In this paper we report how we build a sys-

tem and how to test it with a translated corpus 

from two publicly available English corpus. 

The system first extracts the text similarity 

features, and the features are used in a support 

vector model. In the first corpus, answers are 

graded from 0 to 5; we use support vector re-

gression (SVR) model to learn the grading. In 

the second corpus, answers are graded as cor-

rect/incorrect; we use a support vector machine 

(SVM) classifier approach to deal with it. In the 

following sections, we will show the system ar-

chitecture and experimental results.  
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2 System Architecture 

We adopt the previous works on the textual en-

tailment (TE) as our prototype to tackle the short 

answer grading problem in Chinese. TE can be 

briefly defined as: ”Given a pair of sentences 

(Student Answer, Reference answer), a program 

has to decide whether the information in Refer-

ence answer can be inferred by the Student an-

swer”. TE can be used in various applications, 

such as question answering system, information 

extraction, information retrieval, and machine 

translation. Once a system is able to decide 

whether T1 entails T2 or not, it can be regarded 

as an information filter to help users find useful 

information. Traditional approaches to TE are 

based on the semantic and syntactic similarities 

of the words in the sentences. 

2.1 Support Vector Machines 

Support vector machines (SVM) is a supervised 

machine learning classification algorithm, which 

can be used for classifying problem in n-dimen-

sion space. It is used widely in various natural 

language processing research projects and gener-

ally generates good results. Comparing to other 

classification algorithms, SVM algorithm usu-

ally has better result when the number of features 

is quite large and the data is sparse.  

SVM uses 𝑔(𝑥) = 𝑤𝑇∅(𝑥) + 𝑏 as the linear 

separation hyperplane, where w is the weight 

vector, b is the bias, ∅(∙) is a set of high dimen-

sional non-linear transformation function, where 

w and b is determined by training data that opti-

mizes the following formulas: 

 

min
1

2
 WtW + C ∑ ξi

N
i=1                            (1) 

s. t. {
yig(xi) ≥ 1 − ξi

ξi ≥ 0, i = 1 ⋯ N
 

 

where ξI  is the slack variables, and C is the pen-

alty coefficient for all the training samples 

(𝑥𝑖, yi). 

2.2 Support Vector Regression 

 Support Vector Regression (SVR) is using the 

SVM algorithm on regression problem. The goal 

of SVM is to find the separation hyperplane, and 

the goal of SVR is to find the regression hyper-

plane. For the given training set:  
                                                      
1 https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

{(𝑥1, 𝑧1), … , (𝑥1, 𝑧1)} 

where 𝑥𝑖 ∈ 𝑅𝑛 is a feature vector, and 𝑧𝑖 ∈ 𝑅1 is 

the target output. In order to find the hyperplane, 

two parameters C > 0, and ε > 0 must be given 

and the support vector regression can be defined: 

  
1

2
𝑤𝑇𝑤𝑤,𝑏,𝜉,𝜉∗

𝑚𝑖𝑛 + 𝐶 ∑ 𝜉𝑖
𝑙
𝑖=1 + ∑ 𝜉𝑖

∗𝑙
𝑖=1            (2) 

Subject to    𝑤𝑇𝜙(𝑥𝑖) + 𝑏 − 𝑧𝑖 ≤ 𝜖 + 𝜉𝑖  , 

𝑧𝑖 −  𝑤𝑇𝜙(𝑥𝑖) − 𝑏 ≤ 𝜖 + 𝜉𝑖
∗ , 

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1, … , 𝑙 

 

    In our experiment, we use a free SVM toolkit, 

LIBSVM, to train the SVR model.1 (Chang and 

Lin, 2011) 

2.3 Feature extraction  

In this section, we briefly introduce the features 

used in SVM, which are the same as those used 

in previous work. Table 1 shows the ten features 

used in the experiments. The first three features 

are the numbers of common terms both in T1 and 

T2. The next three features are the BLEU scores. 

The rest four features are the numbers and differ-

ences of sentence length of T1 and T2. 

3 Data Sets 

3.1 Data Sets in English 

SciEntBank: 

This data set was used in SemEval-2013 and 

available via github2. The data set assigns one of 

five labels to a student response: correct, partially 

2 https://github.com/leocomelli/score-freetext-answer/ar-

chive/master.zip 

No  Feature  

1  unigram_recall  

2  unigram_precision  

3  unigram_F_measure  

4  log_bleu_recall  

5  log_bleu_precision  

6  log_bleu_F_measure  

7  difference in sentence length (charac-

ter)  

8  absolute difference in sentence length 

(character)  

9  difference in sentence length (term)  

10  absolute difference in sentence length 

(term)  

Table 1:  Features used in the system 
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correct/incomplete, contradictory, irrelevant, and 

non-domain.  

SciEntBank corpus in English contains 9,804 

answers to 197 questions in 15 scientific do-

mains.  There is one reference answer for each 

question. 

Data Structure Data Set:3 

The data set is provided by (Mohler and Mihal-

cea, 2009), which is Data Structure questions and 

student responses graded by two judges. The data 

set assigns one of two labels to a student response: 

correct or incorrect. The questions are collected 

from ten assignments and two tests, and each one 

has a topic such as programming basics or sort-

ing algorithms. A reference answer is also pro-

vided for each question. The interannotator 

agreement is 0.586 (Pearson’s r) and .659 

(RMSE on a 5-point scale). Average score of the 

two judges is used as the final gold score for each 

student answer. 

3.2 Chinese Corpus Translation 

Since there is no publicly available data set in 

Chinese, our experiments are conducted on the 

translated corpus. With the help of machine 

translation, we translate the two data set into Chi-

nese and use them in our experiments. The sen-

tences are then segmented into words by the 

Jieba4 word segmentation toolkit. The quality of 

machine translation is not perfect, 12% of the 

sentences have to be corrected manually. The 

major error types are synonyms with improper 

usage in the context for both nouns and adjec-

tives. There are also sentences with bad grammar.  

4 Experiments 

Since the SciEntBank data set has 5 way label-

ling, we use regression model to predict the 

scores of the student responses. And the Data 

Structure Data Set has 2 way labelling, we use 

the classification model to predict the scores of 

the student responses. 

4.1 Metrics 

For a regression result evaluation, we adopt the 

squared correlation coefficient and mean 

squared error. For a classification result evalua-

tion, we adopt the accuracy.  

Squared correlation coefficient, R2 

                                                      
3 http://web.eecs.umich.edu/mmihalcea/down-

loads/ShortAnswerGrading_v1.0.tar.gz 

R2 is the square of the Pearson correlation coeffi-

cient between the observed x and modeled (pre-

dicted) y data values of the score. Pearson's cor-

relation coefficient is commonly represented by 

the letter r. So if we have one dataset {x1,...,xn} 

containing n values and the prediction of the da-

taset {y1,...,yn} containing n values, then that for-

mula for r is: 

r = 
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

 

where n is the sample size, xi is the sample in-

dexed with i, yi is the correspondent system pre-

diction, and �̅�, �̅� are the means of xi, and yi, re-

spectively. 

Root mean squared error (RMSE) 

RMSE is defined as 

RMSE = √
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1  

4.2 Results 

 

Features 𝑹𝟐 RMSE 

all features 0.083041 1.173427 

only bleu 0.127850 1.102370 

Table 2 shows the regression results on the 

Chinese version of the Mohler et al. (2011) da-

taset. Where all features means the system uses 

all the features listed in Table 1, and only bleu 

means the system uses only the bleu features. 

The experiment result shows that more features 

can improve the performance. 

Table 3 shows the classification result on the 

Chinese version of the SemEval-2013 dataset,  

where all features means the system uses all the 

features listed in Table 1, and only bleu means 

 
4 https://github.com/fxsjy/jieba 

Features 𝑹𝟐 RMSE 

all features 0.083041 1.173427 

only bleu 0.127850 1.102370 

Table 2:  Performance on the Chinse version 

of the Mohler et al. (2011) dataset with in-do-

main training. 

 

 

Features Accuracy(%) 

all features 59.569 

only bleu 59.568 

Table 3:  Performance on the Chinse ver-

sion of the SemEval-2013 datasets. 
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the system uses only the bleu features.  In this 

experiment, the accuracy is almost the same. The 

result shows that more features do not improve 

the performance. 

4.3 Discussions 

Since the data sets are translated ones, it is not 

suitable to compare the results to the original 

ones. However, comparing to the result in Eng-

lish (Sultan et al., 2016), we find that the perfor-

mance is similar. 

5 Conclusion and Future Works 

In this paper, we report a short answer grading 

system in Chinese based on a machine learning 

approach. We test it with translated corpus from 

two publicly available corpus in English. The ex-

periment result shows that the results on the two 

different corpus is promising. 

In the future, we will further develop the sys-

tem with deep learning models. First at all, we 

will use distributed word embedding technique, 

such as word2vec, to improve the representation 

of the text. Then a recurrent neural network with 

long short term memory neuron is desired to re-

place the SVM model. Also curate corpus from 

native Chinese students is also important. Word 

segmentation is also important; instead of Jieba, 

we might use CKIP word segmentation service 

(Ma and Chen, 2003). 

Most research projects require reference an-

swers, and unsupervised automatic short answer 

grading is an interesting way to bypass the re-

quirement (Adams et al., 2016) 
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Abstract

This study explores the use of natural lan-
guage processing techniques to enhance
bilingual lexical access beyond simple
equivalents, to enable translators to nav-
igate along a wider cross-lingual lexical
space and more examples showing differ-
ent translation strategies, which is essen-
tial for them to learn to produce not only
faithful but also fluent translations.

1 Introduction

Online dictionaries are important computer-aided
tools for translators today (Bowker, 2015), while
parallel corpora, despite their relative scarcity,
have become useful resources for translation
teaching (Olohan, 2004). The two kinds of ref-
erence provide what lexicographers like Atkins
and Rundell (2008) would distinguish as context-
free and context-sensitive translations respec-
tively. The current work, as a prelude to a larger
project, discusses the limitations of existing bilin-
gual lexical resources and proposes natural lan-
guage processing approaches for enhancing their
navigational means for better usability in transla-
tor training and computer-aided translation.

Consider the translation of the English sen-
tence “I still have vivid memories of that evening”
into Chinese. The Online Cambridge English-
Chinese Dictionary1 shows two senses of “vivid”,
and quite straightforwardly the word can be dis-
ambiguated between the first sense (Vivid descrip-
tions, memories, etc. produce very clear, powerful,
and detailed images in the mind) and the second
sense (very brightly coloured). Hence, notwith-
standing the normal associative strengths between
words, when “vivid” has been properly disam-
biguated, its associations with “colour”, “bright”,

1http://dictionary.cambridge.org

etc. are down-weighted compared with its associa-
tions with “recollection”, “memory”, “clear”, etc.

Once the decoding purpose is fulfilled, with
the appropriate senses identified (“vivid” as above
and “memory” as “something that you remember
from the past”), one can then refer to the Chinese
“equivalents” provided by the dictionary: 栩栩如
生的, 鮮活的, and 生動的 for “vivid”, and 記
憶 and 回憶 for “memory”. But the encoding
purpose is not achieved yet, because none of the
combinations between these lexical items could be
considered satisfactory. They are only conceptu-
ally close to what we need, but not exactly appro-
priate for the context. It will only be helpful if we
can depart from them and navigate further along
their associations. The ability to do so is essen-
tially what translator training would need to fore-
ground, especially for novice translators to pro-
duce not only faithful but also fluent translations.

In the rest of this paper, we will first illustrate, in
Section 2, the limitations of existing bilingual re-
sources from the cognitive perspective, especially
with reference to word associations. We will dis-
cuss in Section 3 the implications on the need for
enhanced access of those resources to facilitate
translator training. Section 4 outlines the natural
language processing techniques employed in our
ongoing work in this regard.

2 Word Association for Lexical Access

Word association has been deemed an important
element in the mental lexicon (e.g. Collins and
Loftus, 1975; Aitchison, 2003) as well as many
lexical resources employed in a variety of natural
language processing tasks (e.g. Fellbaum, 1998;
Navigli and Ponzetto, 2012), and is believed to be
able to provide useful navigational means to ad-
dress the search problem in lexical access in dic-
tionaries (Zock et al., 2010).
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While there are various ways to model dif-
ferent associative relations from large corpora
(e.g. Church and Hanks, 1990; Wettler and Rapp,
1993; Biemann et al., 2004; Kilgarriff et al., 2004;
Hill et al., 2015), certain knots remain to be untied
for them to be better utilised in language applica-
tions. First, corpus-based modelling of associa-
tions often focuses on specific relations (e.g. sim-
ilarity, hierarchical relations, collocations, etc.),
but in real-life lexical access, a combination of
relations is often retrieved, as shown in human
word association norms (e.g. Moss and Older,
1996). Moreover, some associations are bound to
be more relevant than others in a given context,
and they are readily activated regardless of their
normal associative strengths. Second, for tasks re-
quiring bilingual lexical access, care must be taken
especially when onsidering the non-identical con-
ceptual and linguistic structures across languages.
Given the scarcity of complete equivalence and
different linguistic properties, bilingual (or multi-
lingual) word associations based entirely on bi- or
multi-lingual concept lexicalisations (equivalents)
may not be adequate for representing the cross-
lingual word association patterns.

Existing bilingual dictionaries nevertheless gen-
erally presume the existence of lexical transla-
tion equivalents. Analysis of human association
responses, as in Kwong (2013; 2016), suggests
an alternative view. On the one hand, very dif-
ferent association types are found for different
word classes (e.g. more taxonomic associations
for nouns and more collocational associations for
verbs), and across English and Chinese (e.g. more
paradigmatic responses for English but clear pref-
erence for syntagmatic associations for Chinese).
On the other hand, free associations may be mod-
elled from large corpora, but the results vary con-
siderably for individual words, some even counter-
intuitive. Less frequent associations are normally
disadvantaged, but humans readily retrieve them
when prompted by a certain context. Hence, mod-
elling of associations should be task-driven.

In addition, the equivalents given in bilingual
lexicons are basically decontextualized, and they
often do not appear in the example bilingual sen-
tences in the dictionaries. Thus, an association
found in the source language may not hold for
the equivalents found in a target language. When
using word associations in a bilingual context,
other than associative strengths, cross-lingual cor-

respondence of the associations is also worth in-
vestigation.

One conventional issue in psycholinguistics re-
garding models of bilingual lexicon is whether the
conceptual stores for two languages are shared or
separated (Keatley, 1992), and many studies sug-
gest that the store is mostly shared (e.g. Kroll
and Sunderman, 2003). Another issue is what is
shared and what is separated in particular lexical
concepts (Jarvis and Pavlenko, 2008). Pavlenko
(2009) suggested, in contrast to the conclusions
by many, that weaker connections failing to show
a semantic priming effect may not necessarily in-
dicate the lack of shared meaning, as concep-
tual equivalence can range from complete equiva-
lence to partial and even non-equivalence, and the
bilingual mental lexicon undergoes conceptual re-
structuring during language learning when cross-
linguistic differences are encountered. Such cog-
nitive aspects may not have been sufficiently mod-
elled in static bilingual linguistic lexicons, espe-
cially between two very different languages like
English and Chinese.

In the following we will compare the word asso-
ciations obtained from various resources, and eval-
uate them against the information need in our ear-
lier example situated in the translation context.

2.1 Word Association Norms
Table 1 shows the non-single responses in de-
scending order of frequency in the University of
South Florida (USF) Association Norms (Nelson
et al., 1998), for the stimuli “vivid” and “memo-
ries”. Apparently, should “vivid” and “memories”
be associated, they are linked by “dream”. In fact,
“memory” was among the 33 single responses for
“vivid”, while “vivid” was not among any of the
responses for “memories” or “memory”.

vivid memories
clear past album
color thoughts cats
bright happy good
imagination pictures love
real dreams photos
alive mind tears
dream bad boyfriends
read childhood fond
unclear friends high school
natural remember recollections
strong songs sad

Table 1: Responses from USF Association Norms

The equivalents in the Online Cambridge Dic-
tionary for “vivid” (栩栩如生(的),鮮活(的), and
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清清清晰晰晰 (clear) 印印印象象象 (impression)
可見 (visible) 深刻 (deep)
目標 (objective) 印象派 (impressionism)
指引 (guideline) 良良良好好好 (good)
模模模糊糊糊 (unclear) 差差差 (bad)
清清清楚楚楚 (clear) 人 (person)
影像 (image) 第一印象 (first impression)
明白 (understand) 派 (-ism)

Table 2: Responses from HKC Association Norms

生動(的)) and for “memory” (記憶 and 回憶)
are not found in the Hong Kong Chinese (HKC)
association norms (Kwong, 2013), so instead we
look at the responses for two similar items, 清晰
(clear/vivid) and 印象 (impression/memory), re-
spectively2. The non-single responses for these
stimuli are shown in Table 2. For 清晰, the re-
sponses 清楚 (clear) and 模糊 (unclear) can be
said to match the English responses for “vivid”,
but other than that the response patterns differ con-
siderably across languages. The only response re-
lated to “memory” is 印象 which appeared only
once. Similarly, the stimulus 印象 has its own
cluster of associations and the most typical adjec-
tive associated with it (深刻) is not one expected
in English for “memories”, although more general
ones like “good” and “bad” are found in common.

2.2 Dictionary Text

Based on the content words gathered from the def-
initions in the Online Cambridge English-Chinese
Dictionary (Table 3), it seems that “vivid” and
“memories” are closely associated, with the lat-
ter appearing in the definition of the former. But
as mentioned above, one cannot really take the
given Chinese equivalents and combine them for
the translation. None of the combinations would
sound idiomatic to a native Chinese speaker.

vivid memory
descriptions something
memories remember
produce past
clear
powerful
detailed
images
mind

Table 3: Associations from Dictionary Definitions

2The former is among the equivalents for “vivid”
in iCIBA (http://www.iciba.com/) and the latter is
a near-synonym for 記 憶 in a Chinese dictionary
(http://dict.revised.moe.edu.tw).

2.3 Large Corpora

Making use of the Word Sketch function for se-
lected gramrel collocations and the Thesaurus
function in the Sketch Engine (Kilgarriff et al.,
2004; Rychlý and Kilgarriff, 2007) on the ukWaC
corpus and twWaC corpus, Tables 4 and 5 show
the top 10 results for our target words.

vivid memory
modifies thesaurus modifier thesaurus
recollection compelling fond image
imagination vibrant loving thought
evocation evocative childhood knowledge
imagery poignant short-term picture
depiction colourful distant feeling
memory imaginative vivid sense
portrayal striking collective vision
dream fascinating episodic experience
color dramatic flash character
portrait memorable happy idea

Table 4: Associations from ukWaC

清清清晰晰晰 回回回憶憶憶

noun right thesaurus adj left thesaurus
影像 清楚 美好 美好
照片 模糊 共同 記憶
概念 完整 老 童年
畫面 生動 許多 回想

聲音 深刻 深刻 時光
條理 流暢 難忘 快樂
輪廓 鮮明 浪漫 故事
認識 明確 永久 感動
文字 簡單 不愉快 往事
方向 呈現 永生 難忘

Table 5: Associations from twWaC

The following are noted from the results. First,
in English, “vivid” and “memory” are strongly
collocated, as the same collocation pops up from
both directions (what does “vivid” modify / what
modifies “memory”). But to a certain extent,
whether an expected association can be extracted
depends on individual corpora. For instance, with
thesaurus function on ukWaC, “recollection” (syn-
onym of “memory”) is not even found, and the
near-synonym “impression” ranked after the 450th
place. Second, very little overlap is found be-
tween the English and Chinese associations ex-
tracted (even if based on partial equivalents). Ar-
guably we started with partial equivalents anyway
(but that is inevitable), and it shows that the word
association patterns may not be the same across
translation equivalents.
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3 Implications

Realising that Adj-N constructions in English are
not necessarily rendered as Adj-(的de)-N in Chi-
nese, one must go beyond the context-free equiv-
alents given in bilingual dictionaries to look for
potential target expressions which may sometimes
be found from the context-sensitive translations
shown in the example sentences. While one might
faithfully combine the bilingual lexicalisations of
“vivid” and “memory” to give生動/鮮活/逼真/清
晰的記憶, other more idiomatic and fluent ways
of expressing the same meaning in Chinese should
be accessible for reference, including word-class
shifts like 清楚記得/記得清清楚楚 (remember
vividly), use of four-character expressions like記
憶猶新, as well as other appropriate expressions
depending on context, such as 印象深刻 and 歷
歷在目, to name a few examples.

The process of determining the appropriate
target expression from the partial equivalents
can sometimes be tricky especially considering
the word formation, polysemy, and collocation
patterns across the two languages (e.g. even
for the same sense, “clear” appropriately cor-
responds to 清晰/清楚 when collocated with
image/explanation respectively, and 清澈/透明
with river/glass respectively). The challenge is
even more pronounced when no correspondence
can be spotted from the examples, or for gen-
erally weakly associated words (e.g. strong-
endorsement). Thus, natural language processing
techniques are adopted to enhance bilingual access
beyond lexical equivalents for translators.

4 Work in Progress

It is not simply lexical transfer but a transfer of
the whole relevant semantic space that is needed
in translation. With this in mind, we are pursu-
ing two routes using natural language processing
approaches to enhance bilingual lexical access be-
yond simple translation equivalents, for reference
in the translation process.

The first involves chaining up collocation infor-
mation in a cross-lingual manner. Many have re-
alised that there are often conceptual gaps across
languages, but in addition to the bilingual cor-
respondences of individual lexicalised concepts,
it is necessary to consider the cross-lingual dif-
ference in terms of not only conceptual structure
but also collocation patterns. As McKeown and
Radev (2000) pointed out, a concept expressed by

way of a collocation in one language may not have
a corresponding collocation in another language.

Hence, ideally one should be able to start from
a certain collocation or cluster of collocation in
one language (e.g. vivid-memory) and, through
some translation equivalents as seed words (e.g.
memory-回憶), extend into the relevant semantic
space in the other language (e.g. 往事/歷歷/印
象/深刻) which is otherwise unretrievable from
bilingual lexicons alone, as Figure 1 shows. For
experiments, the Bilingual Word Sketch function
in the Sketch Engine (Baisa et al., 2014) is taken
as a starting point, upon which strategic applica-
tion of word sense disambiguation, clustering, and
word embedding techniques is tested for their ef-
fects on re-prioritising word associations with re-
spect to specific collocations for a given context.

Figure 1: A Glimpse of a Cross-lingual Colloca-
tion Chain

The second makes use of neural machine trans-
lation (NMT) to obtain paraphrase sentence pairs.
While most machine translation research focuses
primarily on the fidelity of the target text, other
possible and perhaps more fluent renditions are ei-
ther ranked very low or completely ignored. They
may exist in parallel corpora but with so low a
frequency that often leaves NMT models to con-
sider them noise. Thus we propose to identify
paraphrase (that is, non-literal translation) cases
from NMT with the attention mechanism (Bah-
danau et al., 2014). While most work would pay
attention to the more strongly correlated parts in
the resulting word alignments which often indicate
very faithful and literal translation, we assume that
the less correlated parts would correspond to free
yet more fluent translation, provided that the bilin-
gual parallel corpus is of good quality. Preliminary
experiments are underway, and there are certainly
technical issues to overcome, including threshold
setting, noise filtering, and properly making use of
the less strongly aligned parts. Evaluation would
also need to be considered.
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Abstract

We systematically confirm that instructors
are strongly influenced by the user inter-
face presentation of Massive Online Open
Course (MOOC) discussion forums. In a
large scale dataset, we conclusively show
that instructor interventions exhibit strong
position bias, as measured by the position
where the thread appeared on the user in-
terface at the time of intervention. We
measure and remove this bias, enabling
unbiased statistical modelling and evalua-
tion. We show that our de-biased classifier
improves predicting interventions over the
state-of-the-art on courses with sufficient
number of interventions by 8.2% in F1 and
24.4% in recall on average.

1 Introduction

Massive Open Online Course (MOOC) platforms
continue to evolve towards facilitating a better on-
line learning experience. A key component of this
effort is in platforms’ ability to facilitate commu-
nication well, in part emulating the physical, face-
to-face synchronous classroom experience. De-
spite debate on their effectiveness (Onah et al.,
2014; Mak et al., 2010), MOOC discussion forums
are still the primary communication medium for
students to reach instructors.

In MOOCs, certain elements of traditional
teaching are challenged by the scale of the class
enabled by technology. The bandwidth of the
MOOC instructor is especially strained given the
high student-to-instructor ratio. Early research
to address this gap proposed the problem of pre-
dicting instructor’s intervention (Chaturvedi et al.,
2014) in MOOC forums, as a means of aiding in-
structors in prioritizing their time towards produc-
tive intervention. That is, given historical account

Figure 1: Coursera’s forum user interface used by
both instructors and students lists threads sorted
by “last updated time” by default. “top threads”
and “last created” are other available sort options.

of discussion threads that were intervened by in-
structors, can a model learn to predict future inter-
ventions?

However, in this and follow-on studies on the
same problem (Chandrasekaran et al., 2015b),
there is a tacit assumption that what instructors
actually intervene on is an optimal pattern of in-
tervention. An underlying issue remains: Is there
a difference between what instructors should in-
tervene on and what they actually intervene on?
Might there be systematic biases that influence the
decision to intervene? While suspected, to date
there has been no systematic study that proves that
such bias exists.

Our study definitively shows that the answer is
yes: instructors are biased and show suboptimal-
ity in their intervention patterns. Specifically, we
show that instructor interventions in MOOC fo-
rums are influenced by position bias, akin to users
of web search engines whose clicks on search re-
sults are biased by the order in which the results
are presented (Joachims et al., 2005). Instruc-
tors view the list of threads being discussed on
MOOC forums most often sorted by their “last up-
date time” such as in Figure 1. We find that the
distribution of instructor interventions over the po-
sitions of the sorted list of threads – the positional

135



rank – follows a log-normal distribution (see Fig-
ure 2). This implies that threads appearing at the
top of the list are more likely to be intervened than
those lower down. Given these defaults, observed
ordering of items is time-dependent: the threads
observed at one time can significantly differ be-
tween the different time points in which an in-
structor visits the forum. This effect, in turn, con-
tributes to possible arbitrariness in an instructor’s
decision to intervene.

The impact of this biased intervention is two-
fold. First, the training and evaluation of sta-
tistical models that use the biased intervention
data as in the previous work, is inaccurate. Sec-
ond, the biased intervention decision may cause
other intervention-worthy threads that appear fur-
ther down the list to not be intervened at all. While
previous work such as (Wise et al., 2012) propose
alternative discussion forum designs to address the
second problem the first problem deserves atten-
tion since large volumes of MOOC research data
(e.g., the Stanford MOOC posts dataset (Agrawal
and Paepcke, 2014))) has been collected from ex-
isting interfaces. In this paper, we propose meth-
ods to measure the bias and systematically remove
its effects from a statistical model that learns the
instructor’s intervention decision.

2 Preliminaries

Our corpus consists of discussion forum threads
from 14 MOOC instances across different sub-
ject areas hosted by various universities across the
world and taught by instructor teams of varying
sizes on Coursera1. In partnership with Coursera
and in line with its Terms of Service, we obtained
the data for use in our academic research2. Table 1
shows our corpus’ demographics.

A discussion thread consists of posts by stu-
dents, instructors, teaching assistants (TA) and
community teaching assistants (CTA). Following
prior work, we consider threads that are initiated
by a student and replied to at least once by an
instructor, TA or a CTA as an intervened thread.
Threads started by an instructor are omitted since
they are not interventions in a student discussion.
Our problem is to predict interventions at a thread
level, that is, the first post an instructor makes
on a thread. So, we truncate intervened threads

1Coursera is a commercial MOOC platform accessible at
https://www.coursera.org

2However, we are unable to release the data for research
without consent to release from the participating universities.

