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Introduction

Marco Idiart1, Alessandro Lenci2, Thierry Poibeau3, Aline Villavicencio1,4
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The 8th Workshop on Cognitive Aspects of Computational Language Learning and Processing
(CogACLL) took place on July 19, 2018 in Melbourne, Australia, in conjunction with the ACL 2018.
The workshop was endorsed by ACL Special Interest Group on Natural Language Learning (SIGNLL).
This is the eighth edition of related workshops first held with ACL 2007 and 2016, EACL 2009, 2012
and 2014, EMNLP 2015, and as a standalone event in 2013.

The workshop is targeted at anyone interested in the relevance of computational techniques for
understanding first, second and bilingual language acquisition and change or loss in normal and
pathological conditions.

The human ability to acquire and process language has long attracted interest and generated much debate
due to the apparent ease with which such a complex and dynamic system is learnt and used on the face
of ambiguity, noise and uncertainty. This subject raises many questions ranging from the nature vs.
nurture debate of how much needs to be innate and how much needs to be learned for acquisition to be
successful, to the mechanisms involved in this process (general vs specific) and their representations in
the human brain. There are also developmental issues related to the different stages consistently found
during acquisition (e.g. one word vs. two words) and possible organizations of this knowledge. These
have been discussed in the context of first and second language acquisition and bilingualism, with cross
linguistic studies shedding light on the influence of the language and the environment.

The past decades have seen a massive expansion in the application of statistical and machine learning
methods to natural language processing (NLP). This work has yielded impressive results in numerous
speech and language processing tasks, including e.g. speech recognition, morphological analysis,
parsing, lexical acquisition, semantic interpretation, and dialogue management. The good results have
generally been viewed as engineering achievements. However, researchers have also investigated the
relevance of computational learning methods for research on human language acquisition and change.
The use of computational modeling has been boosted by advances in machine learning techniques,
and the availability of resources like corpora of child and child-directed sentences, and data from
psycholinguistic tasks by normal and pathological groups. Many of the existing computational models
attempt to study language tasks under cognitively plausible criteria (such as memory and processing
limitations that humans face), and to explain the developmental stages observed in the acquisition
and evolution of the language abilities. In doing so, computational modeling provides insight into
the plausible mechanisms involved in human language processes, and inspires the development of
better language models and techniques. These investigations are very important since if computational
techniques can be used to improve our understanding of human language acquisition and change, these
will not only benefit cognitive sciences in general but will reflect back to NLP and place us in a better
position to develop useful language models.
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We invited submissions on relevant topics, including:

• Computational learning theory and analysis of language learning and organization

• Computational models of first, second and bilingual language acquisition

• Computational models of language changes in clinical conditions

• Computational models and analysis of factors that influence language acquisition and use in
different age groups and cultures

• Computational models of various aspects of language and their interaction effect in acquisition,
processing and change

• Computational models of the evolution of language

• Data resources and tools for investigating computational models of human language processes

• Empirical and theoretical comparisons of the learning environment and its impact on language
processes

• Cognitively oriented Bayesian models of language processes

• Computational methods for acquiring various linguistic information (related to e.g. speech,
morphology, lexicon, syntax, semantics, and discourse) and their relevance to research on human
language acquisition

• Investigations and comparisons of supervised, unsupervised and weakly-supervised methods for
learning (e.g. machine learning, statistical, symbolic, biologically-inspired, active learning,
various hybrid models) from a cognitive perspective.
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Predicting Brain Activation with WordNet Embeddings
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Abstract

The task of taking a semantic represen-
tation of a noun and predicting the brain
activity triggered by it in terms of fMRI
spatial patterns was pioneered by Mitchell
et al. (2008). That seminal work used
word co-occurrence features to represent
the meaning of the nouns. Even though the
task does not impose any specific type of
semantic representation, the vast majority
of subsequent approaches resort to feature-
based models or to semantic spaces (aka
word embeddings). We address this task,
with competitive results, by using instead
a semantic network to encode lexical se-
mantics, thus providing further evidence
for the cognitive plausibility of this ap-
proach to model lexical meaning.

1 Introduction

Neurosemantics studies the mapping between con-
cepts and the corresponding brain activity, bring-
ing together neuroscientists doing brain imaging
research and linguists doing research on the se-
mantics of natural language expressions.

The task introduced by Mitchell et al. (2008)
consists of taking a semantic representation of a
noun and predicting the functional magnetic res-
onance imaging (fMRI) spatial activation patterns
in the brain triggered by that noun. That is, given
a meaning representation of a word, it should be
the basis to predict the activation strength at each
point (voxel) in the 3D volume of the brain asso-
ciated to the cognitive handling of that word. This
allows to make testable predictions of fMRI activ-
ity, even for nouns for which there is no fMRI data
available, as long as there is some way to model
and represent the semantics of a lexicon.

In lexical semantics, three broad families of ap-
proaches have emerged to model meaning, namely
(i) semantic networks, (ii) feature-based models,
and (iii) semantic spaces. The models of the lex-
icon produced under these approaches have been
embedded in wider models of the whole grammar
or in language technology applications and tasks,
including synonym identification, analogies detec-
tion a.o., were they have been tested on behav-
ioral data sets. The prediction of brain activation
considered here is agnostic regarding the approach
used to model lexical meaning, thus providing an-
other way of assessing the cognitive plausibility of
lexical semantic representations of different sorts.

While most approaches to this task have re-
sorted to feature-based models or to semantic
spaces (aka word embeddings), here we address
the task of prediciting the brain activation triggred
by nouns rather by using a semantic network, thus
providing further evidence for the cognitive plau-
sibility of this approach to model lexical meaning.

In this paper, we report on the competitive
results of resolving the brain activation task by
taking a mainstream lexical semantics network,
WordNet (Fellbaum, 1998), and resorting to inter-
mediate word embeddings obatined with a novel
methodology (Saedi et al., 2018) for generating se-
mantic spaces from semantic networks.

2 The brain activation prediction task

The seminal work of Mitchell et al. (2008) intro-
duced the task consisting of predicting the fMRI
activation patterns triggered by a noun-picture pair
from a semantic representation of that noun. The
language of the data used was English.

Each wordw was represented by a set of seman-
tic features given by the normalized co-occurrence
counts of w with a set of 25 verbs. These counts
were obtained from the Web 1T 5-gram data set

1



(Brants and Franz, 2006), using the n-grams up to
length 5 generated from 1 trillion tokens of text.

The 25 verbs were manually selected due to
their correspondence to basic sensory and motor
activities.1 Sensory-motor features should be par-
ticularly relevant for the representation of objects
and, in fact, alternative features based on a random
selection of 25 frequent words performed worse.

The fMRI activation pattern at every voxel in
the brain is calculated as a weighted sum of each
of the 25 semantic features, where the weights are
learned by regression to maximum likelihood esti-
mates given observed fMRI data.

To produce the fMRI data, 9 participants were
shown 60 different word-picture pairs,2 the stim-
uli, each presented 6 times. For each participant,
a representative fMRI image for each stimulus
was calculated by determining the mean fMRI re-
sponse from the 6 repetitions and subtracting from
each the mean of all 60 stimuli.

Separate models were learned for each of the
9 participants. These models were evaluated us-
ing leave-two-out cross-validation, where in each
cross-validation iteration the model was asked to
predict the fMRI activation for the two held-out
words. The two predictions were matched against
the two observed activations for those words using
cosine similarity over the 500 most stable voxels.

Randomly assigning the two predictions to the
two observations would yield a 0.50 accuracy. The
models in the seminal paper (Mitchell et al., 2008)
achieve a mean accuracy of 0.77, with all individ-
ual accuracies significantly above chance.

These results support the plausibility of the
two key assumptions underlying the task, namely
that (i) brain activation patterns can be predicted
from semantic representations of words; and that
(ii) lexical semantics can be captured by co-
occurrence statistics, the assumption underlying
semantics space models of the lexicon.

3 Related work

Several authors have addressed this brain activa-
tion prediction task, keeping up with its basic as-
sumptions and resorting to the same data sets for

1The verbs are: approach, break, clean, drive, eat, en-
ter, fear, fill, hear, lift, listen, manipulate, move, near, open,
push, ride, rub, run, say, see, smell, taste, touch, and wear.

2The 60 pairs are composed of 5 items from each of the 12
concrete semantic categories (animals, body parts, buildings,
building parts, clothing, furniture, insects, kitchen items,
tools, vegetables, vehicles, and other man-made items).

the sake of the comparability of the performance
scores obtained.

In an initial period, different authors sought to
explore the experimental space of the task by fo-
cusing on different ways to set up the features.

Devereux et al. (2010) find that choosing the set
of verbs used for the semantic features under an
automatic approach can lead to predictions that are
equally good as when using the manually selected
set of verbs. Jelodar et al. (2010) use the same set
of 25 features to represent a word, but instead of
basing the features on co-occurrence counts they
resort to relatedness measures based on WordNet.
Fernandino et al. (2015) use instead a set of fea-
tures with 5 sensory-motor experience based at-
tributes (sound, color, visual motion, shape, and
manipulation). The relatedness scores between the
stimulus word and the attributes are based on hu-
man ratings instead of corpus data.

Subsequently, as distributional semantics be-
came increasingly popular, authors moved from
feature-based representations of the meaning of
words to experiment with different vector based
representation models (aka word embeddings).

Murphy et al. (2012) compare different corpus-
based models to derive word embeddings. They
find the best results with dependency-based em-
beddings, where words inside the context window
are extended with grammatical functions. Binder
et al. (2016) use word representations based on
65 experiential attributes with relatedness scores
crowdsourced from over 1,700 participants. Xu
et al. (2016) present BrainBench, a workbench
to test embedding models on both behavioral and
brain imaging data sets. Anderson et al. (2017) use
a linguistic model based on word2vec embeddings
and a visual model built with a deep convolutional
neural network on the Google Images data set.

Recently, Abnar et al. (2018) evaluated 8 dif-
ferent embeddings regarding their usefulness in
predicting neural activation patterns: the co-
occurrence embeddings of (Mitchell et al., 2008);
the experiential embeddings of (Binder et al.,
2016); the non-distributional feature-based em-
beddings of (Faruqui and Dyer, 2015); and
5 different distributional embeddings, namely
word2vec (Mikolov et al., 2013), Fasttext
(Bojanowski et al., 2016), dependency-based
word2vec (Levy and Goldberg, 2014), GloVe
(Pennington et al., 2014) and LexVec (Salle et al.,
2016). These authors found that dependency-
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based word2vec achieves the best performance
among the approaches resorting to word embed-
dings, while the seminal approach resorting to 25
features “is doing slightly better on average” with
respect to all the approaches experimented with.

The rationale guiding the various works pre-
sented in this Section is that the better the per-
formance of the system the higher is the cogni-
tive plausibility of the lexical semantics model re-
sorted to. It is also important to note, however, that
there is not always a clearly better method since
results show that different methods have different
error patterns (Abnar et al., 2018).

4 WordNet embeddings

The previous Sections indicate that approaches to
the brain activation task typically resort to feature-
based models or to semantic spaces to represent
the meaning of words.

In this paper, we address this task by using in-
stead a semantic network as the base repository
of lexical semantic knowledge, namely WordNet.
We then resort to a novel methodology developed
by us (Saedi et al., 2018) for generating seman-
tic space embeddings from semantic networks,
and use it to obtain WordNet embeddings. This
method is based on the intuition that the larger the
number of paths and the shorter the paths connect-
ing any two nodes in a network the stronger is their
semantic association.

The conversion method begins by representing
the semantic graph as an adjacency matrix M ,
where element Mij is set to 1 if there is an edge
between word wi and word wj , and 0 otherwise.
Then, this initial relatedness of immediately adja-
cent words is “propagated” through the matrix by
iterating the following cumulative addition

M
(n)
G = I + αM + α2M2 + · · ·+ αnMn (1)

where I is the identity matrix, the n-th power of
the transition matrix, Mn, is the matrix where
each Mij counts the number of paths of lenght n
between nodes i and j, and α is a decay factor.

The limit of this sum is given by the following
closed expression (see Newman, 2010, Eq. 7.63):

MG =
∞∑

e=0

(αM)e = (I − αM)−1 (2)

Matrix MG is subsequently submitted to a Pos-
itive Point-wise Mutual Information transforma-
tion, each line is L2-normalized and, finally, Prin-
cipal Component Analysis is applied, reducing

each line to the size of the desired embedding
space. Row i of matrix MG is then taken as the
embedding for word wi.

Using the methodology outlined above, embed-
dings with size 850 were extracted from a subset
of 60k words in version 3 of English WordNet.3

When run on the mainstream semantic similarity
data set SimLex-999 (Hill et al., 2016), the re-
sulting embeddings showed highly competitive re-
sults, outperforming word2vec by some 15% We
refer to our embeddings as wnet2vec.4

5 Experiment

The good results obtained with wnet2vec in the
semantic similarity task lead to experiment with
them also in the brain activation prediction task.

5.1 System training

We resorted to the framework implementation5 by
Abnar et al. (2018). Training ran for 1,000 epochs,
with a batch size of 29 and a learning rate of 0.001.
The loss function is calculated by adding the Hu-
ber loss, the mean pairwise squared error and the
L2-norm (on weights and bias). Like in previ-
ous works, only the 500 most stable voxels are se-
lected. Training was done on a Tesla K40m GPU
and took 54 hours (6 hours per subject).

Figure 1 shows an example for Participant 1,
with the model prediction and the observed fMRI
activation pattern for the word eye. The brain acti-
vation images were generated with Nibabel (Brett
et al., 2017) and Nilearn (Abraham et al., 2014).

5.2 Evaluation and discussion

We followed the usual evaluation procedure for
this framework. The cross-validated, leave-two-
out mean accuracy was 0.71. The full scores, to-
gether with the scores from the original paper, are
summarized in Table 1 and shown graphically in
Figure 2 (0.50 corresponds to chance).6

This indicates that wnet2vec has a competitive
performance in this task as the mean score ob-
tained is in the range of the scores found for all ap-

3We used less than half of the 1̃50k words in WordNet due
to computational limitations as the matrix inverse in (2) faces
substantial challenges in terms of the memory footprint.

4Available at https://github.com/nlx-group/
WordNetEmbeddings

5https://github.com/samiraabnar/
NeuroSemantics/

6Materials for replication available at https://
github.com/nlx-group/BrainActivation
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(a) predicted (b) observed

Figure 1: fMRI activations for Participant 1, word eye

Embeddings P1 P2 P3 P4 P5 P6 P7 P8 P9 mean

(Mitchell et al., 2008) 0.83 0.76 0.78 0.72 0.78 0.85 0.73 0.68 0.82 0.77
wnet2vec 0.84 0.72 0.86 0.75 0.60 0.67 0.70 0.53 0.74 0.71

Table 1: Accuracy results for the 9 subjects

Figure 2: Accuracy results for the 9 subjects

proaches resorting to word embeddings, systemat-
ically tested by (Abnar et al., 2018).

In line with all approaches resorting to word
embeddings (Abnar et al., 2018), the mean score
obtained is also not outperforming the original 25
verb-based co-occurrence features model reported
in the seminal paper (Mitchell et al., 2008).

When comparing the scores per participant, the
bulk of the wnet2vec losses are due to P5, P6 and
P8. For the other subjects, results are close or, in
three cases, even better than those from the semi-
nal paper. This highlights the point already made
in (Abnar et al., 2018), that different methods have
different error patterns, which suggests that an en-
semble of classifiers could lead to better overall
accuracy. And also, that a dataset with only 9 sub-
jects — the dataset used in the literature on this
task since (Mitchell et al., 2008) — may be hin-
dering better empirically grounded conclusions.

Finally, it should be noted that these competitive
results were obtained with wnet2vec generated on
the basis of 60k words only, thus less than half of

WordNet. It will be very interesting to see how
the performance of this approach progresses when
larger portions of WordNet are taken into account
as computational limitations can be overcome.

6 Conclusions

We report on an experiment with the task of pre-
dicting the fMRI spatial activation patterns in the
brain associated with a given noun.

We resorted to a semantic network of lexical
knowledge, viz. WordNet, and thus to a represen-
tation of the meaning of the input nouns as ele-
ments of concept nodes in a graph of semantically
related edges. We also resorted to a derived inter-
mediate vectorial semantic representation (word
embeddings) for the input nouns that was obtained
by a novel methodology to convert semantic net-
works into semantic spaces, applied to WordNet.

The results indicate that this model has a com-
petitive performance as its scores are within the
range of the results obtained with state of the art
models based on corpus-based word embeddings
reported in the literature. Though for one third of
the 9 subjects this model surpasses Mitchell et al.
(2008), on average it did not outperform that sem-
inal model, which used hand-selected features.

The fact that less than half of the words in
WordNet were used allows a positive expectation
with respect to the strength of the proposed ap-
proach, and points towards future work that will
seek to use larger portions of WordNet, and fur-
ther lexical semantics networks and ontologies.

4



References
Samira Abnar, Rasyan Ahmed, Max Mijnheer, and

Willem Zuidema. 2018. Experiential, distributional
and dependency-based word embeddings have com-
plementary roles in decoding brain activity. In Pro-
ceedings of the 8th Workshop on Cognitive Model-
ing and Computational Linguistics (CMCL 2018) ,
pages 5766.

Alexandre Abraham, Fabian Pedregosa, Michael Eick-
enberg, Philippe Gervais, Andreas Mueller, Jean
Kossaifi, Alexandre Gramfort, Bertrand Thirion, and
GaelVaroquaux. 2014. Machine learning for neu-
roimaging with scikit-learn. Frontiers in Neuroin-
formatics, 8:14.

Andrew J. Anderson, Douwe Kiela, Stephen Clark, and
Massimo Poesio. 2017. Visually grounded and tex-
tual semantic models differentially decode brain ac-
tivity associated with concrete and abstract nouns.
Transactions of the Association of Computational
Linguistics, 5(1):17–30.

Jeffrey R. Binder, Lisa L. Conant, Colin J. Humphries,
Leonardo Fernandino, Stephen B. Simons, Mario
Aguilar, and Rutvik H. Desai. 2016. Toward a brain-
based componential semantic representation. Cog-
nitive neuropsychology, 33(3-4):130–174.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Thorsten Brants and Alex Franz. 2006. Web 1T 5-gram
version 1.

Matthew Brett, Michael Hanke, et al. 2017.
nipy/nibabel: 2.2.0.

Barry Devereux, Colin Kelly, and Anna Korhonen.
2010. Using fMRI activation to conceptual stim-
uli to evaluate methods for extracting conceptual
representations from corpora. In Proceedings of
the NAACL HLT 2010 First Workshop on Compu-
tational Neurolinguistics, pages 70–78. Association
for Computational Linguistics.

Manaal Faruqui and Chris Dyer. 2015. Non-
distributional word vector representations. arXiv
preprint arXiv:1506.05230.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. MIT Press.

Leonardo Fernandino, Colin J. Humphries, Mark S.
Seidenberg, William L. Gross, Lisa L. Conant, and
Jeffrey R. Binder. 2015. Predicting brain activation
patterns associated with individual lexical concepts
based on five sensory-motor attributes. Neuropsy-
chologia, 76:17–26.

Felix Hill, Roi Reichart, and Anna Korhonen. 2016.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41:665–695.

Ahmad Babaeian Jelodar, Mehrdad Alizadeh, and
Shahram Khadivi. 2010. WordNet based features
for predicting brain activity associated with mean-
ings of nouns. In Proceedings of the NAACL HLT
2010 First Workshop on Computational Neurolin-
guistics, pages 18–26. Association for Computa-
tional Linguistics.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL), volume 2, pages 302–308.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tom M. Mitchell, Svetlana V. Shinkareva, Andrew
Carlson, Kai-Min Chang, Vicente L. Malave,
Robert A. Mason, and Marcel Adam Just. 2008.
Predicting human brain activity associated with the
meanings of nouns. Science, 320(5880):1191–1195.

Brian Murphy, Partha Talukdar, and Tom Mitchell.
2012. Selecting corpus-semantic models for neu-
rolinguistic decoding. In Proceedings of the First
Joint Conference on Lexical and Computational Se-
mantics, pages 114–123. Association for Computa-
tional Linguistics.

Mark Newman. 2010. Networks: An Introduction. Ox-
ford University Press.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

Chakaveh Saedi, Antnio Branco, Joo Antnio Ro-
drigues, and Joo Ricardo Silva. 2018. Wordnet
embeddings. In Proceedings of the ACL2018 3rd
Workshop on Representation Learning for Natural
Language Processing (RepL4NLP). Association for
Computational Linguistics.

Alexandre Salle, Marco Idiart, and Aline Villavicencio.
2016. Matrix factorization using window sampling
and negative sampling for improved word represen-
tations. arXiv preprint arXiv:1606.00819.

Haoyan Xu, Brian Murphy, and Alona Fyshe. 2016.
BrainBench: A brain-image test suite for distribu-
tional semantic models. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 2017–2021.

5



Proceedings of the Eighth Workshop on Cognitive Aspects of Computational Language Learning and Processing, pages 6–16
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

Do speakers produce discourse connectives rationally?

