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Abstract

We report results from the SR’18 Shared
Task, a new multilingual surface realisa-
tion task organised as part of the ACL’18
Workshop on Multilingual Surface Reali-
sation. As in its English-only predecessor
task SR’11, the shared task comprised two
tracks with different levels of complexity:
(a) a shallow track where the inputs were
full UD structures with word order infor-
mation removed and tokens lemmatised;
and (b) a deep track where additionally,
functional words and morphological infor-
mation were removed. The shallow track
was offered in ten, and the deep track in
three languages. Systems were evaluated
(a) automatically, using a range of intrin-
sic metrics, and (b) by human judges in
terms of readability and meaning similar-
ity. This report presents the evaluation re-
sults, along with descriptions of the SR’18
tracks, data and evaluation methods. For
full descriptions of the participating sys-
tems, please see the separate system re-
ports elsewhere in this volume.

1 Introduction and Task Overview

Natural Language Generation (NLG) is attract-
ing growing interest both in the form of end-to-
end tasks (e.g. data-to-text and text-to-text gen-
eration), and as embedded component tasks (e.g.
in abstractive summarisation, dialogue-based in-
teraction and question answering).

NLG research has been given a boost by two
recent developments: the rapid spread of neural
language generation techniques, and the growing
availability of multilingual treebanks annotated
with Universal Dependencies1 (UD), to the point

1http://universaldependencies.org/

where as many as 70 treebanks covering about 50
languages can now be downloaded freely.2 UD
treebanks facilitate the development of applica-
tions that work potentially across all languages for
which UD treebanks are available in a uniform
fashion, which is a big advantage for system de-
velopers. As has already been seen in parsing,
UD treebanks are also a good basis for multilin-
gual shared tasks: a method that works for some
languages may also work for others.

The SR’18 task is to generate sentences from
structures at the level of abstraction of outputs
in state-of-the-art parsing, encouraging partici-
pants to explore the extent to which neural net-
work parsing algorithms can be reversed for gen-
eration. SR’18 also addresses questions about
just how suitable and useful the notion of univer-
sal dependencies—which is in the process of be-
coming the dominant linguistic formalism across
a wide range of NLP applications, parsing in
particular—is for NLG. SR’18 follows the SR’11
pilot surface realisation task for English (Belz
et al., 2011) which was part of Generation Chal-
lenges 2011 (GenChal’11), the fifth round of
shared-task evaluation competitions (STECs) in-
volving the language generation tasks.

Outside of the SR tasks, just three ‘deep’ NLG
shared tasks focusing on language generation from
abstract semantic representations have been organ-
ised to date: WebNLG3 (Gardent et al., 2017), Se-
mEval Task 94 (May and Priyadarshi, 2017), and
E2E5 (Novikova et al., 2017). What is more, these

2See the recent parsing shared task based on UDs
(Nivre and de Marneffe et al., 2016): http://
universaldependencies.org/conll17/.

3http://talc1.loria.fr/webnlg/stories/
challenge.html

4http://alt.qcri.org/semeval2017/
task9/

5http://www.macs.hw.ac.uk/
InteractionLab/E2E/
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tasks have only been offered for English.
As in SR’11, the Multilingual Surface Reali-

sation shared task (SR’18) comprises two tracks
with different levels of difficulty:

Shallow Track: This track starts from genuine
UD structures in which word order information
has been removed and tokens have been lemma-
tised. In other words, it starts from unordered de-
pendency trees with lemmatised nodes that hold
PoS tags and morphological information as found
in the original treebank annotations. The task
amounts to determining the word order and inflect-
ing words.

Deep Track: This track starts from UD structures
from which functional words (in particular, aux-
iliaries, functional prepositions and conjunctions)
and surface-oriented morphological and syntactic
information have been removed. In addition to
what is required for the Shallow Track, the task in
the Deep Track thus also requires reintroduction of
the removed functional words and morphological
features.

In the remainder of this paper, we describe the data
we used in the two tracks (Section 2), and the eval-
uation methods we used to evaluate submitted sys-
tems (Sections 3.1 and 3.2). We then briefly in-
troduce the participating systems (Section 4), re-
port and discuss evaluation results (Section 5), and
conclude with some discussion and a look to the
future (Section 6).