Course # of
threads

# of non– I. Ratio

(–Iteration) intervened interventions

BIOELEC 187 62 3.01
TRICITY-002
BIOINFO 129 105 1.23
METHODS1-001
CALC1-003 577 378 1.52
MATHTHINK-004 240 254 0.94
ML-005 883 1090 0.81
RPROG-003 359 738 0.49
SMAC-001 106 512 0.21
CASEBASED 25 96 0.26
BIOSTAT-002
GAME 22 100 0.22
THEORY2-001
MEDICAL 29 294 0.09
NEURO-002
COMPILERS-004 15 601 0.02
MUSICPROD 2 228 0.01
UCTION-006
COMPARCH-002 61 71 0.86
BIOSTATS-005 0 55 0.00

Total 2635 4584

Table 1: Thread counts over the four main sub-
forums of (Errata, Exam, Lecture and Homework)
of each course iteration, with their intervention ra-
tio (I. Ratio), defined as the ratio of # of intervened
to non-intervened threads.

by removing posts after the first instructor post.
We treat the problem of intervention prediction as
a binary classification problem where intervened
threads are positive samples and non-intervened
threads are negative samples. We report the pre-
dictive performance of the classifier as F1 score of
the positive class.

We study threads gathered from Coursera sub-
forums that are either self-identified or easily iden-
tifiable as contributing to the categories of Tech-
nical Issues, Exam, Errata, Lecture and Home-
work sub-forums. We omit others (e.g., General)
as they are noisy with social discussions, or other
reports on course logistics, irrelevant to the sub-
ject matter. To facilitate feature extraction we re-
move stopwords and replace occurrences of equa-
tions, URLs and video lecture timestamps with to-
kens <EQU>, <URL> and <TIMEREF>, re-
spectively.

2.1 Baseline Classifier to Predict
Interventions

We choose (Chandrasekaran et al., 2015b) as a
state-of-the-art baseline system, hereafter referred
to as EDM, for comparison. This system bettered
the original (Chaturvedi et al., 2014) system in
performance, and conducted work over a wider
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Id Thread Title Last Update Time
971 In-video quizzes cannot be submitted 2014-03-24 20:46
968 Submit button does not work in one ... 2014-03-24 19:36
967 There is a typo or error 2014-03-24 19:35
966 When I click on Quiz submit button ... 2014-03-24 19:33
963 Duplicate lecture content ... 2014-03-24 19:15
957 Broken hyperlink in email 2014-03-24 19:12
902 Mistake in Q1 HW2 2014-03-23 18:17

Table 2: An intervened thread (ID 971) which was
the last updated thread in this snapshot, taken at
the time of its intervention. The forum user in-
terface lists threads sorted by “last updated time”
by default, introducing a position bias in instructor
interventions. Note that thread with ID 962 is rel-
egated to the bottom is perhaps a more important
thread needing intervention.

range of MOOC instances.
EDM consists of a maximum entropy classi-

fier, a type of linear classifier that handles feature
spaces typical in text data, with several content-
based features extracted from student posts in
each thread. The features include unigrams (sev-
eral thousands of features) from student posts
weighted by its tf.idf score, the sub-forum type
in which the thread appears, the length of the dis-
cussion thread in terms of number of posts, av-
erage length of posts, number of comments per
post, discourse cues to the original post convey-
ing affirmations, non-lexical references such as
URLs to learner resources such as lecture mate-
rials, Wikipedia pages and timestamps in lecture
video. The ratio of intervened (positive class) to
non-intervened threads (negative class) is low (see
Table 1). This class imbalance leads to poor pre-
diction performance. To correct for this imbal-
ance, they used class weights on examples, esti-
mated as the ratio of intervened to non-intervened
threads.

3 Measuring Position Bias in
Interventions

To quantify the observed position bias on interven-
tions we fit the data from a larger corpus of 61 dif-
ferent MOOCs, inclusive of the 14 MOOCs listed
in Table 1 to different statistical distributions. For
each intervened thread we obtain the snapshots
of the list of threads ordered by their last modi-
fied time at the time of intervention. Using the
snapshots, we count the number of interventions
at each positional rank over all the courses, and
fit this distribution of interventions over positional
ranks against the power law and log-normal distri-
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Figure 2: Log–log plots of (top) positional rank
of threads vs. the # of interventions it received
(bottom) the complementary cumulative distribu-
tion function (CCDFs) of the empirical distribu-
tion (circles) of interventions fit over a power law
(grey line) and log–normal (red dashed line) distri-
butions. Plots show interventions are clearly posi-
tion biased and the log–normal (red dashed line)
curve fits the distribution better.

butions.
We obtained the best fit for the log-normal dis-

tribution with parameters µ = 2.054
(0.196)

;� = 1.652
(0.139)

.

Since our dataset is discrete we calculated the
Kolmogorov-Smirnov (KS) goodness-of-fit statis-
tic, D = 0.143, as prescribed by (D’Agostino
and Stephens, 1986). Log-normal distributions are
driven by multiplicative growth mechanism. It
is typical in UI user log data where the attention
(e.g., clicks) an object (e.g., search engine result)
receives is proportional to the attention it already
has. We did a model selection procedure to com-
pare the goodness of fit of the log-normal distribu-
tion versus a power law distribution. We used the
Likelihood ratio test (Clauset et al., 2009), where
a positive sign on the log likelihood ratio with a
p < 0.1 on the one-sided p-value rules out a bet-
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ter fit to the competing distribution. Our results
indicate that the log-normal distribution is a sig-
nificantly better fit than a power law distribution
(�3.36; p < 0.001; see Figure 2). The parameters
of the distribution, µ and � and the goodness-of-
fit statistics, together quantify the position bias on
interventions.

The above analysis shows that position is
strongly correlated with intervention. This is not
surprising; if instructors intervene often or if they
can predict periods when intervention might be
warranted (say, when an assignment is due), we
should expect high correlation. To show that the
position correlation leads to unwanted bias, we
need to demonstrate that instructors intervene sub-
optimally and favor intervening on results at the
top at the cost of other, possibly more productive
threads.

4 Does Position Bias Predict
Intervention?

We ask if the signal from the position bias is strong
enough to improve intervention prediction over the
state-of-the-art (EDM). To test this hypothesis we
model position bias as a simple, binary-valued fea-
ture set to 1 for a thread with a positional rank 1,
and 0 otherwise. We augment this single feature to
the feature set of EDM to create a new EDM+PB
system. We compare the performance of EDM and
EDM+PB individually over each of the 14 courses
in Table 1. The models are trained on a random
sample of 80% of the threads of a course and tested
on the remaining 20%.

Table 3 shows the results from this experi-
ment. On average, even this simple, position-
augmented classifier improves EDM by a large
margin of 13.7% in weighted macro average
and 17.6% in simple macro average. CALC1-
003 and BIOELECTRICITY-002 are notable ex-
ceptions where EDM+PB performs significantly
worse than EDM. The intervention ratio of both
these courses are above 1.0 (cf Table 1). We did
not observe any decay in the numbers of inter-
ventions by position for these courses. Looking
in depth, the instructors of these two courses may
have monitored the forums continuously and tried
to intervene on every thread, or may have also in-
tervened without bias, based on the content.

The improvement on average and in the remain-
ing courses is mainly due to increase in precision.
This further indicates that the interventions are

EDM EDM+PB
Course P R F1 P R F1

BIOELEC 76.9 60.6 67.8 100.0 24.2 39.0
TRICITY-002
CALC1-003 65.4 88.5 75.2 100.0 49.6 66.3
BIOINFOR 35.3 26.1 30.0 100.0 56.5 72.2
METHODS1-001
MATHTHINK-004 36.8 17.1 23.3 100.0 48.8 65.6
ML-005 81.1 46.5 59.1 92.8 55.7 69.6
RPROG-003 47.2 50.0 48.6 67.3 51.5 58.3
SMAC-001 23.5 15.4 18.6 100.0 73.1 84.4
CASEBASED 8.3 50.0 14.3 20.0 50.0 28.6
BIOSTAT-002
GAME 25.0 14.3 18.2 100.0 57.1 72.7
THEORY2-001
MEDICAL 83.3 83.3 83.3 100.0 100.0 100.0
NEURO-002
COMPILERS-004 33.3 50.0 40.0 33.3 50.0 40.0
COMPARCH-002 42.9 60.0 50.0 100.0 30.0 46.2

Macro Avg. 43.0 43.2 43.1 78.0 49.7 60.7

Table 3: Prediction performance of the position-
augmented system EDM+PB showing significant
improvement, over the baseline line EDM. Scores
on musicproduction-006, biostats-005 are 0 due to
low I. Ratio and are omitted.

strongly correlated with the position bias feature.
Strikingly, on 8 out of the 14 courses, EDM+PB
achieves a 100% precision. Examining the pre-
dictions in these courses, we found that the posi-
tion bias feature was turned on in every correct in-
tervention prediction, accounting for the improved
performance.

5 De-biased Classifier

The EDM baseline does not account for the biased
(non-) interventions. Due to the presence of
position bias, thread instances thus vary in their
propensity to be intervened. We need to counter
the bias at the instance level. To implement
this, we perform per-instance weighing with an
appropriate classifier. We use SVM (Joachims,
1999)3, with the default linear kernel. We com-
pute the per instance weights, winst, of intervened
(positive) and non-intervened (negative) threads
from two implicit signals respectively. They
are (i) instructor’s propensity to intervene due to
thread’s positional rank (ii) instructor’s confidence
in discarding a thread from intervention.

Instance Weight Estimation. We estimate the
propensity of a thread to be intervened from its ob-
served positional rank. To discover an intervened
thread’s positional rank at its intervention time ti,

3We use the SVM implementation SVMlight (http://
svmlight.joachims.org/)
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Biased De-biased
Course P R F1 P R F1

ML-005 56.7 61.6 59.1 55.1 79.0 64.9
RPROG-003 67.5 33.8 45.1 36.2 75.0 48.0
CALC1-003 63.5 93.8 75.7 61.5 92.0 73.8
MATHTHINK-004 39.3 26.8 31.9 47.4 65.9 55.1
BIOELEC 77.8 63.6 70.0 77.5 94.0 84.9
TRICITY-002
BIOINFOR 40 34.8 37.2 51.61 69.6 59.3
METHODS1-001
COMPARCH-002 43.8 70.0 53.9 44.4 80.0 57.1

Macro Avg. 55.5 54.9 55.2 53.4 79.3 63.4

Table 4: Model performance of the de-biased clas-
sifier Vs. a biased (SVM with class weights) clas-
sifier. I. Ratio on these courses are between 0.49
and 3.01. Best performance is bolded.

we reconstruct the snapshot of the thread (see Fig-
ure 2) listing at ti. The number of interventions
at each positional rank over all interventions was
counted and normalised into probabilities. We
then use the propensity of a thread to be intervened
given its positional rank, p(i = 1|r) to derive its
weight, winst = 1 � p(i = 1|r). That is, we
weigh interventions that happen on threads with
high positional ranks (i.e., towards the bottom of
the user interface) as more significant and higher
than those that occur on low positional ranks (i.e.,
towards the top of the user interface).

We also weigh non-intervened threads. We
count the number of times a thread is skipped
in favour of a different thread to intervene (# of
snapshots where a non-intervened thread had ap-
peared).

The resultant de-biased classifier (denoted
EDM+DB) uses the same feature set used by the
state-of-the-art-baseline, EDM. We compare its
performance against a biased classifier, a system
with the same feature set as EDM but without any
instance weights. The biased classifier is equiva-
lent to the EDM baseline.

6 Results and Discussion

The EDM+DB classifier varies in its performance
in removing bias across different courses. To bet-
ter understand its varied improvement, we exam-
ine its performance through three related ques-
tions.

1. How well does the de-biased classifier per-
form? Our de-biased classifier improves over the
biased classifier on courses with sufficient number
of interventions by 8.2% in F1 and 24.4% in recall
on average (see Table 4). We observe that the per-

formance of the de-biased classifier is sensitive to
the number of interventions in the course. This is
because the propensity score estimation (and the
per-instance weights) are dependant on the num-
ber of times we can observe the state of the fo-
rum. De-biasing improves the F1 on the high ra-
tio courses in Table 4 (I. Ratio between 0.49 and
3.01), but does not improve F1 performance for
the 7 courses listed in Table 5, which all have low
intervention ratios (less than 0.20).

2. Can the de-biased classifier recover interven-
tions that are missed by the biased classifier? To
be concrete, here we examine instances that were
intervened by the instructor (positive), and iden-
tified correctly by our EDM+DB classifier (pos-
itive) but not by the biased classifier (negative).
We randomly sampled 25 of 81 such instances that
covered the courses in Table 3. The first author ex-
amined each of these threads and their instructor
intervention using a taxonomy for interventions
proposed by (Chandrasekaran et al., 2015a). This
taxonomy grounded in pedagogy deems certain in-
tervention types (e.g., justification request) are ef-
fectively made exclusively by instructors whereas
certain other types (e.g., clarification) are optional
for an instructor to make as peers can do them
well enough. On this basis, the first author clas-
sified the 25 samples into those that warrant an in-
structor intervention and those that are optional. It
was found that on 11 (44%) out of the 25 threads,
instructor intervention was warranted. In the re-
maining 13, peers were actively answering the
query, so we deemed these cases as optional for in-
tervention. None of the threads were found to be
solved or closed before the instructor intervened.
We interpret this as a win for the EDM+DB clas-
sifier.

3. Can the de-biased classifier identify thread
instances that were not intervened due to the po-
sition bias? Here, we examine instances that
were not intervened by an instructor (negative),
but were predicted to need intervention (positive)
by EDM+DB. Again, we randomly sampled 25 of
42 such instances. As before we judged 9 (36%)
instances as needing instructor intervention; i.e.,
we believe that instructors should have intervened,
even though they did not. Two such instances are
shown in Fig. 3. Another 8 (32%) instances had
peer answers, which we deem as being optional.
The remaining 8 were either solved or had social
chatter that did not require instructor intervention;

139



Example 1: Thread Title: There is a mistake at 6:00 in
the Week 3 Regularization - Cost Function lecture
Original Poster:The error can be seen and heard in the
Week 3, Regularization, Cost Function lecture at the 6 min
mark (image attached). The newly added regularization
summation term in pink is written as the summation over
variable i, but theta is subscripted with j. The summation
should be over variable j. Andrew Ng also orally refers to
“summation over i” of that term, which again should be
summation over j. The next slide shows a typeset version
of the formula with the correct subscripts. Screenshot:

Example 2: Thread Title: PS6 #2
Original Poster: I missed this one so I thought I’d seek
clarification. If a nonempty finite set X has n elements,
then X has exactly 2n distinct subsets. In the proof, the
validation of n = 1 used the two subsets and itself. But I
thought this was contrary to the statement “if a nonempty
finite set”... Can someone help me understand this be-
cause set theory is definitely a weekness of mine.
(various student answers follow ...)
Original Poster: I understand the empty set is a subset of
every set, and i agree that the the Theorem is true, but in
the proof, when element a is added to each subset, isn’t it
also added to the emtpy set, which would then create the
situation of not having an empty set now? Just confused
about how the proof handles the empty set situation with
the ‘union U’ procedure in the middle of the proof story.

Figure 3: Two threads that should have been inter-
vened by instructors, where EDM+DB correctly
identifies as needing intervention. Example 1
shows a thread that should be identified as an erra-
tum report; Example 2 shows a thread where the
original student poster expresses confusion that
has not been clarified by any of the student an-
swers.

but we note that such threads can easily be iden-
tified. Solved threads could be easily identified
by attending to the last post made by the orig-
inal poster, or the overall last post, both which
typically provide the final answer to the original
poster’s query and solves the thread. In one in-
stance, the solved status of the thread was later in-
dicated in the (updated) title of the thread, which
could be easily captured.

We interpret this as major win for the de-biased
classifier, as it can reliably pick out threads that
have been overlooked by instructors that need in-
tervention, with the false negative cases largely
easy to correct using simple heuristics.

7 Related Work on Modelling Position
Bias

Position bias due to the user interface and its ef-
fects on user behaviour has been observed in many
domains. Much research on modelling or debias-
ing position exist, mainly in the context of web

search engines (Joachims et al., 2005; Pan et al.,
2007; Craswell et al., 2008; Wang et al., 2016;
Joachims et al., 2017) and recommendation sys-
tems (Schnabel et al., 2016; Liang et al., 2016).
Joachims et al. (2005) and Pan et al. (2007) con-
ducted eye-tracking experiments to confirm that
users gaze at search results at top of the page and
are, therefore, more likely to click them more of-
ten than the rest of the results. They observed
that click behavior was biased, and does not al-
ways correlate with the relevance of the search
result. Craswell et al. (2008) found that a cas-
cade model – which posits that users examine re-
sults from top to bottom – best explained the bias.
This examination pattern has been revisited by
others (e.g., Liu et al. (2014)). In our study, we
are interested in modeling user behavior and de-
biasing and correcting for it. Similar work has
also been pioneered in the Web context. To model
such observed user behaviour, improved ranking
and click models were proposed. Joachims et
al. (2005) proposed strategies to learn the relative
preference between search results which are unbi-
ased estimates of relevance. More recently, Schn-
abel et al. (2016) provided a generic framework
to remove noise from biased training and evalua-
tion data for recommender systems. Their algo-
rithm learns disproportionately from items in rec-
ommendation systems according to their propen-
sity to be clicked.

All the above works had access to reliable surro-
gate signals such as mouse cursor movements and
clicks. In our MOOC scenario, we have only inter-
ventions (or lack of), recorded as instructor posts.
Further, ranking frameworks assume a query to
which retrieved items are listed in relevance or-
der. In contrast, the default view of discussion
forums are not ordered by relevance. While we
cannot directly apply existing work to our setting,
we draw from their inspiration and use the prefer-
ential judgement of the instructor to de-bias inter-
ventions.

8 Conclusion

We confirm the existence of position bias in in-
structor interventions in MOOC discussion forums
and provide for a way to statistically quantify the
bias. To enable accurate modelling and analy-
sis we further proposed a de-biased classifier to
counter for the bias and learn from biased instruc-
tor interventions. We show that the de-biased clas-
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Biased De-biased
Course P R F1 P R F1

MEDICAL 100 83.33 90.9 66.7 33.3 44.4
NEURO-002
SMAC-001 71.4 19.2 30.3 66.7 7.7 13.8
CASEBASED 10.0 50.0 16.7 9.1 50.0 15.4
BIOSTAT-002
GAME 50.0 14.3 22.2 16.7 14.3 15.4
THEORY2-001

Macro Avg. 33.1 23.9 27.7 22.7 15.0 18.1

Table 5: EDM+DB performance on low inter-
vention (I. Ratio 0.0 to 0.2) courses compared
against a SVM classifier with class weights, where
each MOOC is evaluated individually. Best per-
formance is bolded. Scores on compilers-004,
musicproduction-006, biostats-005 are 0 due to
low I.Ratio and are omitted.

sifier improves prediction when the training data
consists of sufficient interventions. Importantly,
the classifier can also identify clear cases where
intervention is warranted but were overlooked by
instructors.

We confirm earlier findings (Wise et al., 2012;
Marbouti and Wise, 2016) on the bias induced by
UI/UX. Since the effect of position bias, when ex-
trapolated, can diminish students’ learning gains
by compromising the instructor’s ability to judi-
ciously intervene, we also call attention to the
community to be mindful of the bias that UI/UX
design can induce in MOOC platforms, intelligent
tutoring systems and learning management sys-
tems, and to make design choices to mitigate this
bias.
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Abstract

Search engine is an important tool of mod-
ern academic study, but the results are lack
of measurement of beginner friendliness.
In order to improve the efficiency of us-
ing search engine for academic study, it
is necessary to invent a technique of mea-
suring the beginner friendliness of a Web
page explaining academic concepts and to
build an automatic measurement system.
This paper studies how to integrate het-
erogeneous features such as a neural im-
age feature generated from the image of
the Web page by a variant of CNN (con-
volutional neural network) as well as text
features extracted from the body text of
the HTML file of the Web page. Integra-
tion is performed through the framework
of the SVM classifier learning. Evalua-
tion results show that heterogeneous fea-
tures perform better than each individual
type of features.

1 Introduction

Search engine is a quite important tool for ob-
taining fundamental as well as practical knowl-
edge when it comes to the study of academic con-
cepts. However, when we intend to find begin-
ner friendly Web pages through search engine, it
is necessary to compare many pages by manual
work. The reason of ineffective manual compari-
son is that there is no systematic criterion on mea-
suring beginner friendliness of Web pages in the
results of search engine. Therefore, it comes up
with us to invent a technique of measuring begin-
ner friendliness of Web pages explaining academic
concepts automatically, and finally build a whole
assisting system for promoting academic study us-
ing search engine, which would improve the effi-

ciency of Web learning.
More specifically, this paper proposes how to

automatically measure beginner friendliness of
Web pages explaining academic concepts. Before
we formalize the framework of automatic mea-
surement of beginner friendliness of Web pages
explaining academic concepts, we examine how
we manually measure beginner friendliness of
those Web pages. The upper half of Figure 1 lists
each individual factor that are supposed to be con-
sulted when we judge the overall beginner friend-
liness of those Web pages. This paper, namely,
considers that those individual factors include a)
whether or not to contain definition of academic
concepts, b) whether or not to contain formulas,
c) whether or not to contain figures, d) whether or
not to contain examples, e) beginner friendliness
of the text of the Web page, and f) visual intelligi-
bility of the Web page layout.

Figure 2(a) shows an example of beginner
friendly Web page explaining an academic con-
cept (“probability density function”) of the field
of statistics. The Web page of Figure 2(a) can be
judged as beginner friendly since it has a visually
intelligible layout of the title of the page, the for-
mula, the text of its explanation, and its figure. The
text of its explanation is simple but easy to under-
stand, while it has a reference for further studies in
the bottom of the page. Figure 2(b), on the other
hand, illustrates typical cases of Web pages ex-
plaining academic concepts that are not beginner
friendly. The case 1 contains a sufficient defini-
tion of the academic concept, a figure, a formula,
and an example, while its layout is not visually
intelligible and its explanation text is not easy to
understand. The case 2 is an opposite case, which
has a visually intelligible layout as well as the ex-
planation text which is easy to understand, while
it lacks a figure nor an example, and having an in-
sufficient definition of the academic concept.
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Figure 1: Beginner Friendliness of Web Pages explaining Academic Concepts: Manual Judgment vs.
Automatic Judgment by SVM

(a) An Example of Beginner Friendly Web Page (excerpt from
https://mathtrain.jp/pmitsudo)

Case 1
• having its definition, figure, formula, and example, 
• insufficient in visual intelligibility nor in beginner 

friendliness of text.

Case 2
• having visually intelligible layout and beginner 

friendly text.
• no figure / no example, insufficient definition

(b) Typical Cases of Beginner Unfriendly Web Pages

Figure 2: Beginner Friendly/Unfriendly Web Pages explaining Academic Concepts
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(a) linear algebra, physics, IT, and statistics (b) biology, programming, and chemistry

Figure 3: Rate of Beginner Friendly Web Pages explaining Academic Concepts ranked at 10th or Higher
in the Results of Search Engine

More importantly, when we intend to find be-
ginner friendly Web pages explaining academic
concepts through search engine, it is necessary to
compare many pages by manual work. The reason
of ineffective manual comparison is that there is no
systematic criterion on measuring beginner friend-
liness of Web pages in the results of search engine.
Figure 3 shows an evidence of non-existence of
such systematic criterion on measuring beginner
friendliness of Web pages ranked at 10th or higher
by Google search engine in the case of the over-
all 96 queries of academic terms from the seven
academic fields of linear algebra, physics, biol-
ogy, programming, IT, statistics, and chemistry.
The figure plots the rates of the beginner friendly
Web pages among those ranked at N -th or higher
(N = 1, . . . , 10), among which are mostly those
explaining academic concepts of the query aca-
demic terms. This evidence supports the claim that
there is no systematic criterion on measuring be-
ginner friendliness of Web pages explaining aca-
demic concepts in the results of Google search en-
gine.

Based on such observation as well as the mo-
tivation of finding beginner friendly Web pages
explaining academic concepts, this paper studies
how to automatically measure beginner friendli-
ness of Web pages explaining academic concepts.
As we formalize in the lower half of Figure 1,
we integrate heterogeneous features such as a neu-
ral image feature generated from the image of the
Web page by a variant of CNN (convolutional neu-
ral network) as well as text features extracted from
the body text of the HTML file of the Web page.
Among those individual factors above, the neural

image feature is mostly intended to cover f) vi-
sual intelligibility of the Web page layout, while
it also partially covers a) definition of academic
concepts, b) formulas, c) figures, and d) examples.
The text features, on the other hand, are intended
to cover d) examples, and e) beginner friendliness
of the text of the Web page.

This paper formalizes to integrate those hetero-
geneous features through the framework of the
SVM classifier learning. Evaluation results show
that heterogeneous features perform better than
each individual type of features.

2 Factors of Beginner Friendliness of
Web Pages explaining Academic
Concepts

This section describes details of individual factors
of beginner friendliness of Web pages explaining
academic concepts, as well as their correlations to
the overall judgment of beginner friendliness of
Web pages.

2.1 Individual Factors

As we describe in the previous section as well as in
the upper half of Figure 1, we abstract six individ-
ual factors including definition, formula, figure,
example, beginner friendliness of text and Web
page layout. For each factor, the followings il-
lustrate rough rules on how we manually measure
each factor.

(a) Definition: with this factor, it is examined
whether the Web page contains correct and
precise definition of the explained academic
concept.
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Table 1: Query Academic Terms
academic

fields
# of

queries academic terms

linear algebra 14 階数 (rank), 共役勾配 (conjugate gradient), 行列式 (determinant), クラメルの公式
(Cramer’s rule),クロネッカーのデルタ (Kronecker delta),三角行列 (triangular matrix),
正規直交基底 (orthonormal basis), 対角化 (diagonalization), 直交行列 (orthogonal
matrix), 特性多項式 (characteristic polynomial), 二次形式 (quadratic form), ノルム
(norm),メネラウスの定理 (Menelaus’ theorem),ヤコビ行列 (Jacobian matrix)

physics 15 電気力線 (line of electric force),張力 (tension),慣性の法則 (Newton’s first law),遠心
力 (centrifugal force), 電波 (radio wave), 電流 (electric current), 万有引力 (universal
gravitation),交流 (alternating current),音波 (acoustic wave),ホイートストンブリッジ
(Wheatstone bridge),反発係数 (coefficient of restitution),相互誘導 (mutual induction),
正電荷 (positive electric charge),速度 (velocity),変圧器 (transformer)

biology 7 DNA,ショウジョウバエ (Drosophilidae),原核生物 (Prokaryote),減数分裂 (meiosis),
光合成 (photosynthesis),細胞 (cell),葉緑体 (Chloroplast)

programming 15 C 言語 (C), Java, エスケープシーケンス (escape sequence), コマンドライン引数
(command line arguments), スコープ (scope), フィールド値 (field value), ポインタ
(pointer),メソッド (method),繰り返し処理 (repetitive processing),構造体 (structure),
算術演算子 (arithmetic operator),条件分岐 (branch),配列変数 (array variable),文字
列 (string),論理演算 (logical operation)

IT 15 API, DBMS, HTML, IP アドレス (IP address), JDBC, RDB, SDK, SQL, Unicode,
URL,スコープマネジメント (scope management),ステークホルダーマネジメント
(stakeholder management),タイムマネジメント (time management),ナレッジマネジ
メント (knowledge management),リスクマネジメント (risk management)

statistics 15 事後分布 (posterior distribution),確率 (probability),相関係数 (correlation coefficient),
信頼区間 (confidence interval), k平均法 (k-means clustering),回帰分析 (regression),十
分統計量 (sufficient statistic),確率密度関数 (probability density function),ガンマ分布
(gamma distribution),事前分布 (prior distribution),主成分分析 (principal component
analysis), コーシー分布 (Cauchy distribution), f 分布 (F distribution), 自己回帰モデ
ル (autoregressive model),自己回帰 (autoregressive)

chemistry 15 イオン結合 (ionic bond),エステル (ester),カルボン酸 (carboxylic acid),ケトン (ke-
tone), 化学反応式 (chemical equation), 化学平衡 (chemical equilibrium), 共有結合
(covalent bond), 合成高分子 (synthetic polymer), 酸化還元 (redox), 遷移元素 (tran-
sition elements), 典型元素 (main-group element), 天然高分子 (natural polymer), 燃
料電池 (fuel cell), 物質の三態 (three states of matter), 芳香族有機化合物 (aromatic
compounds)

total 96 —

(b) Formula: with this factor, it is examined
whether the Web page contains formula
within its text or figures. The formulas
should be relevant to the academic concept
explained in the Web page.

