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Abstract

Recent work in machine translation has
demonstrated that self-attention mecha-
nisms can be used in place of recurrent
neural networks to increase training speed
without sacrificing model accuracy. We
propose combining this approach with the
benefits of convolutional filters and a hi-
erarchical structure to create a document
classification model that is both highly ac-
curate and fast to train – we name our
method Hierarchical Convolutional Atten-
tion Networks. We demonstrate the effec-
tiveness of this architecture by surpassing
the accuracy of the current state-of-the-art
on several classification tasks while being
twice as fast to train.

1 Introduction

Text classification is an important research area
in natural language processing (NLP). Traditional
text classification approaches utilize features gen-
erated from vector space models such as bag-of-
words or term frequency-inverse document fre-
quency (TF-IDF) (Sebastiani, 2005). More re-
cently, deep learning approaches have been shown
to outperform traditional approaches based on
vector space models (Zhang et al., 2015; Tang
et al., 2014). These newer deep learning ap-
proaches typically rely on architectures based off
convolutional neural networks (CNNs) or recur-
rent neural networks (RNNs) (Young et al., 2017).

RNNs, which are designed to learn patterns over
sequential data, have been successfully applied to-
wards various NLP tasks (Liu et al., 2016; Irsoy
and Cardie, 2014; Cho et al., 2014). In NLP, RNNs
typically process one word at a time and learn
features based on complex sequences of words.
While RNNs are capable of capturing linguistic

patterns useful for NLP tasks, especially over long
segments of text, they can be slow to train com-
pared to other deep learning architectures – in or-
der to calculate the gradients associated with any
given word in a sequence, an RNN must back-
propogate through all previous words in that se-
quence, resulting in backpropogation functions far
more complex than those in feedforward or convo-
lutional architectures.

CNNs, traditionally used for computer vision,
have also been applied to NLP tasks with notable
success (Zeng et al., 2014; Dos Santos and Gatti,
2014; Wang et al., 2012). Unlike RNNs, which
learn patterns across an entire sequence of text,
CNNs use a sliding window that examines only a
few words/characters at a time. Thus, CNNs learn
features based on the most salient combinations
of X words/characters where X is determined by
the window size used; unlike RNNs, CNNs are
less capable of capturing linguistic features across
long distances. Despite this shortcoming, CNNs
can often be as effective as RNNs in many basic
NLP tasks (Yin et al., 2017). Furthermore, CNNs
are generally faster to train than RNNs.

In this paper, we introduce Hierarchical Con-
volutional Attention Networks (HCANs), an ar-
chitecture based off self-attention that can capture
linguistic relationships over long sequences like
RNNs while still being fast to train like CNNs.
HCANs can achieve accuracy that surpasses the
current state-of-the-art on several classification
tasks while being twice as fast to train.

2 Related Work

In 2014, Kim (2014) proposed one of the first
CNNs for text classification. Kim’s CNN used
three parallel convolutional layers; these process
a sentence using a sliding window that examines
three, four, and five words at a time. The three
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convolutions then feed into a maxpool across the
entire sentence, which selects the most potent fea-
tures in each convolution and concatenates them
into a single feature vector. Finally, the selected
features are fed into a dense softmax layer for clas-
sification. Due to its simplicity and strong per-
formance in many tasks, Kim’s CNN architecture
is still commonly used today in many text classi-
fication tasks (Qiu et al., 2017; Gehrmann et al.,
2017).

One shortcoming of Kim’s CNN approach is
that it cannot find linguistic patterns beyond a
fixed window size, which may harm performance
for complex NLP tasks. Attempts have been made
to mitigate this issue by increasing the CNN depth
and using local maxpooling to increase the recep-
tive field (Conneau et al., 2017). However, Le
et al. (2017) showed that increasing CNN depth
helps the performance of character-level CNNs but
not word-level CNNs. They further demonstrated
that a shallow word-level CNN similar to Kim’s
proposed structure can outperform much deeper
and more complex CNN architectures on a wide
range of text classification tasks.