2 Data

To create the SR’18 training and testing data,
we used as data sources ten UD treebanks
for which annotations of reasonable qual-
ity were available, providing PoS tags and
morphologically relevant markup (number,
tense, verbal finiteness, etc.): UD Arabic,
UD Czech, UD Dutch, UD English, UD Finnish,
UD French, UD Italian, UD Portuguese,
UD Russian-SynTagRus and UD Spanish-
AnCora.6 We created training and test data for
all ten languages for the Shallow Track, and for
three of the languages, namely English, French
and Spanish, for the Deep Track.

Inputs in both Shallow and Deep Tracks are
trees, and are released in CoNLL-U format, with
no meta-information.7 Figures 1, 2 and 3 show

6universaldependencies.org
7http://universaldependencies.org/

a sample original UD annotation for English, and
the corresponding shallow and deep input struc-
tures derived from it.

To create inputs to the Shallow Track, the UD
structures were processed as follows:

1. Word order information was removed by ran-
domised scrambling;

2. Words were replaced by their lemmas.

For the Deep Track, the following steps were ad-
ditionally carried out:

3. Edge labels were generalised into pred-
icate/argument labels, in the Prop-
Bank/NomBank (Palmer et al., 2005;
Meyers et al., 2004) fashion. That is, the
syntactic relations were mapped to core (A1,
A2, etc.) and non-core (AM) labels, applying
the following rules: (i) the first argument is
always labeled A1 (i.e. there is no external
argument A0); (ii) in order to maintain the
tree structure and account for some cases
of shared arguments, there can be inverted
argument relations; (iii) all modifier edges
are assigned the same generic label AM;
(iv) there is a coordinating relation; see the
inventory of relations in Table 1.

4. Functional prepositions and conjunctions in
argument position (i.e. prepositions and con-
junctions that can be inferred from other lex-
ical units or from the syntactic structure) are
removed (e.g. by and of in Figure 2); prepo-
sitions and conjunctions retained in the deep
representation can be found under a A2INV
dependency; a dependency path Gov AM →
Dep A2INV → Prep is equivalent to a pred-
icate (the conjunction/preposition) with 2 ar-
guments: Gov← A1 Prep A2→ Dep.

5. Definite and indefinite determiners, auxil-
iaries and modals are converted into at-
tribute/value pairs, as are definiteness fea-
tures, and the universal aspect and mood fea-
tures8, see examples in Figure 3.

6. Subject and object relative pronouns directly
linked to the main relative verb are removed
(and instead, the verb is linked to the an-
tecedent of the pronoun); a dummy pronoun

format.html
8http://universaldependencies.org/u/

feat/index.html
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Figure 1: A sample UD structure in English.

Figure 2: Shallow input (Track 1) derived from UD structure in Figure 1.

Figure 3: Deep input (Track 2) derived from UD structure in Figure 1.

node for the subject is added if an originally
finite verb has no first argument and no avail-
able argument to build a passive; for a pro-
drop language such as Spanish, a dummy
pronoun is added if the first argument is miss-
ing.

7. Surface-level morphologically relevant infor-
mation as prescribed by syntactic structure or
agreement (such as verbal finiteness or verbal
number) is removed, whereas semantic-level
information such as nominal number and ver-
bal tense is retained.

8. Fine-grained PoS labels found in some tree-
banks (see e.g. column 5 in Figure 2) are re-
moved, and only coarse-grained ones are re-
tained (column 4 in Figures 2 and 3).

Shallow Track inputs were generated with the aid
of a simple Python script from the original UD
structures. During the conversion, we filtered out
sentences that contained dependencies that only
make sense in an analysis context (e.g. reparan-
dum, or orphan). This amounted to around 1.5%
of sentences for the different languages on av-
erage; see Table 2 for an overview of the final
sizes of the datasets. Deep Track inputs were

then generated by automatically processing the
Shallow Track structures using a series of graph-
transduction grammars that cover steps 3–8 above
(in a similar fashion as Mille et al. (2017)). There
is a node-to-node correspondence between the
deep and shallow input structures.