(c) Figure: with this factor, it is examined
whether the Web page contains figures or pic-
tures relevant to the academic concept ex-
plained in the Web page, except when the fig-
ure shows formula(s) only.

(d) Example: with this factor, it is examined
whether the Web page contains examples rel-
evant to the academic concept explained in
the Web page, including examples of applica-
tion, proof, explanation and so on. When the
examples are shown in figures, it is consid-
ered as positive for both of the factors figure
and example.

(e) Beginner friendliness of text: with this factor,
it is examined whether the text of the Web

page is beginner friendly. More specifically,
the amount of information of the text content
needs to be within a certain range. The begin-
ner friendliness of the text is violated when
too many occurrences of technical terms are
observed in the text. It is also required that if
too little or too much academic information
is included in the text, then that is regarded
as violating beginner friendliness of the text.
Another criterion is to avoid that the text is to
be too stiff.

(f) Visual intelligibility of Web page layout:
with this factor, it is examined whether the
layout of the Web page is visually intelligi-
ble. More specifically, the topmost part of
the Web page should not be only in text, but
should also include figures. Also, the rate of
of the area of advertisements should be less
than a certain upper bound. Furthermore, the
background of the Web page should not be
in dark color. It is recommended that the top
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page has a menu bar as well as a table of con-
tents.

2.2 Overall Measurement considering
Individual Factors

When we manually judge the overall beginner
friendliness of Web pages explaining academic
concepts, there exist certain rules and each indi-
vidual factor has a certain correlation to the overall
judgment. Out of the a) to f) individual factors, the
three factors a) definition, e) beginner friendliness
of text, as well as f) visual intelligibility of Web
page layout, are primary factors compared to the
remaining other three factors. All the three two
factors should be satisfied in order for the over-
all beginner friendliness to be satisfied. When all
the three factors are satisfied, the overall beginner
friendliness tends to be satisfied if at least one of
the remaining three factors is satisfied. Out of the
remaining other three factors, the more of them
are satisfied, the more the overall beginner friend-
liness is satisfied.

3 Reference Data Set of Web Pages
Explaining Academic Concepts

This section describes the details of how we col-
lect the reference data set of Web pages explaining
academic concepts as well as the procedure before
we judge the overall beginner friendliness of each
collected Web page explaining academic concepts
according to the criterion discussed in the previous
section.

3.1 Academic Fields and Concepts for Study

As for the academic fields for which we collect
academic terms to be used as queries, we focus
on those within science and technology academic
fields, mainly because science and technology aca-
demic fields tend to have similar criterion on judg-
ing the beginner friendliness of text, the visual in-
telligibility of the Web page layout, and the overall
beginner friendliness of the Web page itself. Out
of those science and technology academic fields,
we select the following seven for study: linear al-
gebra, physics, biology, programming, IT, statis-
tics, and chemistry. For each filed, we select 15 or
less academic terms as queries for academic con-
cepts that are around the level of high school or
university education, as listed in Table 1. Those
query academic terms are selected under the cri-
terion that certain number of Web pages ranked at

10th or higher by Google search engine are those
explaining academic concepts.

3.2 Reference Data Set

For each academic term collected in the previ-
ous section, we collect the highest 10 Web pages
ranked by the Google search engine when each
academic term used as the query. In this procedure
of collecting Web pages, we ignore Web pages
whose HTML files can not be accessed. Then, the
first author of this paper1 judged the overall begin-
ner friendliness as well as the visual intelligibility
of the Web page layout of each collected Web page
explaining academic concepts according to the cri-
terion discussed in Section 2. Finally, in the pro-
cedure of fine-tuning the VGG16 model for judg-
ing visual intelligibility of the layout of the Web
pages explaining academic concepts, we consider
those Web pages which satisfy the visual intelligi-
bility as positive samples while those which do not
satisfy the visual intelligibility as negative sam-
ples, where their numbers are as shown in Table 2.
Similarly, in the procedure of training the SVM
classifier for judging the overall beginner friendli-
ness of the Web pages explaining academic con-
cepts, we consider those Web pages which satisfy
the overall beginner friendliness as positive sam-
ples while those which do not satisfy the overall
beginner friendliness as negative samples, where
their numbers are also as shown in Table 2. Out
of the total seven academic fields, we use the Web
pages from five academic fields as training sam-
ples, while those from the remaining two as test
samples.

4 Neural Image Feature

This section describes the procedure of transform-
ing each Web page explaining academic concepts
into its Web page layout image, and then of gen-
erating the neural image feature expression from
each Web page layout image.

1 In the preliminary study where two authors of this paper
worked on developing reference data set and analyzed their
agreement rate, it is discovered that the results of the task
of judging the overall beginner friendliness of Web pages ex-
plaining academic concepts as well as the visual intelligibility
of their Web page layout may vary according to the annota-
tors’ knowledge level as well as preferences. Thus, in this
paper, in the procedure of developing reference data set, we
prefer the consistency of the reference data and we decided
to develop reference data set with only one annotator.
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Table 2: Numbers of Positive/Negative Samples of Manual Judgment of Visual Intelligibility of Page
Layout and Overall Beginner Friendliness of the Web Page

visual intelligibility overall beginner
friendliness

academic fields positive negative positive negative total
linear algebra 31 58 36 53 89
physics 34 93 26 101 127

training biology 12 52 17 47 64
programming 58 84 70 72 142
IT 37 52 39 50 89
total 172 339 188 323 511
statistics 58 53 49 62 111

test chemistry 50 83 49 84 133
total 108 136 98 146 244
total 280 475 286 469 755

4.1 VGG16 (Simonyan and Zisserman, 2015)

It has been well known that deep learning tech-
niques have been applied to a number of tasks in a
broad range of research fields and have achieved
remarkable improvement over the state of the
art baselines. In the domain of pattern recogni-
tion such as image recognition, especially, it is
noted that convolutional neural networks (CNN)
as well as a large scale image data set such as
ImageNet (Russakovsky et al., 2014) greatly con-
tribute to achieving high performance in various
image recognition tasks. Furthermore, parame-
ters of CNN pre-trained using a large scale gen-
eral purpose data set of images (e.g. natural im-
ages) have been proved to be quite useful for ex-
tracting universal features that can be easily fine-
tuned to image recognition tasks of certain specific
domains such as the medical domain (Shin et al.,
2016; Tajbakhsh et al., 2016).

Following those successes of the approach
of fine-tuning of pre-trained general purpose
CNN parameters for image recognition, this pa-
per applies the approach to the task of auto-
matic judgment of visual intelligibility of the lay-
out of the Web pages explaining academic con-
cepts. More specifically, we employ VGG16
model (Simonyan and Zisserman, 2015) as the
general purpose CNN for extracting universal fea-
tures. VGG16 model won second prize in the im-
age classification task and first prize in the single-
object localization task in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC)
2014 (Russakovsky et al., 2014). Its neural net ar-
chitecture consists of a stack of 13 convolutional
layers with 5 intermediate max-pooling layers,
followed by three fully-connected layers, among
which the third layer performs 1000-way ILSVRC

classification with 1000 channels (one for each
class). The final layer is the soft-max layer.
The VGG16 model is pre-trained for the task of
1000-way ILSVRC classification with the Ima-
geNet 2014 data set and is publicly available. It
is also known that the pre-trained VGG16 model
is widely transferable to other image recognition
tasks through fine-tuning. In this paper, as one of
the available versions of VGG16 model, we em-
ploy the one2 available as a model within Keras3,
an open source neural network library written in
Python.

4.2 Feature of Visual Intelligibility of Web
Pages explaining Academic Concepts

This section describes how to generate the neu-
ral image feature expression from the layout each
Web page explaining academic concepts.

First, each Web page is transformed into its
Web page layout image, to which the fine-tuned
VGG16 model is applied so as to automatically
judge the visual intelligibility of the Web page lay-
out image.

Next, in the fine-tuning of the VGG16 model,
its three fully-connected layers of 1000-way
ILSVRC classification as well as the soft-max
layer are replaced with another three fully-
connected layers of binary classification (of judg-
ing visual intelligibility of the Web page layout
image) as well as the soft-max layer. Through-
out the fine-tuning, out of the overall 13 convo-
lutional layers with 5 intermediate max-pooling
layers, pre-trained parameters of 10 convolutional
layers with 4 intermediate max-pooling layers are

2 https://github.com/keras-team/keras/
blob/master/keras/applications/vgg16.py

3 https://keras.io/ja/
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kept unchanged, while the remaining three con-
volutional layers, one max-pooling layer, and the
subsequent three fully-connected layers are fine-
tuned with the reference training data set (i.e.,
from the five academic fields of linear algebra,
physics, biology, programming, and IT) developed
in Section 3.2. Those Web pages from the two
remaining academic fields of statistics and chem-
istry are the reference test samples.

The actual feature values utilized in the sub-
sequent classifier learning of judging the overall
beginner friendliness of the Web page explain-
ing academic concepts are the score of the soft-
max function, ranging within the interval of [0,1],
which can be regarded as the confidence of judg-
ing the visual intelligibility of the Web page lay-
out.

More specifically, for the five training academic
fields, each Web page is annotated with the neu-
ral image feature according to the following pro-
cedure: i.e., we fine-tune the VGG16 model with
four training academic fields out of the total five,
then, each Web page of the remaining one training
academic field is annotated with the visual intel-
ligibility judged by the VGG16 model fine-tuned
with the other four training academic fields.

For the two test academic fields, on the other
hand, first we fine-tune five VGG16 models each
of which is fine-tuned with four out of five training
academic fields. Then, for each test Web page ex-
plaining academic concepts, out of those five fine-
tuned VGG16 models, one model is randomly se-
lected and applied to the test Web page, where the
test Web page is annotated with the visual intelli-
gibility judged by the selected fine-tuned VGG16
model.

5 Text Features

Within the scope of this paper, as the text fea-
tures for judging the beginner friendliness of the
text of explaining academic concepts, almost low
level features such as frequencies of character
types, words/strings, and HTML tags for pagina-
tion functions are employed. The number of spe-
cific features among those three types of text fea-
tures employed in this paper is ten in total. With
a preliminary evaluation procedure, we examined
much larger candidates list of text features includ-
ing those ten features4, and then, we decided to

4 Actually, we examined in total 26 features, i.e., eight
character type features, 16 word/string features, HTML tag

Figure 4: Evaluation Results

employ only those ten features.

5.1 Character Type Features

Japanese sentences are composed mostly of three
types of characters, kanji, hiragana, and katakana.
Kanji is Chinese characters. Hiragana and
katakana are original Japanese characters, where
hiragana character is used for Japanese words not
covered by kanji and for grammatical inflections,
while katakana character is used for transcrip-
tion of foreign language words into Japanese and
the writing of loan words, for emphasis, for ono-
matopoeia, for technical and scientific terms, and
for names of plants, animals, minerals, and often
Japanese companies. Following those situations of
character types of Japanese sentences, as character
type features, we use frequencies of those three
character types, kanji, hiragana, and katakana.

5.2 Word/String Features

In this paper, we examined various words/strings
as candidates of word/string features, where
we finally decided to employ the following six
Japanese words/strings and use the frequencies of
those words/strings as word/string features.

• “利用規約”(terms of use)

• “相談”(consultation)

• “ノウハウ”(know-how)

• “法”(a constituent character of words such as
“方法”(expedient) and “手法”(method))

features for pagination, and HTML tag features for images,
out of which ten is selected as an optimal feature combina-
tion.
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• “困”(a constituent character of a verb “困る”
(get into a situation where one needs assis-
tance), where it is intended to count the fre-
quency of a phrase such as “こんな困ったこ
とありませんか?” (Do you have any experi-
ence of having a trouble like this?))

• Total frequencies of a word “例”(example)
and symbols “Q0”, . . ., “Q9”, which are in-
tended to count the frequencies of examples
and questions.

5.3 Pagination Feature
This feature is introduced to detect paginated Web
pages, where a Web page content is divided into
a sequence of paginated numbered Web pages.
More specifically, any digit sequence immediately
after the HTML tag “>” and immediately before
the HTML tag “<” is detected and their frequency
is counted and used as the pagination feature.

6 Evaluation

6.1 Evaluation Procedure
In this paper, we apply the sklearn.SVM.SVC tool
of scikit-learn (Pedregosa et al., 2011) package to
the task of judging the overall beginner friendli-
ness of the Web page explaining academic con-
cepts. Here, for each Web page, the overall begin-
ner friendliness of the Web page explaining aca-
demic concepts is used as the class value. We ex-
amined the following two approaches to binarizing
features which take more than two discrete values
or continuous values;

(a) Dividing the range of discrete values or the
continuous values into a certain number of
disjoint sub-ranges each of which is exclusive
of other sub-ranges.

(b) Dividing the range of discrete values or
the continuous values into a certain number
of overlapping sub-ranges which share their
lower bounds, i.e., those sub-ranges have ex-
actly the same lower bound.

Through the preliminary evaluation, we employed
the approach (b), where the ranges of discrete fea-
ture values or the continuous feature values are di-
vided into 20 to 40 overlapping sub-ranges. As
the kernel function of the SVM, we used the Ra-
dial Basis Function (RBF) kernel. A cost parame-
ter (1 or 10) and a gamma parameter (0.01, 0.001,
and 0.0001) of RBF kernel were set by grid search
where the area of the ROC curve is optimized.

6.2 Evaluation Results
In the evaluation, we plot recall-precision curves
by changing the lower bound of the confidence
score of the SVM judgment. Figure 4 compares
the performance the following three combinations
of features:

(i) Both the neural image feature and the text
features are used.

(ii) Only the neural image feature is used.
(iii) Only the text features are used.

The evaluation results clearly show that integrat-
ing the two types of features as in (i) outperform
each individual feature(s) (ii) and (iii).

7 Related Work

No existing work studied the task of judging be-
ginner friendliness of Web pages explaining aca-
demic concepts. As one of the related tasks,
that of estimating presentation skills based on
slides and audio features has been studied. For
example, Luzard et al. (2014) applied machine
learning methods, where the most relevant slide-
based features are number of words, images,
and tables as well as the maximum font size,
while the most significant audio-based features
are pitch and filled pauses related ones. An-
other related task is to evaluate community QA
answers (e.g., Wang et al. (2009) and Sakai et
al. (2011)). For example, Wang et al. (2009) stud-
ied how to rank community answers and evalu-
ated the method using user-labeled “best answers”
of Yahoo!Answers Web site as the gold stan-
dard positive examples. Compared to the task of
ranking community answers, the current task of
judging beginner friendliness of Web pages ex-
plaining academic concepts is different in that
we examine neural image feature, while, in the
community answer ranking task, they usually do
not consider any image feature when ranking
community answers. Also, approaches to text
readability judgment (e.g., (Pitler and Nenkova,
2004; González-Garduño and Søgaard, 2017)) are
closely related to the task of beginner friendliness
of the text of the Web page and the features stud-
ied in those previous work need to be studied also
in this paper.

8 Conclusion

This paper studied how to integrate heterogeneous
features such as a neural image feature generated
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from the image of the Web page by a variant of
CNN as well as text features extracted from the
body text of the HTML file of the Web page. In-
tegration was performed through the framework
of the SVM classifier learning. Evaluation results
showed that heterogeneous features perform bet-
ter than each individual type of features. We are
now working on developing a reference data set
where several annotators participate in the task of
developing a reference data set, and then the inter-
annotator agreement rate is examined.

Future work include introducing more sophis-
ticated techniques of measuring beginner friendli-
ness of text contents, where it is expected that fea-
tures that are more semantics-based than frequen-
cies of character types as well as words/strings fre-
quencies contribute to measuring beginner friend-
liness. Another future work is to incorporate much
more detailed list of HTML tags as features of
SVM. Preliminary evaluation results indicate that
those HTML tag features also contribute to judg-
ing beginner friendliness of Web pages explaining
academic concepts. This is mainly because one
who is capable of developing beginner friendly
Web pages explaining academic concepts tends to
use certain types of HTML tags frequently and
this tendency helps judging beginner friendliness
of those Web pages. We plan to report those re-
sults in other conferences.
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Abstract

In this paper we formalize the prob-
lem automatic fill-in-the-blank question
generation using two standard NLP ma-
chine learning schemes, proposing con-
crete deep learning models for each. We
present an empirical study based on data
obtained from a language learning plat-
form showing that both of our proposed
settings offer promising results.

1 Introduction

With the advent of the Web 2.0, regular users were
able to share, remix and distribute content very
easily. As a result of this process, the Web be-
came a rich interconnected set of heterogeneous
data sources. Being in a standard format, it is suit-
able for many tasks involving knowledge extrac-
tion and representation. For example, efforts have
been made to design games with the purpose of
semi-automating a wide range of knowledge trans-
fer tasks, such as educational quizzes, by leverag-
ing on this kind of data.

In particular, quizzes based on multiple choice
questions (MCQs) have been proved efficient to
judge students knowledge. However, manual con-
struction of such questions often results a time-
consuming and labor-intensive task.

Fill-in-the-blank questions, where a sentence is
given with one or more blanks in it, either with
or without alternatives to fill in those blanks, have
gained research attention recently. In this kind of
question, as opposed to MCQs, there is no need
to generate a WH style question derived from text.
This means that the target sentence could simply
be picked from a document on a corresponding
topic of interest which results easier to automate.

Fill-in-the-blank questions in its multiple-
choice answer version, often referred to as cloze

questions (CQ), are commonly used for evaluat-
ing proficiency of language learners, including of-
ficial tests such as TOEIC and TOEFL (Sakaguchi
et al., 2013). They have also been used to test
students knowledge of English in using the cor-
rect verbs (Sumita et al., 2005), prepositions (Lee
and Seneff, 2007) and adjectives (Lin et al., 2007).
Pino et al. (2008) and Smith et al. (2010) generated
questions to evaluate students vocabulary.

The main problem in CQ generation is that it
is generally not easy to come up with appropri-
ate distractors —incorrect options— without rich
experience. Existing approaches are mostly based
on domain-specific templates, whose elaboration
relies on experts. Lately, approaches based on
discriminative methods, which rely on annotated
training data, have also appeared. Ultimately,
these settings prevent end-users from participating
in the elaboration process, limiting the diversity
and variation of quizzes that the system may offer.

In this work we formalize the problem of au-
tomatic fill-in-the-blank question generation and
present an empirical study using deep learning
models for it in the context of language learn-
ing. Our study is based on data obtained from our
language learning platform (Nakajima and Tomi-
matsu, 2013; Ono and Nakajima; Ono et al., 2017)
where users can create their own quizzes by utiliz-
ing freely available and open-licensed video con-
tent on the Web. In the platform, the automatic
quiz creation currently relies on hand-crafted fea-
tures and rules, making the process difficult to
adapt. Our goal is to effectively provide an adap-
tive learning experience in terms of style and diffi-
culty, and thus better serve users’ needs (Lin et al.,
2015). In this context, we study the ability of
our proposed architectures in learning to generate
quizzes based on data derived of the interaction of
users with the platform.
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2 Related Work

The problem of fill-in-the-blank question genera-
tion has been studied in the past by several authors.
Perhaps the earlies approach is by Sumita et al.
(2005), who proposed a cloze question generation
system which focuses on distractor generation us-
ing search engines to automatically measure En-
glish proficiency. In the same research line, we
also find the work of Lee and Seneff (2007), Lin
et al. (2007) and Pino et al. (2008). In this context,
the work of Goto et al. (2009) probably represents
the first effort in applying machine learning tech-
niques for multiple-choice cloze question genera-
tion. The authors propose an approach that uses
conditional random fields (Lafferty et al., 2001)
based on hand-crafted features such as word POS
tags.

More recent approaches also focus on the prob-
lem of distractor selection or generation but apply
it to different domains. For example, Narendra and
Agarwal (2013), present a system which adopts
a semi-structured approach to generate CQs by
making use of a knowledge base extracted from a
Cricket portal. On the other hand, Lin et al. (2015)
present a generic semi-automatic system for quiz
generation using linked data and textual descrip-
tions of RDF resources. The system seems to be
the first that can be controlled by difficulty level.
Authors tested it using an on-line dataset about
wildlife provided by the BBC. Kumar et al. (2015)
present an approach automatic for CQs generation
for student self-assessment.

Finally, the work of Sakaguchi et al. (2013)
presents a discriminative approach based on SVM
classifiers for distractor generation and selection
using a large-scale language learners corpus. The
SVM classifier works at the word level and takes a
sentence in which the target word appears, choos-
ing a verb as the best distractor given the context.
Again, the SVM is based on human-engineered
features such as n-grams, lemmas and dependency
tags.

Compared to approaches above, our take is dif-
ferent since we work on fill-in-the-blank ques-
tion generation without multiple-choice answers.
Therefore, our problem focuses on word selection
—the word to blank— given a sentence, rather
than on distractor generation. To the best of our
knowledge, our system is also the first to use rep-
resentation learning for this task.

3 Proposed Approach

We formalize the problem of automatic fill-on-the-
blanks quiz generation using two different per-
spectives. These are designed to match with
specific machine learning schemes that are well-
defined in the literature. In both cases. we con-
sider a training corpus of N pairs (Sn, Cn), n =
1 . . . N where Sn = s1, . . . , sL(Sn) is a sequence
of L(Sn) tokens and Cn ∈ [1, L(Sn)] is an index
that indicates the position that should be blanked
inside Sn.

This setting allows us to train from examples
of single blank-annotated sentences. In this way,
in order to obtain a sentence with several blanks,
multiple passes over the model are required. This
approach works in a way analogous to humans,
where blanks are provided one at a time.

3.1 AQG as Sequence Labeling
Firstly, we model the AQG as a sequence label-
ing problem. Formally, for an embedded input
sequence Sn = s1, . . . , sL(n) we build the corre-
sponding label sequence by simply creating a one-
hot vector of size L(Sn) for the given class Cn.
This vector can be seen as a sequence of binary
classes, Yn = y1, . . . , yL(n), where only one item
(the one in position Cn) belongs to the positive
class. Given this setting, the conditional proba-
bility of an output label is modeled as follows:

p(y | s) ∝
n∏

i=1

ŷi (1)

ŷi = H(yi−1, yi, si) (2)

Where, in our, case, function H is modeled using
a bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997). Each predicted label distribution ŷt is
then calculated using the following formulas.

~hi = LSTMfw(~hi−1, xi) (3)
~hi = LSTMbw( ~hi+1, xi) (4)

ŷi = softmax([~hi; ~hi]) (5)

The loss function is the average cross entropy
for the mini-batch. Figure 1 summarizes the pro-
posed model.

L(θ) = − 1

n

n∑

i=1

yi log ŷi + (1− yi) log(1− ŷi)

(6)
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Figure 1: Our sequence labeling model based on
an LSTM for AQG.

3.2 AQG as Sequence Classification

In this case, since the output of the model is a po-
sition in the input sequence Sn, the size of out-
put dictionary for Cn is variable and depends on
Sn. Regular sequence classification models use a
softmax distribution over a fixed output dictionary
to compute p(Cn|Sn) and therefore are not suit-
able for our case. Therefore, we propose to use
an attention-based approach that allows us to have
a variable size dictionary for the output softmax,
in a way akin to Pointer Networks (Vinyals et al.,
2015). More formally, given an embedded input
vector sequence Sn = s1, ..., sL(n), we use a bidi-
rectional LSTM to first obtain a dense representa-
tion of each input token.

~hi = LSTMfw(~hi−1, xi) (7)
~hi = ~LSTMbw( ~hi+1, xi) (8)

hi = [~hi; ~hi] (9)

We later use pooling techniques including max
and mean to obtain a summarized representation
h̄ of the input sequence, or simply take the last
hidden state as a drop-in replacement to do so. Af-
ter this, we add a global content-based attention
layer, which we use to to compare that summa-
rized vector to each hidden state hi. Concretely,

u = vᵀW [hi; h̄] (10)

p(Cn|Pn) = softmax(u) (11)

Where W and v are learnable parameters of the
model, and the softmax normalizes the vector u
to be an output distribution over a dictionary of
size L(Sn). Figure 2 summarizes the proposed

model graphically. Then, for a given sentence Ck,
the goal of our model is to predict the most likely
position C? ∈ [1, L(Sn)] of the next word to be
blanked.

h(1) h(2) h(3) h(4) A(1) A(2) A(3) A(4)

dog barkingThe is

A

BLANK O  O  O O  O  O

Figure 2: Our sequence classification model,
based on an LSTM for AQG.

4 Empirical Study

Although the hand-crafted rule-based system cur-
rently used in our language learning platform of-
fers us good results in general, we are interested in
developing a more flexible approach that is easier
to tailor depending on the case. In particular, in
an adaptive learning setting where the goal is re-
source allocation according to the unique needs of
each learner, rule-based methods for AQG appear
to have insufficient flexibility and adaptability to
accurately model the features of each learner or
teacher.

With this point in mind, this section presents an
empirical study using state-of-the-art Deep Learn-
ing approaches for the problem of AQG. In par-
ticular, the objective is to test to what extent our
prosed models are able to encode the behavior of
the rule-based system. Ultimately, we hope that
these can be used for a smooth transition from the
current human-engineered feature-based system to
a fully user-experience-based regime.

In Natural Language Processing, deep models
have succeeded in large part because they learn
and use their own continuous numeric representa-
tional systems for words and sentences. In particu-
lar, distributed representations (Hinton, 1984) ap-
plied to words (Mikolov et al., 2013) have meant
a major breakthrough. All our models start with
random word embeddings, we leave the usage of
other pre-trained vectors for future work.

Using our platform, we extracted anonymized
user interaction data in the manner of real quizzes
generated for a collection of several input video
sources. We obtained a corpus of approximately

154



300,000 sentences, from which roughly 1.5 mil-
lion single-quiz question training examples were
derived. We split this dataset using the regular
70/10/20 partition for training, validation and test-
ing.

As the system required the input sentences to be
tokenized and makes use of features such as word
pos-tags and such, the sentences in our dataset are
processed using CoreNLP (Manning et al., 2014).
We also extract user-specific and quiz-specific in-
formation, including word-level learning records
of the user, such as the number of times the learner
made a mistake on that word, or whether the
learner looked up the word in the dictionary. In
this study, however, we restrain our model to only
look at word embeddings as input.

We use the same data pre-processing for all of
our models. We build the vocabulary using the
train partition of our dataset with a minimum fre-
quency of 1. We do not keep cases and obtain an
unknown vocabulary of size 2,029, and a total vo-
cabulary size of 66,431 tokens.

4.1 Sequence Labeling

We use a 2-layer bidirectional LSTM, which we
train using Adam Kingma and Ba (2014) with a
learning rate of 0.001, clipping the gradient of our
parameters to a maximum norm of 5. We use
a word embedding size and hidden state size of
300 and add dropout (Srivastava et al., 2014) be-
fore and after the LSTM, using a drop probability
of 0.2. We train our model for up to 10 epochs.
Training lasts for about 3 hours.

For evaluation, as accuracy would be extremely
unbalanced given the nature of the blanking
scheme —there is only one positive-class example
on each sentence— we use Precision, Recall and
F1-Score over the positive class for development
and evaluation. Table 1 summarizes our obtained
results.