The current state-of-the-art in text classification
are Hierarchical Attention Networks (HANs), de-
veloped by Yang et al. (2016). Whereas the previ-
ous approaches mentioned are all based on CNNs,
HANs utilize RNNs. HANs use a hierarchical
structure in which each hierarchy uses the same ar-
chitecture – a bidirectional RNN with gated recur-
rent units (GRUs) (Chung et al., 2014), followed
by an attention mechanism that creates a weighted
sum of the RNN outputs at each timestep. The
HAN processes documents by first breaking a long
document into its sentence components, then pro-
cessing each sentence individually before process-
ing the entire document. By breaking a document
into smaller, more manageable chunks, the HAN
can better locate and extract critical information
useful for classification. This approach surpassed
the performance of all previous approaches across
several text classification tasks. However, com-
pared to CNN-based approaches, HANs are much
slower to train because they utilize RNNs.

In 2017, Vaswani et al. (2017) created a deep
learning model for machine translation based en-
tirely on self-attention mechanisms (Cheng et al.,
2016; Lin et al., 2017; Paulus et al., 2017). Tra-
ditionally, CNN or RNN layers are used to ex-
tract meaningful features from words or images;

attention is applied afterwards to the output of the
CNN or RNN layers to help the network focus on
features that are most salient (Luong et al., 2015;
Xu et al., 2015; Hermann et al., 2015). How-
ever, Vaswani showed that self-attention could
be applied directly on raw word embeddings to
extract important relations and apply meaning-
ful transformations on words. Like RNNs, this
attention-based approach can capture relationships
over long distances; unlike RNNs, this approach
utilizes a feedforward architecture and is much
faster to train. Vaswani achieved state-of-the-
art results in machine translation using 10x-100x
fewer trainable parameters than previous state-of-
the-art models.

We hypothesize that a similar self-attention-
based architecture can achieve both fast and ac-
curate performance in text classification tasks.
In the following section, we show how we
adapt the attention-based architecture developed
by Vaswani for machine translation into an effec-
tive approach for text classification.

3 Hierarchical Convolutional Attention
Network

The overall structure of our HCAN is shown in
Figure 1. The components and structure of our
HCAN are described in greater detail in the fol-
lowing subsections.

3.1 Scaled Dot Product Attention
Suppose we have a sequence of word embeddings
Einput ∈ Rl×d, where l is the length of the se-
quence, d is the embedding dimension, and einputi

is the i-th word embedding in the sequence.
Self-attention, sometimes referred to as intra-

attention, compares each entry einputi to every en-
try einputi in that same sequence; this allows for the
discovery of relationships between entries in the
sequence. Self-attention outputs a new sequence
Eoutput ∈ Rl×d in which each entry eoutputi is a
weighted average of all entries einputi in the in-
put sequence. Each entry eoutputi should contain
within it the most pertinent information to that en-
try from all entries in the input sequence einputi .

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (1)

Scaled-dot-product attention (Figure 2, Equa-
tion 1) is a type of self-attention developed by
Vaswani et al. that was shown to work well
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Figure 1: Architecture for our Hierarchical Con-
volutional Attention Network (HCAN).

in machine translation. Scaled-dot-product atten-
tion utilizes three word embedding matrices – the
‘query’ embeddings Q ∈ Rl×d, the ‘key’ em-
beddings K ∈ Rl×d, and the ‘value’ embeddings
V ∈ Rl×d.

In the most basic implementation of self-
attention, Q, K, and V can all be substituted by
the same sequence of word embeddings Einput ∈
Rl×d. Q and K are used to create a weight ma-
trix QKT based on the similarity of entries in
the sequence. Vaswani et al. found that scaling
this weight matrix by a factor of

√
d yields bet-

ter performance for higher-dimensional word em-
beddings. Once this weight matrix is scaled and
normalized, it is multiplied with V to create a new
output sequence Eoutput ∈ Rl×d in which each
entry eoutputi is a weighted average of all entries
einputi in the input sequence.