Frances Yung1 and Vera Demberg1,2

1Dept. of Language Science and Technology
2Dept. of Mathematics and Computer Science, Saarland University

Saarland Informatic Campus, 66123 Saarbrücken, Germany
{frances,vera}@coli.uni-saarland.de

Abstract

A number of different discourse connec-
tives can be used to mark the same dis-
course relation, but it is unclear what fac-
tors affect connective choice. One recent
account is the Rational Speech Acts the-
ory, which predicts that speakers try to
maximize the informativeness of an utter-
ance such that the listener can interpret the
intended meaning correctly. Existing prior
work uses referential language games to
test the rational account of speakers’ pro-
duction of concrete meanings, such as
identification of objects within a picture.
Building on the same paradigm, we design
a novel Discourse Continuation Game to
investigate speakers’ production of ab-
stract discourse relations. Experimental
results reveal that speakers significantly
prefer a more informative connective, in
line with predictions of the RSA model.

1 Introduction

Discourse relations connect units of texts to a co-
herent and meaningful structure. Discourse con-
nectives (DC), e.g., but and so, are used to signal
discourse relations. In Example (1), the connec-
tive as is used to mark the causal relation between
the two clauses.

(1) That tennis player has been losing his
matches, as we know he is still recovering
from the injury.

However, discourse relations can often be ex-
pressed by more than one DC, or not be marked
by an explicit connective at all (these are referred
to as implicit relations). For example, the connec-
tives since or because can alternatively be used
in Example (1). Note however that there can be

small differences in meaning between alternative
connectives: because stresses more strongly that
the reason is the new information in the discourse.

There is a large body of literature on the com-
prehension of DCs and unmarked discourse re-
lations (see for example Sanders and Noordman
(2000)), but the production of discourse relations
is under-studied. Patterson and Kehler (2013) and
Asr and Demberg (2015) investigate the choice
of using a DC vs. omitting it, and find that ex-
plicit connectives are more often used when the
discourse relation cannot be easily predicted from
prior context. More recently, Yung et al. (2017,
2016) proposed a broad-coverage RSA model to
account for relation signaling, and showed that the
RSA-based modeling improves the prediction of
whether a relation is marked explicitly or not.

Nonetheless, it is still unclear, what factors af-
fect the speaker’s choice of a specific explicit con-
nective. Given the previous success of the RSA
account in predicting connective presence in a
corpus, we here set out to investigate whether
the choice of DCs follows the game-theoretic
Bayesian model of pragmatic reasoning (Frank
and Goodman, 2012). As broad-coverage corpus
analyses can be very noisy and can include a lot of
confounding effects, in particular with respect to
small meaning differences between connectives,
which we cannot control in a corpus study, we here
test for an RSA effect in a tightly controlled exper-
imental setting.

2 Background: The rational account of
linguistic variation

Natural language allows us to formulate the same
message in many different ways. The rational
speech act (RSA) model (Frank and Goodman,
2012; Frank et al., 2016) explains linguistic vari-
ation in terms of speakers’ pragmatic reasoning
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about the listeners’ interpretation in context. Us-
ing Bayesian inference, the model formalizes the
utility of an utterance to convey the intended
meaning in context c. In our case, the utterance
is a DC and the meaning is a discourse relation r.
Utility is defined in Equation 1:

Utility(DC; r, c)

= − logP (r|DC, c)− cost(DC)
(1)

− logP (r|DC, c) quantifies the informative-
ness of DC, i.e. how likely the intended mean-
ing r can be interpreted by the listener in context
c. cost(DC) quantifies the production cost of the
utterance. The probability that a rational speaker
chooses DC is proportional to its utility.

P (DC|r, c) ∝ expαUtility(DC;r,c) (2)

According to the RSA theory, the rational ut-
terance should provide the most unambiguous in-
formation for the listener, and, at the same time,
be as brief as possible. These goals correspond
to Grice’s Maxims of effective communication
(Grice, 1975).

The RSA model has been shown to account
for speakers’ choice during production for various
phenomena, such as referential expressions (De-
gen et al., 2013; Frank et al., 2016), scalar impli-
catures (Goodman and Stuhlmüller, 2013), yes-no
questions (Hawkins et al., 2015), shape descrip-
tions (Hawkins et al., 2017) and uncertainty ex-
pressions (Herbstritt and Franke, 2017). In these
existing works, speakers’ utterances are collected
by experiments in the form of referential language
games. Although various types of speaker utter-
ances have been investigated, the intended mean-
ings to be conveyed in the experiments are com-
monly the identification of concrete, visible ob-
jects or attributes, such as figures, colors and quan-
tities presented in pictures.

3 Methodology

In this work, we conduct language game experi-
ments to test the rational account of speakers’ pro-
duction of discourse relations. In contrast to pre-
vious approaches that use RSA to predict the pres-
ence or absence of DCs in corpus data (Yung et al.,
2016, 2017), we compare the theoretical choice
of RSA with the choice of human subjects. To
our knowledge, this is the first attempt to manip-
ulate the production of abstract meanings in the
language game paradigm.

According to RSA, among alternative DCs that
are literally correct for a given intended dis-
course relation, speakers prefer the DC with larger
P (DC|r, c) and thus larger utility (Equation 2).
Since DCs are generally frequent expressions con-
sisting of no more than a few words, we assume
that the production cost for all DCs is constant.
Therefore, the DC that is more informative in con-
text (larger P (r|DC, c)) is the one preferred by the
speaker (Equation 1).

We use crowdsourcing to collect discourse pro-
cessing responses from naive subjects, following
previous success (Rhode et al., 2016; Scholman
and Demberg, 2017). It is, nonetheless, challeng-
ing to manipulate the intended meaning in a pro-
duction scenario, because discourse relation can-
not be presented visually, as in other referential
language games. We design a novel Discourse
Continuation Game that induces the subjects to
choose a DC, among multiple options with differ-
ent levels of informativeness, to convey a particu-
lar discourse relation.

3.1 Task and stimulus design

In each Discourse Continuation Game, the sub-
ject is asked to choose a DC as a hint for another
player, Player 2, who is supposed to guess how
the discourse will continue1. There are three pos-
sible continuations and three DC options in each
question. The subject (Player 1) is told that both
players see the possible continuations but only
Player 1 knows which continuation is the target.
Figure 1 shows the screen shot of one of the ques-
tions.

Figure 1: Sample question of the Discourse Con-
tinuation Game, under the with competitor condi-
tion. Continuation B is replaced by “he was close
in every match.” under the no competitor condi-
tion.

1We focus on speaker’s production in this work, so the lis-
tener, Player 2, does not exist. Fake responses are generated
by the system during the experiment. See Section 3.2.
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Each continuation option represents a discourse
relation and the target continuation is the discourse
relation we want the subjects to produce. For the
example in Figure 1, continuations A, B and C rep-
resent causal, temporal and concession relations
respectively.

The three DC options differ in the level of in-
formativeness in context, i.e. P (r|DC, c). For the
example in Figure 1, since is the ambiguous DC
because it can be used to mark the target contin-
uation A (causal relation), as well as continuation
B (temporal relation). As is the unambiguous DC
because, among the available continuations, it can
be used to mark the target continuation only. But
is the unrelated DC because it is used to mark con-
tinuation C, which is not the target.

When the speaker utters since, continuation B
can be seen as the competitor of the target contin-
uation A. We modify the informativeness of since
by replacing the competitor continuation with an-
other unrelated continuation. Under this no com-
petitor condition, both since and as are unambigu-
ous DCs for the target continuation A. The no com-
petitor condition serves as the control condition
because DC choice of a particular utterance can be
subject to other factors on top of informativeness.
By keeping the target identical and only manipu-
lating the set of alternative continuations, we can
control for fine nuances in connective meaning: if
a connective is more suitable for marking the tar-
get continuation than another one, this will be the
same for both conditions.

DC context c P (r|DC, c)

ambiguous since with comp. lower
unambiguous as with comp. high
unrelated but with comp. lowest
ambiguous since no comp. high
unambiguous as no comp. high
unrelated but no comp. lowest

Table 1: Level of informativeness of the DC op-
tions in the Discourse Continuation Game exam-
ple in Figure 1.

The level of informativeness of various DC op-
tions for target continuation A is summarized in
Table 1. When the speaker intends to convey the
discourse relation represented by continuation A,
both since and as are literally correct DCs, so both
DCs are similarly likely to be selected under the
no competitor condition. But, according to RSA

theory, the unambiguous DC as is pragmatically
preferred when there is a competitor in context.
We crowdsource responses of the Discourse Con-
tinuation Game to evaluate this RSA prediction.

3.2 Experiment

We constructed 36 stimuli similar to the exam-
ple in Figure 1, covering eight ambiguous DCs,
as shown in Table 2.

ambiguous unambiguous stimulus
connective alternative count total
and also 2

and then 4
therefore 1
so 3 10

while at the same time 4
but 1
when 1
however 1 7

as since 2
while 1
whilst 1 4

or otherwise 3
alternatively 1 4

meanwhile however 1 1
since as 5 5
then after that 1 1
when if 4 4

36

Table 2: List of DCs covered in the stimuli

Since many readings are possible if a discourse
relation is unmarked, to make sure that the stimuli
are valid, we conduct pretests by recruiting a sepa-
rated group of participants to fill in any words that
connect the first sentence with the continuation op-
tions. A stimulus is excluded or revised if, for any
of the 3 continuation options, any pretest partici-
pant fills in a DC that is among the 3 DC options
but is not the matching DC (or one of the match-
ing DCs for continuation A). The pretest makes
sure that: 1) all options are compatible with the
intended literal DC; 2) the target continuation is
compatible with both of the DCs that match it; and
3) continuation B and C are not compatible with
the DCs which are not their literal connectives in
the experiment.

The 36 stimuli (each in two conditions) were
divided up into 12 separate lists, each containing
6 items. Each participant saw 3 items in each of
the two conditions. An additional 6 filler items
were added to each of the lists, resulting in a total
of 12 different questions in a list. The order of
items in a list was randomized. For each of the 12
lists, we collected 20 responses, resulting in a total
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of 240 native-English-speaking participants who
took part in the experiment. 127 participants are
females and 73 are males. Their average age is 34.
148 participants come from the United Kingdom,
34 from the United States and 18 from other coun-
tries, including Canada, Ireland etc. The partici-
pants were recruited through the Prolific platform.
They took on average 8 minutes to complete the
task, and were reimbursed for their efforts with
0.8 GBP each. The filler questions had the same
form as the stimuli, except that continuations B or
C were set as the target instead of the experimen-
tally interesting continuation A. Responses from
participants who chose more than 6 non-matching
DCs in their list were excluded and recollected.
The experimental interface was constructed using
Lingoturk (Pusse et al., 2016).

The experimental interface was designed to re-
semble a communication scenario where two play-
ers interact at real time, although the responses
of “Player 2” were actually automatically gener-
ated by the system, and were shown to the subject
with a time lag of 4 seconds. “Player 2” was pro-
grammed to be an rational Gricean pragmatic lis-
tener, who in the unambiguous condition always
chose the continuation that best fits the connec-
tive, and who supposed that the speaker would
choose an unambiguous DC when there was a
competitor in context. For example, if the par-
ticipant chose the ambiguous since, “Player 2”
would guess continuation B, assuming that the par-
ticipant would have chosen the unambiguous as if
he meant continuation A.

To motivate the participants, they were re-
warded with a bonus of 0.06 GBP for each ques-
tion where the “Player 2” successfully guessed
the target continuation.

4 Results

We calculate the agreement among the participants
for each stimulus by

Count(majority response)

Count(all response)

and average it over the items. The average agree-
ment of the filler items is 87% while that of the
stimulus items is 68% and 71% respectively for
the no- and with competitor conditions. The agree-
ment of the filler items is higher than that of the
stimulus items. It is expected because only one
of the three connective options literally matches

the target continuation in the filler items while two
of the options are literally correct in the stimu-
lus items. The agreement under the no competitor
condition is slightly lower than the with competi-
tor condition. This follows our prediction that, un-
der the no competitor condition, participants more
freely choose between the two literally correct op-
tions, because they are equally informative.

Figure 2: Distribution of participant responses.

The distribution of the participant responses is
shown in Figure 2. In both conditions, most of
participants choose one of the connectives that fits
the target relation (i.e., the ambiguous or unam-
biguous DC). This shows that our stimuli are valid,
because both options are literally correct for the
target continuation.
Also, the results show that the distribution of con-
nective choice differs between the two conditions:
In the no competitor condition, where both the am-
biguous and unambiguous DCs are similarly infor-
mative, speakers’ choice between the two options
is evenly distributed. In the condition with the
competitor, the ambiguous connective is chosen
significantly less often than in the no-competitor
condition. This is the expected effect according
to the RSA model, as the ambiguous connective is
less informative in the condition with the competi-
tor.

Moreover, we are also interested to see if there
is a learning effect as the trials progress. When the
subjects chose an unambiguous connective, a pos-
itive feedback was displayed to the subjects say-
ing that Player 2 correctly guessed the continua-
tion. Figure 3 shows the distribution of subject
responses grouped by the number of correct an-
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Figure 3: Distribution of participant responses by
the number of previous positive feedbacks exclud-
ing the fillers

swers they previously got, excluding the fillers. In-
creased preference for unambiguous connectives
is not observable; the subjects prefer an unambigu-
ous connective since the first question and the ten-
dency persists until the end of the trial.

We test for significance of the effects of the
with/no competitor conditions as well as previous
positive feedbacks on connective choice using a
logistic mixed effects model. Responses choos-
ing the unrelated DCs are not taken into account.
We included by-subject and by-stimulus random
intercepts, as well as random slopes for the effect
of the condition under both subject and item. The
regression values of the effects are reported in Ta-
ble 3. Statistical analyses were performed using
the lme4 package (Bates et al., 2015), version 1.1-
15. The with competitor condition was confirmed
to have statistically significant positive effect on
the choice of unambiguous DC, but no significant
effect from the number of previous positive feed-
backs is detected. Further investigation is neces-
sary to evaluate the effect of pragmatic feedbacks,
possibly in longer trials of experiment.

To summarize, speakers do not have a prefer-
ence choosing either of the DC options that are lit-
erally appropriate for the target discourse relation
when both DCs are similarly informative. How-
ever, when one of the literal DCs is ambiguous in
context, the speaker chooses the unambiguous one
to facilitate listener’s comprehension. These re-
sults support the prediction of the RSA theory.

5 Conclusion

This work investigates the preference of speakers’
production of DCs for an intended discourse rela-

Fixed effects:
β SE t p

intercept −.0891 .272 −.328 .743
with comp. .649 .177 3.676 .000237∗∗∗

feedback .0679 .0634 1.072 .284

Random effects:
Groups Name Variance SD Corr.
subject intercept .186 .431

wth comp. .117 .342 −1.00
stimuli intercept 2.047 1.431

wth comp. .458 .677 −.65

Table 3: The regression values of the logistic
mixed effect model.

tion. According to the responses of subjects par-
ticipating in a specially designed Discourse Con-
tinuation Game, we found that speakers prefer a
more informative, less ambiguous DC when it is
necessary for effective communication. The re-
sults are consistent with predictions of the RSA
model, showing that speakers choose their utter-
ance by pragmatic reasoning when planning the
production of abstract meanings, such as discourse
relations. The results are also consistent with
the earlier broad-coverage model by Yung et al.
(2017), that speakers prefer to explicitly mark dis-
course relations when they predict that the relation
is hard to interpret if it is unmarked.

The Discourse Continuation Game successfully
extends the referential language game paradigm to
test the production of abstract, non-visible mean-
ings. A limitation of the current first study is that
the alternative completions of the sentence are pro-
vided explicitly to the speaker and the compre-
hender, which is not the case in natural commu-
nication. Therefore, the current study only pro-
vides information on what humans can do, but not
yet necessarily on what they usually do in natural
communication. We plan to extend our work to
more realistic settings in subsequent work.
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Peloquin, Noah D Goodman, and Christopher Potts.
2016. Rational speech act models of pragmatic rea-
soning in reference games.

Michael C Frank and Noah D Goodman. 2012. Pre-
dicting pragmatic reasoning in language games. Sci-
ence, 336(6084):998–998.

Noah D Goodman and Andreas Stuhlmüller. 2013.
Knowledge and implicature: Modeling language un-
derstanding as social cognition. Topics in cognitive
science, 5(1):173–184.

H Paul Grice. 1975. Logic and conversation. Syntax
and Semantics, 3:41–58.

Robert XD Hawkins, Michael C Frank, and Noah D
Goodman. 2017. Convention-formation in iterated
reference games. In Proceedings of the 39th Annual
Conference of the Cognitive Science Society. Cogni-
tive Science Society.

Robert XD Hawkins, Andreas Stuhlmüller, Judith De-
gen, and Noah D Goodman. 2015. Why do you
ask? good questions provoke informative answers.
In CogSci. Citeseer.

Michele Herbstritt and Michael Franke. 2017. Mod-
eling transfer of high-order uncertain information.
CogSci.

Gary Patterson and Andrew Kehler. 2013. Predicting
the presence of discourse connectives. Proc. of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 914–923.

Florian Pusse, Asad Sayeed, and Vera Demberg. 2016.
Lingoturk: Managing crowdsourced tasks for psy-
cholinguistics. Proc. of the North American Chapter
of the Association for Computational Linguistics.

H Rhode, A. Dickinson, N. Schneider, C. N. L. Clark,
A. Louis, and B. Webber. 2016. Filling in the blanks
in understanding discourse adverbials: Consistency,
conflict, and context-dependence in a crowdsourced
elicitation task. Proc. of the Linguistic Annotation
Workshop.

Ted JM Sanders and Leo GM Noordman. 2000. The
role of coherence relations and their linguistic
markers in text processing. Discourse processes,
29(1):37–60.

Merel Cleo Johanna Scholman and Vera Demberg.
2017. Examples and specifications that prove
a point: Identifying elaborative and argumenta-
tive discourse relations. Dialogue & Discourse,
8(2):56–83.

Frances Yung, Kevin Duh, Taku Komura, and Yuji
Matsumoto. 2016. Modeling the usage of dis-
course connectives as rational speech acts. Proc. of
the SIGNLL Conference on Computational Natural
Language Learning, page 302.

Frances Yung, Kevin Duh, Taku Komura, and Yuji
Matsumoto. 2017. A psycholinguistic model for the
marking of discourse relations. Dialogue & Dis-
course, 8(1):106–131.

11



A Stimuli and fillers of the experiment

Continuations A, Bwth and C are displayed to the subjects under the with competitor condition, as
well as in the fillers. Continuations A, Bno and C are displayed under the no competitor condition.
Continuation A is set as the target in the stimulus questions, while continuations Bwth or C are the
targets in the fillers. The connective options are in the order: ambiguous / unambiguous / unrelated.

1 Hard work is the key to success...
[ and / also / unless ]
A. patience is important.
Bwth. honesty is the key to friendship.
Bno. you are always lucky.
C. you are a genius.

2 Harry was born in Scotland...
[ and / and then / but ]
A. he lived in Glasgow for 20 years.
Bwth. his ancestors had origined from Scotland.
Bno. both his parents are not Scottish.
C. he would not have said so.

3 I listened to music on my mobile phone...
[ while / when / because ]
A. I was walking back home from work.
Bwth. I knew there are more important things I should do instead.
Bno. it helped me to concentrate.
C. I was bored waiting for you for half an hour.

4 I will buy a bag for my son as promised...
[ or / otherwise / because ]
A. he will be very disappointed.
Bwth. I will buy him a watch instead.
Bno. he did well in his exams.
C. it is his birthday tomorrow.

5 You must have been studying this afternoon...
[ since / as / but ]
A. I did not hear music from your room.
Bwth. you came back from school.
Bno. it doesn’t mean you will certainly get good marks in the exam.
C. John has been playing video games all the time.

6 I had been longing for a cup of coffee...
[ since / as / so ]
A. you woke me up at five this morning.
Bwth. the teacher of the first class came in.
Bno. I rushed to the cafeteria as soon as the bell rang.
C. please do me a favour and buy me an espresso.

7 I will finish this homework now...
[ then / after that / although ]
A. I will go to chill with my friends.
Bwth. I can have something to hand in tomorrow.
Bno. I don’t know the answers for half of the questions.
C. it is not interesting at all.
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8 Big cities are fun to visit ...
[ and / therefore / but ]
A. I visit at least one of those every year.
Bwth. they are usually easier to access as well.
Bno. surprisingly my sister prefers small towns.
C. unfortunately those places are often packed with tourists.

9 Your joints will feel better...
[ when / if / but ]
A. you do these stretches regularly.
Bwth. the summer comes.
Bno. still you should not start running yet.
C. the symptom will never go away unfortunately.

10 The older children stopped talking at once...
[ as / since / but ]
A. they understood that it was not a joke.
Bwth. the train approached the station.
Bno. that lasted for a minute only.
C. the younger ones were still noisy.

11 Jane finished the obstacle course the fastest...
[ and / so / but ]
A. she ended up winning the first prize overall.
Bwth. Mary finished it very quickly, too.
Bno. she was disqualified.
C. still she could not win.

12 I started to watch over my calorie intake...
[ since / as / so ]
A. you said I ate too much.
Bwth. I moved back to my parents’.
Bno. I might finally be able to lose some weight.
C. you’d better not offer me chocolates and chips.

13 Let’s just follow Peter’s idea...
[ or / otherwise / because ]
A. we will never finish the project on time.
Bwth. we can adopt Tom’s alternative instead.
Bno. no one is suggesting anything better.
C. I think his idea is simple but great.

14 Maggie grabbed her coat and sweater...
[ as / while / but ]
A. she followed the crowd into the playground.
Bwth. it was snowing outside.
Bno. Tom went out with short sleeves.
C. she did not take her hat.