Set Loss Prec. Recall F1-Score
Valid 0.0037 88.35 88.81 88.58
Test 0.0037 88.56 88.34 88.80

Table 1: Results of the seq. labeling approach.

4.2 Sequence Classification

In this case, we again use use a 2-layer bidirec-
tional LSTM, which we train using Adam with a
learning rate of 0.001, also clipping the gradient

of our parameters to a maximum norm of 5. Even
with these limits, convergence is faster than in the
previous model, so we only trained the the classi-
fier for up to 5 epochs. Again we use a word em-
bedding and hidden state of 300, and add dropout
with drop probability of 0.2 before and after the
LSTM. Our results for different pooling strategies
showed no noticeable performance difference in
preliminary experiments, so we report results us-
ing the last hidden state.

For development and evaluation we used accu-
racy over the validation and test set, respectively.
Table 2 below summarizes our obtained result, we
can see that model was able to obtain a maximum
accuracy of approximately 89% on the validation
and testing sets.

Set Loss Accuracy
Valid 101.80 89.17
Test 102.30 89.31

Table 2: Results of the seq. classification ap-
proach.

5 Conclusions

In this paper we have formalized the problem of
automatic fill-on-the-blanks quiz generation us-
ing two well-defined learning schemes: sequence
classification and sequence labeling. We have also
proposed concrete architectures based on LSTMs
to tackle the problem in both cases.

We have presented an empirical study in which
we test the proposed architectures in the context
of a language learning platform. Our results show
that both the0 proposed training schemes seem
to offer fairly good results, with an Accuracy/F1-
score of nearly 90%. We think this sets a clear
future research direction, showing that it is possi-
ble to transition from a heavily hand-crafted ap-
proach for AQG to a learning-based approach on
the base of examples derived from the platform on
unlabeled data. This is specially important in the
context of adaptive learning, where the goal is to
effectively provide an tailored and flexible experi-
ence in terms of style and difficulty

For future work, we would like to use differ-
ent pre-trained word embeddings as well as other
features derived from the input sentence to further
improve our results. We would also like to test
the power of the models in capturing different quiz
styles from real questions created by professors.
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Abstract 

Text clustering is a powerful technique to 
detect topics from document corpora, so as 
to provide information browsing, analysis, 
and organization. On the other hand, the 
Instant Response System (IRS) has been 
widely used in recent years to enhance 
student engagement in class and thus im-
prove their learning effectiveness. Howev-
er, the lack of functions to process short 
text responses from the IRS prevents the 
further application of IRS in classes. 
Therefore, this study aims to propose a 
proper short text clustering module for the 
IRS, and demonstrate our implemented 
techniques through real-world examples, 
so as to provide experiences and insights 
for further study. In particular, we have 
compared three clustering methods and the 
result shows that theoretically better meth-
ods need not lead to better results, as there 
are various factors that may affect the final 
performance. 

1 Introduction 

The development of Natural Language Processing 
(NLP) has advanced to a level that affects the re-
search landscape of academic domains and has 
practical applications in various industrial sectors. 
On the other hand, educational environment has 
also been improved to impact the world society, 
such as the emergence of MOOCs (Massive Open 
Online Courses), and new learning tools or teach-
ing paradigms have also change the way of class 
interactions, such as the use of Classroom Re-
sponse Systems (CRS) (Siau et al., 2006). The ad-
vance of these two fields has converged to support 

some of the online or on-site course activities that 
are previously infeasible, such as real-time under-
standing of student’s responses (Beatty and 
Gerace, 2009) and mobile language learning 
(Cardoso, 2010). 

Research issues in this direction have gained 
more and more attention (Hearst, 2015). Exam-
ples include the workshops on Innovative Use of 
NLP for Building Educational Applications 
(BEA) since 20031 and the workshops on Natural 
Language Processing Techniques for Educational 
Applications (NLPTEA) since 20142, where the 
former was held in North America mainly for 
English or western languages, while the latter 
was held in Asia mainly for Chinese or oriental 
languages.   

NLP for educational applications not only 
concerns the academic community, but also has 
great potential in the educational market. Sys-
tems for online writing evaluation service (or au-
tomated essay scoring) like ETS's Criterion3 and 
for plagiarism identification like Turnitin4 

have 
established their market share. However, these 
successful services are built upon mature educa-
tional activities and deal with relatively long ar-
ticles or complete sentences for reliable perfor-
mance. In contrast, processing of short texts (or 
sub-sentences, non-sentences, or even a few 
terms) is under-developed for novel educational 
applications. 

                                                        
1 https://ekaterinakochmar.wixsite.com/sig-edu 
2 https://www.sigcall.org/ 
3 http://www.criterion.com.tw/ 
4 http://turnitin.com/zh_tw/ 
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Electronic classroom response systems (CRS), 
also called instant response systems (IRS) or 
clickers, have been tested and used in higher edu-
cation classrooms since the 1960’s (Deal, 2007). 
According to a CNET report (Gilbert, 2005), 
schools and universities, most in the United 
States, bought nearly a million clickers in year 
2004 alone, using infrared or radio frequency 
technology for students’ transmitters. This number 
accumulated to nearly nine million units in under 
a decade by just two of many companies that 
make clickers (Hoffman, 2012). Recently, IRS has 
gained even greater popularity in class interaction 
(Bartsch and Murphy, 2011; Chen et al., 2013; 
Han, 2014; Morais et al., 2015) due to the ubiqui-
tous availability of mobile devices for each indi-
vidual and cloud-based technology for ease of da-
ta collection and integration. IRS services in Tai-
wan like Zuvio (http://www.zuvio.com.tw/)

 
have 

attracted local university users in a short term be-
cause of its easier use than traditional transmitter-
required IRS and LMS (Learning Management 
System) such as Moodle App. For example, over 
the course of year 2014, Zuvio usage in National 
Taiwan University (NTU) increased from 61 to 
263 instructors, 68 to 384 courses, and 2,037 to 
11,172 students (Lee and Shih, 2015). 

By broadcasting a question to all students’ 
mobile devices and getting responses instantly, 
such systems help teachers know the learning 
status of each student better and also help stu-
dents maintain their attention during the class 
due to the instant feedback from the teachers 
and/or their classmates

 
(Bartsch and Murphy, 

2011; Beatty and Gerace, 2009). However, the 
potential of such IRS may still be under-explored 
(Chien and Chang, 2015a). In the above NTU 
case, although the majority (54%) of questions 
deployed in Zuvio were multiple choices, many 
instructors also used open-ended questions (20%) 
and composite questions (21%) to promote deep-
er engagement and reflection (J. W.-S. Lee and 
Shih, 2015). Previous studies even indicated that 
multiple-choice examinations pose an obstacle 
for higher-level thinking in science classes 
(Stanger-Hall, 2012) and constructed response 
(e.g. free text writing) assessments are widely 
viewed as providing greater insight into student 
thinking than closed form (e.g. multiple-choice) 
assessments (Birenbaum and Tatsuoka, 1987). 

However, no IRS system has yet provided 
analysis of these open-ended text responses in 

real time, to our best knowledge. By applying 
NLP techniques to the IRS or similar mobile in-
teraction systems where only short text interac-
tion is feasible, more information for the students 
could be provided and therefore more meaning-
ful engagement and efficient learning could be 
achieved (Chien and Chang, 2015b). 

Based on the above trends and observations, 
this study aims at developing related NLP tech-
niques applicable to the current and future educa-
tional environment. More specifically, this paper 
focuses on the short text response processing in 
the situation where some forms of instant re-
sponse systems (IRS) are used in and after the 
class.  

2 Short Text Response Clustering  

As our purpose is to support IRS-related edu-
cational activities, an existing IRS would be used 
for integrating the techniques to be developed so 
that we can focus on the required new functions 
without re-inventing the wheel. We choose 
CloudClassRoom (CCR, http://ccr.tw/) because it 
is developed by the team of our collaborators 
(Chien and Chang, 2015a) and because it sup-
ports at least 12 languages for international use. 
This choice would facilitate our testing and eval-
uation of the developed techniques. However, we 
keep in mind that the techniques to be developed 
should be independent of the CCR system, such 
that they can be ported to another IRS instantly. 
In fact, CCR is developed in JQuery and PHP 
language, while the NLP techniques to be devel-
oped mainly use Python as our programming 
language. 

Once we have an IRS platform, we can pack-
age the required techniques into one of the IRS’s 
module to meet the research purposes. Figure 1 
shows a series of processing step packaged into a 
Semantic Processing Module (SPM), where each 
rectangular box denotes a processing sub-module 
and each cylinder denotes a set of language 
knowledge, corpora, resources, or technical op-
tions.  

The first-row in the figure mainly deals with 
refining the terms from the response texts, which 
heavily depends on the language knowledge and 
resources. The second-row deals with the semat-
ic processing of the texts, which is basically lan-
guage independent, except the term expansion 
step. This pipeline structure is inevitable as there 
are many options in processing texts for a certain 
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task in a certain language. At our early stage of 
development, each step would have options for 
selection by teachers or by NLP experts to best 
suit the educational activities in a certain course. 
At the later stage, we expect that the SPM should 
finally learn the options without human selection. 
For example, the tokenization need to transform 
all different digital numbers into a single numer-
ic symbol for semantic clustering in general cas-
es, but should leave the numbers intact in courses 
such as mathematics, where exact numbers from 
students are expected for accurate processing. 
The case also applies to the morphological step 
where lowercasing and stemming are applied for 
English semantic processing in general cases, but 
the morphological analysis should be turned off 
when, e.g., English is taught, or the expected an-
swers are exact terms used by the students. This 
consideration would optimize the SPM for each 
educational activity, but may require years of fi-
ne-tuning when more and more activities are en-
countered in real-world applications. In fact, the 
CCR has at least 4780 teachers registered, 
11,784 classrooms established, and 23,376 ques-
tions asked and 248,633 responses received. It 
really contains many valuable resources for NLP 
experiments and applications.  

3 Demonstration   

To have a concrete idea about the texts submitted 
by students via CCR, Table 1 shows a set of real-
world texts in response to the question asked by 
a Taiwan university teacher of General Educa-
tion of Science: “As a marine researcher, if 
someone presents the photos shown in Figure 2 
to you and ask your opinion about the creature, 
what would you think of and what would you 
ask?”  
 

 
Figure 2: Photographs to trigger questions for 
students to respond. 
 

As can be seen from Table 1, there are several 
characteristics in the students’ responses: 1) 
meaningfulness punctuations, e.g., ID 3; 2) mul-
ti-lingual: English responses even in a Chinese  

 

 
 

Figure 1: Pipeline steps of the SPM for processing short texts in an IRS system. 
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Student 
ID 

In this table, there are 29 student responses to the question: “As a marine researcher, 
if someone presents the photos shown in figure to you and ask your opinion about 
the creature, what would you think of and what would you ask?” 

1 1.發現地點 2. 推論有毒 3. 外星生物 地球沒有 
3 1.好吃嗎。2.肉食性。3.牙齒很尖。4.深海魚。5.因為很醜== 

4 What’s its life cycle? I guess that  it’s a meat-eater. Maybe it’s a parasite. Because it has a 
fixation structure. 

5 他們有毒嗎？ 
6 他們看得到嗎？他們的食物可能是什麼？ 
9 他是生活在何種海域?!深度?!環境?! 

11 它的體型大小 
12 住在很深的海裡吧！眼睛很凸。牙齒很尖應該是食物動物！ 
15 呵呵呵呵呵 

17 
問題：在哪個海域發現的呢？特性：吃腐肉，極可能是古老的活化石。原因：場項特

別、牙齒尖銳。生物：恐龍？！或其相關生物 
18 問題：水深位置大約在何處。推測：疑似刺絲胞動物門，有攻擊力，有尖銳的外型 
21 好奇怪 
22 它有肛門嗎？ 
23 對光源有無反應 
24 很像大英雄天團的噴火龍 

25 
我覺得它是人類的祖先。因為他有眼睛 有嘴巴 有牙齒。牠以細菌為主，牠屬於夜行性
動物，睡眠時間為 12小時 也就是半天，是個奇怪的生物！！！我想要 usb 

27 海洋生物 
28 深海生物，無視覺 
29 爸爸 

31 
牠生活於海洋表層還深層？狩獵能力較強，因為牙齒以犬齒較多可進行撕裂，海洋深

層消費者 
32 發現的環境包含深度 身體外表特徵，實行生物分類 它的捕食習性 

33 
眼睛會感光嗎？肉食性動物，牙齒看起來很尖，深海的未知生物，因為看不出來是什

麼種類的生物 
34 神奇寶貝 
35 肉食性的魚，在很深暗海 
36 觸角是類似珊瑚的觸角嗎。應該是住在深海裡的雙種生物吧。 
37 跟我同學很像 
38 身體構造有那些特徵 
39 這個生物是不是小小隻的？可能是吃浮游生物的，深海的生物，因為有觸手 

43 
這種生物有攻擊性嗎？應該住在深海？有照明的能力吧！這會不會是鯊魚和燈籠魚的

合體 

Table 1:  Examples of text responses from students via CCR. 

class, e.g., ID 4; 3) nonsense responses, e.g. 
ID 15, 24, 29, etc.; 4) very short texts, e.g., ID 5, 
11, 27, etc.; and 5) non-topical texts, e.g. the last 
part of ID 25, where the student asks for a prize 
promised by the teacher who encourages the stu-
dents to aggressively respond to the question for 
a USB storage device as a prize.  

Characteristic 1 can be removed at the tokeni-
zation stage. Characteristic 2 could be translated 
using simple word-by-word translation (by way 
of multi-lingual lexicons or multilingual Word-

Nets5, such as BabelNet6), with translation tools 
such as Goslate7, or customized machine transla-
tion techniques (Chuang and Tseng, 2008; Tseng 
et al., 2011). Characteristic 4 can be extended by 
synonym lexicons or multilingual WordNets to 
enrich the textual information. However, despite 
we have eHownet8 resources from the ACLCLP 
(Association of Computational Linguistics and 
                                                        
5 https://wordnet.princeton.edu/ 
6 https://babelnet.org/ 
7 https://pythonhosted.org/goslate/ 
8 http://ehownet.iis.sinica.edu.tw/index.php 
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Chinese Language Processing), there is no guar-
antee that the synonyms or hypernyms in 
eHownet is able to cover the terms used in a 
class like the above. After these preprocessing, 
Characteristics 2, 3, 4, and 5 require an effective 
text clustering technique to distinguish them 
from the normal meaningful responses, such that 
the teacher could decide what to do for the im-
proper responses. Once they can be isolated in 
real time, the teacher can, for example, ask the 
corresponding students to re-submitted their re-
sponses, or preset the system to prevent these 
texts from been submitted by the students.  

To have an idea of how well existing cluster-
ing techniques can do for these texts, we have 
tried three approaches:  

(1) Hierarchical Agglomerative Clustering 
(HAC) based on a hybrid way of term indexing, 
namely lexicon-based segmentation followed by 
a keyword extraction using the method of (Tseng, 
1998, 2002; Tseng et al., 2010b), implemented in 
a well-debugged tool called CATAR (Tseng, 
2010a; Tseng and Tsay, 2013), as shown in Fig-
ure 3. 

(2) Latent Semantic Analysis (LSA) based on 
the word segmentation by jieba

 
and a topic mod-

eling tool genism without removal of any stop-
words and punctuations, as shown in Figure 4.  

(3) Latent Dirichlet Analysis (LDA) by jieba 
and gensim with stopwords and punctuations be-
ing removed, as shown in Figure 5.  

From Figure 3 based on HAC, there are 3 mul-
ti-documents clusters and 16 singleton clusters. 
The result is generally reasonable, only a few 
texts, like ID 23 and 31, could not be grouped 
together with other similar texts. This is because 
a rigorous criterion is imposed on the HAC, i.e., 
complete linkage clustering such that ID 31 did 
not cluster into Cluster 3, despite it contains the 
salient term “⽛⿒” in Cluster 3. Also, the lexi-

con-based segmentation regards “深海”, “海洋”,  
and “海洋深層” as different terms, such that 
they are totally different features for text cluster-
ing. The above two reasons may also apply to the 
terms and texts, such as “光源” (ID 23), “感光” 
(ID 33), “暗海” (ID 35), and “夜行性” (ID 25), 
or “食物” (ID 6) and “肉食性” (ID 3, 33, and 
35). 
 

 
Figure 3: HAC clustering results. 

 
Group ID Student ID:   

#1 

3：1好吃嗎。2肉食性。3牙齒很尖。… 
17：問題：在哪個海域發現的呢？… 
18：問題:水深位置大約在何處。… 
31：牠生活於海洋表層還深層 ？… 
33：眼睛會感光嗎？… 
36：觸角是類似珊瑚的觸角嗎，… 
39：這個生物是不是小小隻的？… 
43：這種生物有攻擊性嗎？… 

#2 
5: 他們有毒嗎?  
6: 他們看得到嗎? 他們的食物可能是什麼?  

#3 

11: 他的體型大小 
25: 我覺得它是人類的祖先。… 
32: 發現的環境包含深度 … 
37: 跟我同學好像   
38: 身體構造有那些特徵  

#4 

1: 發現地點 … 
4:  What's its life cycle? … 
9:  他是生活在何種海域?! …  
22: 它有肛門嗎?  
23: 對光源有無反應  

#5 

12: 住在很深的海裡吧! 眼睛很凸 … 
24: 很像大英雄天團的噴火龍 
28: 深海生物，無視覺   
35: 肉食性的魚，在很深暗海  

N/A 

15: 呵呵呵呵呵 
21: 好奇怪  
27: 海洋生物  
29: 爸爸  
34: 神奇寶貝  

Figure 4: LSA clustering results. 
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Group ID Student ID  

#1 

1: ⒈ 發現地點  ⒉推論有毒  … 
5: 他們有毒嗎？ 
6: 他們看得到嗎? … 
21: 好奇怪 
22: 它有肛門嗎？ 

#2 

31: 牠生活於海洋表層還深層？ 
39: 這個生物是不是小小隻的？ 
37: 跟我同學好像 
27: 海洋生物 

#3 

12: 住在很深的海裡吧！… 
33: 眼睛會感光嗎？肉食性動物… 
43: 這種生物有攻擊性嗎？… 
36: 觸角是類似珊瑚的觸角嗎，… 
9:   他是生活在何種海域?! ... 
15: 呵呵呵呵呵 

#4 

18: 問題:水深位置大約在何處。… 
28: 深海生物，無視覺 
3: 1 好吃嗎。2 肉食性。3 牙齒很尖。… 
23: 對光源有無反應  
32: 發現的環境包含深度 … 
38: 身體構造有那些特徵  
4: What's its life cycle? …  
24: 很像大英雄天團的噴火龍 
29: 爸爸  

#5 

17: 問題:在哪個海域發現的呢? …  
35: 肉食性的魚，在很深暗海 
11: 他的體型大小   
25: 我覺得它是人類的祖先。… 
34: 神奇寶貝  

Figure 4: LDA clustering results. 
 
To improve the performance such that the 

texts containing these semantically related terms 
being clustered together, it seems that LSA or 
LDA are better solutions as past studies have 
shown the possibility (Blei et al., 2003; 
Deerwester et al. 1990). Based on the HAC result, 
there are 3-5 clusters in this case. So we cluster 
the responses using 5 topics with LSA and LDA. 
Actually, this number: about 5 clusters for each 
set of responses, is a proper choice for science 
education based on the feedback of our co-
investigator. However, Figure 4 and 5 shows that 
LSA and LDA alone cannot solve this short-text 
clustering problem better. They can sometimes 
lead to worse results. In addition to the shortage 
of textual information (short texts), there are oth-
er factors that influence the performance, such as 
feature extraction (whether to use 1-grams as 

features in Chinese short texts or not, such as 
“海”, “光”), term expansion (whether to incorpo-
rate the term-level similarity, such as those be-
tween “感光” and “夜行性”, or “食物” and “肉
食性”, into text clustering). Furthermore, these 
decisions may depend on the characteristics of 
the questions asked or classes taught. Therefore, 
we propose the pipeline SPM in Figure 1 to deal 
with this problem, so that in each step we could 
choose proper options for better performance.  

To incorporate more semantic information into 
the SPM, we plan to use language resources such 
as eHownet, WordNet, and BabelNet for Chinese, 
English, and multilingual synonym expansion, 
respectively. Our future study would also use 
tools like word2vec (Mikolov et al., 2013) and 
concept map miner (Tseng et al., 2010; Tseng et 
al., 2012) to extract paradigmatically and/or topi-
cally similar terms for term expansion (Tseng et 
al., 2010). In addition to term expansion, utiliza-
tion of contextual information of the short texts 
can be enhanced by machine translation (Tang et 
al., 2012). Direct clustering based on the contin-
uous distributed representations of words, sen-
tences, or paragraphs (Chinea-Rios et al., 2015; 
Mikolov et al., 2013) may also be worth of ex-
ploring. As a tradition in NLP research, further 
study will try all the promising combinations of 
the mentioned techniques to see which combina-
tions perform best in which conditions.  

As to the clustering performance evaluation, 
there are intrinsic and extrinsic measures, where 
the former measures the clustering quality direct-
ly and the latter measures the quality indirectly 
by applying the clustering result to other task and 
see if a good result can be obtained from the task. 
For intrinsic evaluation, measures like perplexity, 
Rand index, and Silhouette index have been used 
and we have implemented the latter two 
measures (Rand and Silhouette) in CATAR to 
help determine the number of clusters (Tseng, 
Lin, & Lin, 2007; Tseng & Tsay, 2013). For ex-
trinsic evaluation, which is more suitable for the 
IRS applications, it depends on how the teacher 
would like the clustering results. Therefore, our 
strategies would implement different clustering 
techniques and intrinsic evaluation measures to 
suggest various cluster results for the teachers to 
choose a proper one. Before that, we had assisted 
the teachers to quickly understand a clustering 
result by providing some intrinsic evaluation re-
sult, i.e., the cluster descriptors as shown in Fig-
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ure 3. In this way, we help the teachers to ex-
plore the students’ responses in a period of time 
short enough during their lecturing activities us-
ing the IRS.  

4 Conclusions 

This paper describes our preliminary study of 
short text response clustering for mobile educa-
tional activities. We illustrate the characteristics 
of short text responses from the IRS, propose the 
SPM module for processing short texts, and 
demonstrate our implemented techniques via the 
CCR system. We also compare three clustering 
methods, and the results showed that theoretical-
ly better methods need not lead to better results, 
as there are various factors that may affect the fi-
nal performance.  

In real-case applications, the SPM module 
based on the LSA technique has been used on-
line for two years, serving thousands of teachers. 
Informal evaluation from the responses of teach-
ers, including those in Taiwan and Thailand, has 
shown that the proposed short-text clustering is 
applicable to their educational activities.  
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Abstract 

When learning Chinese as a foreign lan-
guage, the learners may have some gram-
matical errors due to negative migration of 
their native languages. However, few 
grammar checking applications have been 
developed to support the learners. The goal 
of this paper is to develop a tool to auto-
matically diagnose four types of grammat-
ical errors which are redundant words (R), 
missing words (M), bad word selection (S) 
and disordered words (W) in Chinese sen-
tences written by those foreign learners. In 
this paper, a conventional linear CRF 
model with specific feature engineering 
and a LSTM-CRF model are used to solve 
the CGED (Chinese Grammatical Error 
Diagnosis) task. We make some improve-
ment on both models and the submitted re-
sults have better performance on false pos-
itive rate and accuracy than the average of 
all runs from CGED2018 for all three 
evaluation levels. 

1 Introduction 

Nowadays, more and more foreigners take Chi-
nese as their second language. Unlike English, 
Chinese has no verb tenses or pluralities, and 
meanwhile there are various ways to express the 
same meaning in Chinese, so Chinese has been 
considered as one of the most difficult languages 
in the world(Bo Zheng et al., 2016). Chinese as a 
Foreign Language(CFL) learners often make 
grammatical errors such as redundant words (R), 
missing words (M), word selection errors (S), and 
word ordering errors (W), due to language nega-
tive migration, over-generalization, teaching 
methods, learning strategies and other reasons.  
Natural Language Processing System(NLPS) 
which can detect and correct grammatical errors 

are important and invaluable to language learners. 
(Leacock et al., 2010). However, few grammar 
checking applications have been developed to 
support CFL learners. The goal of the CGED 
(Chinese Grammatical Error Diagnosis) task is to 
develop NLP (Natural Language Processing) 
techniques to automatically diagnose grammati-
cal errors in Chinese sentences written by CFL 
learners. 

In this paper, we use both a conventional linear 
CRF model (Lafferty et al., 2001) with specific 
feature engineering and a LSTM-CRF model to 
solve CGED task. Many researchers have already 
used these two models in the past few years, but 
our team make some improvement on both mod-
els. For CRF model, we integrate the syntactic 
feature into the CRF model. Character itself, POS 
feature and syntactic feature are used to generate 
50 combinatorial features by template technology. 
As for LSTM-CRF model, most researchers use 
tag transition features only in CRF layer. The ma-
jor improvement of our work is that more conven-
tional sparse CRF features are incorporated into 
the CRF layer such as bag of POS n-grams fea-
tures, words features, tag transition features, etc. 

The rest of the paper is organized as follows: 
Section 2 gives the definition of the CEGD task. 
Section 3 introduces two methods we use to solve 
the CGED task. Section 4 describes the dataset we 
use, the evaluation results on the validation set 
and the test set. Section 5 discusses conclusion 
and future work. 

2 Task Definition 

The task of CGED is defined as follows: given a 
Chinese sentence, the goal of CGED tool is to di-
agnose four types of grammatical errors, including 
redundant words (R), missing words (M), words 
selection errors (S) and word ordering errors (W). 
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 The input sentence may contain one or more such 
errors. The developed tool should indicate each 
error type and its position in the given sentence. 
To be specific, if an input sentence contains the 
grammatical errors, the output of each error 
should include four items: the id of the sentence, 
the positions of starting and ending character at 
which the grammatical error occurs, and the error 
type which should be one of the defined errors: 
“R”, “M”, “S”, and “W”. Example sentences and 
corresponding notes are shown in Table 1 and Ta-
ble 2. 

3 Methodology  

We use two different models to solve the CGED 
task. One is the traditional model based on Condi-
tional Random Field (CRF) with specific feature 
engineering. Many researchers have chosen CRF 
based models to solve CGED2016 and 
CGED2017 task. From previous research, we 
know that the CRF model with carefully designed 
feature templates could maintain the performance 
with neural networks at the same level (Lung-Hao 
Lee et al., 2016), especially when the training data 
is not big enough. Another is LSTM-CRF model 
with conventional sparse CRF features. The 
LSTM-CRF model is also used by some research-
ers before (Bo Zheng et al., 2016). The research 
proved that LSTM is effective in various applica-
tions that involves sequence modeling. This time, 

we make some improvements on both CRF model 
and LSTM-CRF model.  

3.1 CRF model with feature engineering 

Conditional random fields (CRF), an extension of 
both Maximum Entropy Model (MEMS) and 
Hidden Markov Models (HMMs), has been used 
to solve some natural language processing prob-
lems such as word segmentation, information ex-
traction and parsing. The CGED task can be con-
sidered as a sequence labeling problem which as-
signs each Chinese character in a sentence with a 
tag including the error types (R, M, S, W). CRF is 
a sequence labelling model with flexible feature 
space. Therefore, with given feature set and la-
beled training data, the CRF model can be used to 
solve the CGED task. The model can be defined 
as: 

! " # =
1

&(#)
exp	(Σ./.0.) 

where Z(x) is the normalization factor, 0.  is the 
feature sets and /. is the corresponding weight of 
the features. x is the sequence of the training sen-
tences (the first column of Table 3), and y is the 
error type label (the forth column of Table 3) 
which includes O(Correct), R(Redundant words), 
M(Missing Words), S(Selection errors) and 
W(Word ordering errors). Tag ‘O’ indicates cor-
rect characters, ‘B-X’ indicates the beginning po-
sitions for errors of type ‘X’ and ‘I-X’ shows the 
middle or ending positions for errors of type ‘X’. 
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Table 1:  Two errors are found in the sentence above, one is word ordering error (W) from 
position 3 to 5, the other  is word selection error (R)  from position 16 to 17.. 
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Table 2:  Two errors are found in the sentence above, one is redundant word (R) error at posi-
tion 6, the other is missing word (M) error at position 19. 
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For example, the label ‘B-S’ indicates this 
character is the beginning of a words selection er-
ror. The CRF model can generate the correspond-
ing label sequence y according to the sequence da-
ta x. The second column of Table 3 is the 
POS(Part-of-speech) feature.  The task is being 
solved at the character level. The POS tag was 
split of a word to character level by attaching po-
sition indicators (‘B-’ and ‘I-’) to the POS of a 
word. We use LTP Segmenter and Postagger 
which is a Chinese Language Technology Plat-
form (Wanxiang Che et al., 2010) to tag the 
training sentences. 