3.2 Convolutional Feature Extraction

Rather than use the same Einput for Q, K, and V ,
we can use a function to extract different features

from Einput for each of the Q, K, and V embed-
dings. This allows for more expressive compar-
ison between entries in a sequence; for example,
certain features may be useful when comparing Q
and K but may not be necessary when creating the
output sequence from V . For our feature extrac-
tor function, we use a 1D convolution with d fil-
ter maps and a window size of three words, which
provides more context for each center word when
extracting important features (Equation 2).

Q = ELU(Conv1D(E,W q) + bq)

K = ELU(Conv1D(E,W k) + bk)

V = ELU(Conv1D(E,W v) + bv)

(2)

In the equation above, Conv1D(A,B) is a 1D con-
volution operation with A as the input as B as the
filter, {Q,K, V,E} ∈ Rl×d, {W q,W k,W v} ∈
R3×d×d, and {bq, bk, bv} ∈ Rd.

We found exponential linear units (ELUs)
(Clevert et al., 2016) to perform better than rec-
tified linear units (ReLUs) and other activation
functions. Unlike ReLUs, ELUs can output nega-
tive values, which allows for more complex inter-
actions between the Q and K embeddings when
calculating word weights – each word can be as-
signed a large range of both positive and negative
values before being sent into the softmax function.

3.3 Convolutional Multihead Self-Attention
For each entry in the output sequence, scaled dot
product attention calculates a set of weights that
is used to create a weighted average; the same
weights are applied across all d dimensions of
the V embeddings. To expand the capabilities of
scaled dot product attention, Vaswani et al. in-
troduced multihead attention. Rather than using
a single attention function across all d dimensions
of the embeddings, multihead attention uses h par-
allel attention functions, each of which attends to
a different portion of the embedding dimension.
This allows different portions of the embeddings
to be combined using different weights so that the
final output sequence can be constructed from a
more expressive combination. Vaswani demon-
strated that multihead attention performs better
than regular scaled dot product attention for ma-
chine translation.

MultiHead(Q,K, V ) = [head1, ..., headh]

where headi = Attention(Qi,Ki, Vi)

(3)
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Figure 2: Scaled dot product attention, convolutional multihead self-attention, and convolutional multi-
head target attention.

Our implementation convolutional multihead
self-attention (Figure 2, Equation 3) is based on
the multihead attention developed by Vaswani.
After using convolution to generate the Q, K,
and V embeddings, we split each of the Q, K,
and V embeddings into h sub-embeddings such
that {Qi,Ki, Vi} ∈ Rl×d/h. Each triplet of sub-
embeddings is then fed into their own scaled dot
product attention function. The final output is the
concatenation of the outputs headi ∈ Rl×d/h from
the individual scaled dot product attention func-
tions to form an output sequence Eoutput ∈ Rl×d.

3.4 Capturing Complex Word Relationships

In general, attention mechanisms are designed to
produce a weighted average of an input sequence.
Unfortunately, when trying to capture the overall
content within a linguistic sequence, a weighted
average may not be sufficient. Two examples of
this are negation and scaling. In negation, a word
sequence such as ‘was not the case’ may reverse
the meaning of words in another part the sequence
(i.e. multiply those embeddings by -1). Similarly
in scaling, a word sequence such as ‘to a high
degree’ may increase the polarity of another part
of the sequence (i.e. multiply those embeddings
by some positive value). Attention mechanisms,
which only create weighted averages, are not de-
signed to capture these interactions.

To better capture these types of linguistic in-
teractions, we test the effectiveness of using two
convolutional multihead self-attentions in parallel
and performing elementwise multiplication on the
outputs (Figure 1, Equation 4). This allows the

network to capture more complex interactions be-
tween elements in the sequence and expands the
expressiveness of the final output beyond that of a
simple weighted average.