The Deep Track inputs can be seen as closer to
a realistic application context for NLG systems,
in which the component that generates the inputs
presumably would not have access to syntactic or
language-specific information (see, e.g. the inputs
in the SemEval, WebNLG, E2E shared tasks). At
the same time, we used only information found in
the UD syntactic structures to create the deep in-
puts, and tried to keep their structure simple. It
can be argued that not all the information neces-
sary to reconstruct the original sentences is avail-
able in the Deep Track inputs. Task definitions
specifically designed for NLG, as used e.g. in Se-
mEval Task 9, tend to use abstract meaning rep-
resentations (AMRs) as inputs that contain addi-
tional information such as OntoNotes labelling or
typed circumstantials, which make the generation
task easier. In the SR’18 Deep Track inputs, words
are not disambiguated, full prepositions may be
missing, and some argument relations may be un-
derspecified or missing.
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Deep label Description Example
A1, A2, ..., A6 nth argument of a predicate fall→ the ball

A1INV, ..., A6INV nth inverted argument of a predicate the ball→ fall

AM/AMINV (i) none of governor or dependent are argument of the other fall→ last night(ii) unknown argument slot
LIST List of elements fall→ [and] bounce

NAME Part of a name Tower→ Eiffel
DEP Undefined dependent N/A

Table 1: Deep labels.

ar cs en es fi fr it nl pt ru
train 6,016 66,485 12,375 14,289 12,030 14,529 12,796 12,318 8,325 48,119
dev 897 9,016 1,978 1,651 1,336 1,473 562 720 559 6,441
test 676 9,876 2,061 1,719 1,525 416 480 685 476 6,366

Table 2: SR’18 dataset sizes for training, development and test sets.

3 Evaluation Methods

3.1 Automatic methods

We used BLEU, NIST, and inverse normalised
character-based string-edit distance (referred to as
DIST, for short, below) to assess submitted sys-
tems. BLEU (Papineni et al., 2002) is a precision
metric that computes the geometric mean of the
n-gram precisions between generated text and ref-
erence texts and adds a brevity penalty for shorter
sentences. We use the smoothed version and re-
port results for n = 4.

NIST9 is a related n-gram similarity metric
weighted in favour of less frequent n-grams which
are taken to be more informative.

Inverse, normalised, character-based string-edit
distance (DIST in the tables below) starts by com-
puting the minimum number of character inserts,
deletes and substitutions (all at cost 1) required
to turn the system output into the (single) refer-
ence text. The resulting number is then divided by
the number of characters in the reference text, and
finally subtracted from 1, in order to align with
the other metrics. Spaces and punctuation marks
count as characters; output texts were otherwise
normalised as for all metrics (see below).

The figures in the tables below are the system-
level scores for BLEU and NIST, and the mean
sentence-level scores for DIST.

Text normalisation: Output texts were nor-
malised prior to computing metrics by lower-
casing all tokens, removing any extraneous
whitespace characters.

9http://www.itl.nist.gov/iad/mig/tests/mt/doc/ngram-
study.pdf; http://www.itl.nist.gov/iad/mig/tests/mt/2009/

Missing outputs: Missing outputs were scored
0. Since coverage was 100% for all systems ex-
cept one, we only report results for all sentences
(incorporating the missing-output penalty), rather
than also separately reporting scores for just the
in-coverage items.

3.2 Human-assessed methods
We assessed two quality criteria in the human eval-
uations, in separate evaluation experiments: Read-
ability and Meaning Similarity. As in SR’11 (Belz
et al., 2011), we used continuous sliders as rating
tools, because raters tend to prefer them (Belz and
Kow, 2011). Slider positions were mapped to val-
ues from 0 to 100 (best). Raters were first given
brief instructions, including instructions to ignore
formatting errors, superfluous whitespace, capital-
isation issues, and poor hyphenation. The part of
the instructions used only in the Readability as-
sessment experiments was:

“The quality criterion you need to assess
is Readability. This is sometimes called
fluency, and your task is to decide how
well the given text reads; is it good flu-
ent English, or does it have grammatical
errors, awkward constructions, etc.

Please rate the text by moving the slider
to the position that corresponds to your
rating, where 0 is the worst, and 100 is
the best rating.”

The corresponding instructions for Meaning Sim-
ilarity assessment, in which system outputs were
compared to reference sentences, were as follows:

“The quality criterion you need to assess
is Meaning Similarity. You need to read
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both texts, and then decide how close in
meaning the second text (in black) is to
the first (in grey).

Please use the slider at the bottom of the
page to express your rating. The closer
in meaning the second text clipping is to
the first, the further to the right (towards
100) you need to place the slider.

In other words, a rating of 100% would
mean that the meaning of the two text
clippings is exactly identical.”