The third column of Table3 is syntactic feature 
of the character. Syntactic feature is the depend-
ency parsing results of a sentence. Dependency 
parsing provides a representation of grammatical 
relations between words in a sentence. To be spe-
cific, dependency parsing can be used to identify 
the grammatical components of the subject in the 
sentence and analyze the relationship between the 
components. Figure 1 and Figure 2 shows the ex-
ample of the dependency parsing. LTP is also used 
to parse the sentence. The output of the parsing of 
the sample sentence is “2:SBV 0:HED 5:ADV 
5:ATT 2:VOB”. Table 4 describe the meaning of 
these tags. The number means which word in the 
sentence is related to the current word. For exam-
ple, 2:SBV means the 2th word 4.5and the 
current word 4��5 are the subject-predicate 
relationships . We can find out the grammatical re-
lations of the sentence more clearly from the fig-
ures below. Figure 1 is the sentence with gram-
matical errors and Figure 2 is the correction. The 
number of the output is used as the syntactic fea-
ture. 

Character POS Parsing Error 

�� �2� �� ��

�� ��2� �� ��

.� �3�  � �-�

8� ��� �� ��-�

 � ���� �� ��-�

-� �2� �� ��

O� �1� �� ��

0� ��1� �� ��

Table 3:  A snapshot of a sample sentence 

��
Figure 1: Dependency parsing of the sen-

tence with grammatical errors 

�� �

Figure 2: Dependency parsing of the correct 
sentence 

Tag Description 

SBV subject-verb 
VOB verb-object 
IOB indirect-object 
FOB fronting-object 
DBL double 
ATT attribute 
ADV adverbial 
CMP complement 
COO coordinate 
POB preposition-object 
LAD left adjunct 
RAD right adjunct 

IS independent structure 
HED head 

Table 4: Description of syntactic features tag 

Feature Templates 

00-04: 1ℎ343567489. (k=-2,-1,0,1,2) 
05-09: !:;89. (k=-2,-1,0,1,2) 
10-14: !34<=>?89. (k=-2,-1,0,1,2) 
15-18: 1ℎ34356748/1ℎ343567489.  (k=-2,-1,1,2) 
19-23: 1ℎ34356748/	!:;89.   (k=-2,-1,0,1,2) 
24-28: 1ℎ34356748/!34<=>?89. (k=-2,-1,0,1,2) 
29-32: !:;8/!:;89. (k=-2,-1,1,2) 
33-37: !:;8/!34<=>?89. (k=-2,-1,0,1,2) 
38-41: !:;8/1ℎ343567489. (k=-2,-1,1,2) 
42-45:1ℎ34356748/1ℎ343567489./!:;89.  (k=-
2,-1,1,2) 
46-49: !:;8/1ℎ343567489./!:;89. (k=-2,-
1,1,2) 

Table 5: Feature templates 
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CRF++ (Kudo et al.,2007), a linear-chain CRF 
model software tool, is used to built the CRF 
model. To train a model with CRF++, we need to 
build some templates first. We use 50 templates to 
generate 50 combinatorial features which is listed 
in Table 5. The format of each template 
is %X[row, col], in which row is the number of 
row in a sentence and column is the number of 
column. The template %x[0,0]/%x[0,1] means the 
feature combining the current character and the 
next POS tag. Take the character “.” in sample 
sentence in Table 3 as an exam-
ple, %x[0,0]/%x[0,1] represents “./B-v”. 

3.2 LSTM-CRF model 

LSTM-CRF model is currently a strong baseline 
in the task of sequence labeling. Compared with 
the conventional Bi-LSTM neural network, 
LSTM-CRF model can directly model probability 
distribution of the the label sequence by a CRF 
layer, and achieve better performance on several 
datasets (Z.Huang et al., 2015; X.Ma et al., 2016). 
An illustrative graph is shown in Figure 3. Under 
this framework, neural network (i.e. LSTM) is 
used to compute the features score in CRF, which 
are called neural features. These neural features 
are similar to the conventional sparse CRF fea-
tures, which are directly used to compute the 
score of a given label sequence. 

A LSTM-CRF model can efficiently capture 
past input features via a LSTM layer and other 
user specified sparse features (e.g. transition fea-
ture, n-gram feature.) via a CRF layer. In our 
case, plenty of features are considered, here we 
only take tag transition feature as an example for 
simplicity. Denoting a tag transition matrix [A], 
where each [A]D,F models the transition score from  
iHI tag to JHI tag for a pair of consecutive time 
step. Note that this transition matrix is position 

independent. De-noting the matrix of scores 
0K[x]i

T	are output by the network. The element 
[fƟ][D]O of the matrix is the score output by the net-
work with parameters θ, for the sentence [x]DP	and 
for the iHI tag, at the 6HI word. The score of a sen-
tence [x]DP along with a path of tags [i]DP is then 
given by the sum of transition scores and net-work 
scores: 

s([x]D
P, [i]D

P, Ɵ) = (wS A D OTU, D O + wW[fƟ][D]O,X)
P

XYS

 

Here we modified the objective function to at-
tend differentially to neural features and conven-
tional CRF sparse features. It is worth noting that 
the dynamic programming can be used efficiently 
to compute [A]D,F and optimal tag sequences for 
inference. Then, the modified CRF layer models 
the conditional probability of possible output se-
quence s over input sequence x as: 

p s x = 	
1

Z(x)
	exp	{s([x]D

P, [i]D
P, Ɵ)} 

s([x]D
P, [i]D

P, Ɵ) is the score of a sentence 
[x]D

P	along with a path of tags [i]DP. Z(x) is the 
normalization factor of all the possible paths of 
tags [i] over input sequence x. For our LSTM 
CRF training, we use the maximum conditional 
likelihood estimation. For a training set{(xD, iD)}, 
the log-likelihood is given as: 

ℒ^ W = log p i|x
Dd^

 

Maximum likelihood training chooses parame-
ters W such that the log-likelihood ℒ^ W 	is max-
imized. 

The training algorithm is giving as follows: 

In most LSTM-CRF based models (Z.Huang et 
al., 2015;  X.Ma et al., 2016; M.Rei et al., 2016; 

��

Figure 3: LSTM-CRF model 

 

Algorithm 1 LSTM CRF training procedure 
for each epoch do 
    for each batch do 

1) neural network forward pass 

                          forward pass for LSTM state 
2) CRF layer forward and backward 

pass 
3) neural network backward pass: 

                          backward pass for LSTM 
4) update parameters 

����01���

01���

�Table 6: the LSTM-CRF training procedure 
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L.Kong et al., 2016; G. Lample et al., 2016), only 
tag transition features are considered in CRF layer. 
In our case, more conventional sparse CRF features 
are incorporated into the CRF layer. Specifically, we 
consider the following features defined over the in-
puts: 

• Words features. Words that appear around the 
current position with a window of size 3. 

• POS tags features. POS tags that appear around 
the current position with a window of size 3. 

• Word n-grams features. Word n-grams that con-
tain the current position, for n = 2, 3, 4. 

• POS n-grams features. POS tags that contain 
the current position, for n = 2, 3, 4. 

• Bag of words features. Bag of words that con-
tains the current word, with a window of size 5. 

• Tag transition features. Tag n-grams that contain 
the current position, for n = 2.  

4 Experiments 

4.1 Dataset 

We collect datasets from CGED-HSK-2016, 
CGED-2017 and CGED-2018 as our training set 
and validation set. Table 7 shows the distributions 
of error types in both the training set and valida-
tion set. The ratio of training set size to validation 
set size is about 8:1. Besides the sentences with 
grammatical errors, 1539 correct sentences are 
added into the validation set. 

4.2 Validation 

We use the validation set to evaluate the results of 
the CRF models with and without syntactic fea-
ture. CRF-1 refers to the model with syntactic fea-
ture and CRF-2 refers to the model without syn-
tactic feature. According to the results in Table 8, 
we can find out that syntactic feature does help to 
improve the performance of the CRF model. 
Therefore, CRF model with both Part-Of-
Speech(POS) feature and syntactic feature is used 
in our final run. 

We also thoroughly study the effectiveness of 
the handcraft features in our LSTM-CRF model. 
Experiment results are shown in Table 9. LSTM-
CRF-1 refers to the LSTM-CRF model with 
handcraft features defined in section 3.2. LSTM-
CRF2 refers to the LSTM-CRF model with no 
handcraft features (i.e. only tag transition feature 
is considered).  As the experiment results shown 
that the feature engineering in CRF part can im-
prove the performance (i.e. F1 value) about 2%, 
thus we use the LSTM-CRF1 model as our final 
model. 

4.3 Evaluation Results 

In the CGED2018 shared task, there are 12 teams 
submitted the results, totally 32 runs. Among 
them, our team submitted three runs. Run1 and 
Run2 are based on the CRF model with different 
size of training set while Run3 is based on the 
LSTM-CRF model. The average of all runs is cal-
culated from 32 runs of the 12 teams. 

Table 10 shows the false positive rate of the 3 
runs of our team and the average of all runs. FP 
(False Positive) is the number of sentences in 
which non-existent grammatical errors are identi-
fied as errors, so the lower the better. The best 
false positive rate of our team is 0.1255 (Run3) 
which is much lower than the average rate of all 
runs.  

Table 11 Table 12 and Table 13 shows the eval-
uation result for detection level, identification lev-
el and position level. The submitted results of our 

 Training Set Validation Set 
Error 52313 6773 

R 11598(22.17%) 3880(57.29%) 
M 13931(26.63%) 991(14.63%) 
S 23014(43.99%) 1620(23.82%) 
W 3769(7.20%) 282(4.16%) 

Table 7: The distributions of error types 

 CRF-1 CRF-2 
Accuracy 96.98% 96.34% 
Precision 35.32% 31.53% 

Recall 13.46% 12.28% 
F1 19.49% 17.68% 

Table 8: Evaluation results of CRF model on 
validation set for position level 

 LSTM- 
CRF-1 

LSTM- 
CRF-2 

Accuracy 97.28% 96.63% 
Precision 33.10% 29.60% 

Recall 15.76% 14.22% 
F1 21.35% 19.21% 

Table 9: Evaluation results of LSTM-CRF 
model on validation set for position level 
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team have better performance on accuracy than 
the average of all runs from CGED2018 for all 
three evaluation levels, but all three runs do not 
perform well on recall rate. Table 13 indicates that 
Run 3 achieved the accuracy of 0.3745 for posi-
tion level which is the most difficult level and it 

leads to the final F1 score of 0.1397 although the 
recall rate is still not above the average. 

5 Conclusion and Future Work 

In this paper, we thoroughly study the task of Chi-
nese grammatical error diagnosis and propose two 
models to handle this issue. We use a conventional 
linear CRF with specific feature engineering and a 
LSTM-CRF model to solve this task. We make 
some improvements on these two models based 
on the previous research and get better perfor-
mance on False Positive Rate and Accuracy than 
the average of all runs from CGED2018 for all 
three evaluation levels including detection level, 
identification level and position level, but all three 
runs do not perform well on recall rate which 
should be improved in the future . Future work in-
cludes explorations of semi-CRFs and neural 
semi-CRFs for the CGED shared task and explor-
ing more task specific features such as phonology 
feature and grapheme feature. 
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Abstract

Nowadays, more and more people are
learning Chinese as their second language.
Establishing an automatic diagnosis sys-
tem for Chinese grammatical error has be-
come an important challenge. In this pa-
per, we propose a Chinese grammatical er-
ror diagnosis (CGED) model with contex-
tualized character representation. Com-
pared to the traditional model using LST-
M (Long-Short Term Memory), our mod-
el have better performance and there is no
need to add too many artificial features.

1 Introduction

With the rapid development of China, more and
more non-native Chinese speakers begin to learn
Chinese. Writing is a very important part of Chi-
nese learning. However, there are some differ-
ences between Chinese and English, such as no
changes in tense in Chinese, which makes it dif-
ficult for many Chinese learners to find their own
mistakes in writing. Traditional Chinese learning
methods cost a lot of labor and time, so it is very
important to establish an automatic diagnosis sys-
tem for Chinese grammatical error. This is also the
purpose of this shared task.

The task of CGED20181 is to automatically di-
agnose grammatical errors in Chinese sentences
written by second language learners. The errors
include four types, redundant words (denoted as
a capital ”R”), missing words (”M”), word selec-
tion errors (”S”) and word ordering errors (”W”).
Table 1 shows examples of errors. The CGED sys-
tem needs to detect the location of errors and gives
the type of each error. For error typed S and M, the
model can give at most three correct candidates.

1https://sites.google.com/view/nlptea2018/shared-task

Error
Type

Error Sentence Correct Sentence

R
' ¶ � \ à
ô�Q�£MÅ
º�

' ¶ � \ à
ô Q � £ M
Å º �(We
saved that patient
cooperatively.)

M
C�+º¶û»
æ�

C�+Ùº¶
û»æ�(Don’t
bother others.)

S
� 7 � i
PY{�ºb�

�7�iP�{
�ºb�(How
to raise the
child?)

W
�	:¦Ø��
ôý��

�	Ø:¦��
ôý��(I have
high-intensity
thinking skills.)

Table 1: Examples of each error types

In this paper, we regard CGED task as a se-
quence labeling problem(Zheng et al., 2016) and
propose a CGED model with contextualized char-
acter representation. This model have better con-
sidered the different semantics of words in Chi-
nese texts. The experiment results show that our
model have better result compared to the baseline
without artificial features.

2 Contextualized Character
Representation

2.1 Character Embedding

Words are the smallest unit of semantic expres-
sions in Chinese texts. In different contexts, the
same words may express different meanings. Al-
so, the same situation exists for single characters.
For example, the character ”S” in word ”�S”
(a dozen) means dozen, in word ”S�” (play the
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drum) means play. Therefore, we use the same
character vector to represent the same character
in different contexts is inaccurate, and sometimes
there may be a big semantic deviation. To ad-
dress this issue, we propose to use the contextu-
alized character representation for CGED to solve
the ambiguity problem.

2.2 Building Contextualized Character
Representation

(Choi et al., 2016) puts forward that each dimen-
sion of a word vector may represent some seman-
tic information of the word. But in different texts,
the semantic information we need to use is differ-
ent, so we need to ignore the unneeded semantic
information. That is to say, under the differen-
t context conditions, we need to mask out some
dimensions of the word embedding vectors. We
take advantage of this method proposed in (Choi
et al., 2016) for our model.

T =
1

M

M∑

t=1

NNξ(xt) (1)

where xt in our work represents the character rep-
resentation in each time step. T represents the text
representation. M is the max sequence length for
the sentence. NNξ: RCE → RTE is a feedfor-
ward neural network parametrized by ξ. CE is the
character embedding size and TE is the text repre-
sentation size.

Then we use T to calculate the contextualized
character vectors as input of traditional sequence
labeling model of LSTM instead of the traditional
character vectors.

mask = σ(WmT + bm) (2)

xt ← xt � mask (3)

where σ is the sigmoid activation function to con-
trol the output between 0 to 1. Wm is the weight
of calculating mask and bm is the bias. � is an
element-wise multiplication.

We use the mask to get the contextualized char-
acter representation which can better represent the
meaning of characters and better obtain the infor-
mation we need in the text.

The number
of sentences

The number
of characters

The average
number of
characters

402 19382 48.21

Table 2: Information of training set: The average
number of characters represent the average num-
ber of characters of one sentence.

Error type The number
of error char-
acters

The propor-
tion of error
characters in
training set

R 281 1.44%
M 298 1.53%
S 797 4.11%
W 493 2.54%
all errors 1869 9.64%

Table 3: The number of errors in training set

3 Function of Save Model and Loss
Function

3.1 Error Sparse Problem
In the given Chinese text, we find that a relatively
long sentence may only contains one or two er-
rors. Although one sentence may contain multi-
ple errors but the number of errors is insufficient.
In Table 2 and 3, we give the number of errors in
CGED2018.

After dividing the errors into four categories, it
can be seen that due to the small number of er-
rors, it may not be conducive to the training of the
model.

3.2 Function of Save Model
We use the traditional training method, accuracy,
to train our model. However, when the develop-
ment set has reached the greatest accuracy, the out-
put of the model in test set is not good. Analyzing
the result, we see that the model learns the correc-
t part more, and learns the error information less.
The model discriminates most of test sentences to
be correct. Therefore, we propose to save the mod-
el no longer when the development set achieves
the max accuracy, but when Eq. 4 is max in devel-
opment set.

fs =

∑
n

∑
i cni∑

n

∑
i eni

(4)
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cni =

{
1 pni = yni and (pni 6= 0 or yni 6= 0)

0 others
(5)

eni =

{
1 others

0 pni = 0 and yni = 0
(6)

where p represents the output label of the model of
a character and y represents the ground-truth label.

The significance of Eq. 4 is that when we save
the model, we expect the model to detect more
wrong information and ignore some correct infor-
mation. The model can capture more error infor-
mation when there are fewer errors in the sentence.

3.3 Loss Function
Although the model can detect more error infor-
mation but it is not enough, when we use Eq. 4 to
save the model. From the table 6, 7, 8, 9, it can al-
so be seen that although the results have improved
but the increase is limited.

In the traditional LSTM model of sequence la-
belling, the cross-entropy loss function, Eq. 7, is
generally used as its loss function.

loss1 = −
1

n

∑

x

[y ln a+ (1− y) ln(1− a)] (7)

However, the problem that the number of cor-
rect characters in the dataset is much larger than
the number of incorrect characters still exists.
Therefore, the training of the model may have
some problem. To address this issue, we add a
loss function Eq. 8 to loss1.

loss2 = −
1

n

∑

x

[ym ln am+(1− ym) ln(1−am)]

(8)

ym = maskr(y) (9)

am = maskr(a) (10)

where we use maskr to keep the correct place in
the training tag, forcing the model to capture more
error information. The overall loss function is Eq.
11.

loss = (1− γ)loss1 + γloss2 (11)

Segmented
sentence

2-gram 3-gram

�/êñ/,
«/O}/�/
7s/÷�
�/Y²�

<,«O}>
<O}�>

<êñ,«
O}>
<O}�7
s>

Table 4: Example of n-gram

where γ is a weight, indicates the importance of
the error information that needs to be retained, and
can be adjusted according to different tasks.

4 Correction System

Correct system we use in our model is the method
proposed in (Chen et al., 2016). Since we mainly
deal with the detection problem, we have simpli-
fied the method in (Chen et al., 2016) and only put
forward one candidate correction.

(Chen et al., 2016) uses the method of calcu-
lating the n-gram score of each word to judge
whether the word is correct or not and put for-
ward correct candidates. If the original word has
the highest score, the original word is considered
to be correct. If the candidate word has a higher
score than the original word, the original word is
considered to be wrong. The candidate word with
highest scoring is regarded as the correction.

SL(S) =
∑

n

(n×
∑

u∈SubStr(S,n)
log (gsf(u)))

(12)
Eq. 12 gives the equation of length-weighted

string log-frequency score SL(S). Where S rep-
resents the sentence after word segmentation or
character segmentation. SubStr(S, n) represent
all substring of sentence S with n words or char-
acters. gsf(·) is the frequency of u. Obviously,
matching a higher gram is more welcome than a
lower gram. To increase the accuracy of correc-
tion, (Chen et al., 2016) adds weights to the differ-
ent n-gram by their length to favor higher gram.

We use this score for errors typed S. In order to
reduce the amount of calculation, we only keep the
calculation of 2-gram and 3-gram, the example of
n-gram of words is shown in table 4.
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For the error which is typed with S is a word, we
will calculate the SL score of the word. We use
the dictionaries of characters with similar pronun-
ciation and similar shape in (Wu et al., 2013) and
convert characters into simplified Chinese2. We
merged the two dictionaries to one dictionary of
candidates for characters. When we choose the
word to replace, we prefer to select the word that
have only one character different from the original
word. We replace each characters in the words and
calculate the score separately. We select the can-
didate word with the highest score as the correct
one.

For the error which is typed with S is a char-
acter, we calculate the SL score for the charac-
ter. The candidate dictionary is directly used to
replace the character and the score is calculated.
The character with the highest score is considered
to be correct.

For the error typed with M, we also use SL to
calculate the score using 2-gram and 3-gram. We
first search the words in the word dictionary which
have the same character as the character labeled
M. Then, calculate the candidates’ score. We re-
gard that the candidate with the highest score is the
correct candidate.

5 Evaluation

5.1 Baseline

In this experiment, we build the Bi-LSTM model
for sequence labelling as our baseline model. Un-
like traditional sequence labeling, Chinese gram-
matical error diagnosis may result in inaccurate
word segmentation due to existing errors, so we
use character embeddings to replace word embed-
dings.

5.2 Hyper-parameter and Data

We use word2vec3 to pretrain our character em-
beddings by wiki corpus4. We also use wiki cor-
pus to build our n-gram dictionaries. The charac-
ter embedding size is 400, the hidden units of Bi-
LSTM is 256. We set the batch size is 32. We use
Adam optimizer to train our model and the learn-
ing rate is 0.001.

The training data we use comes from
NLPTEA2016 and NLPTEA2018 and we di-

2http://zh.wikipedia.org/wiki/Wikipedia: A���
3https://code.google.com/archive/p/word2vec
4https://dumps.wikimedia.org/zhwiki/latest/zhwiki-

latest-pages-articles.xml.bz2

Train Dev Test
2016

Test
2017

Numsen 7602 2402 3011 3154
Numc 349230 112617 150826 141973
Numec 32117 10633 6680 8508

Table 5: Information of training data: Numsen

means the total number of sentences in each
set. Numc means the total number of characters.
Numec represent the total number of error charac-
ters.

vide part of data from NLPTEA2016 to the
development set. We use two test set from
NLPTEA2016 and NLPTEA2017. Table 5 shows
the data information in detail.

5.3 Evaluation Method
According to (Lee et al., 2016), the evaluation
method includes three levels, detection level, iden-
tification level, position level. And this year add
correction level.

Detection level: Determines whether a sentence
is correct or not. If there is an error, the sentence is
incorrect. In other words, the sentences are classi-
fied into two categories.

Identification level: The correct situation should
be exactly the same as the gold standard for a given
type of error. This can be considered as a multi-
classification problem.

Position level: The system results should be
perfectly identical with the quadruples of the gold
standard.

Correction level: Characters marked as S and
M need to give correct candidates. The model can
recommend at most 3 correction at each error.

The following metrics are measured at detec-
tion, identification, position-level.

FalsePositiveRate =
FP

FP + TN
(13)

Accuracy =
TP + TN

TP + FP + TN + FN
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(17)
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False Positive Rate
Bi-LSTM 0.0136
Bi-LSTM+FS 0.0884
Bi-LSTM+loss 0.5 0.2073
Bi-LSTM+FS+loss 0.5 0.9831
Bi-LSTM+FS+loss 0.4 0.9519
Bi-LSTM+FS+loss 0.3 0.8571
Bi-LSTM+FS+loss 0.2 0.5491
Bi-LSTM+FS+loss 0.1 0.3028
Bi-LSTM+FS+loss 0.05 0.1832
Bi-LSTM+mask 0.7057
Bi-LSTM+mask+POS 0.7596

Table 6: Result on false positive rate: FS repre-
sents model that save model with new function and
loss means the model with new loss function and
the number after ” ” is γ.

6 Result

In this part, we show our experiment results in the
CGED2016 test set. Since the experiment result-
s are similar on CGED2017 dataset, they are not
given.

The first part of table 6, 7, 8, 9 shows the re-
sults of the comparison between the model using
new function to save model, with the reconstruc-
tion loss function and the original model. The γ
of the model with reconstructive loss is set to 0.5.
It can be seen from the experiment that modifying
the save function and rebuilding the loss function
all have a good improvement on the error detec-
tion of the model. The results of mixing the above
methods are also given. There is an improvement
in error detection, but too many errors are detect-
ed and the correct information is ignored. So after
that we modify the value of the weight γ in Eq. 11
to get more reasonable model.

The second part of table 6, 7, 8, 9 shows the
different models with new function to save mod-
el and reconstructive loss for modifying the val-
ue of γ in Eq. 11. It can be seen that when the
weight decreases, the false positive rate decreases
significantly, which indicates that the model cap-
tures more correct information. When γ is 0.2 or
0.1 is more suitable for our task. When the weight
is too large, false positive rate is too large indicates
that the error is not detected, which is not consis-
tent with the objectives of this task. At 0.05, the
F1 values of all levels are too low, so we use 0.1
as the weight in the following experiments.

The third part of table 6, 7, 8, 9 shows the ex-

Acc Pre Re F1

Bi-LSTM 0.5111 0.5 0.0143 0.0277
Bi-LSTM+FS 0.5064 0.4729 0.0829 0.141
Bi-LSTM
+loss 0.5

0.5065 0.4888 0.2072 0.291

Bi-LSTM+FS
+loss 0.5

0.4902 0.4894 0.9851 0.6539

Bi-LSTM+FS
+loss 0.4

0.4829 0.4851 0.9375 0.6393

Bi-LSTM+FS
+loss 0.3

0.4839 0.484 0.8404 0.6142

Bi-LSTM+FS
+loss 0.2

0.4909 0.4813 0.5326 0.5056

Bi-LSTM+FS
+loss 0.1

0.5005 0.4822 0.2948 0.3659

Bi-LSTM+FS
+loss 0.05

0.5148 0.5096 0.199 0.2863

Bi-LSTM
+mask

0.4899 0.4848 0.6943 0.5709

Bi-LSTM
+mask+POS

0.5015 0.4937 0.7745 0.603

Table 7: Results on detection level: ACC repre-
sents accuracy. Pre means precision. Re is recall.

perimental results of our proposed model with new
save function and reconstructive loss. γ is set to
0.1. The results from F1 show that the proposed
model is improved compared to the baseline mod-
el. The model can also detect error information
very well without artificial features. We also tried
to add artificial information to the model to im-
prove the experimental results, so we added POS
(Part of Speech) information. Since we are deal-
ing with characters, so we use POS for the charac-
ter’s corresponding word as the character’s POS.
It can be seen that POS is useful in Chinese er-
ror detection. For errors, POS may provide some
information to help the model detect better.

Table 10, 11, 12, 13 shows the experimen-
t results we submitted in CGED2018 in detection
part. Table 14 show the results in CGED2018 in
correction part. Since our model only proposes
one candidate, the results on Correction and Top3
Correction are the same.