Parallel(E) = MultiHead(Qa,Ka, V a)

�MultiHead(Qb,Kb, V b)

where Qa = ELU(Conv1D(E,W qa) + bqa)

Ka = ELU(Conv1D(E,W ka) + bka)

V a = ELU(Conv1D(E,W va) + bva)

Qb = ELU(Conv1D(E,W qb) + bqb)

Kb = ELU(Conv1D(E,W kb) + bkb)

V b = tanh(Conv1D(E,W vb) + bvb)

(4)

Because tanh outputs a value between -1 and 1, it
is used to generate the V embeddings for the sec-
ond self-attention to prevent the final output from
becoming too small or large after multiplying the
outputs from the two self-attention mechanisms.

3.5 Convolutional Multihead
Target-Attention

The output of our convolutional multihead self-
attention is a new output sequence Eoutput ∈
Rl×d in which l is based on the length of the in-
put sequence. For classification purposes, we re-
quire that each sequence regardless of its length
be represented by a single fixed-length vector V ∈
R1×d. We therefore introduce convolutional mul-
tihead target-attention, which utilizes the concepts
from multihead convolutional self-attention but
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operates like the traditional attention mechanism
that is used on the outputs of a RNN.

Target(E) = MultiHead(T,K, V )

where K = ELU(Conv1D(E,W k) + bk)

V = ELU(Conv1D(E,W v) + bv)

(5)

In convolutional multihead target-attention
(Figure 2, Equation 5), instead of comparing the
entries in a sequence Einput ∈ Rl×d to each
other, we compare them to a learnable target vec-
tor T ∈ R1×d that represents the most critical in-
formation to look for given a specific task – the
content in this vector is learned through backpro-
pogation based on the task at hand. The output is a
single weighted average Eoutput ∈ R1×d that cap-
tures the most critical content across the sequence.
This final output vector may then be fed into a soft-
max and used for classification purposes.

3.6 Positional Embeddings
RNN-based approaches for text processing can in-
herently account for word order when extracting
features. However, feedforward and convolution-
based approaches such as our implementation of
convolutional multihead self-attention do not have
this capability. One way to address this prob-
lem is by adding positional embeddings P ∈
Rl×d (Gehring et al., 2017; dos Santos et al.,
2015). Positional embeddings are vector repre-
sentations of the absolute position of an entry in
a sequence. These are added directly to each
word/sentence embedding in the input sequence
before the sequence is fed into the convolutional
multihead self-attention. We use randomly initial-
ized embeddings that are learned during training;
we found that these provide a slight boost toward
classification accuracy.

3.7 Hierarchical Structure
In their work on HANs, Yang et al. attained state-
of-the-art performance by utilizing a hierarchical
structure that first breaks up documents into sen-
tences. The lower hierarchy reads in word em-
beddings from a given sentence and outputs a sen-
tence embedding representing the content within
that sentence, and the upper hierarchy reads in the
sentence embeddings created from the lower hi-
erarchy and outputs a document embedding rep-
resenting the content of the entire document; this
document embedding is then used for classifica-
tion. In our experiments, we test the effective-

ness of our HCAN with and without this hierar-
chical structure. We expect that, like with RNNs,
self-attention has difficulty capturing meaningful
semantic relationships over very long sequences
with too many entries; using a hierarchical struc-
ture to break down long sequences into more man-
ageable chunks mitigates this issue.

Each hierarchy in our HCAN consists of two
parallel convolutional multihead self-attentions
followed by a convolutional multihead target at-
tention (Figure 1). Positional embeddings are
added to the inputs of each hierarchy to allow
the network to identify relationships based on
word/sentence positions. We tried increasing the
depth within each hierarchy by using multiple lay-
ers of self-attentions but found that this did not im-
prove model accuracy.

3.8 Regularization
To regularize our network, we apply dropout of 0.1
on the normalized attention weights (produced by
scaling QKT by

√
d and then applying softmax)

within every scaled dot product attention. Further-
more, we apply dropout of 0.1 on the word and
sentence embeddings after the positional embed-
dings have been added, which has been shown to
be effective in other NLP applications (Peng et al.,
2015).