Slider design: In SR’11, a slider design was
used, which had a smiley face at the 100 end and
a frowning face at the 0 end, with the pointer
starting out at 50. For conformity with what has
emerged as a new affordable human evaluation
standard over the past two years in the main ma-
chine translation shared tasks held at WMT (Bojar
et al., 2017a), we changed this design to look as
follows, with the pointer starting at 0:

Test data sets for human evaluations: Test set
sizes out of the box varied considerably for the
different languages. For the human test sets we
selected either the entire set or a subset of 1,000,
whichever was the smaller number, for a given lan-
guage. For subsets, test set items were selected
randomly but ensuring a similar sentence length
distribution as in the whole set.

Reported scores: Again in keeping with the
WMT approach, we report both average raw
scores and average standardised scores per system.
In order to produce standardised scores we sim-
ply map each individual evaluator’s scores to their
standard scores (or z-scores) computed on the set
of all raw scores by the given evaluator using each
evaluator’s mean and standard deviation. For both
raw and standard scores, we compute the mean of
sentence-level scores.

3.2.1 Mechanical Turk evaluations
For three of the languages in the shallow track
(English, Spanish and French), we replicated the
human evaluation method from WMT’17, known
as Direct Assessment (DA) (Graham et al., 2016),
exactly, except that we also ran (separate) experi-
ments to assess the Readability criterion, using the
same method.

Quality assurance: System outputs are ran-
domly assigned to HITs (following Mechanical
Turk terminology) of 100 outputs, of which 20
are used solely for quality assurance (QA) (i.e. do
not count towards system scores): (i) some are re-
peated as are, (ii) some are repeated in a ‘dam-
aged’ version and (iii) some are replaced by their
corresponding reference texts. In each case, a min-
imum threshold has to be reached for the HIT to be
accepted: for (i), scores must be similar enough,
for (ii) the score for the damaged version must be
worse, and for (iii) the score for the reference text
must be high. For full details of how these ad-
ditional texts are created and thresholds applied,
please refer to Bojar et al. (2017a). Below we re-
port QA figures for the MTurk evaluations (Sec-
tion 3.2.1).

Code: We were able to reuse, with minor adap-
tations, the code produced for the WMT’17 evalu-
ations.10

3.2.2 Google Data Compute Evaluation
In order to cover more languages, and to en-
able comparison between crowdsourced and ex-
pert evaluation, we also conducted human evalua-
tions using Google’s internal ‘Data Compute’ sys-
tem evaluation service, where experienced evalua-
tors carefully assess each system output. We used
an interface that matches the WMT’17 interface
above, as closely as was possible within the con-
straints of the Data Compute platform.

Everything stated at the beginning of Sec-
tion 3.2 also holds for the expert annotator eval-
uations with Google Data Compute.

Quality assurance: Because in the Google Data
Compute version of the evaluation experiment we
were using expert evaluators from a pool of work-
ers routinely employed to perform such tasks, we
did not replicate the WMT’17 QA techniques pre-
cisely, opting for a simpler test of self-consistency,
or intra-evaluator agreement (IEA) instead. Test
set items were randomly grouped into sets of 100
(which we are also calling HITs here for unifor-
mity) and order was again randomised before pre-
sentation to evaluators. Each evaluator did at least
one HIT. Each HIT contained 5 items which were
duplicated to test for IEA which we computed
as the average Pearson correlation coefficient per
HIT. The average IEA for English was 0.75 on the

10https://github.com/ygraham/segment-mteval
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raw scores for Meaning Similarity, and 0.66 for
Readability.

4 Overview of Submitted Systems

Eight different teams (out of twenty-one regis-
tered) submitted outputs to SR’18: the ADAPT
Centre (ADAPT, Ireland), AX Semantics (AX,
Germany), IIT-BHU Varanasi (IIT-BHU, India),
Ohio State University (OSU, USA), University
of São Paulo (NILC, Brazil), Tilburg University
(Tilburg, The Netherlands), Università degli Studi
di Torino (DipInfo-UniTo, Italy), and Technische
Universität Darmstadt (BinLin, Germany).

All teams submitted outputs for at least the En-
glish Shallow Track; one team participated in the
Deep Track (ADAPT, English), and three teams
submitted outputs for all ten languages of the Shal-
low Track (AX, OSU, and BinLin). Most submit-
ted systems are based on neural components, and
break down the surface realisation task into two
subtasks: linearisation, and word inflection. De-
tails of each approach are provided in the teams’
reports elsewhere in this volume; here, we briefly
summarise each approach:

ADAPT uses linearised parse tree inputs to
train a sequence-to-sequence LSTM model with
copy attention, augmenting the training set with
additional synthetic data.