15 Mark was almost an hour late to the station last evening...
[ while / but / and ]
A. Harry was even two hours late.
Bwth. he was on his way to London.
Bno. he even said he was going to quit.
C. he was late again this morning.
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16 Dave ordered a tall glass of fine scotch...
[ as / since / but ]
A. we could order what ever we want.
Bwth. the host was giving a speech.
Bno. he could not finish half of it.
C. Mary just ordered a soft drink.

17 Mary always wore a fancy dress to a ball...
[ when / if / whereas ]
A. her boyfriend was going as well.
Bwth. she was at her 20s.
Bno. she did not care much about her hair.
C. she dressed casually to work.

18 That pizzaria has always been my favourite...
[ since / as / but ]
A. I like Italian food a lot.
Bwth. I had dinner with Jill there two years ago.
Bno. my boyfriend doesn’t really like it.
C. I think this restaurant is not bad, too.

19 My parents will visit Canada again in December...
[ and / and then / although ]
A. they will visit South America in spring.
Bwth. it will be their thrid visit in two years.
Bno. the air tickets are expensive in that season.
C. they hate cold weather.

20 I am sure David will burst into tears...
[ when / if / but ]
A. his children come to visit one day.
Bwth. he comes home tonight.
Bno. Kathy probably will not react much.
C. that will be tears of happiness.

21 Leo is taking orders from the guests...
[ while / at the same time / so ]
A. George is serving the food.
Bwth. there are too many tables for him to serve alone.
Bno. he is not able to pick up the call right now.
C. have patience, he will come to our table sooner or later.

22 Peter was watching the baseball match on TV this morning...
[ while / at the same time / because ]
A. his wife was making breakfast for him in the kitchen.
Bwth. he didn’t understand the rules at all.
Bno. there were not any other good shows on TV.
C. he recently became a fan of the team that was playing.

23 Please buy some fruits for me...
[ and / and then / if ]
A. come home immediately afterwards.
Bwth. don’t forget the milk.
Bno. you still have money left.
C. you pass by a supermarket.
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24 Sam is going on a business trip to Seoul....
[ while / at the same time / and ]
A. his children are going to a summer camp.
Bwth. he is not very optimistic about the Korean market.
Bno. he will come back with signed contracts.
C. later he will travel to Japan for an exhibition.

25 That task took me a lot of time...
[ and / so / but ]
A. I expected a higher reward.
Bwth. it was so boring.
Bno. it was not the worst.
C. I enjoyed doing it.

26 The carnival was held on the main street for a week...
[ while / at the meantime / because ]
A. a film festival was being held in the same period.
Bwth. it was held in the park for only one day.
Bno. the central park was not big enough.
C. people complained that three days were too short.

27 The cat always behaves weird at night ...
[ when / if / but ]
A. we have a visitor at home.
Bwth. dad comes back from work early.
Bno. she was normal last night.
C. she will be fine the next morning.

28 The cleaning lady will come to clean our house in the morning...
[ and / also / otherwise ]
A. she will wash the cars.
Bwth. we can just leave the dishes in the kitchen.
Bno. we will have to do it ourselves.
C. I think the house will just be in a mess forever.

29 The current situation is likely to change...
[ while / however / before ]
A. our standard of living is unlikely to improve.
Bwth. the management is planning the next move.
Bno. the summer holiday starts.
C. you even notice it.

30 The talk will be delayed for an hour...
[ meanwhile / however / because ]
A. the conference room is already full of people.
Bwth. people are having a coffee break.
Bno. there is a technical problem.
C. the speaker is coming late.

31 The teddy bear dropped from the baby’s hand...
[ and / and then / as ]
A. he cried aloud.
Bwth. he has dropped it twice in a minute.
Bno. he fell asleep.
C. the stroller entered the elevator.
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32 That tennis player has been losing his matches...
[ since / as / but ]
A. we know he is still recovering from the injury.
Bwth. the season started.
Bno. he was close in every match.
C. his coach believes that he still has chance.

33 The next concert will be held this summer here in this city...
[ and / so / but ]
A. we are definitely going.
Bwth. I heard that it will be an outdoor concert.
Bno. unfortunately I cannot go this time.
C. the dates are not yet confirmed.

34 We fell asleep immediately...
[ as / whilst / but ]
A. the moon rose higher in the sky.
Bwth. we had been working the whole day.
Bno. we woke up shortly in the middle of the night.
C. the kids stayed up until early in the morning..

35 We should not walk but take the bus...
[ or / alternatively / although ]
A. we can take a taxi instead.
Bwth. we will not arrive on time.
Bno. it would have been nice to walk through the forest.
C. it is still not the fastest way to get there.

36 You should bring something to eat...
[ or / otherwise / although ]
A. you will starve yourself.
Bwth. alternatively, you can bring some drinks.
Bno. it is not compulsory.
C. some snacks will be served there.
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Abstract

We present an analysis of the inter-
nal mechanism of the recurrent neural
model of sentence production presented
by Calvillo et al. (2016). The results show
clear patterns of computation related to
each layer in the network allowing to in-
fer an algorithmic account, where the se-
mantics activates the semantically related
words, then each word generated at each
time step activates syntactic and seman-
tic constraints on possible continuations,
while the recurrence preserves informa-
tion through time. We propose that such
insights could generalize to other models
with similar architecture, including some
used in computational linguistics for lan-
guage modeling, machine translation and
image caption generation.

1 Introduction

A Recurrent Neural Network (RNN) is an artifi-
cial neural network that contains at least one layer
whose activation at a time step t serves as input
to itself at a time step t + 1. Theoretically, RNNs
have been shown to be at least as powerful as a
Turing Machine (Siegelmann and Sontag, 1995;
Siegelmann, 2012). Empirically, in computational
linguistics they achieve remarkable results in sev-
eral tasks, most notably in language modeling and
machine translation (e.g. Sutskever et al., 2014;
Mikolov et al., 2010). In the human language pro-
cessing literature, they have been used to model
language comprehension (e.g. Frank et al., 2009;
Brouwer, 2014; Rabovsky et al., 2016) and pro-
duction (e.g. Calvillo et al., 2016; Chang et al.,
2006).

In spite of their success, RNNs are often used
as a black box with little understanding of their

internal dynamics, and rather evaluating them in
terms of prediction accuracy. This is due to the
typically high dimensionality of the internal states
of the network, coupled with highly complex in-
teractions between layers.

Here we try to open the black box present-
ing an analysis of the internal behavior of the
sentence production model presented by Calvillo
et al. (2016). This model can be seen as a semanti-
cally conditioned language model that maps a se-
mantic representation onto a sequence of words
forming a sentence, by implementing an exten-
sion of a Simple Recurrent Network (SRN, El-
man, 1990). Because of its simple architecture
and its relatively low dimensionality, this model
can be analyzed as a whole, showing clear patterns
of computation, which could give insights into the
dynamics of larger language models with similar
architecture.

The method that we applied is based on Layer-
wise Relevance Propagation (Bach et al., 2015).
This algorithm starts at the output layer and moves
in the graph towards the input units, tracking the
amount of relevance that each unit in layer li−1 has
on the activation of units in layer li, back to the in-
put units, which are usually human-interpretable.
For a review of this and some other techniques for
interpreting neural networks, see Montavon et al.
(2017); for related work to this paper see Karpathy
et al. (2015); Li et al. (2015); Kádár et al. (2017);
Arras et al. (2016); Ding et al. (2017).

Our analysis reveals that the overall behavior
of the model is approximately as follows: the in-
put semantic representation activates the hidden
units related to all the semantically relevant words,
where words that are normally produced early in
the sentence receive relatively more activation; af-
ter producing a word, the word produced activates
syntactic and semantic constraints for the produc-
tion of the next word, for example, after a deter-
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miner, all the nouns are activated, similarly, after
a given verb, only semantically fit objects are ac-
tivated; meanwhile, the recurrent units present a
tendency for self-activation, suggesting a mecha-
nism where activation is preserved over time, al-
lowing the model to implement dynamics over
multiple time steps. While some of the results pre-
sented here have been suggested previously, we
present a holistic integrative view of the internal
mechanics of the model, in contrast to previous
analyses that focus on specific examples.

The next subsection describes the semantic rep-
resentations used by the model. Section 2 de-
scribes the language production model. Section 3
presents the analysis. Discussion and Conclusion
are presented in sections 4 and 5 respectively.

1.1 Semantic Representations

The semantic representations were derived from
the Distributed Situation Space model (DSS,
Frank et al., 2003, 2009), which defines a
microworld in terms of a finite set of basic
events (e.g., play(charlie,chess)). Basic events
can be conjoined to form complex events (e.g.,
play(charlie,chess)∧win(charlie)). However, the
microworld poses both hard and probabilistic con-
straints on event co-occurrence, where some com-
plex events are very common, and some others im-
possible to happen.

Frank et al. (2009) defined a microworld con-
sisting of 44 basic events centered around three
people. Then they built a situation space by sam-
pling 25, 000 observations, where each observa-
tion is encoded by setting basic events that are the
case to 1 and 0 otherwise (see Table 1). The re-
sulting matrix encodes then all knowledge about
the microworld, where each column, also called
situation vector, represents the meaning of each
basic event in terms of the observations in which
the event is true. Finally, they reduced the dimen-
sionality of the situation vectors to 150 dimensions
using a competitive layer algorithm.

The language production model of Calvillo
et al. (2016) uses the same microworld as Frank
et al. (2009), however, the situation vectors were
converted to belief vectors. Each dimension of
the latter is equal to the conditional probabil-
ity of each basic event given the original 25k-
dimensional situation vector associated to each
sentence1. The result is a 44-dimensional vec-

1This vector is computed by calculating the dot prod-
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Table 1: Situation Space.

tor where each dimension gives an intuition of
the state-of-affairs that is being represented. For
example, for the sentence “Charlie plays chess.”,
the dimension corresponding to the basic event
play(charlie,chess) would have a value of 1.0,
the basic event play(charlie,bedroom) would also
have a value of 1.0 because that is the only place
where chess can be played, nonetheless, the di-
mension of play(heidi,chess) would be less than
1.0 because Heidi does not always play chess
whenever Charlie does.

2 Language Production Model

The model architecture can be seen in Figure 1. It
consists of a 45-dimensional input layer, contain-
ing the semantic representation dss of the sentence
to be produced, plus one bit indicating the model
to produce an active (1) or passive (0) sentence.

At each time step t, activation of the input layer
propagates to a 120-dimensional hidden recurrent
(sigmoid) layer2. This layer also receives a copy
of its own activation ht−1 at time-step t− 1 (zeros
at t = 0) through context units; and the identity
of the word mont−1 produced at time-step t − 1
(zeros at t = 0) through monitoring units, where
only the unit corresponding to the word produced
at time-step t − 1 is activated. More formally, ac-
tivation of the hidden layer is given by:

ht = σ(Wih·dss+Whh·ht−1+Wmh·mont−1+bh)
(1)

where Wih is the weight matrix connecting the in-
put layer to the hidden layer, Whh is the weight

uct between the situation space matrix and the original 25k-
dimensional situation vector, and then normalizing each di-
mension of the resulting vector by the sum over the dimen-
sions of the original 25k-dimensional situation vector.

2While the model by Calvillo et al. (2016) uses an htan
activation function, here we use a sigmoid activation because
it simplifies the analysis, however there was no difference in
performance between the two configurations.
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matrix connecting the hidden layer to itself, Wmh

is the matrix connecting the monitoring units to
the hidden layer, and bh corresponds to the bias
unit of the hidden layer.

Then, the activation of the hidden layer ht is
propagated to a 43-dimensional softmax output
layer, yielding a probability distribution over the
vocabulary:

outputt = softmax(Who · ht + bo) (2)

where Who is the weight matrix connecting the
hidden layer to the output layer and bo is the vector
corresponding to the output bias unit.

The word produced at time-step t is defined as
the one with highest probability. The model stops
when a period has been produced.

Figure 1: Model architecture.

2.1 Examples Set
The dataset that was used consists of a set of pairs
{(dss1, ϕ1), . . . , (dssn, ϕn))} where each dssi
corresponds to a belief vector plus one bit indicat-
ing the model to produce an active sentence (1) or
a passive one (0); and ϕi = {sent1, . . . , sentk}
where sentj is a sentence, a sequence of words
word1, . . . , wordn, expressing the information
contained in dssi. Each set ϕi represents all the
possible sentences that express the information
contained in dssi and in the expected voice.

The sentences are those generated by the mi-
crolanguage defined by Frank et al. (2009). This
microlanguage consists of 40 words that can be
combined into 13556 sentences according to its
grammar. The grammar was minimally modified
by introducing the determiners “a” and “the”, and
adding a period to the sentences, leaving a total of
43 vocabulary items.

Sentences that expressed unlawful situations ac-
cording to the microworld rules, and therefore
whose situation vectors were empty, were dis-
carded; leaving a total of 8201 lawful sentences

and 782 unique DSS representations. Each dssi is
related on average to 6.91 (σ = 7.13) sentences,
with a maximum of 130.

2.2 Training and Evaluation

The model was trained using cross-entropy back-
propagation (Rumelhart et al., 1986) with weight
updates after each word. All weights on the
projections between layers were initialized with
random values drawn from a normal distribution
N (0, 0.1). The weights on the bias projections
were initially set to zero.

During training, the monitoring units were set at
time t to what the model was supposed to produce
at time t− 1 (zeros for t = 0). During testing, the
monitoring units are set to 1.0 for the word that is
actually produced and 0.0 everywhere else.

The model was trained for a maximum of 200
epochs, each epoch consisting of a full presenta-
tion of the training set, which was randomized be-
fore each epoch. Each item in this set is a pair
(dssi, sent), where sent is a sentence related to
dssi, such that there is one training item per sen-
tence related to each dssi. We employed an initial
learning rate of 0.124 which was halved each time
there was no improvement of performance on the
training set during 15 epochs. No momentum was
used. Training halted if the maximum number of
epochs was reached or if there was no performance
improvement on the training set over 40 epochs.

The model was evaluated using a 10-fold cross-
validation schema, with 5 testing conditions as-
sessing different levels of generalization. A full
report can be seen in Calvillo et al. (2016). For a
given semantic representation dssi, a Levenshtein
similarity value was obtained comparing the sen-
tence produced with the most similar sentence in
ϕi. The performance was very high, obtaining an
average across conditions of 97.1% in similarity
scores, with 88.57% of perfect matches.

3 Production Dynamics

We based our analysis on Layer-wise Relevance
Propagation (Bach et al., 2015). The algorithm
consists of identifying for each unit in layer li, the
units in the layer immediately before li−1 that are
most important for the activation of that unit. The
process starts with the units in the output layer and
moves toward and up to the input units, similar to
the backpropagation algorithm.

An aspect that facilitates the analysis of this ar-
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chitecture is that the activation of all layers is pos-
itive, ranging from 0 to 1. Then, the difference be-
tween activation or inhibition of any unit onto an-
other is given by the sign of the connection weight
between them. Thus, units inhibiting a particu-
lar unit ui will be those with a negative connec-
tion weight to ui, and activating units will be those
with a positive connection weight to ui.

Having this in mind, we performed the analy-
sis. In this architecture the output layer depends
solely on the activation of the recurrent hidden
layer. Thus, we will first analyze the influence of
the hidden layer onto the output layer, and later we
will see how monitoring, input and context units
affect production via the hidden layer.

3.1 Word-Producing Hidden Units

As the first step, we would like to know which
hidden units are most relevant for the production
of each word. We begin by identifying the hid-
den layer activation patterns that co-occur with the
production of each word. In order to do so, we fed
the model with the training set. For each training
item, the model was given as input the correspond-
ing semantic representation, and at each time step
the monitoring units were set according to the cor-
responding sentence of the training item. This is
very similar to one epoch of training, except that
no weight updates were made. During this pro-
cess, for each time a word had an activation greater
than 0.2, the activation of the hidden layer was
saved. This value was chosen in order to record ac-
tivation patterns where the target word was clearly
activated. At the end, for each word ok we ob-
tained a set of vectors, each vector corresponding
to a pattern of activation of the hidden layer that
led to the activation of ok. Then we averaged these
vectors, obtaining a vector that shows which hid-
den units are active/inactive during the production
of ok, in general and not just for a single instance,
providing us with a more general perspective of
the dynamics of the model for each word.

Having these patterns, we can further infer the
direction and magnitude of their effect by looking
at the connection weights that connect the hidden
layer to the output layer.

A hidden unit hj having a high average activa-
tion aj when producing a word ok means in gen-
eral that hj is relevant for ok. However, if the
weight connecting hj to ok is close to 0, then the
production of ok will not be so affected by hj . In

this case, it could be that hj is only indirectly af-
fecting the production of ok by activating/inhibit-
ing other words.

Intuitively, hidden units can lead to the produc-
tion of ok directly by activating ok or indirectly by
inhibiting other words. Similarly, they can lead to
the inhibition of ok directly by inhibiting ok, or
indirectly by activating other words that compete
against ok. Because of the large number of con-
figurations that can possibly influence production,
we will only focus on direct activation/inhibition.

For the case of activation, we obtain a score
Ahjok conveying the relevance of hidden unit hj
on the activation of word ok, equal to the average
activation that ok receives from hj when ok is pro-
duced, normalized by the sum of all activation that
ok receives:

Ahjok =
akjw

+
jk∑

j′
akj′w

+
j′k

(3)

where akj is the average activation of unit hj when
the word ok is produced, and w+

jk is the positive
weight connecting hj to ok. This score is only de-
fined for hidden units with a positive connection
weight to ok, which we call activating units.

Inhibiting hidden units are units with negative
weights to a word ok. For inhibition the average
activation of an inhibiting hidden unit during the
production of ok is expected to be close to 0. Then,
the connection weight is irrelevant, as the product
would be close to 0 as well. Thus, for inhibition
we do not take into account the average activation,
but rather its complement. That is, for each hidden
unit hj , with average activation aj , we obtain 1−
aj and multiply it by the corresponding connection
weight. The result gives us the relevance regarding
inhibition of each hidden unit on a particular word:

Ihjok = −
(1− akj )w

−
jk∑

j′
(1− akj′)w

−
j′k

(4)

Based on these definitions, for each hidden unit
we obtained activation/inhibition relevance scores
for each word in the vocabulary. This gives us
an idea of the function of each hidden unit. Ex-
amples for some hidden units are shown in Fig-
ure 2, where columns represent hidden units and
rows are words in the output layer3. The first 5

3For better readability, all heatmaps presented
here are also available at https://plot.ly/
˜jesusctCogACLL
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columns show a sample of the relevance patterns
in general, while the rest were chosen because they
show some kind of specialization. With the ex-
ception of Figure 4, the words in these heatmaps
are ordered intuitively according to syntactic and
semantic similarity, having in order: determiners,
nouns related to persons, nouns related to toys and
games, nouns related to locations, verbs, adverbs,
prepositions and the period.

Figure 2: Relevance scores of some hidden units
on output units. Red represents activation, blue
inhibition.

One can see that the model takes advantage of
redundancy and context sensitivity, where hidden
units activate many different words depending on
the context. As a result, production of a specific
word depends on the combined behavior of the
hidden units, where a word is produced if it re-
ceives support from several units.

Nonetheless, some units suggest a specializa-
tion (see also Karpathy et al., 2015), activating/in-
hibiting related words: there are units related to
games (e.g., 0, 80), toys (e.g., 4, 36), places
(e.g., 30, 34, 35, 69), people (e.g., 35, 115), win-
ning/losing (e.g., 10, 115), prepositions (e.g., 30,
36, 111) and adverbs (e.g., 36).

We can also see that similar words have simi-
lar relations with the hidden neurons, suggesting
syntactic/semantic categories. A clear example
are synonyms, with almost identical relevance pat-
terns, as shown by the rows corresponding to foot-
ball/soccer, jigsaw/puzzle and bathroom/shower.

3.2 Monitoring Units

Having the relevance values of the hidden layer,
we can infer the influence that monitoring units
have on the production of each word by looking at
their influence on the hidden layer.

The monitoring units feed the hidden layer with
the identity of the word produced at the previous
time step, where only the unit related to that word
is activated (set to 1). Consequently, their effect on
the hidden layer depends only on their connection
weights. Then, total relevance Rik of the monitor-
ing unit i on the output unit k, is given by:

Rik =
∑

j

wijRjk (5)

where wij is the weight connecting monitoring
unit i to the hidden unit j, and Rjk is the relevance
score of hidden unit j onto output unit k, which
can be activation (Ahjok ) or inhibition (Ihjok ).

Having this, we can further separate and nor-
malize, giving activation Aik and inhibition Iik:

Aik =
R+

ik∑
k
R+

ik

(6)

Iik = − R−
ik∑

k
R−

ik

(7)

Figure 3 presents these scores. In general, each
monitoring unit promotes the activation of words
that are allowed after it. Determiners activate the
possible nouns that can follow them: “a” activates
all toys, “game” and “girl”; and “the” activates
“boy” and all locations. Nouns referring to peo-
ple (e.g., “charlie”) activate all present tense verbs
and the adverbs “inside” and “outside”. Games
and toys activate “is”, in order to form passive con-
structions. Given that locations appear always at
the end of the sentence, they activate the period “.”.
Verbs activate words that can serve as their com-
plements, for example “beats” activates all person-
related nouns. Similarly, prepositions activate all
their possible complements.
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Figure 3: Relevance scores of monitoring units on output units. Red represents activation, blue inhibition.

Inhibition works very similarly, where mon-
itoring units inhibit words that should not fol-
low them. For example, determiners inhibit all
prepositions, nouns inhibit other nouns as two
nouns never occur together, prepositions inhibit
also other prepositions, etc. Finally, some words
inhibit themselves avoiding repetitions, for exam-
ple “well” and “badly”.