We also apply layer normalization (Ba et al.,
2016) after the elementwise multiplication of
the two parallel convolutional multihead self-
attentions (Figure 1). This not only applies a reg-
ularization effect, but also speeds up the rate of
convergence. Layer normalization is used instead
of batch normalization because layer normaliza-
tion is still effective with very small batch sizes.

4 Experiments

4.1 Datasets
We evaluate the performance of the HCAN on four
classification tasks using three datasets (Table 1).

The Yelp reviews dataset 1 consists of over 4.7
million Yelp reviews of various businesses col-
lected over 12 metropolitan areas. For our task,
we use only reviews from 2016 (approximately 1
million reviews) and try to predict the rating 1-5.

The Amazon reviews dataset (McAuley and
Leskovec, 2013) consists of 83.68 million Ama-
zon product reviews from different product cat-
egories spanning May 1996 to July 2014. For

1https://www.yelp.com/dataset
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Table 1: Dataset Descriptions
Dataset Classes Documents Vocabulary Task Description
Yelp Reviews 2016 5 1,033,037 72,880 Sentiment Analysis
Amazon Reviews Sentiment 5 500,000 67,802 Sentiment Analysis
Amazon Reviews Category 10 500,000 67,802 Topic Classification
Pubmed 8 800,000 182,167 Topic Classification

our evaluation, we selected 10 popular categories
and extracted 50,000 randomly selected reviews
from each: books, electronics, clothing, home and
kitchen, sports and outdoors, health, video games,
tools, pet supplies, and food. We use this dataset
for two separate classification tasks – sentiment
analysis (1-5) and product classification.

The Pubmed dataset 2 consists of more than
26 million citations, abstracts, and other metadata
from biomedical literature dating back to 1964.
For our experiments, we use Pubmed abstracts as-
sociated with 8 common medical subject heading
(MeSH) labels: metabolism, physiology, genetics,
chemistry, pathology, surgery, psychology, and di-
agnosis. We only use abstracts that are associated
with a single label, yielding a final selection of
800,000 abstracts, 100,000 for each label.

4.2 Baselines and Hyperparameters

As a baseline, we test the performance of two tra-
ditional machine learning classifiers that do not
utilize deep learning: Naive Bayes (NB) and logis-
tic regression (LR). For logistic regression, we use
L1 regularization with a penalty strength of 1.0.

We also compare the performance of our HCAN
to that of two other deep learning models. First,
we test a word-level shallow-and-wide CNN using
an architecture similar to that developed by Kim
(2014) for sentence classification. We use three
parallel convolution layers with 3-, 4-, and 5-word
windows, all with 100 feature maps. These feed
into a temporal maxpool across the entire docu-
ment and the result is concatenated. We apply 50%
dropout on the concatenated vector and feed this
vector into a softmax classifier. This simple archi-
tecture has been shown to outperform many deeper
and more complex CNN-based models (Le et al.,
2017).

We also test the performance of HANs (Yang
et al., 2016), which are the current state-of-the-art.
For our HAN, we use the same optimized hyper-
parameters as those used by Yang – each hierarchy

2https://www.ncbi.nlm.nih.gov/pubmed/

is composed of a bi-directional GRU with 50 units
and an attention mechanism with a hidden layer of
200 neurons.

For the HCAN, we tuned the hyperparameters
on the Yelp 2013 dataset. We tuned the atten-
tion embedding size d and the number of attention
heads h used in our scaled dot-product attention.
We use embedding size 512 and 8 heads for our
final implementation.

4.3 Setup Details
For each dataset, we lowercase all characters and
remove non-alphanumerics other than periods, ex-
clamation marks, and questions marks (used to
split documents into sentences). For the traditional
machine learning approaches that utilize TFIDF
features, we generate unigrams and bigrams with
a minimum document frequency of 5. For deep
learning models that utilize word embeddings, we
train Word2Vec embeddings using a minimum
word frequency of 5 and a dimension size of 512.