AX is trained on word pairs for ordering and is
combined with a rule-based morphology compo-
nent.

IIT-BHU uses an LSTM-based encoder-
decoder model for word re-inflection, and a
Language Model-based approach for word
reordering.

OSU first generates inflected wordforms with a
neural sequence-to-sequence model, and then in-
crementally linearises them using a global linear
model over features that take into account the de-
pendency structure and dependency location.11

NILC is a neural-based system that uses a
bottom-up approach to build the sentence using
the dependency relations together with a language
model, and language-specific lexicons to produce
the word forms of each lemma in the sentence.

Tilburg works by first preprocessing an input
dependency tree into an ordered linearised string,

11Some of OSU’s outputs were submitted after the start of
the human evaluations and are not included in this report; out-
puts submitted late, but before the human evaluation started,
are included and marked with asterisks in the results tables.

which is then realised using a statistical machine
translation model.

DipInfo-UniTo employs two separate neural
networks with different architectures to predict the
word ordering and the morphological inflection in-
dependently; outputs are combined to produce the
final sentence.

BinLin uses one neural module as a binary clas-
sifier in a sequential process of ordering token
lemmas, and another for character-level morphol-
ogy generation where the words are inflected to
finish the surface realisation.

5 Evaluation results

5.1 Results from metric evaluations

Tables 3–5 show BLEU-4, NIST, and DIST results
for both the Shallow and Deep tracks, for all sub-
mitted systems; results are listed in order of num-
ber of languages submitted for. Best results for
each language are shown in boldface.

In terms of BLEU-4, in the Shallow Track,
Tilburg obtained the best scores for four lan-
guages (French, Italian, Dutch, Portuguese), OSU
for three (Arabic, Spanish, Finnish), BinLin for
two (Czech, Russian), and ADAPT for one (En-
glish). The highest BLEU-4 scores across lan-
guages were obtained on the English and Spanish
datasets, with BLEU-4 scores of 69.14 (ADAPT)
and 65.31 (OSU) respectively.

Results are identical for DIST, except that AX,
rather than BinLin, has the highest score for
Czech. The picture for NIST is also very similar
to that for BLEU-4, except that ADAPT and OSU
are tied for best NIST score for English, and Bin-
Lin (rather than Tilburg) has the best NIST score
for Dutch.

In the Deep Track, only ADAPT submitted sys-
tem outputs (English), and as expected, the scores
are much lower than for the Shallow Track, across
all metrics.

5.2 Results from human evaluations

Given the small number of submissions in the
Deep Track, we conducted human evaluations for
the Shallow Track only. We used Mechanical Turk
for the three languages for which this is feasible
(English, Spanish and French), and our aim was to
also conduct evaluations via Google’s Data Com-
pute service for three additional languages which
had the next highest numbers of submissions, as
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Shallow Deep
ar cs en es fi fr it nl pt ru en

AX 4.57 9.75 28.09 10.2 7.95 7.87 16.35 14.21 16.29 15.59 –
BinLin 16.2 25.05 29.6 32.15 23.26 20.53 23.55 22.69 24.59 34.34 –
OSU 25.65* – 66.33 65.31 37.52* 38.24* – 25.52* – – –

Tilburg – – 55.29 49.47 – 52.03 44.46 32.28 30.82 – –
DipInfo – – 23.2 26.9 – 23.12 24.61 – – – –
NILC – – 50.74 51.58 – – – – 27.12 – –

ADAPT – – 69.14 – – – – – – – 21.67
IIT-BHU – – 8.04 – – – – – – – –

Table 3: BLEU-4 scores for the test data. Bold = best score per language. * = late submission.

Shallow Deep
ar cs en es fi fr it nl pt ru en

AX 5.13 9.33 9.51 8.26 6.84 6.45 6.83 7.81 6.78 9.93 –
BinLin 6.94 10.74 9.58 10.21 9.36 7.21 7.6 8.64 7.54 13.06 –
OSU 7.15* – 12.02 12.74 9.56* 8.00* – 7.33* – – –

Tilburg – – 10.86 11.12 – 9.85 9.11 8.05 7.55 – –
DipInfo – – 8.86 9.58 – 7.72 8.25 – – – –
NILC – – 10.62 11.17 – – – – 7.56 – –

ADAPT – – 12.02 – – – – – – – 6.95
IIT-BHU – – 7.71 – – – – – – – –

Table 4: NIST scores for the test data. Bold = best score per language. * = late submission.