In general we can see that the monitoring units
enforce patterns related at least to bigrams in the
training set, with possibly more long distance de-
pendencies introduced via context units.

3.3 Input Units
Using equation 5, we also computed activation and
inhibition scores for the input units, where i would
be in this case the index of each input unit. In
contrast with monitoring units, many input units
can be active simultaneously. Because of that we
would like to infer not only the direction of their

effect, but also its magnitude in relation to other
input units. Hence, we skipped the normalization
introduced by equations 6 and 7. In this case ac-
tivation and inhibition correspond respectively to
positive and negative values of Rik in equation 5.
The resulting scores are shown in Figure 4.

In general, the input units activate words that
are related to their semantics. For example, the
input unit play(sophia,soccer) activates words re-
lated to sophia, soccer and places where soc-
cer is played (in the street). Similarly, the in-
put unit manner(win,difficulty) activates “beats”,
“difficulty” and “with”, which are used to convey
this aspect. At the same time, each input unit in-
hibits words that are in conflict with its semantics.
For example, the unit play(charlie,hide&seek) in-
hibits words concerning other games and the place
where that game is not allowed (in the street). This
behavior of activation and inhibition can be seen to
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Figure 4: Relevance scores of input units on output units. Red represents activation, blue inhibition.

some degree in all input units.

Of special interest is the last input unit (actives
in Figure 4), which marks whether the model
should produce an active or a passive sentence.
When this unit is active, words concerning people
are activated (e.g., “charlie”, “someone”, “heidi”);
at the same time, this unit inhibits words concern-
ing games and passive constructions (e.g., “chess”,
“hide&seek”, “is”, “by”). Thus, production of
active or passive constructions seems to be de-
termined by giving relatively more activation to
words related to people for actives, or games for
passives. This seems to reflect experimental evi-
dence that shows that more conceptually available
elements are placed in more prominent grammati-
cal roles (Bock and Warren, 1985; Ferreira, 1994).
In this case, the actives unit learns to promote the
activation of hidden units related to specific con-
cepts depending on the voice of the sentence to be

produced.

At time step 0, the activation of monitoring and
context units is equal to 0. Consequently, the ac-
tivation of the hidden layer at this point only de-
pends on the input semantic representation. Then,
we would expect that the input units should acti-
vate more the words that can appear at the begin-
ning of a sentence, relative to other words. This
would ensure that the words starting a sentence are
correct, afterwards, monitoring and context units
would be able to enforce syntactic and semantic
sequential constraints, such that the resulting sen-
tence is coherent. The words shown in Figure 4
are ordered similarly to the other figures, except
that the first 10 words are those that can appear at
the beginning of a sentence. As one can see, those
words receive relatively more activation/inhibition
than the rest. Furthermore, the actives unit has
a very strong relevance, such that when an active
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sentence is queried, the words that can start an ac-
tive sentence are more activated.

In sum, the input units influence production by
activating hidden units that are related to the se-
mantics that is to be encoded, while additionally
giving an idea of the word order that they should
follow, specially at time step 0.

3.4 Context Units

At each time step, context units feed the hidden
layer with its own activation at the previous time
step, providing the model with some kind of mem-
ory over possibly unlimited time steps.

We will use the notation hi to refer to a hid-
den unit i in the hidden layer, and ci to refer to
the corresponding context unit which contains the
activation of hi at the previous time step.

A way to preserve information over time is by
reverberating activation over different time steps.
For example, if the hidden unit ha gets active, then
the corresponding context unit ca will be active at
the next time step; if the weight connecting ca to
ha is such that the activation of ca causes the acti-
vation of ha, then this would form a cycle in which
ha will be active indefinitely or until other units in-
troduce inhibition, breaking the cycle.

We analyzed the connection weights between
the context and hidden layers in order to see if
these cycles were present. In such cases, the ef-
fect of ha in the current time step would be simi-
lar to the effect of ca in the next time step. Thus,
for each pair (hi, ci), if the effect of ci is similar
to the one of hi, it would mean that ci is mainly
activating hi or units similar to hi, forming a cy-
cle. Note that if ci does not activate hi directly but
other units similar to hi, it would mean that while
the activation of the specific unit might not be pre-
served, the model would still remain in the same
area within the hidden space.

As example, for the first 15 hidden units Fig-
ure 5 presents these values. For each pair of
columns, the first column represents the direct ef-
fect of each hidden unit on the output, identical to
the values in Figure 2, but normalized for each hid-
den unit; the second column represents the effect
of the corresponding context unit at the next time
step, calculated using the equations 5-7, where in
this case i is the index of each context unit.

The column of the right side (DimCorr) presents
for all hidden units, the correlations between the
relevance values of the hidden units and the rel-

Figure 5: Relevance scores of hidden and context
units. Right: correlations for each word between
the relevance values of the hidden units and the
context units. Bottom: correlations between all
relevance values of each hidden unit and the cor-
responding context unit.

evance values of the context units, related only
to each specific word; intuitively showing the de-
gree to which activation related to each word is
preserved by all hidden units. The results sug-
gest that the context units tend to preserve acti-
vation related to most words, but to different de-
grees, where activation of words related to toys,
locations and adverbs is preserved more than ac-
tivation of words related to people. Out of the 43
words, 11 presented moderate correlation (0.4 ≤
r < 0.6, n = 120, p < 0.00001), and 15 weak
correlation (0.2 ≤ r < 0.4, n = 120, p < 0.11).

The row at the bottom (UnitCorr) presents cor-
relations between all the relevance values of each
hidden unit and the corresponding context unit,
that is, between the values of the two columns
above. As we can see, some units seem to be-
have like memory, while others seem to erase their
content. For example, units 2, 3, 4, 5, 8, 10 and
14 have a high correlation between the hidden
and context relevances, implying a cycle as de-
scribed above, while units 9 and 11 present an an-
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ticorrelation, which means that the context unit is
actually inhibiting its corresponding hidden unit.
Out of the 120 context units, 14 presented strong
correlation (r ≥ 0.6, n = 43, p < 0.00001),
26 moderate correlation (0.4 ≤ r < 0.6, n =
43, p < 0.006) and 20 weak correlation (0.2 ≤
r < 0.4, n = 43, p < 0.2). Regarding anticorrela-
tion, there were 3 units with moderate anticorrela-
tion (−0.6 ≤ r < −0.4, n = 43, p < 0.0036)
and 6 with weak anticorrelation (−0.4 ≤ r <
−0.2, n = 43, p < 0.2).

As we can see, about half of the context units
have a tendency to preserve their activation, which
varies according to each unit, and to the kind of
information. This suggests a tangible mechanism
that preserves information over time, which in the
case of language is necessary in order to enforce
long distance dependencies.

4 Discussion

In the above sections we separated the language
production model into its different modules in or-
der to see their function. Trying to integrate these
parts into a global explanation of the internal me-
chanics of the model, we arrive to the following:
production starts when the model is fed a seman-
tic representation at time step 0. At this point, the
semantic representation is the only source of in-
formation. Based on it, the model must produce
a word that is in accordance to the semantics and
that is syntactically plausible for the beginning of
the sentence. As we saw, the input units seem to
select the words necessary for production, and de-
pending on the voice expected (active or passive)
more activation is given to the words that can ful-
fill the first position. After the initial word has
been produced, monitoring and context units gain
influence. Monitoring units promote the produc-
tion of words that can follow the previous word,
and inhibit words that should not follow. At the
same time, context units keep information regard-
ing previous and current activation, suggesting a
sort of memory, where information remains latent
until the right time to be produced. This happens
until a period is produced, which halts production.

Considering the high architectural similarity of
the model of Calvillo et al. (2016) with other
models of human language production (e.g., Dell
et al., 1993; Chang et al., 1997), we expect that
these results would also reflect their internal me-
chanics. Furthermore, some models used in com-

putational linguistics also present an architecture
where the main paths of computation are largely
similar to the ones presented here: in language
models, at each time step the word previously pro-
duced is fed to a recurrence that in turn feeds an-
other layer yielding a probability distribution over
the vocabulary (e.g., Mikolov et al., 2010); ad-
ditionally, a semantics is fed into the recurrence
in semantically conditioned models, such as some
used in machine translation (e.g., Sutskever et al.,
2014) or image caption generation (e.g., Chen and
Lawrence Zitnick, 2015). One could argue that
larger language models implement more complex
interactions because of their higher dimensional-
ity or the use of more complex hidden units such
as LSTM (Hochreiter and Schmidhuber, 1997) or
GRU (Cho et al., 2014). Nonetheless, the individ-
ual results presented here are coherent with pre-
vious findings on larger architectures (for exam-
ple, similar words are known to have similar word
embeddings), suggesting that these results can be
generalized to such models.

While some adaptation might be needed for
larger models, the algorithm described above
might serve as intuition of how those models work,
and the methodology outlined here could serve to
test such a hypothesis in future work.

5 Conclusion

We presented an analysis of the internal mecha-
nism of a model of language production that uses
a recurrent neural network at its core. The re-
sults show clear patterns of computation that per-
mit to infer its internal mechanism. Because of
architectural similarity, we expect that this mech-
anism could be generalized to other models of hu-
man language production (e.g., Dell et al., 1993;
Chang et al., 1997), as well as models in compu-
tational linguistics, such as those used in language
modeling (e.g., Mikolov et al., 2010) or machine
translation (e.g., Sutskever et al., 2014). In future
work, the methodology outlined here could also
serve to test such a hypothesis.
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Abstract

In recent years, a variety of recurrent neu-
ral networks have been proposed, e.g LST-
M, however, existing models only read the
text once, it cannot describe the situation
of repeated reading in reading comprehen-
sion. In fact, when reading or analyzing
a text, we may read the text several times
rather than once if we couldn’t well under-
stand it. So, how to model this kind of the
reading behavior? To address the issue, we
propose a multi-glance mechanism (MG-
M) for modeling the habit of reading be-
havior. In the proposed framework, the ac-
tual reading process can be fully simulat-
ed, and then the obtained information can
be consistent with the task. Based on the
multi-glance mechanism, we design two
types of recurrent neural network models
for repeated reading: Glance Cell Model
(GCM) and Glance Gate Model (GGM).
Visualization analysis of the GCM and
the GGM demonstrates the effectiveness
of multi-glance mechanisms. Experiments
results on the large-scale datasets show
that the proposed methods can achieve bet-
ter performance.

1 Introduction

Text understanding is one of the fundamental tasks
in Natural Language Processing areas. These
years we have seen significant progress in apply-
ing neural networks to text analysis applications.
Recurrent neural network is widely used because
of its effective capability of capturing the sequen-
tial information. Long short-term memory (LST-
M) (Hochreiter and Schmidhuber, 1997) and gated
recurrent neural network (Chung et al., 2014) have
achieved state-of-the-art performance in many ar-

eas, such as sentiment analysis (Tang et al., 2014;
Chen et al., 2016), document classification (Yang
et al., 2016) and neural machine translation (Bah-
danau et al., 2014). Besides the success achieved
by these basic recurrent neural models, there are
also a lot of interesting research works conducted
in text analysis (Kim, 2014; Zhang et al., 2015).
Depending on the parsing tree structures, tree-
LSTM (Tai et al., 2015) and recursive neural net-
work(Socher et al., 2013) are proposed. Bidi-
rectional recurrent neural networks (Schuster and
Paliwal, 1997) can get the backward features. In
order to align the hidden states, attention mecha-
nism is widely used in language processing (Bah-
danau et al., 2014; Vaswani et al., 2017).

One of the common characteristics of these ex-
isting models is to model only single reading pro-
cessing and generate a sequence of hidden states
ht, as a function of the previous hidden states
ht−1 and the current input (Sutskever et al., 2014;
Karpathy et al., 2015). However, the fact is that
when we read a text only once, we may merely
know the general idea of it, especially when the
text is long and obscure. More often than not, we
know that fast repeated reading is more effective
than slow careful reading, so, for the obscure tex-
t, our primary school teacher always teaches us to
read several times to get the theme of the text. In
addition, this kind of rereading can help us find
some of the details that are ignored when we first
glance.

In this paper, we propose a novel multi-glance
mechanism to model our reading habit: when
reading a text, first we will glance through it to
get the general meaning and then based on the in-
formation we obtained, we will read the text again
in order to find some important contents. Based on
the multi-glance mechanism we proposed (Fig.1),
we design different models for processing the
obtained information by the last glance, that it,
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Figure 1: The architecture of Multi-glance Mechanism (MGM) model

Glance Cell Model (GCM) and Glance Gate Mod-
el (GGM). GCM has a special cell to memorize
the first impression information obtained after fin-
ishing the first reading. GGM has a special gate to
control current input and output in order to filter
words that are not important. The main contribu-
tions of this work are summarized as follows:

• We propose a novel multi-glance mechanis-
m which models the habit of reading. Com-
paring to traditional sequential models, our
proposed models can better simulate peo-
ple’s reading process and better understand
the content.

• Based on multi-glance mechanism, we pro-
pose GCM which can takes the first impres-
sion information into consideration. Glance
cell model has a special cell to memorize the
global impression information we obtain and
add it into the current calculation.

• Based on multi-glance mechanism, we pro-
pose GGM which adopts a extra gate to ig-
nore the less important words and focus on
details in the contents.

2 Related Work

Recurrent neural network has achieved great suc-
cess because of its effective capability to capture
the sequential information. The RNN handles
the variable-length sequence by having a recurren-
t hidden state whose activation at each time step
is dependent on that of the previous time. To re-
duce the negative impact of gradient vanishing,
a long short-term memory unit (Hochreiter and
Schmidhuber, 1997), which has a more sophis-
ticated activation function, was proposed. Bidi-

rectional recurrent neural networks (Schuster and
Paliwal, 1997), e.g bidirectional LSTM network-
s (Augenstein et al., 2016), combine forward fea-
tures as well as reverse features of the text. Bidi-
rectional networks, which get the forward features
and the reverse features separately, are differen-
t from our multi-glance mechanism. A Gated Re-
current Unit (GRU) (Cho et al., 2014) is a good ex-
tension of a LSTM unit, because GRU maintains
the performance and makes the structure to be sim-
pler. Comparing to a LSTM unit, a GRU has only
two gates, an update gate and a reset gate, so it will
be faster to train a GRU than a LSTM unit. Atten-
tion mechanism (Bahdanau et al., 2014) is used to
learn weights for every input, so it can reduce the
impact of information redundancy. Now, attention
mechanism is commonly used in various models.

3 Methods

In this section, we will introduce the proposed
multi-glance mechanism models in detail. We
first describe the basic framework of multi-glance
mechanism. Afterwards, based on multi-glance
mechanism, we describe two glance models,
glance cell model and glance gate model.

3.1 Multi-glance Mechanism Model

When reading or analyzing a text, we may read
it several times rather than once if we couldn’t
fully understand its meaning. To model our read-
ing habit, we propose the multi-glance mechanis-
m. The core architecture of the proposed model is
shown in Fig.1.

In the following paper, we will describe how
the models work when processing a text. Given
a training text T , in order to better analyze it, we
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will read T many times. As shown in Fig. 1, n is
the times we will read the text.

For the sake of convenience, we give an exam-
ple of the 2-glance process here.

First, we glance through the text to capture a
general meaning. We use the recurrent network
to read the embedding of each word and calculate
the hidden states {g1h1, g1h2, · · · , g1hm}, where
m is the length of the text T . After finishing read-
ing it, we have an impression on the text T . Next,
with the guidance of the impression, we give these
hidden states weight parameters and feed them in-
to the glance model to continue to read the text for
the second time. As we can see, if we read the
text only once and don’t adopt multi-glance mech-
anism, this model can be simplified as traditional
attention based recurrent model.

At the second time of reading, in view of the
general idea of the content we have got, we may
ignore the less interesting words and focus on
some details in the text. So we utilize a novel
glance recurrent model to read embedding T =
{w1, w2, · · · , wm} again and calculate the output
state {g2h1, g2h2, · · · , g2hm}. Based on multi-
glance mechanism, we propose two glance recur-
rent models: that is, Glance Cell Model(GCM)
and Glance Gate Model(GGM).

Comparing to basic recurrent model, glance cell
model has a special cell to memorize the general
meaning calculated after finishing the first time of
reading. Besides, glance gate model has a bina-
ry gate to filter the less important words. We de-
scribe how two glance recurrent models operate in
section 3.2 and section 3.3. Fig.1 gives the main
process of the multi-glance mechanism.

3.2 Glance Cell Model

Based on multi-glance mechanism, we propose
the glance cell model (GCM). After we finish
reading the text T for the first time, we know any
of the general meaning of it. This means we have
some first impression information about the tex-
t. As shown in Fig.2, comparing to the traditional
recurrent network, the GCM has a special cell to
keep the first impression information. LSTM has
been widely adopted for text processing, so we use
LSTM to calculate the hidden states g1hi.

Thus the glance cell state gcct can be calcu-
lated from the weighted sum of hidden states
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Figure 2: The block of GCM, where T̃ stands for
tanh() and S̃ stands for sigmoid().

{g1h1, g1h2, · · · , g1hm}:

gcct =
m∑

i=1

αi · g1hi (1)

where αi measures the impression of ith word for
the current glance cell state gcct . Because GCM is
a recurrent network as well, the current glance cell
state gcct is also influenced by the previous state
g2h

c
t−1 and the current input wt. Thus the impres-

sion αi can be defined as:

αi =
exp(f(g2h

c
t−1, wt, g1h

lstm
i ))∑m

i=1 exp(f(g2h
c
t−1, wt, g1hlstmi ))

(2)

where f is the impression function and it can be
defined as:

f(g2h
c
t−1, wt, g1h

lstm
i ) =

gwT
c · tanh(W c

g · [g2hct−1, wt, g1h
lstm
i ] + bc) (3)

where W c
g is the weight matrices and gwT

c is the
weight vector.

Besides, glance cell is used to memorize the pri-
or knowledge, we also have a cell, at the second
time reading in multi-glance mechanism, to read
the text. We use three gates to update and output
the cells states, and they can be defined as:

ict = σ(W c
i · [g2hct−1, wt] + bci ) (4)

f ct = σ(W c
f · [g2hct−1, wt] + bcf ) (5)

oct = σ(W c
o · [g2hct−1, wt] + bco) (6)

c̃ct = tanh(W c
c · [g2hct−1, wt] + bcc) (7)
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where ict , f
c
t and oct are the gates states, σ() is the

sigmoid function and c̃ct stands for the input state.
In GCM, in order to adopt the first impression

knowledge in the current cell state calculation and
output the glance cell state, we use glance input
gate and output gate to connect the glance cell and
the cell state. The two gates can be defined as:

gict = σ(W c
gi · [g2hct−1, wt, gc

c
t ] + bcgi) (8)

goct = σ(W c
go · [g2hct−1, wt, gc

c
t ] + bcgo) (9)

where gict and goct are the gate states.Thus the cell
state can be calculated as:

cct = f ct � cct−1 + ict � c̃ct + gict � gcct (10)

where � stands for element-wise multiplication.
According to the function, when we read the

text at the second time, the current cell state cct
contains the previous cell state cct−1, current input
state c̃ct and the current glance cell state gcct , which
is different from the existing recurrent models.

In view of two cells in GCM, the final output of
a single block can be calculated as:

g2h
c
t = oct � tanh(cct) + goct � tanh(gcct) (11)

We feed the text T = {w1, w2, · · · , wm}
embedding into the glance cell model and
then obtain the output hidden states g2h

c =
{g2hc1, g2hc2, · · · , g2hcm}.

3.3 Glance Gate Model
Based on multi-glance mechanism, we also pro-
pose the Glance Gate Model (GGM). The main
block of GGM is shown in Fig.3. When we read
the text at the second time, in view of the first
impression information we obtained, our habit is
to ignore the less interesting words directly rather
than still reading them again. However, existing
RNN models, e.g. LSTM model, have an input
gate to control the current input, it still can’t set
less interesting or important information to zero.

In GGM, we use a binary glance gate to control
the input, and it is defined as:

gatet = softmax(W g
g · [gggt , wt, g2h

g
t−1] + bg) (12)

where W g
g is the projection matrix, and softmax

only output two states {0, 1} . In glance gate mod-
el (GGM), gggt still models the impression of the
text, and calculated by the weighted sum of hidden
states {g1h1, g1h2, · · · , g1hm}:

gggt =

m∑

i=1

βi · hi (13)
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Figure 3: The block of GGM, where T̃ stands for
tanh() and S̃ stands for sigmoid().

Where βi measures the impression of ith word for
the current glance gate cell state gggt . For brevi-
ty, we will not repeat the function of impression
weight βi and impression function f here.