7 Related Work

Chinese grammatical error diagnosis task has been
developed for a long time. From the initial statisti-
cal methods to the current machine learning, more
and more attention has been paid to.
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Acc Pre Re F1

Bi-LSTM 0.5098 0.4048 0.0068 0.0134
Bi-LSTM+FS 0.4982 0.3788 0.0401 0.0725
Bi-LSTM
+loss 0.5

0.4646 0.3039 0.0842 0.1419

Bi-LSTM+FS
+loss 0.5

0.2557 0.2536 0.6919 0.3712

Bi-LSTM+FS
+loss 0.4

0.2772 0.2713 0.5239 0.3575

Bi-LSTM+FS
+loss 0.3

0.3064 0.2848 0.4256 0.3412

Bi-LSTM+FS
+loss 0.2

0.4122 0.3431 0.2479 0.2878

Bi-LSTM+FS
+loss 0.1

0.4579 0.349 0.1368 0.1965

Bi-LSTM+FS
+loss 0.05

0.488 0.3735 0.0895 0.1443

Bi-LSTM
+mask

0.361 0.3167 0.365 0.3392

Bi-LSTM
+mask+pos

0.3752 0.3451 0.4902 0.405

Table 8: Results on identification level: ACC rep-
resents accuracy. Pre means precision. Re is re-
call.

(Zhang et al., 2000) searched the optimal string
from all possible derivation of the input sentence
using operations of character substitution, inser-
tion, and deletion with a traditional word 3-gram
language model. (Chen et al., 2013) still used
n-gram as the main method, and added Web re-
sources to improve detection results. (Lin and
Chu, 2015) used n-gram to establish a scoring sys-
tem to better give correction options. (Yeh et al.,
2017) based on n-gram used the KMP algorithm
to speed up the search for correct candidates.

Due to the continuous rise of machine learning
in recent years, the field of natural language pro-
cessing is increasingly turning to machine learn-
ing. In the past few years, the diagnosis of Chi-
nese grammatical errors has also been developing
in machine learning. Grammatical error detec-
tion is usually considered as the sequence label-
ing task (Zheng et al., 2016). (Huang and WANG,
2016) used Bi-LSTM to annotate the errors in
the sentence. (Shiue et al., 2017) combined ma-
chine learning with traditional n-gram methods,
using Bi-LSTM to detect the location of errors and
adding additional linguistic information, POS, n-
gram. (Li et al., 2017) used Bi-LSTM to generate

Acc Pre Re F1

Bi-LSTM 0.5041 0.0227 0.0003 0.0005
Bi-LSTM+FS 0.4643 0.0528 0.0043 0.008
Bi-LSTM
+loss 0.5

0.3746 0.0101 0.0024 0.0039

Bi-LSTM+FS
+loss 0.5

0.0239 0.0227 0.1256 0.0385

Bi-LSTM+FS
+loss 0.4

0.0319 0.0261 0.0877 0.0402

Bi-LSTM+FS
+loss 0.3

0.0553 0.0297 0.0612 0.04

Bi-LSTM+FS
+loss 0.2

0.188 0.0346 0.0265 0.03

Bi-LSTM+FS
+loss 0.1

0.3447 0.0648 0.0217 0.0325

Bi-LSTM+FS
+loss 0.05

0.4107 0.0517 0.01 0.0168

Bi-LSTM
+mask

0.1323 0.0582 0.0709 0.0639

Bi-LSTM
+mask+pos

0.1965 0.1217 0.1729 0.1429

Table 9: Results on position level: ACC represents
accuracy. Pre means precision. Re is recall

False Positive Rate
Bi-LSTM+mask 0.5029
Bi-LSTM+mask+POS 0.5480

Table 10: Result on false positive rate in
CGED2018

the probability of each characters, and used two s-
trategies to decide whether a character is correct
or not. (Liao et al., 2017) used the LSTM+CRF
model to detect dependencies between outputs to
better detect error messages. (yang et al., 2017)
added more linguistic information on LSTM+CRF
model, such as POS, n-gram, PMI score and de-
pendency features.

8 Conclusion

As more and more people learn Chinese, the au-
tomatic diagnosis of Chinese grammatical error
becomes more and more important. This paper
proposes a contextualized character representation
for CGED and related solutions for the error s-
parse problem, which are improved compared to
the baseline approach.

In the future, we will add this contextualized
character representation to models that are better
at Chinese grammatical error diagnosis such as Bi-
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Acc Pre Re F1

Bi-LSTM
+mask

0.6005 0.6331 0.6809 0.6562

Bi-LSTM
+mask+POS

0.6236 0.6377 0.7584 0.6929

Table 11: Results on detection level in
CGED2018: ACC represents accuracy. Pre
means precision. Re is recall.

Pre Re F1

Bi-LSTM
+mask

0.4134 0.3519 0.3802

Bi-LSTM
+mask+pos

0.4084 0.4161 4122

Table 12: Results on identification level in
CGED2018: Pre means precision. Re is recall.

LSTM+CRF and consider better correction meth-
ods.
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Abstract

Chinese grammatical error diagnosis is
an important natural language process-
ing (NLP) task, which is also an im-
portant application using artificial in-
telligence technology in language edu-
cation. This paper introduces a system
developed by the Chinese Multilingual
& Multimodal Corpus and Big Data
Research Center for the NLP-TEA
shared task, named Chinese Grammar
Error Diagnosis (CGED). This system
regards diagnosing errors task as a se-
quence tagging problem, while takes
correction task as a text classification
problem. Finally, in the 12 teams, this
system gets the highest F1 score in the
detection task and the second highest
F1 score in mean in the identification
task, position task and the correction
task.

1 Introduction
With the development of Chinese economy
and the growing popularity of Chinese culture,
more and more foreigners begin to learn Chi-
nese. However, Chinese and English are dif-
ferent. For instance, Chinese grammar is more
flexible and more complex than English gram-
mar and there are few morphological changes
in Chinese. Consequently, it is quite difficult
for the second language (L2) learners to mas-
ter. In addition, the huge number of Chinese
characters and no space between word and
word cause the difficulty in Chinese natural
language processing. In short, regarding how
to use artificial intelligence to correct L2 learn-
ers, Chinese writing meets both opportunities
and challenges.

In order to promote the development of au-
tomatic detection of syntactic errors in Chi-
nese writing, the Natural Language Process-
ing Techniques for Educational Applications
(NLP-TEA) have taken CGED as one of the
shared tasks since 2014. Thanks to the CGED
task, some research achievements have been
made in Chinese grammar error detection.
Based on those previous research results, this
paper puts forward a new thinking direction of
enriching training dataset for the CGED task.

The structure of this article is as follows:
Section 2 briefly introduces the CGED shared
task. Section 3 introduces some related work.
Section 4 talks about the methodology. Sec-
tion 5 presents the data augmentation method
used in the system, and section 6 shows the
experiment result. Finally, conclusion and fu-
ture work are drawn in Section 7.

2 Task Definition

CGED has been held in five consecutive years
since 2014. It aims to develop a NLP system
to automatically diagnose grammatical errors
in Chinese sentences written by L2 learners.
Such errors are divided into four types: redun-
dant words (‘R’), missing words (‘M’), word
selection errors (‘S’), and word ordering errors
(‘W’). The input sentence may contain one
or more such errors. For each sentence, the
developed system would detect the following
four levels (or tasks):

(1) Detection-level: whether the sentence is
correct or not?

(2) Identification-level: which error types
are embedded?

(3) Position-level: where the error positions
occur?

(4) Correction-level: what is the correct
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word?
M and S type errors are required to offer 1

to 3 corrections. The other type errors only
need to be identified.

The training dataset provided by CGED in-
cludes original error text, correct text, error
types as well as error intervals. But the cor-
rect words of errors are not given explicitly.
Table 1 shows two examples of the training
dataset.

In table 1, there are two errors in example
1. One is S type from position 23 to 24, and
the other is M type at position 28. There are
also two errors in example 2. One is R type
at position 8, and the other is W type from
position 9 to 14. It has been found that，in
example 1, ‘原故’ is an error word and ‘缘故’
is the correct form. Beside this, ‘了’ is omitted
in example 1.

3 Related Work

Yu and Chen (2012) proposed a CRF-based
model to detect Chinese word ordering errors.
In 2014, Cheng et al. (2014) proposed an SVM
model to further study the Chinese word or-
dering problems. Lee et al. (2013) used a series
of manual linguistic rules to detect grammat-
ical errors in Chinese learners’writings. Lee
et al. (2014) then further proposed a system
which integrated both handcrafted linguistic
rules and N-gram models to detect Chinese
grammatical errors in sentences. Those two
aforementioned models are based on linguis-
tic rules, which need to be summarized manu-
ally. And because of the flexibility of Chinese
syntax, the performance of existing models is
not ideal. In recent years, artificial neural net-
works have been extensively used to do NLP
tasks. However, due to the lack of large writ-
ing data of interlanguage, the performance of
deep learning algorithms is limited a lot. In
order to integrate more linguistic information
into neural networks, HIT team (Zheng et al.,
2016) used Part-of-Speech (POS) tag as a fea-
ture, and Alibaba team (Yang et al., 2017) fur-
ther integrated Part-of-Speech-Tagging Score
(POS Score), Point-wise Mutual Information
(PMI), and dependency word collocation etc.
into deep learning networks. These efforts
made two teams achieved pretty good results
in 2016 and 2017 CGED tasks respectively.

4 Methodology
We treat the first three tasks which are detec-
tion task, identification task and position task
(DIP tasks) as a sequence tagging problem,
and correction task as a classification problem.

4.1 Methodology of DIP Tasks
4.1.1 Model Description
Same with the methods used by HIT team
(Zheng et al., 2016) and Alibaba team (Yang
et al., 2017), we treat DIP tasks as a se-
quence tagging problem. Specifically, we tag
each character of the sentences and then use
the LSTM-CRF model (Huang et al., 2015)
for training and prediction. Each character is
tagged with BIO encoding (Collier and Kim,
2004), also the same as the method adopted
by HIT team (Zheng et al., 2016) and Alibaba
team (Yang et al., 2017). We use the bidi-
rectional LSTM unit as the RNN model. The
structure of the model we adopted in our re-
search is shown in Figure 1.

Figure 1: The structure of LSTM-CRF model
we used.

4.1.2 Word Embedding Feature
We use char feature, POS feature, two char
bigram features, and two char trigram features
as the input features of the neural network.
Language Technology Platform1 (LTP) is used
to segment words and do the POS tagging. If
a word’s POS tag is ‘X’, the POS tag of the
first character of the word is ‘B-X’, and the
POS tags of the rest characters of the word are
all ‘I-X’. When training bigram embeddings
or trigram embeddings，we need to add a ‘^
’ character at the start of a sentence and a
‘$’ character at the end of the sentence. In
addition, in order to mark the missing words

1https://github.com/HIT-SCIR/ltp/
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Example 1

Original Text
1 此 2 外 3，4 吸 5 烟 6 也 7 影 8 响 9 了 10 美 11 观 12，
13 洁 14 白 15 的 16 牙 17 齿 18 因 19 为 20 吸 21 烟 22 的
23 原 24 故 25 而 26 变 27 成 28 淡 29 黄 30 色 31。32

Correct Text 此外，吸烟也影响了美观，洁白的牙齿因为吸烟的
缘故而变成了淡黄色。

Error Type S (word selection) M (missing word)
Error Interval 23, 24 28, 28

Error-Correct Word 原故-缘故 -了

Example 2

Original Text 1 一 2 般 3 的 4 吸 5 烟 6 的 7 人 8 把 9 时 10 间 11 管
12 理 13 不 14 好 15。16

Correct Text 一般的吸烟的人管理不好时间。
Error Type R (redundant word) W (word ordering error)

Error Interval 8, 8 9, 14
Error-Correct Word 把- 时间管理不好-管理不好时间

Table 1: Two examples of training sentence of the CGED training dataset.

error occurred at the end of the sentence, a ‘$’
character is also need to be added at the end
of the sentence. Figure 2 shows an example of
the embedding features we used as the input
for the neural networks.

Figure 2: Embedding features of each charac-
ter of ‘变成淡黄色。’. Each line represents one
character’s embedding features. These embed-
ding features can be categorized as char fea-
ture, POS feature, two char bigram features,
two char trigram features, and error tag. Dif-
ferent features are separated by using a tab
character.

4.2 Methodology of Correction Task
4.2.1 Model Description
The goal of text classification is to assign doc-
uments to one or multiple categories. Such
categories can be spam v.s. non-spam, review
scores or animal names. For correction task,
the correct word can be seen as another type
of category, and its context including its error
form can be seen as a short document belong-
ing to the category. In example 1, ‘缘故’ is
mistakenly written as ‘原故’. So we take ‘缘

故’ as a category, and ‘原故’ as well as its con-
text（N-gram) as the document.

In order to distinguish an error word from
its left and right contexts, for correction task,
we add a ‘_’ character before and after the er-
ror word, a ‘l’ letter before each left word, and
a ‘r’ letter before each right word. In addition
to this, a prefix ‘__label__’ is also required
before the category name. And for M type er-
ror, we use ‘_M_’ to denote the missing word,
as shown in Figure 3.

Figure 3: The categories and their correspond-
ing documents (texts) generated from example
1. Each line contains a category, followed by
a corresponding document (text) which takes
the error words, leftward three words, and
rightward three words as its content.

However, using a text classifier to provide
correct words also has a disadvantage—all pro-
posed words must be correct forms of error
words or missing words in the training dataset.
The classifier can not provide correct words
which do not contain. But the number of
words that L2 learners used is limited. For
this reason, text classifier can be used to pro-
vide correct words for the most common error
words and missing words.
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5 Data Augmentation

5.1 Rule format
The training dataset of CGED is relatively
small for training neural network models. In-
creasing the scale of the training dataset may
improve the performance of the models. We
can study error rules from the training dataset
of CGED. In addition, we find that L2 learn-
ers often make mistakes that native speakers
are frequently to make. So, to identify lin-
guistic mistakes often made by native speak-
ers frequently also helps to identify linguis-
tic errors of L2 learners. Therefore, there
are two sources of data augmentation rules
in this paper: (i) the training dataset of
CGED; (ii)native speakers’ error-prone lan-
guage knowledge.

Error rules can be extracted from the train-
ing dataset of CGED, and be studied from the
native speakers’ error-prone language knowl-
edge. And then, we can use those rules to
generate more error sentences to enrich the
training dataset. Therefore, error rule is an
important medium for data augmentation.

The error rule consists of error type, error
word, prefix of the error word, correct form of
the error word (correct word), and suffix of the
error word. The error rule types include S, M,
and R types.

Figure 4: An example of the rule format.

If figure 4, each line represents one error
rule. The items of an error rule involved can
be categorized as error type, error word, pre-
fix, correct word, and suffix. Different items
are separated by using a ‘-’ character from left
to right. The rule ‘S-地-变-得-轻松’ expressing
the meaning of ‘变得轻松’ is wrongly written
as ‘变地轻松’.

5.2 Rules from CGED Training
Dataset

The steps of extracting rules from the training
dataset of CGED are indicated as follows:

(1) Count the number of sentences in each
training document that contains the original
error text and correct text, and discard docu-
ments that are not equal in number and can-
not be corrected manually.

(2) Split the original error text and correct
text of each document into sentences by LPT
toolkit.

(3) Each error of the sentence can gener-
ate an error rule. The components of an error
rule can be calculated based on the sentence
original error text, correct text, and error in-
terval. The prefix and suffix can be a word or
a character. If it is a word, the left and right
strings of the error word in the sentence need
to do word segmentation respectively. After
the word segmentation, the prefix becomes the
rightmost word of the left string, and the suffix
is the leftmost word of the right string.

For example, example 3 in Table 2 contains
a S type error. Through the original text and
error interval, we can know that ‘教养’ is a
bad word selection. The content before ‘抚养’
in the correct text is the same as the content
before ‘教养’ in original text, and the content
behind ‘抚养’ in correct text is also the same
as the content behind ‘教养’ in original text.
This can be inferred that the correct writing of
‘教养’ should be ‘抚养’ in this context. There-
fore, the rules ‘S -教养-孩子-抚养-成人’ and
‘S -教养-子-抚养-成’ can be derived from the
example 3.

Not all the correct form of an error word can
be inferred. It is difficult to infer the correct
word if the following conditions occur:

(1) Two errors have crossed position, or one
error is contained in another.

(2) Two errors next to each other in position,
but they are a S type error and a M type error.

(3) Two errors next to each other in position,
but one of them is a W type error.

5.3 Rules from Native Speakers
There are many resources in Baidu WenKu2,
such as similar Chinese characters, com-
monly confused words, homonyms, and easily-
misused characters, which are collected and
uploaded by many teachers or students’ par-
ents. In addition, many Chinese researchers
have written different kinds of books and dic-

2http://wenku.baidu.com/
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Example 3

Original Text 1 怎 2 样 3 把 4 孩 5 子 6 教 7 养 8 成 9 人 10 呢 11？12

Segment Text 怎样, 把, 孩子, 教养, 成人, 呢,？
Correct Text 怎样把孩子抚养成人呢？
Error Type S (word selection)

Error Interval 6,7
Error-Correct Word 教养-抚养

Table 2: An example of training sentence that contains only one S type error.

tionaries to review these resources (Li, 2005;
Pang, 2006; Ran, 2010; Tian, 2012; Ye, 1978).

Although all of the aforementioned re-
sources can be converted to error rules. Al-
though these resources provide only a correct
word or an error word of an error rule, the
prefix and suffix can be obtained from text
corpus. We count the cluster (trigram) of the
words in a textbook corpus, and the words lo-
cated before or after the central words are re-
garded as prefixes or suffixes respectively. For
example, the highest frequency clusters which
take ‘录’ as the central error word are ‘报录
的’, ‘记录下’ and ‘听录音’. ‘录’ and ‘陆’ are
easily-misused Chinese characters. Taking the
misuse of ‘录’ as ‘陆’ for an example, we can
generate the error rules of ‘S-陆-报-录-的’, ‘S-
陆-记-录-下’ and ‘S-陆-听-录-音’ with the help
of the high frequency clusters extracted from
the textbook corpus.

In addition to the S type error, the M type
error and the R type error can also be gener-
ated similarly. In order to reduce the number
of rules and make the rules more accurate in
predicting, the Chinese characters of the error
word and correct word are all from the Essen-
tial Chinese Dictionary (Xu and Yao, 2009)
and the top 1500 frequency characters high
frequency in the list of the training dataset
of CGED. These two wordlists contain 1,535
different Chinese characters. Based on the
wordlists, 97.48% (49706/50471) of the correct
words of the CGED dataset are formed.

5.4 Data Generation
5.4.1 Raw Data
In order to make the generated sentences more
similar to the sentences written by L2 learners,
we select candidate sentences from a textbook
corpus, which covers 12 sets of textbooks com-
piled for foreign students and 7 sets of text-
books compiled for Chinese students, provided

by the Research Center for Lexicology & Lex-
icography, the Chinese Academy of Social Sci-
ences. Although large-scaled, it is still failed
to provide enough candidate sentences. There-
fore, we also select the People’s Daily (1946-
2017) provided by the Library of the Chinese
Academy of Social Sciences as a supplemen-
tary corpus.

5.4.2 Preprocessing
The processing of text corpus includes the fol-
lowing steps:

(1) Use OpenCC3 toolkit to convert all tra-
ditional CGED dataset to simplify dataset.

(2) Use LTP toolkit to do Chinese sentence
segmentation.

(3) Filter the sentences by following meth-
ods: discard sentences whose characters are
less than 5 or more than 40; discard sentences,
in which the proportion of Chinese charac-
ters is less than 50%; if a sentence contains
any character or word out of National Syllabus
of Graded Words and Characters for Chinese
Proficiency (Hanban, 2001) and Chinese Profi-
ciency Test Syllabus Level 1-6 (Hanban, 2010),
the sentence should also be discarded.

The rest sentences are candidate sentences
for generating error sentences.

5.4.3 Error Sentences Generation
Error sentences are generated based on er-
ror rules. We can replace the ‘prefix+correct
word+suffix’in a filtered candidate correct sen-
tence with ‘prefix+error word+suffix’ to get an
error sentence. For example, there is a correct
sentence ‘他又当爹又当妈，把儿子抚养成人。’
and an error rule ‘S-教养-子-抚养-成’. When
‘子抚养成’ in the sentence is replaced with ‘子
教养成’, a new error sentence ‘他又当爹又当
妈，把儿子教养成人。’ is generated. The newly
generated training sentence is shown in table
3.

3https://github.com/BYVoid/OpenCC
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Example 4

Original Text 1 他 2 又 3 当 4 爹 5 又 6 当 7 妈 8，9 把 10 儿 11 子 12 教 13

养 14 成 15 人 16。17

Correct Text 他又当爹又当妈，把儿子抚养成人。
Error Type S (word selection)

Error Interval 12,13
Error-Correct Word 教养-抚养

Table 3: An example of training sentence generated from an error rule ‘S-教养-子-抚养-成’.

6 Experiment Results

6.1 Implementation Details
We merge all the historical CGED training
dataset and test dataset, and obtain 76,117
error sentences after sentence segmentation,
of which 58,521 sentences have corresponding
correct sentences. We use 80% of the error
sentences and their corresponding correct sen-
tences for training (119,414 sentences) and the
rest for validation. In DIP tasks, we generated
79,131 rules from CGED dataset and 61,149
different rules from other corpus mentioned
in section 5.4.1. With the help of these error
rules, we generated 19,1331 error sentences.
We use TensorFlow4 to implement the LSTM-
CRF model, and use FastText5 directly for the
correction task. We only use pre-trained em-
beddings for LSTM-CRF model which are pre-
trained with the textbooks corpus and Peo-
ple’s Daily (1946-2017) text corpus.

6.2 Results on Validation Dataset
We used the validation dataset to select the
best hyper-parameters for both the LSTM-
CRF model of DIP tasks and the classification
model for correction task. From the results
of table 4, it has been found that the model
with added trigram embeddings performs bet-
ter than that with only character embedding
and bigram embeddings when using the same
dataset. The model trained with increased
new data is superior to the model that only
trained with CGED dataset.

Table 5 shows the results of the correction
task. MN refers to model N. For example, M2
refers to model 2. N stands for the number of
aforementioned prefixes and suffixes in section
5.1. The smaller the N is, the more effective
the model is.

4https://github.com/tensorflow/tensorflow
5https://github.com/facebookresearch/fastText

Detection Task
Model Precision Recall F1
CGED
(U+B) 0.6137 0.6586 0.6354

CGED
(U+B+T) 0.5686 0.8102 0.6682

CGED+G
(U+B+T) 0.5969 0.7615 0.6692

Identification Task
Model Precision Recall F1
CGED
(U+B) 0.4204 0.4236 0.422

CGED
(U+B+T) 0.3973 0.4974 0.4418

CGED+G
(U+B+T) 0.4213 0.4905 0.4533

Position Task
Model Precision Recall F1
CGED
(U+B) 0.2995 0.2634 0.2803

CGED
(U+B+T) 0.2499 0.2831 0.2655

CGED+G
(U+B+T) 0.3161 0.3057 0.3108

Table 4: Results on Validation Dataset of
DIP tasks. CGED indicates that only CGED
training dataset is used. G stands for using
generated dataset, U stands for character em-
bedding, B stands for bigram embeddings, and
T stands for trigram embeddings.

In table 5, model 1 has the best predic-
tive effect, while the other models can predict
the correct suggestions rather than model 1.
Therefore, we take the results of model 1 as
basis. If three results of the other four models
are inconsistent with those of model 1, they
will be taken as the priority result.
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Correction Task （Top1)
Model Precision Recall F1
M1 0.323 0.323 0.323
M2 0.310 0.310 0.310
M3 0.297 0.297 0.297
M4 0.287 0.287 0.287
M5 0.278 0.278 0.278

Correction Task （Top3)
Model Precision Recall F1
M1 0.136 0.408 0.204
M2 0.130 0.389 0.195
M3 0.122 0.367 0.183
M4 0.121 0.362 0.181
M5 0.118 0.354 0.177

Table 5: Results on Validation Dataset of
Correction task.

6.3 Results on Evaluation Dataset

While testing on the final evaluation dataset,
we merged all the training dataset and valida-
tion dataset, and added generated sentences to
retrain our models. Table 6 and Table 7 show
the final results of DIP tasks and correction
task.

We used the same parameters for training
9 different models，but obtained 9 different
test results. Hence, we selected the best per-
forming model in detection task in evaluating
dataset of 2017 as run 1, and the best per-
forming model in position task in evaluating
dataset of 2017 as run 2. During this process,
we didn’t apply any model stacking.

Finally, 12 teams submitted 32 DIP task
results. The first run of our system (run1)
achieved the highest F1 scores in the detec-
tion task. In the identification task, the F1 of
run1 and run2 ranked the second and the third
respectively. And in the position task, the F1
of run2 gained third place among 32 results.

As for the correction task, the new task of
this year, 9 teams submitted a total of 23 re-
sults. Run2 got better result than run1 in
both top1 and top3 tasks. In top1 correction
task, the F1 of run2 ranked 2/9 according to
teams and 2/23 according to results, which is
lower than the highest result by only 0.0001.
In top3 correction task, the F1 of run2 ranked
2/9 according to teams and 3/23 according to
results.

Detection Task
Runs Precision Recall F1
Run1 0.6736 0.8621 0.7563
Run2 0.7266 0.7408 0.7336

Identification Task
Model Precision Recall F1
Run1 0.4834 0.5952 0.5335
Run2 0.5831 0.4955 0.5357

Position Task
Model Precision Recall F1
Run1 0.2741 0.3177 0.2943
Run2 0.3839 0.2966 0.3346

Table 6: Results on Evaluation Dataset of
DIP Tasks.

Correction Task （Top1)
Runs Precision Recall F1
Run1 0.1364 0.1651 0.1494
Run2 0.1852 0.1609 0.1722

Correction Task （Top3)
Runs Precision F1
Run1 0.1432 0.1569
Run2 0.1934 0.1798

Table 7: Results on Evaluation Dataset of
Correction Task.

7 Conclusion and Future Work

In this shared task paper, we mainly describe
how to generate more error sentences based
on the CGED training dataset and large fil-
tered corpus. Based on the original training
data and augmented data, we trained LSTM-
CRF models ranking 1/12, 2/12 and 2/12
separately in DIP tasks. In the correction
task, we regarded it as a classification prob-
lem and ranked 2/9. Our final submitted re-
sults achieved 2nd place in mean ranking. All
of this proves the effectiveness of the data aug-
mentation algorithm proposed in this paper.

In the future work, we will blend more gram-
matical features in error detection and cor-
rection, and integrate more second language
teaching experience in the model.
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Abstract 

In the process of learning and using 
Chinese, many learners of Chinese as 
foreign language(CFL) may have 
grammar errors due to negative migra-
tion of their native languages. This pa-
per introduces our system that can 
simultaneously diagnose four types of 
grammatical errors including redun-
dant (R), missing (M), selection (S), 
disorder (W) in NLPTEA-5 shared 
task. We proposed a Bidirectional 
LSTM CRF neural network (BiLSTM-
CRF) that combines BiLSTM and 
CRF without hand-craft features for 
Chinese Grammatical Error Diagnosis 
(CGED). Evaluation includes three 
levels, which are detection level, iden-
tification level and position level. At 
the detection level and identification 
level, our system got the third recall 
scores, and achieved good F1 values. 

1 Introduction 

With the rapid development of China’s economy, 
“Chinese Fever” has been set off in the world and 
more foreigners begin to learn Chinese. Writing is 
an important part of Chinese learning, and the 
grammar is the basis of writing. In the process of 
writing and communicating with each other using 

Chinese, learners of Chinese as foreign lan-
guage(CFL) may have grammar errors due to 
negative migration of their native languages. 

Traditional learning methods for CFL rely on 
heavily manual work to point out grammar errors, 
which costs a lot of time and labor. In order to re-
duce the workload of manual identification, it is 
necessary to explore effective methods for Chi-
nese Grammatical Error Diagnosis (CGED). In 
the field of natural language processing, CGED is 
a great challenge because of the flexibility and ir-
regularity in Chinese, so a series of CGED evalua-
tion tasks are arranged. 

The CGED evaluation tasks provided a plat-
form for many researchers to study the automatic 
detection of Chinese grammatical errors. The 
CGED 2018 evaluation task defines Chinese 
grammatical errors as four categories: redun-
dant(R), selection (S), missing(M), disorder(W). 
As shown in Table 1, the example sentences cor-
responding to each error are given. 