The deep learning models are all trained on a
single document at a time with no batching. This
configuration allows for variable length input so
that long documents do not need to be cut short
and short documents do not need to be padded.
All models are trained using the Adam optimizer
(Kingma and Ba, 2015) with learning rate 2E-5,
beta1 0.9, and beta2 0.99.

We split each dataset into train, validation, and
test sets using stratified 80/10/10 splitting. The
TFIDF-based models are fitted on the train sets
and evaluated on the test sets. The deep learn-
ing models are trained on the train set, and ev-
ery 50,000 documents we evaluate on the valida-
tion set until the model converges. We save the
model parameters with the highest validation ac-
curacy and use those parameters to evaluate on the
test set.

4.4 Results
The results of our experiments are displayed in Ta-
ble 2. For each deep learning model, we record the
final test accuracy, average time to train on a single
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Table 2: Test set accuracy, mean training time for a single document, and total training time on each task

Classifier Yelp 2016 Amazon
Sentiment

Amazon
Category Pubmed

Naive Bayes
63.12
–, 1.8s

61.66
–, 0.8s

88.14
–, 1.3s

75.81
–, 4.2s

Logistic Regression
71.31

–, 306s
67.57

–, 101s
88.69

–, 173s
78.57

–, 463s

Word shallow-and-wide CNN
74.44

17ms, 9hr
70.75

15ms, 5hr
88.20

15ms, 5hr
78.15

35ms, 22hr

Hierarchical Attention Network
76.30

96ms, 67hr
72.56

97ms, 35hr
89.68

113ms, 37hr
79.89

167ms, 110hr
Conv Attention Network
(One Self-Attention, Maxpool)

75.01
19ms, 13hr

71.24
19ms, 8hr

89.27
19ms, 8hr

79.21
38ms, 25hr

Conv Attention Network
(One Self-Attention, Target Attention)

75.17
21ms, 14hr

71.45
21ms, 9hr

89.35
21ms, 9hr

79.70
39ms, 26hr

Conv Attention Network
(Two Self-Attentions, Maxpool)

75.21
23ms, 15hr

71.45
22ms, 9hr

89.41
22ms, 9hr

79.86
41ms, 27hr

Conv Attention Network
(Two Self-Attentions, Target Attention)

75.25
25ms, 17hr

71.78
24ms, 10hr

89.71
24ms, 10hr

79.95
43ms, 29hr

Hiearchical Conv Attention Network
(One Self-Attention, Maxpool)

75.00
24ms, 16hr

71.09
23ms, 9hr

88.85
23ms, 9hr

79.31
42ms, 28hr

Hierarchical Conv Attention Network
(One Self-Attention, Target Attention)

75.75
34ms, 23hr

72.33
29ms, 12hr

89.55
29ms, 12hr

79.91
47ms, 31hr

Hiearchical Conv Attention Network
(Two Self-Attentions, Maxpool)

75.54
31ms, 21hr

72.43
31ms, 13hr

89.34
31ms, 13hr

80.09
50ms, 33hr

Hierarchical Conv Attention Network
(Two Self-Attentions, Target Attention)

76.51
49ms, 32hr

72.85
38ms, 16hr

89.89
38ms, 16hr

80.13
53ms, 35hr
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Figure 3: Validation accuracy vs time on Amazon
sentiment analysis task.

document, and total time to converge. For timing,
all models were trained on a single NVIDIA TI-
TAN X GPU.

In all four tasks, the HCAN achieves the highest
test accuracy. Furthermore, HCANs process docu-
ments and converge more than twice as fast as the

HAN (Figure 3). Within the HCAN, using a hi-
erarchical structure achieves better accuracy than
not using a hierarchical structure, using two paral-
lel self-attentions achieves better accuracy than us-
ing a single self-attention, and using target atten-
tion outperforms using maxpool, especially when
using a hierarchical structure.