As shown in the Fig.4, here we give an example
of the GGM to process a sentence. Comparing to
the LSTM model’s input gate, the glance gate only
has two states {0, 1}. When we care about the cur-
rent word wi, we input the word wi into the GGM
and update the hidden state. If the current word
is meaningless, the GGM will directly discard the
input word and keep the previous state without up-
dating the hidden state. Thus the gates, cells states
and output hidden states are defined as follows:

igt = σ(W g
i · [g2h

g
t−1, wt] + bgi )� gatet (14)

fgt=σ(W
g
f ·[g2h

g
t−1,wt]+b

g
f )�gatet⊕(1−gatet)(15)

ogt = σ(W g
o · [g2hgt−1, wt] + bgo)� gatet (16)

c̃gt = tanh(W g
c · [g2ht−1, wt] + bgc) (17)

cgt = fgt � cgt−1 + igt � c̃gt (18)

g2h
g
t=o

g
t�tanh(cgt)�gatet+g2hgt−1�(1−gatet)(19)

where ⊕ stands for the element-wise addition.
Note that when the GGM close the glance gate,

gate={0}, the formulations above can be trans-
formed as:

igt = 0 fgt = 1 ogt = 0

cgt = fgt � cgt−1 + igt � c̃gt = cgt−1

g2h
g
t=o

g
t�tanh(cgt )�gatet+g2hgt−1�(1−gatet)

= g2h
g
t−1
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Figure 4: An example of the proposed GGM to process a sentence. In this example, when the glance
gate open, the current word will input into the GGM, then output the hidden state. When the glance gate
close, the model will ignore the current inputted word and keep the previous hidden state.

so when the glance gate close, the GGM will keep
the previous state unchanged. Besides, when the
GGM open the glance gate, namely gate={1}, the
formulations above can be transformed as:

igt = σ(W g
i · [g2h

g
t−1, wt] + bgi )

fgt = σ(W g
f · [g2h

g
t−1, wt] + bgf )

ogt = σ(W g
o · [g2hgt−1, wt] + bgo)

cgt = fgt � cgt−1 + it � c̃gt
g2h

g
t = ogt � tanh(cgt )

So the model can obtain the current input state c̃gt
and update the cell state cgt . We feed the text T
into the GGM and obtain the output hidden states
g2h

g = {g2hg1, g2hg2, · · · , g2hgm}.

3.4 Model Training
To train our multi-glance mechanism models, we
adopt softmax layer to project the text representa-
tion into the target space of C classes:

y = softmax(tanh(Ws · [ ˆg2h, ˆg1h] + bs)) (20)

where ˆg2h is the attention weighted sum of the
glance hidden states {g2h1, g2h2, · · · , g2hm}, ˆg1h
is the attention weighted sum of the hidden states
{g1h1, g1h2, · · · , g1hm}.

We use the cross-entropy as training loss:

L = −
∑

i

ŷi · log(yi) + α|θ|2 (21)

where ŷi is the gold distribution for text i, θ repre-
sents all the parameters in the model.

4 Experiment

In this section, we conduct experiments on differ-
ent datasets to evaluate the performance of multi-
glance mechanism. We also visualize the glance
layers in both glance models.

4.1 Datasets and Experimental Setting
We evaluate the effectiveness of our glance mod-
els on four different datasets . Yelp 2013 and
Yelp2014 are obtained from the Yelp Dataset
Challenge. IMDB dataset was built by Tang et al.
(2015). Amazon reviews are obtained from A-
mazon Fine Food reviews. The statistics of the
datasets are summarized in Table 1.

datasets rank docs sens
docs vocs

IMDB 1-10 84,919 16.08 105373
Amazon 1-5 556,770 5.67 119870
Yelp2013 1-5 78,966 10.89 48957
Yelp2014 1-5 231,163 11.41 93197

Table 1: Statistical information of IMDB, Ama-
zon, Yelp 2013, Yelp 2014 datasets

The datasets are split into training, validation
and test sets with the proportion of 8:1:1. We use
the Stanford CoreNLP for tokenization and sen-
tence splitting. For training, we pre-train the word
vector and set the dimension to be 200 with Skip-
Gram (Mikolov et al., 2013). In our glance model-
s, the dimensions of hidden states and cells states
are set to 200 and the hidden states and cells states
initialized randomly. We adopt AdaDelta (Zeiler,
2012) to train our models , select the best configu-
ration based on the validation set, and evaluate the
performance on the test set.

4.2 Baselines
We compare our glance models with the following
baseline methods.

Trigram adopts unigrams, bigrams and trigrams
as text features and trains a SVM classifier.

TextFeature adopts more abundant features in-
cluding n-grams, lexicon features, etc, and
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Models
Datasets IMDB Yelp2014 Yelp2013 Amazon

Trigram 39.9 57.7 56.9 54.3
TextFeature 40.2 57.2 55.6 -

PVDM 34.1 56.4 55.4 -
RNTN+RNN 40.0 58.2 57.4 -

NSC 42.7 62.7 62.2 75.1
RNN+ATT 43.1 63.2 62.7 75.4

GGM 43.7 63.4 63.0 75.2
GCM 44.2 64.2 63.6 76.7

Table 2: Text analysis results on IMDB, Yelp2014, yelp2013 and Amazon datasets. Evaluation metrics
is Accuracy in percentage (higher the better). The best performance in each group is in bold.

... I'm giving this Xlear product only 2 stars        because                although              itself           has          worked          great for ...

first    
 time    

second 
 time     

... two boxes of bars i received    were so stable they were    inedible the bar ...

first     
 time    

second 
 time     

Figure 5: Visualization of the weights when we read the text twice with glance cell model (whiter color
means higher weight).

trains a SVM classifier. (Kiritchenko et al.,
2014)

RNTN+RNN uses Recursive Neural Neural Ten-
sor Network to represent the sentences and
Recurrent Neural Network to document anal-
ysis. (Socher et al., 2013)

PVDM leverages Paragraph Vector Distributed
Memory (PVDM) algorithm for documen-
t classification.(Le and Mikolov, 2014)

NSC regards the text as a sequence and uses max
or average pooling of the hidden states as fea-
tures for classification.(Chen et al., 2016)

RNN+ATT adopts attention mechanism to select
the important hidden states and represents the
text as a weight sum of hidden states.

4.3 Model Comparisons
The experimental results are shown in Table 2.
We can see that multi-glance mechanism based
models, glance gate model (GGM) and glance cell
model (GCM), achieve a better accuracy than tra-
ditional recurrent models, because of the guidance
of the overview meaning we obtain at the first time
of reading. With that guidance, we will get a better
understanding of the text. While comparing to our
glance models, existing RNN models read the text

only once so they cannot have the general meaning
to help them understand the text.

Comparing to attention-based recurrent model-
s, the proposed glance cell model still has a bet-
ter performance. The main reason for this is that
when we read the text with the multi-glance mech-
anism, the glance hidden states have a better un-
derstanding of the text, so when we calculate the
attention weight on each hidden states, the final
output will also be better to represent the text.

When comparing the models we proposed,
glance cell model gives a better performance than
glance gate model. This is because we use multi-
glance mechanism to filter words in glance gate
model while we use multi-glance mechanism to
add general information in glance cell model.
Even though we only ignore the less importan-
t words in glance gate model when the gate is
closed, some information is still lost comparing to
glance cell model.

4.4 Model Analysis for Glance Cell Model

To establish the effectiveness of GCM, we choose
some reviews in Amazon dataset and visualize
them in the Fig.5. In each sub-figure, the first line
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Figure 6: Visualization of the hidden states calculated by simple RNN model {g1h1, g1h2, · · · , g1ht}
(the purple spots), Glance Cell Model {g2hc1, g2hc2, · · · , g2hct} (the blue spots) and the final text repre-
sentation (the red spots).

        actually i'm not sure which film was better meet the parents or meet the fockers. 

both films were equally enjoyable. this movie is really funny.  maybe it's because of a 

cast but everything works in this film. it's probably one of the best comedies made in this 

decade. Dustin Hoffman and Barbra Streisand both did great as Gaylord's parents. every 

character of this movie had it's own opinion and that was well portrayed in their dialogs. 

not like the original, this part is more making fun of Robert de Nero's character than of 

Ben Stiller 's character. i noticed that this film has many similarities with it's prequel but 

that's ok because it still was very funny.

Figure 7: Visualization of the gate state in Glance Gate Model. The words in color (blue and red) are
input into the GGM, that meas the gate state is open. The words in gray are ignored by the GGM.

is the visualization of the weights when we read
the text at the first time, the second line is the vi-
sualization that we read at the second time. Note
that, whiter color means higher weight.

As shown in Fig.5, the first review has wrote
the ranking stars in the text, which is a determin-
ing factor in product reviews, but we ignore them
when we read at the first time. Well, with the guid-
ance of multi-glance mechanism, when we read
them again, we can not only find the ranking stars,
but also give them high weights.

In the second review, comparing the results we
read at the first time and the second time, though
we may focus on some of the same words, e.g.
inedible, we will give them different weights. We
can observe that when reading at the second time,
we give word ‘inedible’ a higher weight and word
‘the’ a lower the weight. The glance cell model
can increase the weights of important words, so
we can focus on more useful words when using
multi-glance mechanism and glance cell model.

Next, we also choose two reviews in the dataset
and visualize the hidden states which calculated by
the glance cell model and a traditional recurren-

t model. As aforementioned in this paper, when
using multi-glance mechanism, we will get the lo-
cal information comparing to simple RNN model-
s. As shown in Fig.6, the purple spots and the blue
spots are the visualizations of the hidden states,
and the purple spots belong to the simple RNN
model while the blue spots belong to the glance
cell model. The spot in red is the visualization of
the final text representation. Note that, we use P-
CA to reduce the dimensions of the hidden states
here. We can see that the blue spots are much more
closer to the red spots than the purple spots, which
mean the glance cell hidden states are more clos-
er to the final text representations. It is the local
information that makes the difference. So we can
obtain a more general idea when using the glance
cell model we proposed.

4.5 Model Analysis for Glance Gate Model

To demonstrate the effectiveness of the glance gate
model, we choose a review in IMDB dataset and
visualize the values of gates. As mentioned in this
paper, the gates only have two states, closed and
open. As shown in Fig. 7, the words in gray mean
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i tried this tea in seattle two years 
ago and just loved it.  it was unavailable 
at my local health food store , but i found 
it on amazon .  their price and service are 
excellent .  i would definitely recommend 
this tea !

(a) Model with Multi-glance Mechanism

i tried this tea in seattle two years 
ago and just loved it .  it was unavailable 
at my local health food store , but i found 
it on amazon .  their price and service are 
excellent .  i would definitely recommend 
this tea !

(b) Simple RNN with Attention Mechanism

Figure 9: Visualization of the multi-glance mechanism weights and the simple RNN attention mechanism
weights.

the , . and a of to is in it thatthis as i
0

5000

10000

15000

20000
ignore words

Figure 8: The statistics of the Top-ignored words
in 1000 IMDB reviews.

when we read these words, the gates in GGM are
closed. So these words are unable to pass through
the gate. These words in color (blue and red) mean
that the gates are open when we read these words.
We can observe that when we read the text again,
the glance gate model can ignore the less impor-
tant words and focus on the more useful words.
Surprisingly, the most important words are found,
e.g. enjoyable, best comedies and funny (the red
words in Fig.7). The model is able to find the ad-
jectives, verbs and some nouns, which is more use-
ful in the text understanding.

Besides, we also count the top-ignored words in
1000 IMDB reviews, and the results are shown in
the Fig.8. We can see that most of the prepositions
and adverds are ignored. Thus glance gate model
can filter the less important words and concentrate
on the more informative words.

4.6 Comparing to RNN with Attention
Mechanism

To demonstrate the effectiveness of the multi-
glance mechanism, we choose a review in Amazon
dataset and visualize the parameters of weights
in multi-glance model and attention based RNN
model. As shown in Fig.9, the words in color (red
and blue) are the top 10 important words in the re-
view the word in red color are the top 5 important

words. We can observe that multi-glance mecha-
nism can find the more useful words, e.g. loved,
excellent. What’s more, multi-glance mechansim
also can give these important words higher weight-
s comparing to simple attention based RNN mod-
els which only read the review once.

5 Conclusion and Future work

In this paper, we propose a multi-glance mecha-
nism in order to model the habit of reading. When
we read a text, we may read it several times rather
than once in order to gain a better understanding.
Usually, we first read the text quickly and get a
general idea. Under the guidance of this first im-
pression, we will read many times until we get e-
nough information we need. What’s more, based
on the multi-glance mechanism, we also propose
two glance models, glance cell model and glance
gate model. The glance cell model has a special
cell to memorize the first impression information
we obtain and add it into the current calculation.
The glance gate model adopts a special gate to ig-
nore the less important words when we read the
text at the second time with multi-glance mecha-
nism. The experimental results show that when we
use the multi-glance mechanism to read the tex-
t, we are able to get a better understanding of the
text. Besides, the glance cell model can memo-
rise the first impression information and the glance
gate model is able to filter the less important word-
s, e.g. the, of. We will continue our work as fol-
lows:

• How to construct the first impression infor-
mation more effectively? As proposed in this
paper, some of the words in the text are re-
dundant for us to understand text. So, we will
sample some words of the text when reading
it at the first time.

• The next step will be taken in the direction of
algorithm acceleration and model lightweight
design.
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Abstract

This paper presents a statistical model to
predict Japanese word order in the dou-
ble object constructions. We employed a
Bayesian linear mixed model with man-
ually annotated predicate-argument struc-
ture data. The findings from the refined
corpus analysis confirmed the effects of
information status of an NP as ‘given-
new ordering’ in addition to the effects of
‘long-before-short’ as a tendency of the
general Japanese word order.

1 Introduction

Because Japanese exhibits a flexible word order,
potential factors that predict word orders of a
given construction in Japanese have been recently
delved into, particularly in the field of compu-
tational linguistics (Yamashita and Kondo, 2011;
Orita, 2017). One of the major findings relevant to
the current study is ‘long-before-short’, whereby
a long noun phrase (NP) tends to be scrambled
ahead of a short NP (Yamashita and Chang, 2001).

This paper sheds light on those factors in dou-
ble object constructions (DOC), where either (1)
an indirect object (IOBJ) or (2) a direct object
(DOBJ) can precede the other object:

(1) Taro-ga
Taro-SBJ

Hanako-ni
Hanako-IOBJ

hon-o
book-DOBJ

ageta.
gave

‘Taro gave Hanako a book.’

(2) Taro-ga
Taro-SBJ

hon-o
book-DOBJ

Hanako-ni
Hanako-IOBJ

ageta.
gave

‘Taro gave Hanako a book.’

Since both of the word orders are available,
studies in theoretical syntax have been disputing
about what is the canonical word order under the
hypothesis of deriving one word order (i.e., either

IOBJ-DOBJ or DOBJ-IOBJ) from another in the
context of derivational syntax (Hoji, 1985; Miya-
gawa, 1997; Matsuoka, 2003). In this paper, we do
not attempt to adjudicate upon the dispute solely
based on the frequency of the two word orders in
a corpus, but aim to detect principal factors that
predict the word order in the DOC, which may
eventually lead to resolving the issue in theoreti-
cal syntax. To that end, we employed a Bayesian
linear mixed model with potential factors affecting
the word orders as a preliminary study.

Other than the factor ‘long-before-short’ pro-
posed in previous studies, the key factor in the
current study is an information status of an NP
in a given context under the theoretical frame-
work of information structure (Lambrecht, 1994;
Vallduvı́ and Engdahl, 1996). The framework
provides us key categories, such as (information-
ally) given/old, new, topic, and focus, to classify
an NP as how it functions in a particular con-
text. We assume the information status as one
of the principle predictors based on the following
two reasons; (i) a discourse-given element tends
to precede a discourse-new one in a sentence in
Japanese (Kuno, 1978, 2004; Nakagawa, 2016),
(ii) focused or new elements in Japanese tend to
appear in a position immediately preceding the
predicate (Kuno, 1978; Kim, 1988; Ishihara, 2001;
Vermeulen, 2012). These two claims regarding the
general word order of Japanese are combined into
the following hypothesis regarding the word or-
ders in the DOC.

(3) Our hypothesis:
In the DOC, a discourse-given object
tends to appear on the left of the other ob-
ject, and a discourse-new object tends to
be on the right side.

Incorporating the information status of an NP
with another factor ‘long-before-short’ proposed
in the previous studies, we built a statistical model
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Table 1: Comparison with Preceding Work
(Sasano and Okumura, 2016) (Orita, 2017) The current work

corpus Web Corpus NAIST Text Corpus BCCWJ-PAS and BCCWJ-DepPara
genres Web Newspaper Newspaper, Books, Magazines, Ya-

hoo! Answes, Blog, Whitepaper
target SUBJ-IOBJ-DOBJ-PRED SUBJ-DOBJ-PRED SUBJ-IOBJ-DOBJ-PRED

documents n/a 2,929 1,980
sentences around 10 billion 38,384 57,225

tuples 648 types × 350,000 samples 3,103 tokens 584 tokens
features verb types syntactic priming, NP length,

given-new, and animacy
NP length, and given-new

analysis linear regression and NPMI logistic regression (glm) Bayesian linear mixed model (rstan)

to predict the word orders in the DOC. One im-
portant advantage of our study is that, with the lat-
est version of the corpus we used (See Section 3),
the information status of an NP can be analyzed
not simply by bipartite groups as either pronoun
(given) or others (new) but by the number of co-
indexed items in a preceding text.

2 Preceding Work

Table 1 shows a comparison with the latest corpus
studies on Japanese word ordering.

Sasano and Okumura (2016) explored the
canonical word order of Japanese double object
constructions (either SUBJ-IOBJ-DOBJ-PRED or
SUBJ-DOBJ-IOBJ-PRED) by a large-scale web
corpus. The web corpus contains 10 billion sen-
tences parsed by the Japanese morphological an-
alyzer JUMAN and the syntactic analyzer KNP.
In their analysis, the parse trees without syntac-
tic ambiguity were extracted from the web corpus,
and the word order was estimated by verb types
with a linear regression and normalized pointwise
mutual information. Their model did not include
any inter-sentential factors such as coreference.

Orita (2017) made a statistical model to predict
a scrambled word order as (direct) object-subject.
She used the NAIST Text corpus which has a man-
ual annotation of predicate-argument structure and
coreference information. She explored the effect
of syntactic priming, NP length, animacy, and
given-new bipartite information status (given was
defined as having a lexically identical item in a
previous text). Her frequentism statistical analysis
(simple logistic regression) did not detect a signif-
icant effect of the given-new factor on the order of
a subject and an object.

As a preliminary study which features coref-
erential information as a potential factor, we
used manual annotation of syntactic dependencies,
predicate-argument structures and coreference in-

formation, employing a Bayesian statistical analy-
sis on the small-sized well-maintained data.

3 Experiments

3.1 Corpora: BCCWJ-PAS

We used the ‘Balanced Corpus of Contempo-
rary Written Japanese’ (BCCWJ) (Maekawa et al.,
2014), which includes morphological informa-
tion and sentence boundaries, as the target cor-
pus. The corpus was extended with annotations
of predicate-argument structures as BCCWJ-PAS
(BCCWJ Predicate Argument Structures), based
on the NAIST Text Corpus (Iida et al., 2007) com-
patible standard. We revised all annotations of the
BCCWJ-PAS data, including subjects (with case
marker -ga), direct objects (with case marker -o),
and indirect objects (with case marker -ni), as well
as coreferential information of NPs. After the revi-
sion process, syntactic dependencies of BCCWJ-
DepPara (Asahara and Matsumoto, 2016) were
overlaid on the predicate-argument structures.

We extracted 4-tuples of subject (subj), direct
object (dobj), indirect object (iobj) and predi-
cate (pred) from the overlaid data. Excluding
4-tuples with zero-pronoun, case alternation, or
inter-clause dependencies from the target data, we
obtained 584 samples of the 4-tuples.

Figure 1 shows an example sentence from BC-
CWJ Yahoo! Answer sample (OC09 04653). The
surface is segmented into base phrases, which is
the unit to evaluate the distance between two con-
stituents as in the following pairs of the 4-tuples:
subj-pred (distsubjpred), dobj-pred (distdobjpred), iobj-pred

(distiobjpred), subj-iobj (distsubjiobj ), subj-dobj (distsubjdobj ),

and iobj-dobj (distiobjdobj). The distance was calcu-
lated from the rightmost word in each pair. For
example, in Figure 1, distsubjpred is identified as the
distance between “” and “” as 4.

Verifying effects of ‘long-before-short’ as a
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Table 2: Basic Statistics
min 1Q med mean 3Q max

distsubjpred 1.0 4.0 5.0 5.8 7.0 23.0
distdobjpred 1.0 1.0 1.0 1.7 2.0 13.0
distiobjpred 1.0 1.0 2.0 2.3 3.0 17.0
distsubjiobj -14.0 1.0 3.0 3.5 5.0 21.0
distsubjdobj -10.0 2.0 3.0 4.1 5.0 22.0
distiobjdobj -12.0 -1.0 1.0 0.6 2.0 16.0
Nsubj

mora 2.0 4.0 5.0 6.5 8.0 32.0
Ndobj

mora 2.0 3.0 4.0 5.3 6.0 37.0
N iobj

mora 2.0 4.0 5.0 6.1 7.0 52.0
Nsubj

coref 0.0 0.0 1.0 6.9 6.0 105.0
Ndobj

coref 0.0 0.0 0.0 0.5 0.0 44.0
N iobj

coref 0.0 0.0 0.0 3.1 1.0 99.0

general Japanese word-order tendency, lengths of
constituents were modeled as fixed effects in the
statistical analysis. The lengths of subject, direct
object and indirect object were calculated based
on a mora count (in pronunciation) available in
BCCWJ as N subj

mora, N
dobj
mora, and N iobj

mora, respec-
tively. For example, in Figure 1, N subj

mora is the
number of morae of “ ” (sono kanojoga), which
is 6. Note that an NP may contain more than one
base phrase including an embedded clause. We
evaluated the maximum span of the dependency
subtree in BCCWJ-DepPara as a length of the NP.

In addition, the numbers of coreferent items in
a preceding text were modeled as fixed effects.
The numbers of coreferent items for subject, di-
rect object and indirect object were obtained from
the BCCWJ-PAS annotations as N subj

coref , N
dobj
coref ,

and N iobj
coref , respectively. Table 2 shows the ba-

sic statistics of the distance, mora, and number of
coreferent items.