Shallow Deep
ar cs en es fi fr it nl pt ru en

AX 38.96 36.48 70.01 21.12 35.59 22.3 40.96 49.65 51.7 34.28 –
BinLin 44.37 35.7 65.9 36.95 41.21 28.6 40.74 48.23 51.36 34.56 –
OSU 46.49* – 70.22 61.46 58.7* 53.69* – 57.77* – – –

Tilburg – – 79.29 51.73 – 55.54 58.61 57.81 60.7 – –
DipInfo – – 51.87 24.53 – 18.04 36.11 – – – –
NILC – – 77.56 53.78 – – – – 57.43 – –

ADAPT – – 80.42 – – – – – – – 48.69
IIT-BHU – – 47.63 – – – – – – – –

Table 5: DIST scores for the test data. Bold = best score per language. * = late submission.

well as for English in order to enable us to com-
pare results obtained with the two different meth-
ods. However, most of the latter evaluations are
still ongoing and will be reported separately in
a future paper. Below, we report Google Data
Compute results and comparisons with Mechan-
ical Turk results, for English only.

5.2.1 Mechanical Turk results

Tables 6, 7 and 8 show the results of the hu-
man evaluation carried out via Mechanical Turk
with Direct Assessment (MTurk DA), for English,
French and Spanish, respectively. See Section 3.2
for details of the evaluation method. ‘DA’ refers
to the specific way in which scores are collected
in the WMT approach which differs from what we
did for SR’11, and here in the Google Data Com-
pute experiments.

English: Average Meaning Similarity DA
scores for English systems range from 86.9% to

67% with OSU achieving the highest overall score
in terms of both average raw DA scores and corre-
sponding z-scores. Readability scores for the same
set of systems range from 78.7% to 41.3%, reveal-
ing that MTurk workers rate the Meaning Simi-
larity between generated texts and corresponding
reference sentences higher in general than Read-
ability. In order to investigate how Readability of
system outputs compare to human-produced text,
we included the original test sentences as a system
in the Readability evaluation (for Meaning Simi-
larity the notional score is 100%). Unsurprisingly,
human text achieves the highest score in terms of
Readability (78.7%) but is quite closely followed
by the best performing system in terms of Read-
ability, ADAPT (73.9%).

Overall in the English Shallow Track, average
DA scores for systems are close. We tested for
statistical significance of differences between av-
erage DA scores using a Wilcoxon rank sum test.
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Figure 4 shows significance test results for each
pair of systems participating in the English evalu-
ation in the form of heatmaps where a green cell
denotes a significantly higher average score for the
system in that row over the system in that column,
with a darker shade of green denoting a conclusion
drawn with more certainty. Results show that two
entries are tied for first place in terms of Meaning
Similarity, OSU and ADAPT, with the small dif-
ference in average scores proving not statistically
significant. In terms of Readability, however, the
ADAPT sentences achieve a significantly higher
readability score compared to OSU.

French: Table 7 shows average DA scores
for systems participating in the French Shallow
Track. Meaning Similarity scores for French sys-
tems range from 72.9% to 48.6% with the Tilburg
system achieving the highest overall score. In
terms of Readability, again Tilburg achieves the
highest average score of 65.4%, with a consider-
able gap to the next best entry, OSU. Compared
to the human results, there is a larger gap than we
saw for English outputs.

Figure 5 shows results of tests for statistical sig-
nificance between average DA scores for systems
in the French Shallow Track. Tilburg achieves a
significantly higher average DA score compared to
all other systems in terms of both Meaning Sim-
ilarity and Readability. All systems are signifi-
cantly worse in terms of Readability than the hu-
man authored texts.

Spanish: Table 8 shows average DA scores
for systems participating in the Shallow Track for
Spanish. Meaning Similarity scores range from
77.3% to 43.9%, with OSU achieving the highest
score. In terms of Readability, the text produced
by the systems ranges from 77.0% to 33.0%, and
again OSU achieves the highest score. Figure 6
shows results of the corresponding significance
tests: OSU significantly outperforms all other par-
ticipating systems with respect to both evaluation
criteria. Human-generated texts are significantly
more readable than all system outputs.