We note that the difference in accuracy between
the deep learning approaches and traditional ma-
chine learning approaches is greater in the senti-
ment classification tasks than in the topic classifi-
cation tasks. We expect that this is because sen-
timent classification requires more semantic nu-
ance, which can be difficult to capture via TFIDF
features. On the other hand, topic classification
may require the presence of only a few specific
words to indicate a specific topic.

5 Discussion

Based on our results, we see that the two
best performing architectures are the HCAN and
the HAN. Unlike the shallow-and-wide CNN,
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Figure 4: Attention weights assigned to a sample Yelp review by one attention head. The top portion
shows the attention weights assigned to each word and sentence by the convolutional multihead target-
attention. The bottom portion shows the attention weights assigned to the word ”loved” in sentence 3 by
the convolutional multihead self-attention.

HCANs and HANs utilize a hierarchical struc-
ture that first breaks a document down into its
constituent sentences. Using this structure, the
networks first locate the most critical information
within each sentence and then establish the rela-
tionships between the critical information found
from each sentence. Our results suggest that this
approach works better for text classification than
scanning the entire document in one single pass to
look for key features.

On our tasks, we see that the HCAN achieves
similar performance with the HAN but trains
much faster. We attribute this to the fact that
HCANs utilize a self-attention-based architecture
instead of an RNN-based architecture to extract
features. Self-attention utilizes a feed-forward
structure, whereas an RNN must backpropagate
onto itself over time. When computing gradients,
this means that much more calculation is required
for RNN-based architectures. For our HCAN, we
utilized a self-attention mechanism with a width of
512 neurons and were able to perform faster than
our HAN that used an RNN with only 50 GRUs.

Another important implication of self-attention
is that it is easier to parallelize than RNNs. Self-
attention utilizes a fixed number of feed-forward
steps that remain the same regardless of the length
of the input sequences. This makes it simple to
split the model parameters associated with self-
attention across multiple GPUs even when pro-
cessing multiple documents of different lengths.
On the other hand, the number of operations for
an RNN is dependent on the length of the input
sequence. This makes it challenging to efficiently
split RNN parameters across multiple GPUs when
dealing with a mini-batch of documents that vary

in length (Huang et al., 2013).
Utilizing an attention-based approach also in-

creases the interpretability of the model. By ex-
amining the attention weights assigned to each
word/sentence by the target attention mechanisms
in each hierarchy of the HCAN, we can locate
the words/sentences in a document that contribute
most to its final label (Figure 4). Furthermore,
we can also examine the attention weights as-
signed to each word/sentence in the self-attention
mechanisms to establish how the HCAN is finding
relationships between individual words/sentences
when extracting important features (Figure 4).

Our results show that using two parallel self-
attention mechanisms results in higher accuracy
than using a single self-attention mechanism.
Upon analyzing the attention weights assigned by
the self-attention mechanisms, we found that us-
ing two parallel self-attentions captures more rela-
tionships involving modifier words than one single
self-attention mechanism alone (Figure 5). Fur-
thermore, we analyzed the documents that two
parallel self-attentions classified correctly but one
single self-attention did not. In sentiment analysis
tasks, we found that many of these documents (1)
begin positively but conclude negatively or vice
versa, (2) contain a mix of positive and negative
words, or (3) contain words that scale the mean-
ing of another word or phrase (Supplementary A).
This supports our hypothesis that two parallel self-
attentions better distinguishes complex word rela-
tionships like scaling and negation.