3.2 Statistical Analysis
We used Bayesian linear mixed models (Sorensen
et al., 2016) (BLMM) for the statistical analysis on
the distance between arguments as well as an argu-
ment and its predicate. We modeled the following
formula:

distleftright ∼ Normal(µ, σ)

µ ← α+ βsubjmora ·N subj
mora + βsubjcoref ·N

subj
coref

+βdobjmora ·Ndobj
mora + βdobjcoref ·N

dobj
coref

+βiobjmora ·N iobj
mora + βiobjcoref ·N

iobj
coref .

distleftright (e.g. distsubjiobj : distance between subject
(left) and indirect object (right)) stands for the dis-
tance between left and right elements, which is

modeled by a normal distribution with average µ
and stdev σ. µ is defined by a linear formula with
an intercept α and two types of interest coeffi-
cients. N subj

mora, N
dobj
mora, and N iobj

mora are the number
of morae of a subject, a direct object, and an indi-
rect object, respectively. The subject and objects
can be composed of more than one phrase, and
when they contain a clause, the number of morae
was defined with the clause length.
N subj

coref , N
dobj
coref , and N iobj

coref stand for the num-
ber of preceding coreferent NPs of a subject, a di-
rect object, and an indirect, respectively. βab are
the slope parameters for the coefficients Na

b . Note
that the distance was measured by the number of
base phrase units, and a minus value indicates a
distance in an opposite direction.

We ran 4 chains × 2000 post-warmup iteration,
and all models were converged.

4 Results and Discussions

4.1 Results

Table 3 shows the estimated parameters by the
BLMM; the values are means with standard devi-
ations (in brackets). The findings are summarized
as follows.

First, the distance between a subject and its
predicate (distsubjpred) is affected only by the num-
ber of morae of a subject, which indicates that a
longer subject NP has a longer distance from its
predicate.

Second, the distance between a direct object and
its predicate (distdobjpred) is affected by the number of
morae of the direct object, the number of its pre-
ceding coreferent items, and the number of morae
of the indirect object. It indicates that i) a longer
direct object has a longer distance from its predi-
cate, ii) a direct object with more coreferent items
in a preceding text has a longer distance from its
predicate, and iii) a longer indirect object makes
shorter the distance between the direct object and
its predicate.

Third, the distance between an indirect object
and its predicate (distiobjpred) is affected by the num-
ber of morae of the indirect object, the number
of its preceding coreferent items, the number of
morae of a direct object, and the number of pre-
ceding coreferent items of a subject. It indicates
that i) a longer indirect object has a longer distance
from its predicate, ii) an indirect object with more
coreferent items in a preceding text has a longer
distance from its predicate, iii) a longer direct ob-
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distsubjpred = 4 distdobjpred = 1 distiobjpred = 2 distsubjiobj = 2 distsubjdobj = 3 distiobjdobj = 1
surface ł

pronunciation sono kanojoga mada bokuni keigoo tsukaimasu
translation that she yet me honorific-OBJ use

predicate-argument SUBJ IOBJ DOBJ PRED
morae Nsubj

mora = 6 N iobj
mora = 3 Ndobj

mora = 4

coreference Nsubj
coref = 2 N iobj

coref = 3 Ndobj
coref = 0

Figure 1: Example sentence (BCCWJ Yahoo! Answers:OC09 04653)

Table 3: Evaluation of distances
distance α βsubj

mora βdobj
mora βiobj

mora βsubj
coref βdobj

coref βiobj
coref σ

distsubjpred 4.814*** 0.146*** -0.031 0.040 0.002 -0.056 -0.009 3.323
(0.375) (0.040) (0.042) (0.032) (0.011) (0.043) (0.016) (0.100)

distdobjpred 1.593*** -0.009 0.061*** -0.032** -0.001 0.037** -0.005 1.072
(0.128) (0.013) (0.014) (0.011) (0.004) (0.014) (0.005) (0.032)

distiobjpred 2.100** -0.022 -0.056** 0.112*** -0.018*** -0.045 0.037*** 1.861
(0.217) (0.022) (0.023) (0.018) (0.006) (0.024) (0.009) (0.055)

distsubjiobj 2.668*** 0.171*** 0.026 0.071** 0.020 -0.011 -0.046** 3.577
(0.420) (0.043) (0.045) (0.035) (0.012) (0.047) (0.017) (0.108)

distsubjdobj 3.205*** 0.155*** -0.092** 0.072** 0.003 -0.094** -0.004 3.452
(0.404) (0.041) (0.043) (0.034) (0.012) (0.046) (0.017) (0.103)

distiobjdobj 0.502 -0.013 -0.117*** 0.143*** -0.017** -0.081** 0.041*** 2.436
(0.287) (0.029) (0.030) (0.024) (0.008) (0.033) (0.011) (0.071)

** > ±2SD, *** > ±3SD

ject makes shorter the distance between the indi-
rect object and its predicate, and iv) a subject with
more coreferent items makes shorter the distance
between the indirect object and its predicate.

The distance between arguments (distsubjiobj ,

distsubjdobj , and distiobjdobj) represents nearly the same
tendency as the combination of the predicate-
argument distance. However, the number of morae
of an argument is correlated with the length of the
argument (i.e., the number of base phrases), and
thus, the distance between the leftmost and right-
most arguments (e.g. subject, direct object) is af-
fected by the number of morae of the middle argu-
ment (e.g. N iobj

mora).

4.2 Discussions

The results revealed that the subject tends to pre-
cede the direct and indirect objects in the double
object constructions. Although the indirect object
tends to precede the direct object, it is not signifi-
cant (p=0.09).

The estimated coefficients for the number of
coreferent items (Ndobj

coref for distdobjpred and N iobj
coref

for distiobjpred) support our hypothesis in (3) as
‘given-new ordering’ for the direct and indirect
objects. An object with many preceding corefer-
ent items tends to be farther from a corresponding

predicate.
The estimated coefficients for the number of

morae (N subj
mora for distsubjpred, Ndobj

mora for distdobjpred and

N iobj
mora for distiobjpred) indicate that the orders of all

arguments in the DOC follow ‘long-before-short’.
It is also confirmed by the minus values as the esti-
mated coefficients for the number of morae of one
object in relation to the order of the other object
and its predicate (Ndobj

mora for distiobjpred and N iobj
mora

for distdobjpred), suggesting that a longer object tends
to precede the other object in the DOC.

5 Conclusions

This article presents a Bayesian statistical analy-
sis on Japanese word ordering in the double ob-
ject constructions. It revealed the ‘given-new or-
dering’ for the indirect and direct objects and also
confirmed the ‘long-before-short’ tendency for all
of the arguments in the constructions.

Setting off from the current preliminary study,
our future work is to investigate effects of verb
type and animacy of an NP. We are currently an-
notating the labels of a Japanese thesaurus ‘Word
List by Semantic Principles’ (WLSP) (Kokurit-
sukokugokenkyusho, 1964), which enables us to
explore those effects.
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Abstract

We present a novel methodology involv-
ing mappings between different modes of
semantic representations. We propose dis-
tributional semantic models as a mecha-
nism for representing the kind of world
knowledge inherent in the system of ab-
stract symbols characteristic of a sophisti-
cated community of language users. Then,
motivated by insight from ecological psy-
chology, we describe a model approximat-
ing affordances, by which we mean a lan-
guage learner’s direct perception of op-
portunities for action in an environment.
We present a preliminary experiment in-
volving mapping between these two rep-
resentational modalities, and propose that
our methodology can become the basis for
a cognitively inspired model of grounded
language learning.

1 Introduction

Computational approaches to grounded language
learning have typically involved mapping from
perceptual to linguistic modalities through the ap-
plication of complex information processing oper-
ations. Yu and Siskind (2013), for instance, use
hidden Markov models to translate from object
tracks to natural language descriptions of event
observed in video clips. Likewise the ImageNet
database has provided a platform for the produc-
tive application of deep neural network architec-
tures for mapping between images and natural lan-
guage labels (Krizhevsky et al., 2012). Signifi-
cantly with regard to the ideas outlined here, Oh
et al. (2017) describe a methodology for training
an agent to construct novel sequences of actions
based on analogies with previously learned strate-
gies; the mechanism for learning a vocabulary of

basic actions consists of a combination of convo-
lutional and LSTM layers within a neural network.

Work of this nature highlights the state of the art
in modelling technologies, and as an information
engineering approach to meaningful tasks such as
question answering and image labelling a signifi-
cant contribution is made. This is arguably done,
however, at the expense of presenting interpretable
or indeed plausible models of the way that envi-
ronmentally embedded agents use relatively scant
exposure to a language speaking community in or-
der to develop a lexicon that is rich and produc-
tive. In this regard, the conventional computa-
tional stance on grounded language learning em-
braces a view of the relationship between language
and the world as a symbol grounding problem, by
which abstract symbols susceptible to formal op-
erations are somehow associated with perceptions
and propositions: the hard work is done by a com-
plex and philosophically opaque process of trans-
forming signals into symbols, with the sense that
computation by way of deep nets in some sense
stands in for an inscrutable mind-brain gestalt.

As an alternative to this approach, Rączaszek-
Leonardi et al. (2018) propose a symbol unground-
ing problem: by this account, language begins
as a semiotic structure with the representational
scheme of a nascent language learner iconically
and indexically aligned to embodied and embed-
ded experiences of the world. This alignment is
understood in terms of Gibson’s (1979) notion of
affordances, which we take to mean the direct per-
ception of opportunities for action in an environ-
ment. The connection of language to opportuni-
ties for taking action on objects (and indeed the
perception of language itself as an affordance for
communication) creates a framework for under-
standing how abstract symbols begin as grounded
complexes of multi-modal interactions with a lan-
guage teacher and then gradually emerge as con-
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straints on the way that a cognitive agent behaves
in an environment (Rączaszek-Leonardi, 2012).

The strength of thinking of perception in gen-
eral and language in particular in terms of affor-
dances is that this moves away from the prob-
lem of the computational load associated with the
spontaneous construction of contextually produc-
tive representational structures. For Clark (1997),
affordances play a role in the an action-oriented
model of cognition revolving around light-weight,
environmentally situated representations, while
Chemero (2009) proposes affordances as a mecha-
nism for resolving the issue of the mental gymnas-
tics inherent in a computational cognitive model.
These approaches, which seek to place mind in
the context of environmental embodiment and em-
beddedness, prefigure recent attempts to intro-
duce affordances as a component of a cognitively
oriented theory of language in which words can
be mapped to denotations oriented towards ac-
tion on objects in situations, and utterances them-
selves become opportunities for communication
(Rączaszek-Leonardi and Nomikou, 2015).

Despite these valuable theoretical contributions,
affordances have proved resistant to empirical
modelling, not least because it is difficult to come
up with a tractable scheme for representing a cog-
nitive feature that is specifically conceived as an
antidote to representational approaches to cogni-
tion. Our present objective is to begin to map
a way towards the computational simulation of
the role of affordances in language acquisition
through interaction with an established linguis-
tic community. In order to do this, we’ll extract
both statistical and syntactic information from a
large-scale corpus to model two different modes
of semantic representation, one geared towards the
kind of world-knowledge inherent in the evolu-
tion of language on the time-scale of a commu-
nity of language users, the other designed to reflect
the way that an agent might encounter language
grounded in the affordances of denoted objects.

In as much as we will be combining established
distributional semantic techniques with likewise
established syntactic analysis, this work can be
broadly positioned in the context of other recent
models. Cheng and Kartsaklis (2015), for in-
stance, compound co-occurrence and syntactical
information in order to generate word-embeddings
enhanced for compositional tasks. Vulić (2017)
likewise uses information about dependency re-

lationships to map word embeddings from multi-
ple languages into a shared vector space, achiev-
ing impressive results on cross-lingual versions of
word similarity tasks. An important caveat re-
garding our own research, however, is that we
are using syntactical information as a kind of
stand-in for a simulation of the way that an agent
might encounter words aligned with events involv-
ing objects: in the end, we would actually like
to see the methodology outlined here as ground-
work towards a model of language acquisition
which specifically does not fall back on the kind of
rich linguistic knowledge inherent in either vector
space models or dependency parsers.

2 Modelling Affordances

On the one hand, as a model for the type of lexical
semantic representation imbued with the produc-
tive world knowledge of an experienced language
user, we propose distributional semantic vector
space models (Clark, 2015), in which words are
represented as points in high dimensional spaces
where properties such as proximity and direction
can relate to semantic phenomena such as related-
ness and intension. On the other hand, as a model
of the perception of objects mapped to linguistic
units and at the same time perceived in terms of
their potential for being acted upon, we suggest
a rudimentary framework for associating denota-
tions with events and related objects.

Distributional semantic word-vectors have the
advantage of incorporating both world knowledge
(Mikolov et al., 2013; Pennington et al., 2014)
and at least the potential for compositionality
(Mitchell and Lapata, 2010; Coecke et al., 2011)
into a computationally tractable structure. They
can also, importantly, be extrapolated in an es-
sentially unsupervised way from large-scale tex-
tual data, allowing for the construction of an open
ended lexicon characterised by the representa-
tion of semantic properties through geometric fea-
tures. In terms of our framework for modelling a
language-learning agent, we propose that this type
of representation can stand in for interaction be-
tween the agent and a tutor acting as a conduit
to the knowledge embedded in a language as de-
veloped by a community of language users (Smith
et al., 2003).

In terms of actually instantiating this type of
model, we apply the word2vec technique to
learn a space of word embeddings (Mikolov et al.,
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2013), applied across iterative observations of a
cleaned-up version of Wikipedia.1 We detect sen-
tence boundaries, remove punctuation, render all
characters lower-case, and, ignoring sentences of
less than five words in length, apply the skip-gram
methodology for learning to predict a 5-by-5 win-
dow of co-occurrence words around a given tar-
get word. The cleaned version of our corpus con-
tains about 9.08 million word types representing
roughly 1.87 billion word tokens spread across
87.2 million sentences.

As a model of the way that language is en-
countered in the environment by a novice language
learner, we propose a representational scheme for
affordances designed to reflect the actions and in-
teractions that might be associated with an agent’s
early encounters with new objects. For present
purposes, we will once again turn to a corpus-
based technique for building representations: we
traverse the same rendition of Wikipedia, seek-
ing instances where words in our vocabulary are
used as direct objects. We parse each sentence in
the corpus using the Spacy parser; in instances of
multi-word phrases, we treat the head as a candi-
date target word. For word types tagged as direct
objects, we build up counts of corresponding pred-
icates and associated subjects and indirect objects
and then calculate probability distributions over
the word types observed in each of these roles, so
that affordances can be represented as a matrix of
probability distributions over word types for each
of these three grammatical classes for every word
in a target vocabulary:

p(X|w) =
( |xw,1|
|Xw|

,
|xw,2|
|Xw|

...

)
(1)

w = (p(P |w), p(S|w), p(I|w)) (2)

Here, a distribution p(X|w) represents the discrete
probabilities of words (x1, x2...) being observed
in a dependency relationship X with word w, cal-
culated for predicates, subjects, and indirect ob-
jects (P, S, I) respectively. We take these gram-
matical features to correspond, at least in a rough
sense, to the kind of thing that can be done with
the corresponding target object, the things that do
these things, and the things that can be affected by
actions involving this object.

With these probability spaces established, we
can compute the top words in terms of probabil-

1Implemented using the Gensim library for Python.

ity of observation in a particular grammatical role
across all vocabulary words up to some arbitrary
count. So, for instance, an affordance matrix for
the word taxi built with three-element probability
distributions would look like this (where PRO and
YEAR are generic representations for personal pro-
nouns and years respectively):

predicate subject ind. object
take = 0.587 PRO = 0.809 YEAR = 0.385
drive = 0.279 who = 0.112 airport = 0.365
hail = 0.134 von = 0.079 station = 0.250

3 A Small Experiment

Beginning with the framework described above,
we first examine the degree to which our represen-
tations capture properties associated with the de-
notations of some basic nouns. In order to estab-
lish a small-scale vocabulary of objects, we turn to
the tables of words exemplifying types of objects
described by Rosch (1975) in her seminal work on
conceptual prototypes. We choose the five words
that were reported as most prototypical of five con-
ceptual categories, as determined by a survey of a
large number of respondents. The categories are
VEHICLES, CLOTHING, TOOLS, FURNITURE, and
FRUIT. Our objective for this preliminary work
will be to establish representations of these ob-
ject types in both a distributional semantic vector
space and a probabilistic affordance space.

In order to explore the effectiveness of the
conceptual spaces generated by the representa-
tional techniques described above, we first ex-
tract the word-vectors corresponding to our vocab-
ulary from the word2vec distributional semantic
model and perform k-means clustering on these,
specifying a total of five target classes.2 Results
are reported in the WORD-VECTORS column in Ta-
ble 1. While these clusters do not correspond ex-
actly with human judgement, they do align some-
what with the expected delineations between ob-
ject classes. The large cluster containing a mix of
furniture and tools is characterised by words like
saw and ruler which are presumably affected by a
high degree of word sense ambiguity.

Next we explore the space of affordances. The
representations in this space are, as described
above, construed as matrices of probabilities.
Specifically, we take the top 20 most likely words

2Clustering is implemented using the KMeans algorithm
from Python’s sklearn library.
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WORD-VECTORS AFFORDANCES

automobile, truck, car, bus, taxi car, automobile, truck, taxi
pants, shirt, dress, skirt, blouse dress, pants, shirt, skirt, blouse
hammer, screwdriver hammer, table, bus, screwdriver, drill
chair, sofa, couch, table, dresser, saw, ruler, drill chair
orange, apple, banana, peach, pear orange, sofa, couch, dresser, apple, banana,

peach, pear, saw, ruler

Table 1: Clusters of word representations in distributional semantic and probabilistic affordance spaces.
Word-vectors are clustered based on k-means clustering, and affordance representations are clustered
based on a k-medoid algorithm, with the most cost-effective medoids indicated in bold.

for each grammatical class and generate probabil-
ities for each word in each of these classes for
each of our 25 object-words. In order to calculate
the distance between two affordance representa-
tions, we take the Hellinger distance between two
aligned probability distributions. This operation,
which we take as a good quantification of the re-
lationship between two distributions, results in a
matrix of three dimensional vectors, each element
corresponding to a grammatical class. So, for two
vocabulary words a and b and a grammatical class
c, the element of a vector representing the relation-
ship between those two words can be described as
follows, where h is the label for one of the top 20
words occurring in that grammatical class:

Mc(a, b) =
1√
2
×

√√√√
20∑

h=1

(√
p(ah)−

√
p(bh)

)2

(3)
We treat the set of three values corresponding to
each target-to-target relationship as a distance vec-
tor, and so consider the distance between those
two words to be simply the norm of that vector.
With a distance matrix thus established, we use a
k-medoids algorithm of our own design to clus-
ter the affordance representations. We apply this
measure because we are working from a matrix
of distances, rather than from an explicit vector
space; we might also consider, for instance, multi-
dimensional scaling to project these representa-
tions into a vector space, but we consider the k-
medoid approach to be appropriate for our present
purposes. Results are reported in the right column
of Table 1, with optimal medoids highlighted.

As with the clustering of word-vectors, the re-
sults here do not correspond perfectly with human
judgements. We don’t see this as necessarily be-
ing a problem, though: it would be strange, in fact,
to expect a developing cognitive agent to categor-

ically classify each object based on affordance-
oriented interactions with an environment. So, for
instance, fruits are compounded with some furni-
ture and some tools in a single category orbiting
the highly ambiguous term orange.

The crucial question is how we can effectively
map between word-vectors, which we take to rep-
resent a kind of encyclopaedic knowledge of the
world, and the affordances which are proposed as
at least a rough model of the way that words are
encountered by an early language learner. In or-
der to explore this issue further, we construct a
rudimentary neural network, mapping the 200 el-
ements of each of our word-vectors onto the sets
of probability distributions corresponding to affor-
dances by way of a single dense softmax layer.
This operation is in effect quite similar to a multi-
class logistic regression, except that here we are
attempting to learn to approximate an actual prob-
ability distribution rather than to simply reward
the assignment of the highest score to a particu-
lar class. Formally, we map from a word-vector
−→vw to a probability distribution p(xn|w) associated
with a word xn observed participating with vocab-
ulary word w as a member of grammatical class X
by learning a weight matrix M , expressed here in
terms of dot products with each row −−→mxk

associ-
ated with members (x1...x|X|) of class X:

p(xn|w) =
e
−→vwT ·−−→mxn

∑k=|X|
k=1 e

−→vwT ·−−→mxk

(4)

A separate weight matrix is learned for each of the
three grammatical classes associate with the ob-
jects that we seek to model.

As a basic test of the generality of this network,
we perform a five-fold cross-validation, holding
one term from each class out of the network con-
struction process for each fold. Table 2 reports
accuracy rates for this experiment, where a word-

44



TOTAL VEHICLES CLOTHING TOOLS FURNITURE FRUIT

word 0.12 0.0 0.2 0.2 0.2 0.0
class 0.64 0.8 0.6 0.6 0.2 1.0

Table 2: Accuracy rates for mapping from distributional semantic word-vectors to affordance matrices,
from a word to the same word and from a word to another word of the same class.

vector is considered to map to the point in the
space of affordance matrices that is closest based
on Hellinger as technique described above. This
experiment is designed to test the ability of this
simple model to map between two different modes
of semantic representation, one based on a large-
scale analysis of the way that words occur in the
context of a complex, developed vocabulary, the
other utilising syntax to simulate the small-scale
encounter of words as mapping to opportunities
for action on corresponding denotations.