MTurk DA quality control: Only 31% of
workers passed quality control (being able to repli-
cate scores for same sentences and scoring dam-
aged sentences lower, for full details see Bojar
et al., 2017a), highlighting the danger of crowd-
sourcing without good quality control measures.
The remaining 69%, who did not meet this cri-
terion, were omitted from computation of the of-

ficial DA results above. Of those 31% included
in the evaluation, a very high proportion, 97%,
showed no significant difference in scores col-
lected in repeated assessment of the same sen-
tences; these high levels of agreement are consis-
tent with what we have seen in DA used for Ma-
chine Translation (Graham et al., 2016) and Video
Captioning evaluation (Graham et al., 2017).

Agreement with automatic metrics: Table 9
shows Pearson correlations between MTurk DA
scores and automatic metric scores in the En-
glish, French and Spanish shallow tracks. Over-
all, BLEU agrees most consistently across the dif-
ferent tasks, achieving a correlation above 0.95
in all settings, whereas the correlation of NIST
scores with human Meaning Similarity scores is
just 0.854 for French, while DIST scores corre-
late with human Readability scores at just 0.831
for English.

Conclusions from metric correlations should be
drawn with a degree of caution, since in all cases
the sample size from which we compute correla-
tions is small, 8 systems for English, 5 for French,
and 6 for Spanish. We carried out significance
tests to investigate to what degree differences in
correlations are likely to occur by chance. In order
to take into account the fact that we are compar-
ing correlations between human assessment and
competing pairs of metrics (where metric scores
themselves correlate with each other), we apply a
Williams test for significance of differences in de-
pendent correlations, as done in evaluation of Ma-
chine Translation metrics (Graham and Baldwin,
2014; Bojar et al., 2017b).

Results are shown in Table 9. Correlations be-
tween metrics and human assessment in bold are
not significantly lower than any other metric. As
can be seen from Table 9, there is no signifi-
cant difference between any of the three metrics
in terms of correlation with human assessment in
both the French and Spanish tracks. In the En-
glish track, however, the correlation of BLEU and
NIST scores with human assessment are signifi-
cantly higher than that of DIST.

5.2.2 Google Data Compute results
Table 10 shows the results for the English as-
sessment conducted via the Google Data Compute
(GDC) evaluation service with expert evaluators.

One difference between the MTurk and the
Google results is the range of scores, which for
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Meaning Similarity
% z n Assess. System

86.9 0.369 1,249 1,422 OSU
85.5 0.314 1,238 1,429 ADAPT
84.8 0.291 1,294 1,498 Tilburg
84.2 0.280 1,229 1,407 NILC
77.5 0.043 1,256 1,442 AX
75.8 0 1,264 1,462 BinLin
72.6 −0.120 1,244 1,427 DipInfo
67.0 −0.312 1,257 1,412 IIT-BHU

Readability
% z n Assess. System

78.7 0.797 831 1,350 HUMAN
73.9 0.638 1,065 1,301 ADAPT
71.2 0.558 1,117 1,374 OSU
62.1 0.258 1,109 1,377 Tilburg
58.1 0.166 1,086 1,342 NILC
52.5 −0.019 1,080 1,343 AX
50.1 −0.102 1,076 1,336 BinLin
42.7 −0.345 1,091 1,355 DipInfo
41.3 −0.376 1,081 1,296 IIT-BHU

Table 6: MTurk DA human evaluation results for English Shallow Track; % = average DA score (0-100);
z = z-score; n = number of distinct sentences assessed; Assess. = total number of sentences assessed.

Meaning Similarity
% z n Assess. System

72.9 0.365 416 1,651 Tilburg
69.1 0.237 416 1,570 OSU
58.9 −0.133 416 1,575 BinLin
52.8 −0.32 416 1,648 DipInfo
48.6 −0.444 416 1,592 AX

Readability
% z n Assess. System

89.9 1.525 218 650 HUMAN
65.4 0.607 416 1060 Tilburg
54.7 0.179 416 1007 OSU
41.5 −0.26 416 1031 BinLin
38.7 −0.456 416 1094 DipInfo
32.9 −0.659 416 1033 AX

Table 7: MTurk DA human evaluation results for French Shallow Track; % = average DA score (0-100);
z = z-score; n = number of distinct sentences assessed; Assess. = total number of sentences assessed.