In this paper, we regarded the CGED 2018 
shared task as a character-based sequence labeling 
task. We proposed a Bidirectional LSTM 
CRF(BiLSTM-CRF) neural network that com-
bines LSTM and CRF for sequence labeling with-
out any hand-craft features. Firstly, we use 
BiLSTM network to learn the information in the 
sentence and extract features, then we utilize CRF 
for sequence labeling to complete automatically 
Chinese grammatical errors detection. 

Error Type Error Sentence Correct Sentence 
R(Redundant) 时间是无价之宝的。 时间是无价之宝。Time is priceless. 

W(Word Order) 你采取几种方法应该帮助他们。 
你应该采取几种方法帮助他们。 
You should take several steps to help them. 

M(Missing) 任何婴儿心都是白纸似的清白。 
任何婴儿的心都是白纸似的清白。 
Any baby's heart is white innocence. 

S(Selection) 大家都知道吸烟是害健康的。 
大家都知道吸烟是损害健康的。 
Everyone knows that smoking is harmful to health. 

Table 1: The examples given.
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The rest of this paper is organized as follows: 

Section 2 briefly introduces related work in this 
field. Section 3 introduces the model that we pro-
posed. Section 4 discusses experiments and results 
analysis, including data preprocessing, hyperpa-
rameters and experiment results. Finally, conclu-
sion and prospects are arranged. 

2 Related Work 

Automatic detection of grammatical errors is one 
of the most important tasks in the field of natural 
language processing. Researchers have already 
done a lot of work in the field of English gram-
matical errors diagnosis. For example, Helping 
Our Own (HOO) is a series of shared tasks in cor-
recting textual errors (Dale and Kilgarriff,2011; 
Dale et al., 2012). The CoNLL2013 and 
CoNLL2014 shared tasks (Ng et al., 2013; Ng et 
al., 2014) focused on grammatical error correc-
tion, and many approaches were proposed, such as 
based N-gram language model methods (Hdez et 
al., 2014), statistical machine translation methods 
(Felice et al., 2014), machine learning methods 
(Wang et al., 2014), etc. 

Compared with English, the study for Chinese 
grammatical errors diagnosis started later. The re-
searchers also proposed many methods, such as 
statistical learning methods (Chang et al., 2012), 
ruled-based methods (Lee et al., 2013), and hy-
brid-based model methods (Lee et al., 2014). 

However, due to the lack of corpora and the limi-
tations of technology, the research progress is lim-
ited greatly. The CGED shared tasks (Yu et al., 
2014; Lee et al., 2015, 2016; RAO et al., 2017) 
provided researchers with a good platform to pre-
sent their work. In CGED2016 shared task, a 
CRF-based model achieved good precision (Liu et 
al., 2016) and a model based on CRF+LSTM get 
good results (Zheng et al., 2016). In CGED 2017, 
researchers used some features such as part of 
speech, collocation words, N-gram etc., and put 
forward the BiLSTM+CRF model to train models 
for each error type respectively, then analyzed the 
errors by model fusion, finally made great pro-
gresses for CGED (Xie et al., 2017; Liao et al., 
2017). 

In this paper, we propose a bidirectional LSTM 
CRF Neural Network (BiLSTM-CRF) for CGED. 
The model is described as follows: 

(1) Different from the previous methods that 
train models for each error type, in our system, 
only one model is trained for all error types, and 
multiple error types are predicted at the same 
time. 

(2) Our model captures sentence-level features 
based on the powerful long-term memory ability 
of BiLSTM and uses CRF for sequence labeling. 

(3) The model only learns from word infor-
mation without any handcraft features. 

Fig 1 The proposed BiLSTM-CRF model.

3 Model  

In this paper, we regard Chinese Grammatical er-
rors diagnosis as the sequence labeling task based 
on character level, and the tag sets are R (Redun-
dant), S (Selection), M (Missing), W (Word Or-
der), C (Correct). The BiLSTM-CRF model pre-
sented in this paper is shown in Figure 1, which 
includes Embedding Layer, BiLSTM Layer and 
CRF layer. 

(1) Embedding Layer: transforms the index of 
word into word vector. 

(2) BiLSTM Layer: learns the information of 
each word and extracts features from sentence. 

(3) CRF Layer: decodes and produces labels for 
words. 

3.1 Embedding Layer 

Embedding Layer aims to transform words into 
distributed representations which capture syntactic 
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and semantic meanings of words. Therefore, we 
use word embeddings to represent words in the 
sentence. 

Given a sentence S, then we can describe it as 
S ൌ ሼwଵ,wଶ,wଷ, … ,wିଵ,wሽ, which contains a 
sequence of words, and each word is derived 
from a vocabulary V. Words are represented by 
distributional vectors w ∈ ܴௗ  which are drawn 
from a word embedding matrix W	 ∈ ܴ|	|ൈௗ. Af-
ter Embedding Layer, then we can get X:  
X ൌ ሼݔଵ, ,ଶݔ ,ଷݔ … , ,ିଵݔ  .ሽݔ

3.2 BiLSTM Layer 

Due to the powerful long-term memory ability of 
LSTM, LSTM based neural networks, which have 
access to both past and future contexts, are proven 
to be effective in sequence labeling task. The hid-
den states in bidirectional LSTM can capture both 
past and future context information and accom-
plish sequence labeling for each token.  

Basically, a LSTM unit is composed of three 
multiplicative gates which control the proportions 
of information to forget and to pass on to the next 
time step. Three components composite the 
LSTM-based recurrent neural networks: one input 
gate ݅௧  with corresponding weight matrix 
ܹሺ௫ሻ,ܹሺሻ,ܹሺሻ, ܾሺሻ ; one forget gate ௧݂  with 
weight matrix ܹሺ௫ሻ,ܹሺሻ,ܹሺሻ, ܾሺሻ ; one 
output gate ௧  with corresponding weight matrix 
ܹሺ௫ሻ,ܹሺሻ,ܹሺሻ, ܾሺሻ. Formally, the formulas 
(1) to update an LSTM unit at time ݐ are: 
݅௧ ൌ ௧ݔሺܹሺ௫ሻߪ ܹሺሻ݄௧ିଵ ܹሺሻܿ௧ିଵ

 ܾሺሻሻ	
௧݂ ൌ ௧ݔሺܹሺ௫ሻߪ ܹሺሻ݄௧ିଵ ܹሺሻܿ௧ିଵ

 ܾሺሻሻ	
௧ݑ ൌ ௧ݔሺܹሺ௫ሻ݄݊ܽݐ ܹሺሻ݄௧ିଵ

ܹሺሻܿ௧ିଵ  ܾሺሻሻ	
ܿ௧ ൌ ݅௧⨀ݑ௧ ௧݂⨀ܿ௧ିଵ	

௧ ൌ ௧ݔሺܹሺ௫ሻߪ ܹሺሻ݄௧ିଵ ܹሺሻܿ௧
 ܾሺሻሻ		

݄௧ ൌ  ሺܿ௧ሻ	݄݊ܽݐ⨀௧

(1) 

where σ is the element-wise sigmoid function and 
⨀ is the element-wise product. ݔ௧ is the input vec-
tor at time ݐ, and ݄௧ is the hidden state vector stor-
ing all the useful information at (and before) time 
 .ݐ

Mathematically, the input of the BiLSTM layer 
is a sequence X of word vectors from Embedding 
Layer, where X ൌ ሼݔଵ, ,ଶݔ ,ଷݔ … , ,ିଵݔ ሽݔ . The 
output of the BiLSTM Layer is a sequence of the 
hidden states for each input word vectors, denoted 
as h ൌ ሼ݄ଵ, ݄ଶ, ݄ଷ, … , ݄ିଵ, ݄ሽ . Each final hid-

den state is the concatenation of the forward ݄௧ሬሬሬԦ 
and backward ݄௧ശሬሬሬ hidden states, then we can get 
݄௧ : 

݄௧ሬሬሬԦ ൌ ,௧ݔ൫݉ݐݏ݈ ݄௧ିଵሬሬሬሬሬሬሬሬԦ൯, ݄௧ശሬሬሬ ൌ ,௧ݔ൫݉ݐݏ݈ ݄௧ାଵശሬሬሬሬሬሬሬሬ൯ 

݄௧ ൌ ሾ݄௧ሬሬሬԦ,݄௧ശሬሬሬሿ 

3.3 CRF Layer 

Since there are many syntactic constraints in natu-
ral language sentences, the relationship among ad-
jacent tags is very important for CGED shared 
task. If we simply transfer directly the hidden 
states of BiLSTM Layer to a Softmax layer for tag 
prediction, it is possible to break the syntactic 
constraints and it is difficult to consider the corre-
lation among adjacent tags. Conditional random 
field (CRF) is the most commonly used method in 
structural prediction, and its basic idea is to use a 
series of potential functions to approximate the 
conditional probability of the output label se-
quence for the input word sequence. 

The sequence of hidden states in the BiLSTM 
Layer can be described as h ൌ
ሼ݄ଵ, ݄ଶ, ݄ଷ, … , ݄ିଵ, ݄ሽ, then we treat it as the 
input to the CRF Layer. The output of CRF Layer 
is our final prediction label sequence, we can see 
that ݕ ൌ ሼݕଵ, ,ଶݕ ,ଷݕ … , ,ିଵݕ ሽݕ , where ݕ୧ ∈ ܻ 
and ܻ represents the set of all possible label se-
quences. So we can use the hidden state sequence 
to get the conditional probability of the output se-
quence, and the conditional probability is: 

,ܹ;݄|ݕሺ ܾሻ

ൌ
∏ ሺ	ݔ݁ ௬ܹషభ,௬

் ݄  ܾ௬షభ,௬ሻ

ୀଵ

∑ ∏ ሺ	ݔ݁ ௬ܹషభ
ᇲ ,௬

ᇲ
் ݄  ܾ௬షభᇲ ,௬

ᇲሻ
ୀଵ௬ᇲ∈

 (2) 

Where ܹ,ܾ is the two weight matrices, and the 
subscription indicates that we extract the weight 
vector for the given label pair ሺݕ୧,  ୨ሻ. At the sameݕ
time, in order to train the CRF Layer, we use the 
classical maximum conditional likelihood estima-
tion to train our model. The final log-likelihood of 
the weight matrix is as follows: 

,ሺܹܮ ܾሻ ൌ  ݈݃ ,ܹ;|݄ݕሺ ܾሻ
ሺ,௬ሻ

 (3) 

Finally, the Viterbi algorithm is used to train the 
CRF Layer and decode the optimal output se-
quence. 

4 Experiments and Results Analysis 

In this paper, based on the CGED series evalua-
tions, we adopted the dataset of CGED 2016 and 
CGED 2018 shared tasks as out training dataset, 
then we manually deleted some incorrect sentenc-
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es in the training set and rebuilt the dataset. The 
CGED 2017 test set was selected as the validation 
set and the CGED 2018 test set was used as the 
test set. We selected BiLSTM-CRF model for 
CGED 2018 shared task. This part mainly in-
cludes data preprocessing, parameter settings, re-
sults analysis on the validation set and the test set. 

4.1 Data Preprocessing  

Since the CGED evaluation task involves identifi-
cation of incorrect boundary positions, word seg-
mentation may cause the misalignment between 
the end points of words and corresponding error 
intervals. At the same time, it may also result in 
overlapping problems among multiple types of er-

rors. Therefore, in this paper we employed charac-
ters for Chinese grammatical error diagnosis. Dif-
ferent from previous methods that trained models 
for each error type, only one model which can 
identity simultaneously four types of errors is 
trained in our system. 

Using previous data preprocessing method (Liu 
et al., 2016), we extracted correct sentences and 
wrong sentences from the corpus according to the 
manual annotation, and then respectively marked 
characters with the corresponding labels that in-
clude redundant(R), missing(M), selection(S), 
disorder(W), correct (C). we give some prepro-
cessing examples that are shown in Table 2. 

Error sentence:          他们是不但我父母，而且是人生的先辈。 
Correction sentence: 他们不但是我父母，而且是人生的导师。 

(They are not only my parents but also mentors in life.) 
Manual annotation: (3,5) W (16,17) S 
Preprocessing results： 
他/C 们/C 是/W 不/W 但/W 我/C 父/C 母/C，/C 而/C 且/C 是/C 人/C 生/C 的/C 先/S 辈/S。/C 

他/C 们/C 不/C 但/C 是/C 我/C 父/C 母/C，/C 而/C 且/C 是/C 人/C 生/C 的/C 导/C 师/C。/C 

Table 2: The examples of data preprocessing. 

Methods CRF BiLSTM-CRF 
False Positive Rate 0.1881 0.9643 

Detection Level 
Precision 0.7514 0.6016 
Recall 0.3093 0.9481 
F1-Score 0.4382 0.7361 

Identification Level 
Precision 0.6328 0.3375 
Recall 0.1763 0.32 
F1-Score 0.2758 0.3285 

Position Level 
Precision 0.3913 0.0015 
Recall 0.0658 0.0009 
F1-Score 0.1126 0.0011 

Table 3: The results on the validation set. 

4.2 Parameter Settings  

In this paper, word vector is randomly initialized, 
and word vector dimension is 50. Here is the 
overview of optimized parameters: 
· Word vector dimension  50 
· Hidden size 50 
· Adam learning rate  0.001 
· Epoch 300 

4.3 Experiments Results  

In this paper, we use two different models to con-
duct experiments respectively, which are CRF 
model (M1) and BiLSTM-CRF model (M2).  

CRF model: The CRF model adds a variety of 
grammatical features such as bigram and trigram 
features. The selection of features directly affects 
the performance of the model. Therefore, this ex-
periment adopts the feature length of 7 and uses 
bigram and trigram to extract features.  

BiLSTM-CRF model: The BiLSTM-CRF 
model combines LSTM and CRF for sequence la-
beling. Firstly, we use BiLSTM network to learn 
information in the sentence and extract features, 
then we utilize CRF for sequence labeling to 
complete automatically CGED shared work.  

The results on the validation set: The valua-
tion set used in this paper is the test set in the 
CGED2017 shared task. Two different models are 
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used to conduct experiments on the valuation set, 
results are shown in Table 3. 

From Table 3, we can see that CRF model has 
lower False Positive Rate (FPR) than BiLSTM-
CRF model, and CRF model achieves better pre-
cision performance at the detection level and the 
identification level, because that CRF model has 
more features information such as bi-gram, tri-
gram. However, CRF model and BiLSTM-CRF 
model are not good at position level. We think that 
our models are short of identification of position 
boundary. Next, we will focus on the position lev-
el by adding character position features. 

The results on the test set: The test set is the 
test set in the CGED 2018 shared task. We sub-
mitted only one result in this task. The Table 4 
lists the result Run1 we submitted and the test re-
sult based on CRF model. 

At the error detection level and error identifica-
tion level, our system achieves a third recall rate 
and gets a good F1 value. However, our system 

has a poor performance at the error position level 
and FPR. Since our system recognizes four types 
of errors at the same time, increasing the difficulty 
of recognition, it is easier to identify a correct sen-
tence as an error sentence, it results in lower FPR 
performance on the test set. In addition, our sys-
tem is based on character level, although the 
BiLSTM network has a powerful long-term 
memory function, the lack of word collocation in-
formation also results in lower position level effi-
ciency. Another reason for low position level effi-
ciency is that tag does not distinguish among loca-
tions. For example, 
Error: 我/C 朋/C 友/C 的/C 努/C 力/C 真/C 是/C
可/S 看/S 的/C。/C 
Correction: 我朋友的努力真是有效的。 
(My friend’s efforts are really effective) 
In this sentence, “可看” should be corrected as “有
效”. There was no distinction in two “/S”, so we 
think it leads to lower position level efficiency. 

Methods CRF Run1 
False Positive Rate 0.0851 0.9309 

Detection Level Precision 0.8506 0.5441 
Recall 0.3449 0.9179 
F1-Score 0.4908 0.6926 

Identification Level Precision 0.7373 0.3144 
Recall 0.17 0.6266 
F1-Score 0.2763 0.4187 

Position Level 
Precision 0.5037 0.0078 
Recall 0.0615 0.0189 
F1-Score 0.1096 0.0110 

Table 4: The results on the test set.

5 Conclusion 

On the basis of CGED series evaluation tasks, 
this paper proposes a neural network model 
based on BiLSTM-CRF, which is used for Chi-
nese grammatical error detection. It has good ef-
fect at the detection level and identification level, 
especially the high recall rate. But it has low per-
formance at the position level. Next, we will add 
some external features, such as parts of speech, 
character position features and collocation fea-
tures to improve the performance of our system. 
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Abstract

This paper presents a method of combin-
ing Conditional Random Fields (CRFs)
model with a post-processing layer using
Google n-grams statistical information
tailored to detect word selection and
word order errors made by learners of
Chinese as Foreign Language (CFL). We
describe the architecture of the model
and its performance in the shared task
of the ACL 2018 Workshop on Natural
Language Processing Techniques for
Educational Applications (NLPTEA).
This hybrid approach yields comparably
high false positive rate (FPR = 0.1274)
and precision (Pd= 0.7519; Pi= 0.6311),
but low recall (Rd = 0.3035; Ri = 0.1696
) in grammatical error detection and
identification tasks. Additional statistical
information and linguistic rules can be
added to enhance the model performance
in the future.

1 Introduction

Grammatical error detection is a growing area
of research with general applications to gram-
mar checking and Computer-Assisted Language
Learning (CALL). NLPTEA shared task provides
a platform for researchers to work on detecting the
same types of grammatical errors, and evaluate the
results on the same test set with predefined met-
rics(Yu et al., 2014; Lee et al., 2015, 2016; Rao
et al., 2017) . Since NLPTEA 2014, the shared
tasks focus on detecting and identifying four types
of errors which are the most common grammati-
cal mistakes made by CFL learners: word miss-
ing errors (“M”), word redundancy errors (“R”),
word selection errors (“S”), and word ordering er-
rors (“W”). The NLPTEA-2018 shared task fo-
cuses on identifying and correcting the above four

types of errors made by CFL learners. The train-
ing data released by the task organizers contains
402 sentences written by Chinese language learn-
ers and corrected by native speakers of Chinese.
The test data for the task consists of 3,548 sen-
tences. The diagnose level evaluation metrics are
based on three criteria: (1) detection-level: to
distinguish grammatical and ungrammatical sen-
tences; (2) identification-level: to identify error
type; (3) position-level: to pin down error posi-
tions. Our model is designed to tackle the error
detection task.

Most of the proposed methods for grammatical
error detection employ supervised machine learn-
ing or deep learning approaches(Chen et al., 2016;
Zheng et al., 2016; Chou et al., 2016) in recent
years. Although neural networks model performs
well for the complexity of the task in nature, CRFs
still get steady application in the community. This
paper proposes a integrated approach of combin-
ing CRFs, statistical information from Google n-
grams and rule-based expert knowledge to detect
the four types of errors. The method can yield high
accuracy and precision, but low recall. To improve
recall in the future, additional rules and statistical
knowledge can be added to enhance model perfor-
mance.

2 Data

In addition to the training data released by the
task organizers, another data set containing 9,602
sentences with 23,518 types of grammatical er-
rors employed in a similar shared task in NLPTEA
2016 is used in conjunction to train a CRFs model
to detect all four types of grammatical errors. Ta-
ble 1 is the distribution of the four types of errors
in our training set.

Google Chinese Web 5-gram (Liu et al., 2010)
is used to retrieve statistical information in the
post-processing layer. The data is composed of
around 883 millions of tokens generated from pub-
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NLPTEA
2018

NLPTEA
2016 Total

M 298 6,202 6,500
R 208 5,270 5,478
S 474 10,426 10,900
W 87 1,620 1,707

Table 1: Distribution of Errors in training set.

licly accessible web pages written in Chinese char-
acters. Low frequency n-grams occurring less than
40 times are filtered out. However, some fre-
quently occurring typos, ungrammatical forms, id-
iosyncratic usages, even texts written by language
learners and/or written in other languages such as
in Japanese Kanji are kept in the final published
version of the data, making it challenging to iden-
tify the subtleties of non-native speakers’ writings.
For example, the word “坑生素(antibiotic)” oc-
curs 200 times in the data,in which it contains one
misused character “坑(pit)” that shares similarities
in orthography with the correct usage “抗(anti)”.
So, when the form “坑生素” is used in CFL writ-
ing, it would pass the grammar checker based on
Google n-gram due to its high frequency. Another
example is “知情达理(understanding and reason-
able)” with 10,495 occurrences in the data. This
is a case of portmanteau combining two idioms
“知书达礼(well-educated and courteous)” and
“通情达理(show common sense)”, in which the
misused character “知(to know)” shares seman-
tic component with the correct character “通(to go
through)”.

Although these entries are considered as noises
in the Google n-grams collection, they provide ex-
emplary language mis-usage information by CFL
learners, and can bring in valuable insights about
the typical grammatical errors made by CFL learn-
ers that we can use in grammatical error detection
task. We will discuss how to use the information
to identify word selection and word order error in
Section 3.3.

3 Model Components

The model is designed to feed the sentences into a
CRFs model to detect four types of grammatical
errors, and pass the results to a post-processing
layer to further identify word selection and word
order errors based on unigram and bigrams infor-
mation retrieved from Google Chinese n-grams.
We describe the data preprocessing, feature sets

selection of CRFs model, and post-processing step
that modifies the CRFs output in the following sec-
tions.

3.1 Data Preprocessing

Since words are the basic element for many nat-
ural language processing tasks, and Chinese writ-
ing system by nature does not mark word bound-
aries, the first step of preprocessing is to segment
the sentences into words. Stanford Word Seg-
menter is used to split the input sentences into
sequences of words in terms of Peking Univer-
sity standard (Tseng et al., 2005) . Then the seg-
mented sentences are fed into Stanford POS Tag-
ger (Toutanova et al., 2003) to get parts of speech
of each word. During the word segmentation
and tagging processes, punctuations are treated as
words, however, since they are not included in
Google n-gram data, all the punctuations in the
training set are removed to make the best use of
available statistical information during the post-
processing step. The sentences are presented as a
three-column frame, with the first column as word,
the second column as POS tagging, and the last
one as error-detection output labels. Part of pre-
processed training data is presented in Table 2.

Word POS Error
因此 AD C
不仅 AD C
靠 P M
国家 NN C
的 DEG C
措施 NN C
而且 AD C
我们 PN C
消费者 NN C

Table 2: Example of preprocessed data.

3.2 Conditional Random Fields

CRFs (Lafferty et al., 2001) is a powerful model
for predicting sequential labels with a wide range
of applications in the NLP community, such as
name entity recognition, POS tagging and pars-
ing. The reason that CRFs is appropriate to model
sequencing tasks is that it can take the contextual
observations, usually a sequence of tokens as in-
put and generates a sequence of labels as output,
as in most of sequential labeling tasks.
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The sequencing CRFs model, or linear chain
CRFs, is well suited to the grammatical error de-
tection task, as it can take the sentences as input
sequences, and output the corresponding gram-
matical error labels. In our task, the output set is
composed of five elements C, M, R, S, W, abbre-
viating for correct, missing, redundancy, selection
and word ordering errors respectively.

CRFs provide a rich unconstrained feature set
to represent data, and assigns a weight to each fea-
ture. Therefore, feature set construction can de-
cide the expressive power of the model. We use
46 features in our model to represent the relation-
ships between adjacent words, parts-of-speech,
and their interaction in error prediction. CRF++
toolkit of Version 0.58 (?) is adopted in our model.

3.3 Post-Processing Layers

Two layers are added on top of the CRFs model
to enhance performance by detecting grammati-
cal errors based on the statistical information re-
trieved in Google Chinese n-grams. The first
post-processing layer is applied to identify word
selection error in terms of unigram information;
the second layer is implemented to detect word-
ordering error and word selection errors according
to bigrams information.

3.3.1 Unigram Layer
The unigram layer applies to the words that are
predicted as “C” in CRFs model to check the pre-
diction accuracy by using unigram information;
however, the words that are detected as errors will
not be processed in this step. The post-precessing
procedure of this step can be summarized as fol-
lows:

If a word is not a cardinal or ordinal number,
the length of the word is not longer than two char-
acters, and the occurrences of the word in Google
unigram are less than 40,000 times, the original
correct tag generated by CRFs is converted to a
word selection error. The algorithm applied in this
layer is shown Table 3 .

The rationale behind this design is that the fre-
quencies of multisyllabic Chinese words decrease
when their usages are unconventional. Therefore,
when such expressions are found in CFL learner’s
writing, there are reasonable grounds to believe
that word selection errors have occurred.

Since the corpus cannot include all the num-
bers and proper nouns, the words with rela-
tively low frequencies, such as a proper noun “栋

Algorithm 1: Tag C is converted to Tag S
based on unigram statistics

if (output = “C” and
POS !=“CD”, “OD” or “NR” and
wordLength <=2 and
wordFrequency <=40,000):
“C” is changed to “S”

Table 3: Unigram algorithm.

杰(35,205)” and an ordinal number ”第三百三
十九(39,982)” are likely to bee grammatical ex-
pressions. For this reason, parts-of-speech knowl-
edge is integrated with the frequency information
to better identify errors. The frequency threshold
is decided by descriptive statistics of Google n-
grams data. Although this setting improves the
model recall in this task, the rationality of set-
ting this cut-off will be discussed further in Sec-
tion 4. In this step, if a word “灵恬(214)” or “快
子(15,700)” is marked as “C” by CRFs model with
a non “CD, OD or NR” POS tagging, the predicted
tag is changed to “S”.

3.3.2 Bigrams Layer

This layer is used to further identify word selec-
tion and word order errors in terms of bigrams
frequencies. If occurrences of bigrams are less
than 1,000 times in the Google ngrams corpus, the
range is detected as suspicious area that may con-
tain grammatical errors. In this step, additional
preprocessing is needed to chunk input sentences
into bigrams with their corresponding frequencies
in Google ngrams data. A preprocessed sentence
as an example is shown in Table 4.

Since two words are contained in each suspi-
cious area, the error type of individual word needs
to be further decided. Unigram information is ap-
plied again to diagnose grammatical errors at the
word level. The pseudo code used in this layer is
presented Table 5.

If both of the words within the suspicious area
have high word frequencies in the unigram data,
such as “道(193,135,155)” and “吸烟(7,594,378)”
in Row 3 of Table 4, the error may occur in the pre-
vious two words, if the previous bigrams also have
low frequencies. In this case, both “道” and “吸
烟” are correct words, however, the grammatical
error occurs in the previous word “知不”. Simi-
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Bigrams Frequency
他们 知不 0
知不 道 0
道 吸烟 354
吸烟 对 153,530
对 未成年 98,312
未成年 年 461
年 的 91,329,920
的 影响 47,251,277
影响 会 324,577
会 造成 6,907,267
造成 的 20,711,377
的 各种 19,073,836
各种 害处 524

Table 4: Example of preprocessed data.

larly, this procedure can be applied to check fol-
lowing bigrams to decide the error type of individ-
ual word within a suspicious area.

Algorithm 2: Tag C is converted to Tag W
or Tag S based on bigrams and unigram

if (word1Frequency >=40,000 and
word2Frequency >=40,000 ):
if previousBigramsFrequency>=1000:

word1 is marked as “C”
word2 is marked as “S”

if postBigramsFrequency>=1000:
word1 is marked as “S”
word2 is marked as “C”

else:
word1 is marked as “C”
word2 is marked as “C”

else:
for wordiFrequency <40,000:

if wordiLength>1:
swap characters to new bigrams
if newBigramsFreq >1000:

wordi is marked as “W”
else:

wordi is marked as “S”
else:

if wordiPOS == “CD”:
wordi keeps the tag “C”

else:
wordi is marked as “S”

Table 5: Bigrams algorithm.