To better understand how the HCAN functions
in comparison with the HAN, we compared the
attention weights assigned to each word/sentence
by the target attention mechanisms in the two net-
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Figure 5: Self-attention weights assigned to a sample word ‘it’ by (top) HCAN with a single self-attention
and (bottom) HCAN with two parallel self-attentions. With two self-attentions, the first self-attention
captures the relationship between ‘it’ and ‘doesnt’ and the second self-attention captures the relationship
between ‘it’ and ‘chop’. This is a more nuanced negation relationship that isn’t captured when using a
single self-attention.

works. We found the HCAN weight assignments
to be more spread out than those from the HAN
(Supplementary B). Further analysis revealed that
the self-attention mechanisms in the HCAN dis-
tribute the meaning of important keywords across
many other words before the sequence is fed into
the target attention mechanism, thus resulting in
the wider distribution of attention weights.

6 Conclusion

In this work, we introduced a new self-attention-
based text classification architecture, HCANs, and
compared its performance with the current state-
of-the-art, HANS, in four classification tasks:
Yelp review sentiment, Amazon review sentiment,
Amazon review product category, and Pubmed ab-
stract topic. In all four tasks HCANs achieved
slightly better performance than HANs while be-
ing more than twice as fast to train. Our re-
sults show that in time-critical NLP tasks, self-
attention-based architectures may be able to re-
place RNN-based architectures to reduce training
time without sacrificing accuracy. Moving for-
ward, we plan to explore efficient implementations
of data and model parallelism for self-attention-
based architectures such as the HCAN. The code
for our experiments is available online at https:
//code.ornl.gov/v33/HCAN/.
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A Yelp Reviews Misclassified by Single Self-Attention

The following are examples of Yelp reviews that were misclassified when using a single self-attention
mechanism but correctly classified when using two parallel self-attention mechanisms. Note in many of
these reviews, one section of the review negates or scales the meaning in another section.

i got this at a grocery store thinking it would be great since i only drink a little bit of wine or
sake at a time . i ended up giving it away to goodwill after a few months because it doesnt
really help the wine or sake at least not for weeks like im prone to need between glasses and
it is annoying to use the plastic thingy trying to get it tight and worrying that youre going to
break the bottle . i think a nice reusable cork kind of gadget would do just as good a job take
up less drawer space and look prettier in the bottle .

for those of you who criticized this book for lack of a plot i can only assume that you are much
more suited to books in the mystery thriller genre . i loved it and found the characters very real
and compelling . if you are a reader who likes books about relationships you are going to love
it too .

i hesitated buying this grill because there were so many negative reviews . im glad i decided
to buy the grill . weve used it 5 times so far . to address some of the negative reviews . you
can cook with the grill on both high and low with the cover closed . in the instructions you
are actually directed to clean the grill for the first time with the burners on high and the cover
closed . the stand is excellent . weve been using this at the beach . the stand and fold out
tables save packing additional cargo in the car . as far as cleaning i dont know what people are
expecting . its a bbq it gets dirty . the grates clean up real nice with brillo . the chrome area
under the grill plates cleans up with a fantastic type cleaner .

a feel good read . dean koontz does this type of book very very well . no horrid monsters
except for the unscrupulous government people so dont expect nightmares from this one . it
does have its suspense however .

its fun in the begining . but the levels get harder and game play is not as fun . it got so hard it
was not much fun to play . and has not much varity in it .

B Comparing Attention Weights from HAN and HCAN

The attention weights assigned by the target-attention for the HAN (Figure 6) are more focused on
keywords than for the HCAN (Figure 7). This is because the self-attention in the HCAN redistributes the
content of important keywords across other words before the sequence is sent into the target-attention
(Figure 8).

Figure 6: HAN target-attention weights assigned to a sample Yelp review. We see that the weights are
primarily focused on sentiment keywords.
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Figure 7: HCAN target-attention weights assigned to a sample Yelp review. We see that the weights are
more spread out than in the HAN target-attention.

Figure 8: HCAN self-attention weights assigned to the words ”the” and ”only” in a sample Yelp review
sentence. We see that meaning from sentiment keywords are redistributed among other words. In the two
example shown above, we see that ”best” is reassigned to ”the” and ”awesome” is reassigned to ”only”.
Therefore, the HCAN target-attention weighs the words ”the” and ”only” higher because they contain
content from sentiment keywords.