While the network generally fails to make exact
word-to-word mappings, it is notable that it does,
more often than not, manage to map a word-vector
to an affordance representation corresponding to
another word of at least the correct class. We sug-
gest that this indicates there is some basic cate-
gorical information in word-vector representations
that can be aligned with data about the way that
objects are predictably encountered in the world.

4 What Next?

The development of a mapping between ency-
clopaedic and empirical lexical semantic represen-
tations described here is, in the end, not particu-
lar remarkable. We have in effect mapped from
one statistical interpretation of a corpus to another.
There is a large space of parameters to toggle: the
parameters of the word2vec methodology for
generating word-vectors, the number and choice
of grammatical classes for our affordance space,
the actual selection of target vocabulary words,
and the network architecture for mapping between
representational frameworks are just some of the
factors inviting further experimentation.

Moreover, the experiments we carry out involve
a small set of words distributed over a likewise
small set of classes. This is in contrast to some
of the more ambitious approaches to multi-modal
tasks such as image labelling that have recently
emerged, which can involve thousands of labels
(Frome et al., 2013). What we are aiming at,
though, is not so much an approach to informa-
tion engineering as a first step towards modelling

the way grounded language learning might happen
for an environmentally situated agent.

To this end, there is ample room to reconsider
the way in which we model affordances in the first
place. The corpus-based technique described here
is amenable to a computational approach, but ulti-
mately it will be important to develop a more sit-
uated methodology. To this end, experiments on
human-robot interaction conducted by (Gross and
Krenn, 2016) have illustrated the way in which
factors such as gaze and gesture are crucial fea-
tures of early-stage linguistic interactions, and we
suggest that a mechanism for representing these
elements of communication is an important con-
sideration in modelling grounded language learn-
ing. Likewise with a focus on robotic applications,
Spranger and Steels (2014) have explored the way
that the ontogentic ritualisation inherent in the
phenotype of a community of language users plays
an important role in human language learning.

Returning to more traditionally computational
tasks, we finally propose that an affordance based
model can play a useful role in mapping between
low-level input from, for instance, the visual do-
main and more abstract linguistic representations.
What we have described here might be conceived
as one wing of the type of autoencoder network
that has been successful in tasks involving image
processing (Krizhevsky et al., 2012) and machine
translation (Hill et al., 2016). Rather than treat-
ing the encoding at the locus of these networks as
an arbitrarily abstract semantic representation, we
propose that an effective system might involve en-
coding to and decoding from affordance type rep-
resentations. The next step in exploring this hy-
pothesis will be to experiment with mapping from
images to affordances. We have no illusions that
this will be an easy task, but we do think that we
have established sufficient groundwork for carry-
ing ahead with this line of research.
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Abstract

We present two methods that improve the
assessment of cognitive models. The first
method is applicable to models comput-
ing average acceptability ratings. For these
models, we propose an extension that sim-
ulates a full rating distribution (instead of
average ratings) and allows generating indi-
vidual ratings. Our second method enables
Bayesian inference for models generating
individual data. To this end, we propose
to use the cross-match test (Rosenbaum,
2005) as a likelihood function. We exem-
plarily present both methods using cogni-
tive models from the domain of spatial lan-
guage use. For spatial language use, deter-
mining linguistic acceptability judgments
of a spatial preposition for a depicted spa-
tial relation is assumed to be a crucial pro-
cess (Logan and Sadler, 1996). Existing
models of this process compute an average
acceptability rating. We extend the mod-
els and – based on existing data – show
that the extended models allow extracting
more information from the empirical data
and yield more readily interpretable infor-
mation about model successes and failures.
Applying Bayesian inference, we find that
model performance relies less on mech-
anisms of capturing geometrical aspects
than on mapping the captured geometry to
a rating interval.

1 Introduction

Acceptability judgments are an important measure
throughout linguistic research (Sprouse, 2013). For
instance, Alhama et al. (2015) recently proposed
to use confidence ratings to assess models of ar-
tificial language learning. Likewise, in research

on the evaluation of spatial language given visual
displays, a common experimental paradigm is to
ask how well a spatial term describes a depicted sit-
uation (e.g., Regier and Carlson, 2001; Logan and
Sadler, 1996; Burigo et al., 2016; Hörberg, 2008).
This paradigm results in individual acceptability
judgments on Likert scales. These rating data are
the main source for assessing computational mod-
els in the spatial language domain (e.g., Regier
and Carlson, 2001; Coventry et al., 2005; Kluth
and Schultheis, 2014). In other linguistic domains,
similar empirical rating data are predicted by com-
putational models (e.g., grammaticality judgments,
Lau et al., 2017, or semantic plausibility judgments
Padó et al., 2009; see also Chater and Manning,
2006).

Generally speaking, researchers consider a
rating-model appropriate if it can closely account
for empirical mean ratings for the given stimuli
(averaged across subjects) – the closer the fit to
the empirical mean data, the more appropriate the
model. However, the use of mean ratings instead of
full rating distributions misses the opportunity to
use all available empirical information for model
assessment. This is why we present a model ex-
tension that adds the simulation of a probability
distribution over all ratings. We illustrate our ex-
tension by equipping spatial language models with
full empirical rating distributions.

The second proposal of our paper (Bayesian in-
ference) relies on the fact that our proposed model
extension enables the generation of individual rat-
ings by sampling from the simulated probability
distribution. This opens up the possibility to ap-
ply Bayesian inference (e.g., to reason about the
likely values of model parameters). Many cogni-
tive models lack a likelihood function that specifies
how likely the empirical data are given a specific
parameter set. This prevents the use of Bayesian
inference. In this contribution, we propose the
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cross-match test developed by (Rosenbaum, 2005)
as a means for computing the likelihood for cog-
nitive models that are able to generate individual
data.

Again, we use a spatial language model to ex-
emplify the application of the cross-match method.
The thus computed posterior distribution of the
model’s parameters has surprising implications for
the interpretation of the model. Before we come to
this, we start with presenting the example models,
followed by our model extension to simulate rating
distributions.

1.1 Exemplary Spatial Language Models

We introduce both our methods by exemplarily ap-
plying them to the AVS model (Regier and Carlson,
2001) and the recently proposed AVS-BB, rAVS,
and rAVS-CoO models (Kluth et al., 2017, under
revision). Given a depicted spatial layout and a
spatial sentence (“The [located object] is above the
[reference object]”), these cognitive models gener-
ate mean acceptability ratings, i.e., judgments how
well the linguistic input describes the visual scene.
All models can be interpreted as consisting of two
components: One component that captures geomet-
ric aspects of the depicted spatial configuration and
one component that maps the captured geometry to
a rating interval (representing linguistic acceptabil-
ity judgments).

The models process geometry by defining vec-
tors on all points of one object of the spatial layout.
These vectors point to the second object in the lay-
out. In addition, each vector is weighted by a cer-
tain amount of attention defined by a spotlight-like
distribution of attention. The overall direction of
the vector sum is compared to a reference direction
(e.g., canonical upright for the preposition above).
This angular deviation is the outcome of the first
model component (processing geometry).

The first model component is where the two
model families (AVS & AVS-BB vs. rAVS & rAVS-
CoO) differ: The AVS and the AVS-BB models
assume a shift of attention from the reference ob-
ject to the located object (the vectors point from
the reference object to the located object). In con-
trast, the rAVS and rAVS-CoO models assume a
reversed shift of attention from the located object to
the reference object (hence their acronym: reversed
AVS; the vectors point from the located object to
the reference object). The difference within the
model families (i.e., AVS vs. AVS-BB and rAVS

vs. rAVS-CoO) will be introduced in Section 3.
The second model component is the same in all

models: A linear function that maps the angular de-
viation from the first component to a rating interval.
In Section 4.2.1 we introduce some details about
the role of rAVS-CoO’s parameters for the two
model components. Applying our model extension
and the second proposal of our paper (Bayesian
inference), we present evidence that the second
component of the models (mapping geometry to
rating) seems to be more important than the first
one (processing geometry).

2 Model Extension: Rating Distributions

As an illustrating example of our model extension,
consider the empirical rating distribution displayed
as bars in Fig. 1c. This distribution shows 34 ac-
ceptability ratings on a rating scale with K = 9
categories (from 1–9). These ratings come from an
empirical study by Kluth et al. (under revision) in
which they asked 34 participants to judge the ac-
ceptability of the German sentence “Der Punkt ist
über dem Objekt” (“The dot is above the object”).
Specifically, the distribution shown in Fig. 1c cor-
responds to empirical ratings for the left black dot
above the asymmetrical object depicted in Fig. 1a.

Our method of simulating such a rating distribu-
tion is inspired by a common approach of analyzing
ordinal data (i.e., discrete and ordered data) using
generalized linear (regression) models (e.g., Lid-
dell and Kruschke, 2018; Kruschke, 2015, chapter
23). Here, the cumulative probability of a latent
Gaussian distribution between two thresholds is the
probability of one specific rating k (see Fig. 1c).1

Based on this, we propose the following steps to
extend mean-rating-models with the ability of sim-
ulating full rating distributions:

1. Interpret the output of the model as the mean
µ of a Gaussian distribution (see maximum of
dashed curve in Fig. 1c or 1d).

2. Treat σ of the Gaussian distribution and K −
1 − 2 thresholds as additional model param-
eters (see width of dashed curve and vertical
lines in Fig. 1c or 1d; K is the number of all
outcomes; first and last thresholds have fixed
values).

3. Define a discrete probability distribution over
all K ratings like in an ordinal regression (i.e,

1For the first / last outcome it is the cumulative probability
between negative / positive infinity and the first / last threshold.
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cumulative probabilities of the Gaussian distri-
bution between thresholds, see model outputs
in Fig. 1c or 1d).

4. To generate an individual rating: Sample a rat-
ing from the discrete probability distribution
defined in the previous step.

Note that the discrete probability distribution
over all K ratings defined in step 3 is fully deter-
mined by the model parameters (i.e., it will not
change unless you change any of the model pa-
rameters) while the individual rating generated in
step 4 is subject to sampling noise.

To fit such an extended model to empirical data,
we compute the Kullback-Leibler divergence from
the model’s discrete probability distribution (see
model outputs in Fig. 1c or 1d) to the empirical
rating distribution (relative frequencies of ratings,
see bars in Fig. 1c or 1d) – for every dot-object pair
that served as a stimulus. Then we minimize the
mean Kullback-Leibler divergence (averaged over
all stimuli). This procedure requires that individual
empirical data are available.

Note that this approach of comparing model out-
puts to empirical data still operates on the data from
all study participants (but it uses more information
as it does not operate only on a mean value). That
is, instead of explicitly assessing the models on
individual behavior, our fitting approach aims to
capture the overall rating distribution. Given that
with our model extension a model may also gener-
ate individual outcomes, it is in principle possible
to explicitly model single individuals or groups of
individuals with similar rating patterns. We leave
this for future work and note that the work from
Navarro et al. (2006) might prove valuable for this
endeavor.

3 Results: Fitting Models to Rating
Distributions

To exemplarily apply our proposed model exten-
sion, we extended the AVS model (Regier and Carl-
son, 2001) as well as the recently proposed AVS-
BB, rAVS, and rAVS-CoO models (Kluth et al.,
2017, under revision) and fitted them to empirical
data from Kluth et al. (under revision, asymmetri-
cal objects only). We denote the extended models
with a trailing + (see labels in Fig. 1). The source
code and all data are available under open licenses
(GNU GPL and ODbL) from Kluth (2018).

×◦

d d

(a) Spatial configuration with two exemplary dot locations
used in acceptability rating study by Kluth et al. (under re-
vision). × = center-of-mass, ◦ = center-of-object (of the
asymmetrical object); d = same horizontal distance from ×
for both dots. Participants saw only one dot and the asymmet-
rical object (neither the centers nor the additional lines shown
here).
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(b) Goodness-of-fit (GOF) and simple hold-out (SHO) results
for fitting extended models to whole empirical rating distribu-
tion from Kluth et al. (under revision, 4 asymmetrical objects
× 28 dots × 2 prepositions = 224 data points). Error bars
show 95% confidence intervals of SHO medians.
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(c) Empirical “über” (“above”) rating distribution and model
probabilities (rAVS+ and rAVS-CoO+) for the left dot shown
in Fig. 1a. Model probabilities were computed using the
parameters from the best fit plotted in Fig. 1b. Participants
never chose rating 1.
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(d) Empirical “über” (“above”) rating distribution and model
probabilities (rAVS+ and rAVS-CoO+) for the right dot
shown in Fig. 1a. Model probabilities were computed using
the parameters from the best fit plotted in Fig. 1b. Participants
never chose ratings 1-4 or 6.

Figure 1: Example experimental display, fits of ex-
tended models, and empirical rating distributions.
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Given a depicted spatial configuration contain-
ing a geometric object and a single dot placed
above / below the object (see Fig. 1a), we asked
34 German native speakers to rate the acceptabil-
ity of the German sentences “Der Punkt ist über
dem Objekt” and “Der Punkt ist unter dem Ob-
jekt” (“The dot is above / below the object”) on a
Likert scale from 1–9 (with lower ratings coding
lower acceptability judgments). We placed 28 dots
above and 28 dots below 4 asymmetrical objects
(i.e., the whole data set consists of 224 data points;
for the current work we did not consider data from
additionally tested rectangular reference objects).

Fig. 1a shows two exemplary dot locations above
one of the used asymmetrical objects. For these
two dots, we expected participants to give equal
“über” (“above”) acceptability ratings (based on
earlier research, e.g., Regier and Carlson, 2001).
However, we found that participants rated the ac-
ceptability of the “über” (“above”) sentence for
the right dot in Fig. 1a higher than for the left dot
(Kluth et al., under revision). This finding gener-
alized reliably to different objects with similar dot
placements suggesting that people possibly prefer
the center-of-object (depicted as ◦ in Fig. 1a) over
the center-of-mass (depicted as × in Fig. 1a) for
their judgments. To account for this finding, Kluth
et al. (under revision) proposed the model refine-
ments AVS-BB and rAVS-CoO (AVS-bounding-
box and rAVS-center-of-object), which both use
the center-of-object instead of the center-of-mass
(as AVS and rAVS do) for their computations.

Here, we use the two dot locations depicted in
Fig. 1a to exemplarily present our approach of sim-
ulating rating distributions. To do so, we first ex-
tended all models with the ability to simulate rating
distributions and then fitted all extended models
to the 224 data points (by minimizing the mean
Kullback-Leibler divergence as described above).
These fits are plotted in Fig. 1b (as goodness-of-fit
values alongside with the outcome of 101 simple
hold-out iterations, a cross-validation measure to
control for overfitting, Schultheis et al., 2013). In
terms of relative model performances, these fits
confirm the results of simpler fits using only aver-
aged rating data reported in Kluth et al. (under re-
vision): Both models that take the center-of-object
into account (the AVS-BB+ and the rAVS-CoO+
models) fit the data more closely (lower mean
Kullback-Leibler divergence) than the models that
consider the center-of-mass (AVS+ and rAVS+).

More interesting for our current purpose are the
plots in Figs. 1c and 1d. These plots each depict
the empirical rating distributions for one of the two
dots in Fig. 1a as bars: Fig. 1c shows the distribu-
tion for the left dot while Fig. 1d depicts the distri-
bution for the right dot. The empirical distributions
show that the left dot received considerably less
“9” ratings and more “2–7” ratings compared to the
right dot. On top of the empirical distributions, we
plotted the probabilities of each rating as computed
with the rAVS+ and the rAVS-CoO+ models. To
compute these probabilities, we used the parame-
ters found by fitting the models to the whole data
set (cf. Fig. 1b). Despite being fit to a much larger
data set, the two plots show that both models gener-
ally capture the qualitative trend of each of the two
single empirical data points. Considering Fig. 1c
and Fig. 1d suggests that the rAVS-CoO+ model
better accounts for the data – confirming (and ex-
plaining, see Kluth et al., under revision) the better
fit on the larger data set shown in Fig. 1b.

Fitting the models to rating distributions allows
for a more fine-grained model assessment com-
pared to model fits to averaged data. For example,
the main source of the different performances of
the rAVS+ and the rAVS-CoO+ models seems to be
their ability to account for the frequency of the high-
est rating “9” (cf. Fig. 1c and Fig. 1d). Compare
this with the situation where only averaged data is
used: Here the only information are mean ratings
(for the left dot 7.38, for the right dot 8.18) and
fits of the models to these mean ratings. Using the
same parameter settings as before, this yields for
the left dot 0.1326 (rAVS fit, normalized root mean
square error: nRMSE2) or 0.0093 (rAVS-CoO fit,
nRMSE) and for the right dot 0.0333 (rAVS fit,
nRMSE) or 0.1029 (rAVS-CoO fit, nRMSE). None
of these numbers provides information about the
models’ properties as intuitive and informative as
the fit of the extended models using full rating dis-
tributions. Moreover, our extension also enables
the generation of individual data by sampling from
the models’ discrete rating distribution (see step 4
on page 3). This property can be used to analyze
the models with Bayesian inference as we show
next.

2 RMSE =
√

1
n

∑n
i (datai −modelOutputi)2

nRMSE = RMSE/(ratingmax − ratingmin)
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4 Method: Bayesian Inference

The Bayesian framework is a fruitful and theoret-
ically sound approach to reason with probability
distributions over model parameters. However, this
framework requires that the analyzed model can be
interpreted in a probabilistic sense. As for many
other cognitive models, this is not the case for any
of the models discussed here (AVS, AVS-BB, rAVS,
rAVS-CoO or their extended versions) because they
lack a likelihood function that specifies how likely
empirical data are given a model with a specific
parameter set. We propose to use the cross-match
test developed by Rosenbaum (2005) as the likeli-
hood function of cognitive models that are able to
generate individual data (e.g., the derivatives of the
AVS+ model).

4.1 Cross-match Test

The cross-match test is a statistical test that com-
putes the probability of whether multivariate re-
sponses of two differently treated subject groups
come from the same distribution. In our case, the
first group are empirical individual data and the
second group are model-generated individual data
(see top and bottom of Tab. 1), so the cross-match
test becomes a measure of how likely it is that the
model-generated data come from the same distribu-
tion as the empirical data. Given that we can only
change the model-generated data (by using differ-
ent parameter sets), this amounts to a likelihood
function.

Internally, the cross-match test is based on group-
ing the multivariate responses (rows in Tab. 1)
into pairs with minimal distances (Mahalanobis
distances of ranks). The more of these pairs “cross-
match” between the two groups, the more similar
are the data of the two groups and hence the higher
is the probability that the cross-match test com-
putes (for more details see Rosenbaum, 2005).

4.2 Estimating the Posterior Distribution

To apply the cross-match test as a likelihood func-
tion of AVS+ derivatives, we propose the following
procedure3:

1. For each stimulus, simulate as many ratings
with the model as there were participants in

3Note that for clarity of presentation we stay in our exem-
plary domain: rating-models for spatial language. In principle,
our approach is applicable to all models that are able to gener-
ate individual data points (not necessarily ratings).

data type left dot right dot . . .

empirical 7 8 . . .
empirical 9 9 . . .
. . . . . . . . . . . .

model 8 9 . . .
model 5 8 . . .
. . . . . . . . . . . .

Table 1: Example input for the cross-match
test (Rosenbaum, 2005). Each row describes
the response of one subject (empirical or model-
generated), each column describes the response to
a stimulus (e.g., the left or right dot from Fig. 1a).

the study by applying the procedure of gener-
ating individual ratings described in step 4 on
page 3.

2. Compute the cross-match test comparing the
empirical data with the model-generated data.

3. To account for sampling noise (see step 4 on
page 3 in the generation of individual data)
and provide reliable cross-match results for
the same model parameters:

(a) For every individual rating to be gener-
ated in step 1, sample s times and use the
mean outcome as generated rating.

(b) Use the following average of cross-
match computations as likelihood value:

i. Compute the mean number of cross-
matches from c cross-match tests and
store the probability for this number
of cross-matches.

ii. Repeat step i for b blocks and use the
mean of these b probabilities as the
likelihood value.

Step 3 (b) basically repeats steps 1 and 2 b · c
times. In our case, we found a sufficiently stable
likelihood by applying step 3 with s = 10, b = 20,
and c = 4 (standard error of averaged cross-match
result < 0.05). Note that a too large value of s
will generate model outputs that are too similar to
each other and thus possibly reduces the number
of cross-matches too much. The problem of an
unstable likelihood value will reduce when more
empirical individual data are available.

Having the likelihood function defined in this
way, one can apply standard Markov Chain Monte
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Carlo (MCMC) techniques to estimate the poste-
rior distribution. Specifically, we implemented a
Metropolis-Hastings algorithm and improved its
performance by adding the adaptation algorithm
proposed by Garthwaite et al. (2016). For the cross-
match test, we used the R package crossmatch
(Heller et al., 2012) and re-implemented parts of
it using the C++ library Armadillo (Sander-
son and Curtin, 2016). The R package ggmcmc
(Fernández-i Marín, 2016) helped in visualizing
and analyzing the MCMC samples. Again, all
source code is available under the GNU GPL li-
cense from (Kluth, 2018).