Meaning Similarity
% z n Assess. System

77.3 0.519 1,255 1,502 OSU
66.8 0.175 1,231 1,439 NILC
65.7 0.136 1,190 1,401 Tilburg
54.9 −0.214 1,202 1,395 BinLin
48.4 −0.445 1,190 1,401 DipInfo
43.9 −0.583 1,225 1,449 AX

Readability
DA z n Assess. System

89.6 1.120 889 1,237 HUMAN
77.0 0.731 1,399 1,691 OSU
63.1 0.265 1,371 1,645 Tilburg
57.2 0.093 1,384 1,631 NILC
45.1 −0.299 1,367 1,625 BinLin
36.9 −0.558 1,370 1,629 DipInfo
33.0 −0.700 1,371 1,657 AX

Table 8: MTurk DA human evaluation results for Spanish Shallow Track; % = average DA score (0-100);
z = z-score; n = number of distinct sentences assessed; Assess. = total number of sentences assessed.

Meaning Sim. BLEU NIST DIST

English Meaning Sim. 0.968 0.967 0.911
Readability 0.927 0.971 0.977 0.831

French Meaning Sim. 0.954 0.854 0.968
Readability 0.984 0.978 0.924 0.938

Spanish Meaning Sim. 0.986 0.980 0.990
Readability 0.989 0.969 0.971 0.969

Table 9: Pearson correlation of DA human evaluation scores with Automatic Metrics for English, French
and Spanish Shallow Track.
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Meaning Similarity Readability
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Figure 4: MTurk DA human evaluation significance test results for the English shallow track.
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Figure 5: MTurk DA human evaluation significance test results for the French shallow track.
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Figure 6: MTurk DA human evaluation significance test results for the Spanish shallow track.

Meaning Similarity range from 67 to 86.9 for
MTurk, compared to 52 to 86.1 for GDC. The lat-
ter is a wider range of scores, and expert eval-
uators’ scores distinguish between systems more
clearly than the crowdsourced scores which place
the top four systems very close together.

Readability scores range from 41.3 to 78.7 for
MTurk, and from 60.2 to 88.2 for GDC. The ex-
pert evaluators tended to assign higher scores over-
all, but their range and the way they distinguish
between systems is similar. For example, neither
evaluation found much difference for the bottom

two systems.
The rank order of systems in the two separate

evaluations is identical. Table 11 shows the Pear-
son correlation of scores for systems in the evalu-
ations, where meaning similarity scores correlate
almost perfectly at 0.997 (raw %) and 0.993 (z)
and readability at 0.986 (raw %) and 0.985 (z).

6 Conclusion

SR’18 was the second surface realisation shared
task, and followed an earlier pilot task for English,
SR’11. Participation was high for a first instance
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Meaning Similarity
% z n System

86.1 0.479 1000 OSU
83.8 0.394 1000 ADAPT
81.8 0.308 1000 Tilburg
78.8 0.219 1000 NILC
68.7 -0.109 1000 AX
65.4 -0.238 1000 BinLin
59.7 -0.414 1000 DipInfo
52.0 -0.640 1000 IIT-BHU

Readability
% z n System

88.2 0.530 1000 ADAPT
86.1 0.459 1000 OSU
81.0 0.276 1000 Tilburg
78.0 0.156 1000 NILC
67.7 -0.194 1000 AX
65.9 -0.299 1000 BinLin
60.7 -0.449 1000 DipInfo
60.2 -0.480 1000 IIT-BHU

Table 10: Google Data Compute human evaluation results for the English shallow track, where % =
average score (0-100) for generated sentences; n distinct sentences assessed per system.

Meaning Similarity Readability

% 0.997 0.986
z 0.993 0.985

Table 11: Pearson correlation between human
evaluations carried out using MTurk DA and
Google Data Compute.

of a shared task, at least in the Shallow Track, in-
dicating that interest is high enough to continue
running it again next year to enable more teams to
participate.

One important question that needs to be ad-
dressed is to what extent UDs are suitable inputs
for NLG systems. More specifically, can they
reasonably be expected to be generated by other,
content-determining, modules in an NLG system,
do they provide all the information necessary to
generate surface realisations, and if not, how can
they be augmented to provide it.

We hope to discuss these and related issues with
the research community as we prepare the next in-
stance of the SR Task. A goal to aim for may be
to make it possible for different NLG components
to be connected via standard interface represen-
tations, to increase re-usability for NLG compo-
nents. However, what may constitute a good inter-
face representation for surface realisation remains
far from clear.
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