If the frequency of at least one word within a
suspicious area is less than 40,000, it is possible to
assume that at least one grammatical error appears
within this area. For example, the bigrams “他们
知不” in Row 1 of Table 3, since the word “知不”
has zero occurrence in unigram, we can identify it
is an error. Then we can swap the characters, get
a new bigrams “他们 不知” and check the fre-
quency of the new bigrams in the corpus. Since
the frequency of “他们 不知” is 73,080, the word
“知不” is marked as a word order error; otherwise,
the low frequency individual word is marked as a
selection error.

In this step, word order and selection errors are
further detected in terms of both statistical infor-
mation and linguistic knowledge. Table 6 shows
an example of re-marked tags after passing this
layer.

Word CRFs Tag Post-processed Tag
他们 C C
知不 S W
道 C C
吸烟 C C
对 C C
未成年 C C
年 R R
的 R R
影响 C C
会 C C
造成 C C
的 C C
各种 C C
害处 C S

Table 6: Example of post-processed tags.

4 Results and Discussions

The model yields high precision, but low recall in
the shared task. The detailed evaluation results are
shown in Table 7.

Since the post-processed layers are designed to
detect word selection and word order errors only,
considering the large amount of word missing and
redundancy errors in the test data, it is expected
that some false negative elements are failed to
be identified in this model. In the future, more
statistical information and linguistic rules can be
added to reinforce the performance of this hybrid
model.
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Precision Recall F1
Detection 0.7519 0.3035 0.4324

Identification 0.6311 0.1696 0.2673
Position 0.2385 0.0536 0.0875

Table 7: Test results of hybrid model.

The evaluation results of using CRFs alone and
the hybrid model we proposed are compared in Ta-
ble 8. By adding the post-processed layer, there
is a trade-off between precision and recall. The
decrease in precision is possibly caused by the
increase of false positive errors, because words
with frequencies lower than 40,000 are marked
as selection errors in the post-processed layer.
Some words, such as “幽默性(19,928)” and “梧
桐花(37,707)”, even though with low frequen-
cies, are grammatical expression in Chinese; how-
ever, they are identified as errors in the model by
chance.

Precision Recall F1
CRFs 0.8804 0.1444 0.2481

Hybrid 0.7519 0.3035 0.4324

Table 8: Comparison of CRFs model and hybrid
model.

For the parameters setting in the post-processed
layer, our model use 40,000 as the threshold for
unigram, and 1,000 for bigrams. These two
numbers are reached by observing the descriptive
statistics of the data. Detailed corpus studies about
the data distribution in Google n-grams can facili-
tate the parameter setting and in turn lead to better
model performance in the future.

Since the post-layer is independent of the base
model, it can be easily applied on top of other
models, such as statistical, rule-based or hybrid
models, to further promote the base model perfor-
mance.
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Abstract 

This paper reports how we build a 

Chinese Grammatical Error 

Diagnosis system in the NLPTEA-

2018 CGED shared task. In 2018, we 

sent three runs with three different 

approaches. The first one is a pattern-

based approach by frequent error 

pattern matching. The second one is a 

sequential labelling approach by 

conditional random fields (CRF). The 

third one is a rewriting approach by 

sequence to sequence (seq2seq) 

model. The three approaches have 

different properties that aim to 

optimize different performance 

metrics and the formal run results 

show the differences as we expected. 

1. Introduction 

Learning Chinese as foreign language is 

getting popular. However, it is very hard for 

a foreign learner to write a correct Chinese 

sentence. We believe that a computer system 

that can diagnose the grammatical errors will 

help the learners to learn Chinese fast. 

Since 2014, the NLP-TEA workshop 

provides a Chinese Grammar Error Detection 

(CGED) shared task to promote the research 

on diagnosis. The organizer provides learners’ 

corpus tagged with error labels. There are 

four types of errors in the leaners’ sentences: 

Redundant, Selection, Disorder, and Missing. 

The research goal is to build a system that can 

detect the errors, identify the type of the error, 

and point out the position of the error in the 

sentence (Yu et al., 2014). This year, the 

CGED added a new requirement: for errors 

of missing words and word selection, 

systems are required to recommend at most 3 

corrections. If one of the corrections of these 

instances is identical with gold standard, the 

instances will be regarded as correct cases.  
In 2018, we sent three formal runs in three 

different approaches. The first two are based 

on previous works, the first one is a pattern-

based approach by frequent error pattern 

matching and language model scoring; the 

second one is a sequential labelling approach 

by conditional random fields (CRF), which 

performs well in year 2015 and 2016. The 

third one is a new approach, called rewriting 

approach by sequence to sequence (seq2seq) 

model. In the following sections, we will 

introduce the three approaches, discuss the 

formal run results, and give conclusion and 

future works. 

2. Previous Works 

2.1 Pattern-Based Approach 

The pattern matching approach is an old 

approach, which has been used in many 

previous works (Wu et al., 2010; Chen et al., 

2011). The pattern contains frequent error 

terms, in which a character is replace by a 

similar one. This is based on an assumption 

that students often make mistake among 

similar characters (Liu et al., 2009). The 

advantage of pattern matching is stable, the 

many drawback is it cost a lot to collect the 

patterns. 

The system is based on the previous work, 

the error pattern from a native student essay 

corpus in traditional Chinese. Before testing 
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the system, the test data is transformed into 

traditional by MS-Word 2010. 

2.2 Sequential Labelling Approach 

The second one is a sequential labelling 

approach by conditional random fields 

(CRF), which performs well in CGED 2015 

and 2016.(Chen et al., 2015; Chen et al., 

2016b) 

The sequential labelling approach is based 

on the conditional random field (CRF) model 

(Lafferty, 2001). CRF has been used in many 

NLP applications, such as named entity 

recognition, word segmentation, information 

extraction, and parsing. To apply it to a new 

task, it requires a specific feature set and 

labeled training data. The CRF model is 

regarded as a sequential labeling tagger. 

Given a sequence X, the CRF can generate 

the corresponding label sequence Y, based on 

the trained model. Each label Y is taken from 

a specific tag set, which needs to be defined 

in each task. How to define and interpret the 

label is a task-depended work for the 

developers. 

Mathematically, the model can be defined 

as: 

𝑃(𝑌|𝑋) =
1

𝑍(𝑋)
exp(∑ 𝜆𝑘𝑓𝑘𝑘 )         (1) 

where Z(X) is the normalization factor, 𝑓𝑘 is 

a set of features, λk  is the corresponding 

weight which will be learned in the training 

process. In the CGED task, X is the input 

sentence, and Y is the corresponding error 

type label. We define the tag set as: {O, R, M, 

S, D}, corresponding to no error, redundant, 

missing, selection, and disorder respectively. 

Table 1:  A sample of the CRF sequential 

labeling dataset shows a sample of our 

working file. The first column is the input 

sentence X, and the third column is the 

labeled tag sequence Y. Note that the second 

column is the Part-of-speech (POS) of the 

word in the first column. The combination of 

words and the POSs will be the features in 

our system. The POS set used in our system 

is a simplified POS set provided by CKIP1. 

 

Term POS Tag 

可是 C O 

有 Vt O 

                                                      
1 http://ckipsvr.iis.sinica.edu.tw/ 

一點 DET O 

冷 Vi O 

了 T R 

   

你 N O 

的 T R 

過年 Vi O 

呢 T O 

Table 1:  A sample of the CRF sequential 

labeling dataset 

Since the system is based on the previous 

work, the training set is the 2014, 2015, and 

2016 CGED training dataset in traditional 

Chinese. The test data is also in transformed 

into traditional by MS-Word 2010. 

3. Rewriting Approach 

This year, we propose a new approach, called 

rewriting approach. Given a sentence with 

grammar errors, a system can rewrite it and 

output a sentence without grammar error. 

This idea is inspired from the RNN encoder-

decoder models, which have been used in 

many deep learning researches. In such 

models, with the help of a large training set, 

a sequence can be transformed into another 

corresponding sequence. Amount them 

Sequence-to-sequence (seq2seq) models 

(Sutskever et al., 2014, Cho et al., 2014) have 

been applied successfully to a variety of NLP 

tasks such as machine translation, speech 

recognition, text summarization and 

conversation generation (Wu et al., 2017). In 

this task, we also adopt the seq2seq model as 

it is in Neural Machine Translation (NMT) 

which was the very first testbed for seq2seq 

model. 

3.1 Seq2seq Model 

Our rewrite approach system is built on 

TensorFlow Sequence to sequence (Seq2Seq) 

model 2  with the long-short-term-memory 

(LSTM). The training set is the 2017 and 

2018 CGED training dataset. 

2https://www.tensorflow.org/tutorials/seq2seq 
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Figure 1. Training flowchart 

 

3.2 Training the Seq2seq model 

Figure 1 shows the training flowchart of our 

system. The first step is collecting all the 

vocabulary in the training corpus to build a 

dictionary. Then uses the word2vec model 

(Mikolov et al., 2013) to find the vector 

representation of each word. The sentences 

written by the students and the corresponding 

correct version sentences are used to train the 

seq2seq model. Since we do not have a 

validation set to find a better early stop point. 

The termination criterion of training is an 

empirical value, perplexity equal 100. 

3.3 Preprocessing 

The sentences are segmented by Jieba3 word 

segmentation toolkit. The size of the 

vocabulary set is 5,424. The vocabulary is 

not very large, comparing to other the corpus 

used in other NLP tasks. 

3.4 Post-processing 

After the input is rewritten by the system, 

then the system will compare the rewritten 

sentence to the input sentence. We assume 

the rewritten one is the correct one and report 

the differences as grammar errors. 

                                                      
3 https://github.com/fxsjy/jieba 

4. Experiment 

4.1 Metrics  

In the formal run, accuracy, precision, recall, 

and F-score are reported in three different 

levels. False positive rate is reported for the 

detection levels. 

4.2 Formal Run result 

The performance of our systems is shown in 

the following tables comparing to the 

average of all 32 formal runs in 2018. Table 

2 shows the false positive rate; the only index 

that should be as low as possible. As we 

expected, the run1 pattern based approach 

gives the lowest FPR in all 32 runs. 

Table 3 shows the performance evaluation 

in detection level. At this level, the run2 

sequential labelling approach perform well in 

both accuracy and precision. The recall is 

also improved from the performance in 2016 

(Chen et al, 2016a). The performance of 

rewriting approach gives highest recall and 

high F1, however, poor accuracy and 

precision. This is also as we expected, since 

Submission False Positive Rate 

run1 0.050  

run2 0.178  

run3 1.000  

Average of all 32 

runs 0.467 

Table 2:  The false positive rate. 

 
Detection Level 

Accuracy Precision Recall F1 

run1 0.468  0.695  0.090  0.159  

run2 0.602  0.754  0.428  0.546  

run3 0.473  0.581  0.845  0.688  

Average of  

32 runs 
0.587  0.667  0.635  0.613  

Table 3:  Performance evaluation in 

Detection Level 
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the training corpus is too small and the 

vocabulary size is also too small. 

5. Conclusion and Future Works  

This paper reports our approach to the NLP-

TEA-5 CGED Shared Task evaluation. By 

comparing three different approaches, we 

find that the systems can be tuned to optimize 

different performance metrics. 

Our system presents the best false positive 

rate in detection level by pattern matching 

approach and high accuracy, precision by 

sequential labelling approach and high recall 

and F1 by rewriting approach. 

Due to the limitation of time and resource, 

our system is not tested under different 

experimental settings. In the future, we will 

use a larger corpus to train a better rewriting 

system to improve the performance on error 

diagnosis. 

6. Acknowledgments 

This study is conducted under the “III 

System-of-systems driven emerging service 

business development Project” of the 

Institute for Information Industry which is 

subsidized by the Ministry of Economic 

Affairs of the Republic of China. 

Reference 

Po-Lin Chen; Wu Shih-Hung; Liang-Pu Chen; 

Ping-Che Yang, (2016b) CYUT-III System at 

Chinese Grammatical Error Diagnosis Task, 

in Proceedings of The 3rd Workshop on 

Natural Language Processing Techniques for 

Educational Applications, Osaka, Dec 12, 

2016. 

Po-Lin Chen, Shih-Hung Wu, Liang-Pu Chen and 

Ping-Che Yang, (2016a) Improving the 

Selection Error Recognition in a Chinese 

Grammar Error Detection System, in 

Proceedings of the IEEE 17th International 

Conference on Information Reuse and 

Integration, July 28-30, 2016, Pittsburgh, PA, 

USA. 

Po-Lin Chen; Wu Shih-Hung; Liang-Pu Chen; 

Ping-Che Yang; Ren-Dar Yang, (2015), 

Chinese Grammatical Error Diagnosis by 

Conditional Random Fields, in Proceedings of 

The 2nd Workshop on Natural Language 

Processing Techniques for Educational 

Applications, pages 7–14, Beijing, China, 

July 31. 

Yong-Zhi Chen, Shih-Hung Wu, Ping-che Yang, 

Tsun Ku, and Gwo-Dong Chen (2011), 

Improve the detection of improperly used 

Chinese characters in students’ essays with 

error model” Int. J. Cont. Engineering 

Education and Life-Long Learning, Vol. 21, 

No. 1, pp.103-116, 2011. 

Chao-Lin Liu, Kan-Wen Tien, Min-Hua Lai, Yi-

Hsuan Chuang and Shih-Hung Wu, (2009), 

“Capturing Errors in Written Chinese Words”, 

in Proceedings of Joint conference of the 47th 

Annual Meeting of the Association for 

Computational Linguistics and the 4th 

International Joint Conference on Natural 

Language Processing of the Asian Federation 

of Natural Language Processing, Singapore, 

Aug. 3-5. 

Cho, K. et al. (2014). Learning phrase 

representations using RNN encoder-decoder 

for statistical machine translation. In Proc. 

Conference on Empirical Methods in Natural 

Language Processing 1724–1734. arXiv 

preprint arXiv:1406.1078. 

Lafferty, A. McCallum, and F. Pereira. (2001). 

Conditional random fields: Probabilistic 

models for segmenting and labeling sequence 

data. In Intl. Conf. on Machine Learning. 

Mikolov, Tomas; et al. (2013). "Efficient 

Estimation of Word Representations in Vector 

Space". arXiv:1301.3781. 

Ilya Sutskever and Oriol Vinyals and Quoc V. Le, 

(2014), Sequence to Sequence Learning with 

Neural Networks, Proc. NIPS. 

http://arxiv.org/abs/1409.3215. 

Shih-Hung Wu, Yong-Zhi Chen, Ping-che Yang, 

Tsun Ku, Chao-Lin Liu, (2010),  Reducing 

the False Alarm Rate of Chinese Character 

Error Detection and Correction, Proceedings 

of CIPS-SIGHAN Joint Conference on 

Chinese Language Processing (CLP), pages 

54–61, Beijing, 28-29 Aug. 

Shih-Hung Wu, Wen-Feng Shih, Che-Cheng Yu, 

Liang-Pu Chen, and Ping-Che Yang, (2017), 

CYUT-III Short Text Conversation System at 

NTCIR-13 STC-2 Task, in Proceedings of the 

13rd NTCIR Conference on Evaluation of 

Information Access Technologies, Dec. 5-8, 

Tokyo Japan. 

Yu, L.-C., Lee, L.-H., & Chang, L.-P. (2014). 

Overview of grammatical error diagnosis for 

learning Chinese as a foreign language. In 

Proceedings of the 1stWorkshop on Natural 

Language Processing Techniques for 

Educational Applications, 42-47. 

202



Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications, pages 203–206
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

 

Detecting Grammatical Errors in the NTOU CGED System 
by Identifying Frequent Subsentences 

 
Chuan-Jie Lin and Shao-Heng Chen 

 
Department of Computer Science and Engineering 

National Taiwan Ocean University 
{cjlin, shchen.cse}@mail.ntou.edu.tw 

 

Abstract 

The main goal of Chinese grammatical er-
ror diagnosis task is to detect word errors in 
the sentences written by Chinese-learning 
students.  Our previous system would gen-
erate error-corrected sentences as candi-
dates and their sentence likelihood were 
measured based on a large scale Chinese n-
gram dataset.  This year we further tried to 
identify long frequently-seen subsentences 
and label them as correct in order to avoid 
propose too many error candidates.  Two 
new methods for suggesting missing and 
selection errors were also tested. 

1 Introduction 

The CGED (Chinese grammatical error diagnosis) 
tasks have been organized for 5 years (Yu et al., 
2014; Lee et al., 2015; Lee et al., 2016; Rao et al., 
2017).  This task focuses on four kinds of errors in 
writing Chinese: using redundant words, missing 
words, arranging words in a wrong order, or using 
similar but incorrect words. 

In our previous attempts in this task, our systems 
generated corrected-sentence candidates by differ-
ent methods according to different error types.  
These candidates were scored by substring scoring 
functions (Lin and Chen, 2015).  Although these 
systems were ranked in the middle place in the sub-
task of identification level, they tended to propose 
too many errors thus achieved rather low precisions. 

This year we tried another approach to detect 
correct parts in a sentence before guessing posi-
tions of errors.  The proposed methods in early and 
this year’s tasks are explained in the following sec-
tions. 

                                                      
1 https://catalog.ldc.upenn.edu/LDC2010T06 

2 Identifying Frequent Subsentences 

The main stage of the CGED tasks is to correct sen-
tences written by Chinese-learning foreign students.  
The corrections were provided by Chinese teachers. 

In our experience, corrections can be given in 
two levels.  The first level is to make a sentence 
“correct” both in syntax and semantics.  The sec-
ond level is to make a sentence “better”, which 
means the original sentence is also correct but there 
is a better paraphrase commonly used in Chinese.  
Unfortunately, our previous systems cannot distin-
guish the two different types of corrections.  They 
will still propose suggestions when the original 
sentence is already a correct one. 

In order to decrease the number of suggestions, 
we decided to trust the original sentences more.  A 
simple approach is to detect frequently-seen long 
subsentences in Chinese.  Only the positions not 
covered by the frequent subsentences can be candi-
dates of grammatical errors.  Our referencing data-
base of frequent subsentences is the Chinese Web 
5-gram dataset1 , which collects substrings occur-
ring more than 20 times on the Internet. 

The steps to identify frequent subsentences are 
described as follows.  All substrings (with at least 
three Chinese characters) in the original sentence 
are looked up in the Chinese Web 5-gram dataset.  
All matched substrings in the original sentence are 
considered “correct”.  If two substrings overlap 
with at least one Chinese character (or two charac-
ters for substrings no longer than 4 Chinese char-
acters), they are merged into one longer substring.  
After the matching process, only those words not 
covered by any substring can be deleted (as redun-
dant errors), replaced (as selection errors), or 
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switched (as disorder errors).  And only the posi-
tions not inside any matched substring can have ad-
ditional words being inserted (as missing errors). 

An example of identifying frequent subsen-
tences is given here.  The second sentence in the 
Query 200405109523201166_2_1x2 in the train-
ing data is “我認為吸煙的壞處比長處更多”.  We 
can match three subsentence in the Google 5-gram 
dataset: 

我認為吸煙的 128 

吸煙的壞處 2111 

處更多 25635 
The first two are further merged into one larger 
subsentence.  So the identified frequent subsen-
tences in the original sentence can be shown in 
brackets as [我認為吸煙的壞處]比長[處更多]. 

After substituting “長處” (advantage) with its 
synonym “好處” (advantage) by the methods de-
scribed in Section 3.4, a longer subsentence “好處
更多” can fully cover the previous identified fre-
quent subsentence “處更多”.  Therefore, an error 
will be reported as a Selection Error here. 

好處更多 12938 

3 Correction Candidate Generation 

3.1 Character or Word Deletion (Case of 
Redundant) 

Generating correction candidates in the case of Re-
dundant type is quite straightforward: simply re-
moving any substring in an arbitrary length.  How-
ever, in order not to generate too many unnecessary 
candidates, we only do the removal under three 
special cases: removing one character, removing 
two-adjacent characters, and removing one word 
whose length is no longer than two Chinese char-
acters.  This method is the same as in the previous 
CGED tasks. 

3.2 Character Insertion (Case of Missing) 

The idea of generating correction candidates in the 
case of Missing type is to insert a character or a 
word into the given sentence.  But it is impractical 
to enumerate candidates by inserting every known 
Chinese characters or words.  We observed the 
CGED 2015 training set (Lin and Chen, 2015) and 
collected 34 characters which were frequently 

                                                      
2 http://ir.hit.edu.cn/ 

http://www.ltp-cloud.com/ 

missing in the essays written by Chinese-learning 
foreign students, as they occurred at least three 
times and covered 73.7% of the missing errors in 
the CGED 2015 training set.  Insertion happens be-
tween characters or words as usual. 

A new idea to find insertion candidates was 
tested this year.  Instead of inserting frequently 
missing characters, we directly discovered the n-
gram string with the highest frequency in the 
Google 5-gram dataset.  Take the sentence of the 
Query 200405205525200106_2_2x1 “這個團體
的目的是減少邊走邊抽的人” as an example.  
When considering inserting characters in the posi-
tion between “抽” and “的”, we found the longest 
most-frequent n-gram string is “邊抽煙的人” (a 
person smoking at the same time) which is the cor-
rect Missing Error. 

3.3 Substring Moving (Case of Disorder) 

Generating correction candidates in the case of 
Disorder type is also straightforward: simply mov-
ing any substring in any length to another position 
to its right (not to its left so that no duplication will 
be produced).  This method is the same as in the 
previous CGED tasks. 

3.4 String Substitution (Cases of Selection) 

The first case of selection errors is the misuse of 
prepositions.  To generate the correction candidates 
for preposition substitutions, we first extracted all 
prepositions in the Academia Sinica Balanced Cor-
pus (ASBC for short hereafter, cf. Chen et al., 
1996).  An input sentence is word-segmented and 
POS-tagged automatically beforehand.  Correction 
candidates are generated by replacing each prepo-
sition (whose POS is “P”) in the given sentence by 
other prepositions. 

The second case of selection errors is the misuse 
of synonyms.  As we known, even synonyms can-
not freely replace each other without considering 
context. 

To generate the correction candidates for syno-
nym substitutions, we consulted a Chinese thesau-
rus, Tongyici Cilin2 (the extended version; Cilin for 
short hereafter).  A given sentence is word-seg-
mented beforehand.  Correction candidates are 
generated by replacing each word in the given sen-
tence by its synonyms in Cilin if any. 

204



The third case of selection errors is the misuse 
of words which were lexically similar to the correct 
ones.  It is possible that the writer tried to use a 
word but misused another word with similar look-
ing, such as “仔細” (carefully) and “細節” (details). 

To generate but not over-generate the correction 
candidates for similar string substitutions, we first 
collected all 2-character words in the Google 5-
gram dataset.  Correction candidates are generated 
by replacing each 2-character word in the given 
sentence by another 2-character word having at 
least one character in common, such as “仔細” and 
“細節” where “細” appears in both words, or “合
適” (suitable, adjective) and “適合” (suiting, verb) 
where both characters appear in both words.  Ex-
amples of similar string substitution are given in 
the next page. 

A new idea to find selection candidates was 
tested this year.  We searched the Google 5-gram 
dataset and extracted the n-gram string with the 
highest frequency which differed with the original 
sentence with only one or two characters. 

Take the second sentence of the Query 
200405109523200578_2_1x2 “吸煙也是各人的
人權” as an example.  When considering replacing 
the character “各”, we found the longest most-fre-
quent n-gram string is “是個人的人權” (is a per-
sonal human right) which is the correct Selection 
Error. 

4 Substring Scoring Functions 

In our previous work (Lin and Chen, 2015), we 
have defined a sentence likelihood scoring function 
to measure the likelihood of a sentence to be com-
mon and correct.  This function uses frequencies 
provided in the Chinese Web 5-gram dataset in a 
way described as follows. 

Chinese Web 5-gram consists of real data re-
leased by Google Inc. which were collected from a 
large amount of webpages in the World Wide Web.  
Entries in the dataset are unigrams to 5-grams.  Fre-
quencies of these n-grams are also provided.  Some 
examples from the Chinese Web 5-gram dataset are 
given in the left part of Table 1. 

In order to avoid interference of word segmen-
tation errors, we decided to use substrings instead 
of word n-grams as the scoring units of likelihood.  
When scoring a sentence, frequencies of all sub-
strings in all lengths are used to measure the likeli-
hood. 

Frequencies of substrings are derived by remov-
ing space between n-grams in the Chinese Web 5-
gram dataset.  For instances, n-grams in the left part 
of Table 1 will become the strings in the right part, 
where length of a substring is measured in bytes 
and a Chinese character often occupies 3 bytes in 
UTF-8 encoding.  Note that if two or more different 
n-grams are transformed into the same substring af-
ter removing the space, they become one entry and 
its new frequency is the summation of their original 
frequencies.  Simplified Chinese words were trans-
lated into Traditional Chinese in advanced. 

Some notations are explained as follows.  Given 
a sentence S, let SubStr(S, n) be the set of all sub-
strings in S whose lengths are n bytes, and Google 
String Frequency gsf(u) be the frequency of a 
string u in the modified Chinese Web 5-gram da-
taset.  If a string does not appear in that dataset, its 
gsf value is defined to be 1 (so that its logarithm 
becomes 0). 

Equation 1 gives the equation of length-
weighted string log-frequency score SL(S).  Each 
substring u in S contributes a score of the logarithm 
of its Google string frequency weighted by u’s 
length n.  The value of n starts from 6, because most 
content words are not shorter than 6 bytes (i.e. two 
Chinese characters). 
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This function was also explained in the work of Lin 
and Chu (2015).  Please refer to that paper for ex-
amples of how to compute the sentence generation 
likelihood scores. 

5 Run Submission 

We planned to submit two runs this year.  One 
run was produced with the previous system, i.e. 
generating error-correction candidates and choos-
ing the ones with the highest length-weighted sub-
string scores.  The other run was produced by iden-
tifying frequent subsentences and then proposing 
errors containing in longer, more frequent n-gram 
strings found by new candidate generating methods. 

Unfortunately, due to some errors in our proce-
dures, only the one run was produced which re-
ported as many errors as our previous system.  We 
will finish the correct experiment as soon as possi-
ble to see the real performance of the newly pro-
posed methods. 
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Two different strategies to identify frequent sub-
sentences have been observed on the training data, 
where two thresholds are defined as follows.  The 
length threshold (lenTh) defines the confident 
level of a subsentence in length (in Chinese char-
acters).  All subsentences no shorter than the length 
threshold are marked as “correct”.  The frequency 
threshold (frqTh) defines the confident level of a 
subsentence in frequency.  All subsentences with a 
high frequency are also marked as “correct”, even 
though their lengths might be short.  The correc-
tion-candidates inside these “correct” subsentences 
are discarded. 

Table 1 shows the evaluation results at the posi-
tion level in the training data with different combi-
nation of length thresholds and frequency thresh-
olds.  The results suggest that trusting subsentences 
with at least 8 Chinese characters or appearing at 
least 900000 times in the Internet can reduced the 
erroneous proposal of corrections in a best way. 

6 Conclusion 

This paper describes the design of our Chinese 
grammatical error diagnosis system.  This is our 
fourth attempt in the CGED tasks.  Long frequent 
subsentences in the original sentences were identi-
fied in the first step.  An error could be proposed 
only if it was not covered by a longer “correct” sub-
sentences.  Two runs were planned to be submitted.  
One run was produced with the previous system, 
i.e. generating error-correction candidates and 
choosing the ones with the highest length-weighted 
substring scores.  The other run was produced by 
identifying frequent subsentences and then propos-
ing errors containing in longer, more frequent n-
gram strings found by new candidate generating 
methods. 
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lenTh frqTh F-score (%) 

20 1000000 8.9160 
10 1000000 8.9244 
8 1000000 8.9823 
5 1000000 7.9004 

20 900000 9.1603 
10 900000 9.1647 
8 900000 9.2144 
5 900000 7.9651 

20 500000 8.8235 
10 500000 8.8280 
8 500000 8.9185 
5 500000 7.9507 

Table 1:  Performance of Error Proposal at the 
Position Level in the Training Data. 
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