4.2.1 Example rAVS-CoO+: Model
Parameters & Prior Distributions

We exemplarily estimated the posterior distribution
of the parameters of the rAVS-CoO+ model. The
rAVS-CoO+ model has four free parameters (not
considering the additional parameters of our ordi-
nal model extension: σ and thresholds). The two
parameters α and highgain are part of the compo-
nent that processes the geometry of the depicted
spatial configuration (cf. Section 1.1). In particular
α controls the extraction of an angular deviation
from the spatial relation. This angular deviation
is mapped to a linguistic rating with the second
component of the model. Specifically, high angular
deviation results in a low rating and low angular
deviation results in a high rating. This is realized
with a linear function that maps angular deviation
to rating. The intercept and slope parameters are
the parameters of this linear function.

Since this is the first study that investigates prob-
ability distributions over the model parameters of
the rAVS-CoO+ model, we had no prior informa-
tion available about the likely values of the model
parameters. Accordingly, we used uniform distri-
butions within the following parameter ranges as
“uninformative” prior distributions:

α ∈ [0.001, 5]; highgain ∈[0, 10]
intercept ∈ [0.7, 1.3]; slope ∈[−1/45, 0]

5 Results: Bayesian Inference

We exemplarily estimated the posterior distribution
of the parameters of the rAVS-CoO+ model for
the same data set to which we fitted the model ear-
lier (consisting of ratings for dots above / below
asymmetrical objects, see Fig. 1b for model fits).
We used 4 MCMC chains with 125,000 samples in
each chain and checked the chains for convergence

by monitoring the potential scale reduction factor
R̂ (Gelman and Rubin, 1992). To obtain converg-
ing chains, we had to change the parameterization
of the slope parameter to measure “change per ra-
dian” instead of “change per degree”. Furthermore,
we kept the additional model parameters for the
ordinal regression (σ of the latent Gaussian distri-
bution and thresholds) constant on the values of the
best rAVS-CoO+ fit to the whole data set, because
we were primarily interested in the original model
parameters. This parameter reduction improved the
convergence of the MCMC chains while it did not
affect the qualitative results. The results of the pos-
terior estimation are plotted as density estimates of
the marginal posterior distribution for each model
parameter of the rAVS-CoO+ model in Fig. 2. The
different colors code the different MCMC chains.
The high overlap of the colors confirms the conver-
gence of the chains.

At a first glance, the marginal posterior distribu-
tions are surprising as they lack clear maxima for
any parameter in the considered ranges. In particu-
lar the α and the highgain parameter seem to have
little effect on the model output in terms of gener-
ating data similar to empirical data. On the other
hand, the marginal posterior distributions suggest
that the following regions in the parameter space
should result in relatively poor model performance:
α < 0.5, intercept > 1.0, and slope > −0.25.

To double-check these regions, we picked two
parameter sets and computed the model fits to
the empirical data with these parameters (mean
Kullback-Leibler divergence). The first parameter
set lies in the presumably bad-performance region
(highgain = 5.0, α = 0.2, intercept = 1.25,
slope = −0.05) while the second parameter set
consists of parameter values from regions with
high posterior density (highgain = 5.0, α = 3.0,
intercept = 0.9, slope = −0.625). Indeed, the
presumably bad-performing parameter set fits the
data worse than the other parameter set (mean
Kullback-Leibler divergence: 0.484 vs. 0.266, re-
spectively). This trend was confirmed with fits of
the same parameter sets using mean ratings instead
of rating distributions (nRMSE for worse parame-
ters 0.301 vs. 0.145 for better parameters). These
tests provide evidence that using the cross-match
test as a likelihood function appropriately captures
model performance.

After establishing the validity of the unexpected
results, we discuss what we can learn from them.
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Figure 2: Marginal posterior distributions for the
rAVS-CoO+ model given rating data from Kluth
et al. (under revision, asymmetrical objects only)
and “uninformative” prior distributions (uniform
distributions).

Keep in mind that the following conclusions are
only valid for the exemplary data set and model
for which we computed the posterior estimation
and may change with data highlighting different
aspects of spatial language use.

Despite the great range of the parameter
highgain its value does not affect the model per-
formance. Accordingly, the parameter highgain
seems to be irrelevant for the quality of the model
output. Almost the same is true for the parameter α,
although the marginal posterior distribution shows
weak performance for values less than 0.5. The role
of the parameter α in the rAVS-CoO+ model can be
understood as an importance weight of two geomet-
ric features known to affect spatial language accept-
ability judgments: the proximal orientation and the
center-of-object orientation (Regier and Carlson,
2001; Kluth et al., under revision). The closer α is
to 0.0, the more important gets the proximal orienta-
tion and the less important gets the center-of-object

orientation for the rAVS-CoO+ model. Thus, the
marginal posterior distribution provides evidence
that the center-of-object orientation is more impor-
tant than the proximal orientation to account for
this data set.

The intercept and slope parameters control the
second model component (cf. Section 1.1): they
are the parameters of a linear function contained in
the rAVS-CoO+ model that maps angular deviation
to rating (between 0 and 1). These two parame-
ters have a greater influence on model performance
than α and highgain (more diverse posterior pro-
files for intercept and slope compared to α and
highgain, see Figure 2). That is, changing the val-
ues of the intercept or slope parameters affects the
models’ ability to fit empirical data more strongly
than changing the values of α or highgain.

This is interesting, because one can interpret the
rAVS-CoO+ model (and related models such as
AVS+, AVS-BB+, rAVS+) as consisting of (i) a
geometric component (capturing / formalizing the
geometric properties of the involved objects and
their spatial relation) and (ii) a mapping compo-
nent (mapping the captured geometric aspects onto
a rating range, see Section 1.1). Given that one
of the prime research question motivating the de-
velopment of these models concerns the influence
of geometric properties (such as relative spatial
location of the objects or asymmetrical objects)
on spatial language use, most researchers focused
on the geometric component of the models. Our
results, however, suggest that the geometric compo-
nent may be less important for model performance
than commonly assumed – in particular, less im-
portant than the mapping component. That is, to
unravel effects of geometry on spatial language
use, it might be more insightful to re-consider the
mapping of assumed intermediate geometric rep-
resentations (e.g., angular deviations) to linguistic
judgments instead of modeling the computation of
these representations.

6 Discussion & Conclusion

Acceptability judgments are common in linguistic
research (Sprouse, 2013). Many cognitive models
of linguistic processes compute mean acceptabil-
ity ratings. We propose a model extension that
enables these models (i) to simulate a probability
distribution over all possible ratings and (ii) to gen-
erate individual ratings. To fit simulated probability
distributions to empirical rating distributions, we
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propose to minimize the mean Kullback-Leibler
divergence from the simulated to the empirical dis-
tributions. This model extension moves the model
fits on a level that is closer to the actual empiri-
cal data (by using full rating distributions instead
of mean ratings) while it avoids the problematic
treatment of ordinal data as metric (Liddell and Kr-
uschke, 2018). As future steps in this direction, we
envision an analysis whether the additional model
parameters can be mapped onto cognitive structures
and mechanisms and subsequently the explicit mod-
eling of (groups of) individuals (e.g, via Navarro
et al., 2006).

Since many cognitive models lack a likelihood
function, our additional contribution is to introduce
the cross-match test (Rosenbaum, 2005) as a possi-
ble approximation of the likelihood function. This
adds the possibility to apply full Bayesian inference
for the parameters of all cognitive models that are
able to generate individual data (e.g., mean-rating-
models enhanced with our model extension).

In the related work of Approximate Bayesian
Computation (ABC, for review see Turner and
Van Zandt, 2012), researchers have developed sam-
pling strategies to enable “likelihood-free infer-
ence”. These techniques enable a modeler to use
the Bayesian toolkit without explicitly defining a
likelihood function. However, ABC sampling algo-
rithms add additional overhead to the workflow of
cognitive modelers, as they diverge from standard
MCMC techniques used in Bayesian estimations.
To overcome this overhead, we propose to use the
cross-match test as an explicit likelihood function.
We are currently evaluating our approach in com-
parison to existing ABC algorithms.

We exemplarily applied both our proposals using
computational cognitive models of spatial language
use like the AVS model (Regier and Carlson, 2001)
and its derivatives (Kluth et al., 2017, under revi-
sion). Given a depicted spatial layout and a spatial
preposition, these models compute mean accept-
ability ratings. We showed that simulating rating
distributions allows a more fine-grained model as-
sessment compared to model fits using mean rat-
ings.

An example application of Bayesian inference
revealed surprising insights: We estimated the pos-
terior distribution of rAVS-CoO+’s parameters and
found that the values of almost all parameters were
less important for model performance than we
thought. Future research in this direction will help

to precisely identify and quantify the role of model
parameters for the rAVS-CoO+ model (and the re-
lated models AVS+, AVS-BB+, and rAVS+). In ad-
dition, the Bayesian toolkit comprises several other
methods for model inspection and model compari-
son.

Acknowledgments

This research was supported by the Cluster of Ex-
cellence Cognitive Interaction Technology ‘CITEC’
(EXC 277) at Bielefeld University, which is funded
by the German Research Foundation (DFG).

References
Raquel G. Alhama, Remko Scha, and Willem Zuidema.

2015. How should we evaluate models of segmenta-
tion in artificial language learning? In Proceedings
of the 13th International Conference on Cognitive
Modeling.

Michele Burigo, Kenny R. Coventry, Angelo Can-
gelosi, and Dermot Lynott. 2016. Spatial language
and converseness. Quarterly Journal of Experimen-
tal Psychology, 69(12):2319–2337.

Nick Chater and Christopher D Manning. 2006. Prob-
abilistic models of language processing and acquisi-
tion. Trends in Cognitive Sciences, 10(7):335–344.

Kenny R. Coventry, Angelo Cangelosi, Rohanna Ra-
japakse, Alison Bacon, Stephen Newstead, Dan
Joyce, and Lynn V. Richards. 2005. Spatial preposi-
tions and vague quantifiers: Implementing the func-
tional geometric framework. In Spatial Cognition
IV. Reasoning, Action, Interaction. Springer.

Paul H. Garthwaite, Yanan Fan, and Scott A. Sis-
son. 2016. Adaptive optimal scaling of Metropolis–
Hastings algorithms using the Robbins–Monro pro-
cess. Communications in Statistics-Theory and
Methods, 45(17):5098–5111.

Andrew Gelman and Donald B. Rubin. 1992. Inference
from iterative simulation using multiple sequences.
Statistical Science, 7(4):457–472.

Ruth Heller, Dylan Small, and Paul Rosenbaum. 2012.
crossmatch: The cross-match test. R package ver-
sion 1.3-1.

Thomas Hörberg. 2008. Influences of form and func-
tion on the acceptability of projective prepositions
in Swedish. Spatial Cognition & Computation,
8(3):193–218.

Thomas Kluth. 2018. A C++ implementation
of cognitive models of spatial language under-
standing as well as pertinent empirical data
and analyses. will soon be published un-
der https://pub.uni-bielefeld.de/
person/54885831/data.

54



Thomas Kluth, Michele Burigo, and Pia Knoeferle.
2017. Modeling the directionality of attention
during spatial language comprehension. In Jaap
van den Herik and Joaquim Filipe, editors, Agents
and Artificial Intelligence, Lecture Notes in Com-
puter Science. Springer International Publishing
AG.

Thomas Kluth, Michele Burigo, Holger Schultheis, and
Pia Knoeferle. under revision. Does direction mat-
ter? Linguistic asymmetries reflected in visual atten-
tion. Cognition.

Thomas Kluth and Holger Schultheis. 2014. Atten-
tional distribution and spatial language. In Christian
Freksa, Bernhard Nebel, Mary Hegarty, and Thomas
Barkowsky, editors, Spatial Cognition IX, Lecture
Notes in Computer Science. Springer.

John K. Kruschke. 2015. Doing Bayesian data analy-
sis: A tutorial with R, JAGS, and Stan, 2nd edition.
Academic Press.

Jey Han Lau, Alexander Clark, and Shalom Lappin.
2017. Grammaticality, acceptability, and probabil-
ity: a probabilistic view of linguistic knowledge.
Cognitive Science, 41(5):1202–1241.

Torrin M. Liddell and John K. Kruschke. 2018. An-
alyzing ordinal data with metric models: What
could possibly go wrong? Preprint, retrieved from
osf.io/9h3et.

Gordon D. Logan and Daniel D. Sadler. 1996. A com-
putational analysis of the apprehension of spatial re-
lations. In Paul Bloom, Mary A. Peterson, Lynn
Nadel, and Merill F. Garrett, editors, Language and
Space, chapter 13. The MIT Press.

Xavier Fernández-i Marín. 2016. ggmcmc: Analysis of
MCMC samples and Bayesian inference. Journal of
Statistical Software, 70(9):1–20.

Daniel J. Navarro, Thomas L. Griffiths, Mark Steyvers,
and Michael D. Lee. 2006. Modeling individual dif-
ferences using Dirichlet processes. Journal of Math-
ematical Psychology, 50(2):101–122.

Ulrike Padó, Matthew W. Crocker, and Frank Keller.
2009. A probabilistic model of semantic plausi-
bility in sentence processing. Cognitive Science,
33(5):794–838.

Terry Regier and Laura A. Carlson. 2001. Ground-
ing spatial language in perception: An empirical and
computational investigation. Journal of Experimen-
tal Psychology: General, 130(2):273–298.

Paul R. Rosenbaum. 2005. An exact distribution-free
test comparing two multivariate distributions based
on adjacency. Journal of the Royal Statistical Soci-
ety: Series B (Statistical Methodology), 67(4):515–
530.

Conrad Sanderson and Ryan Curtin. 2016. Armadillo:
a template-based C++ library for linear algebra.
Journal of Open Source Software, 1:26.

Holger Schultheis, Ankit Singhaniya, and Deven-
dra Singh Chaplot. 2013. Comparing model com-
parison methods. In Proc. of the 35th Annual Con-
ference of the Cognitive Science Society, pages 1294
– 1299, Austin, TX. Cognitive Science Society.

Jon Sprouse. 2013. Acceptability judgments. In Ox-
ford Bibliographies. Oxford University Press.

Brandon M. Turner and Trisha Van Zandt. 2012. A tu-
torial on approximate Bayesian computation. Jour-
nal of Mathematical Psychology, 56(2):69–85.

55



Proceedings of the Eighth Workshop on Cognitive Aspects of Computational Language Learning and Processing, pages 56–64
Melbourne, Australia, July 19, 2018. c©2018 Association for Computational Linguistics

The Role of Syntax during Pronoun Resolution: Evidence from fMRI

Jixing Li
Department of Linguistics

Cornell University

jl2939@cornell.edu

Murielle Fabre
Department of Linguistics

Cornell University

mf684@cornell.edu

Wen-Ming Luh
Cornell MRI Facility

Cornell University

wl358@cornell.edu

John Hale
Department of Linguistics

Cornell University

jthale@cornell.edu

Abstract

The current study examined the role of
syntactic structure during pronoun resolu-
tion. We correlated complexity measures
derived by the syntax-sensitive Hobbs al-
gorithm and a neural network model for
pronoun resolution with brain activity of
participants listening to an audiobook dur-
ing fMRI recording. Compared to the neu-
ral network model, the Hobbs algorithm
is associated with larger clusters of brain
activation in a network including the left
Broca’s area.

1 Introduction

Approaching the issue of pronoun resolution from
the perspectives of generative linguistics, possible
antecedents for pronouns and reflexives are con-
strained by syntactic structures. For instance, the
classical Binding Theory (Chomsky, 1981) states
that reflexives are bound in their “local domain”
while pronouns are not. 1 For example, “himself”
in (1) has to refer to the subject of the inflectional
phrase (IP) “Bill”, while “him” in (2) cannot refer
to “Bill”.

(1) Johni thinks that [IPBillj always criticizes
himself∗i/j/∗k].

(2) Johni thinks that [IPBillj always criticizes
himi/∗j/k].

Nevertheless, it is still unclear what role the
binding theory play in the cognitive process of

1A “local domain” can be roughly defined as the smallest
IP or NP which contains the predicate that assigns the theta
roles, the complements to which the internal theta roles are
assigned, and the subject to which the external theta role is
assigned.

pronoun resolution. It has been argued that ex-
plicit syntactic structure and the associated pars-
ing algorithms may not be necessary during sen-
tence comprehension (e.g. Frank and Christiansen,
2018). Furthermore, recent neural network models
of coreference resolution (e.g. Clark and Manning,
2016) achieved state-of-the-art results with no ex-
plicit syntactic information.

The current study examined the role of syntactic
information during pronoun resolution by correlat-
ing a complexity measure derived by the syntax-
sensitive Hobbs algorithm (Hobbs, 1977) for pro-
noun resolution with brain activity of participants
listened to an audiobook during fMRI recoding.
The Hobbs algorithm searches for the gender and
number matching antecedent by traversing the
parsed syntactic tree in a left-to-right, breadth-first
order. We compared brain activation associated
with the Hobbs algorithm to that associated with
a neural network model for coreference resolu-
tion (Clark and Manning, 2016) which encodes no
explicit syntactic structures. The results revealed
larger clusters for the Hobbs algorithm than for the
neural network model in the left Broca’s area, the
bilateral Angular Gyrus, the left Inferior Tempo-
ral Gyrus and the left Precuneus. Given the ele-
ments in the Hobbs algorithm including syntactic
constraints and gender/number matching, we in-
terpret these areas as supporting morpho-syntactic
processing during pronoun resolution.

In the following sections, we briefly describe
the Hobbs algorithm and the neural network model
and compare their performance on the text of the
audiobook. We then describe our linking hypothe-
ses for correlating the models with brain activity,
before presenting the methods, results and discus-
sion of the fMRI experiment.
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2 The Hobbs Algorithm

The Hobbs algorithm, originally presented in
Hobbs (1977), depends only on a syntactic parser
plus a morphological gender and number checker.
The input to the Hobbs algorithm includes the tar-
get pronoun and the parsed trees for the current
and previous sentences. The algorithm searches
for a gender and number matching antecedent by
traversing the tree in a left-to-right, breadth-first
order, giving preference to closer antecedents. If
no candidate antecedent is found in the current
tree, the algorithm searches on the preceding sen-
tence in the same order. The steps of the Hobbs
algorithm are as follows:

(1) Begin at the NP node immediately dominating the pro-
noun.

(2) Go up the tree to the first NP or S node encountered.
Call this node X, and call the path used to reach it p.

(3) Traverse all branches below node X to the left of path
p in a left-to-right, breadth-first fashion. Propose as the
antecedent any NP node that is encountered which has
an NP or S node between it and X.

(4) If node X is the highest S node in the sentence, tra-
verse the surface parse trees of previous sentences in
the text in order of recency, the most recent first; each
tree is traversed in a left-to-right, breadth-first manner,
and when an NP node is encountered, it is proposed as
antecedent. If X is not the highest S node in the sen-
tence, continue to step 5.

(5) From node X, go up the tree to the first NP or S node
encountered. Call this new node X, and call the path
traversed to reach it p.

(6) If X is an NP node and if the path p to X did not pass
through the N̄ node that X immediately dominates,
propose X as the antecedent.

(7) Traverse all branches below node X to the left of path p
in a left-to-right, breadth-first manner. Propose any NP
node encountered as the antecedent.

(8) If X is an S node, traverse all branches of node X to the
right of path p in a left-to-right. breadth-first manner,
but do not go below any NP or S node encountered.
Propose any NP node encountered as the antecedent.

(9) Go to step 4.

The Hobbs algorithm conforms to the Binding
Theory as it always searches for the antecedent in
the left of the NP (Principle B: Step 3) and does
not go below any NP or S node encountered (Prin-
ciple A: Step 8). It also respects gender, person,
and number agreement, and captures recency and
grammatical role preferences in the order it per-
forms the search. Hobbs (1977) evaluated his al-
gorithm on 300 examples containing third person
pronouns, and it worked in 88.3% of the cases.
With some selectional constraints on dates and lo-
cation antecedents (i.e., restricting dates and loca-
tion NPs such as “2018” and “school” to be the

antecedent of “it”), the algorithm achieved 91.7%
accuracy. However, the test dataset was limited
in size and the performance degraded when there
were competing antecedents. We propose here to
test its accuracy on a larger dataset including 1499
sentences with 465 third person pronouns.

3 The Neural Network Model

The neural network model for pronoun resolution
is adapted from the neural network model for both
pronominal and nominal coreference resolution
(Clark and Manning, 2016). This model consists
of a mention-pair encoder, a cluster-pair encoder,
a mention-ranking model and a cluster-ranking
model. The mention-pair encoder generates dis-
tributed representations for pronoun-antecedent
pairs, or mention pairs, by passing relevant fea-
tures through a feed-forward neural network. The
cluster-pair encoder generates distributed repre-
sentations for pairs of clusters through a pooling
operation over representations of relevant men-
tion pairs. The mention-ranking model scores the
candidate antecedents to prune the set of possible
antecedent and the cluster-ranking model scores
coreference compatibility for each pair of clusters.

The input layer of the neural network model
consists of a large set of features including word
embeddings for the mention pairs, type and length
of the mentions, linear distance between the men-
tion pairs, etc. (see Table 1). These feature vec-
tors are concatenated to produce an I-dimensional
vector h0(a,m) as the representation for the men-
tion m and the antecedent a. The input layer then
passes through three hidden layers of rectified lin-
ear units (ReLU), and the output of the last hidden
layer is the vector representation for the mention
pair rm(a,m).

hi(a,m) = ReLU(Wihi−1(a,m) + bi)

For pairs of clusters ci = {mi
1,m

i
2, ...,m

i
ci}

and cj = {mj
1,m

j
2, ...,m

j
cj}, the cluster-pair

encoder first forms a matrix Rm(ci, cj) =

[rm(mi
1,m

j
1), rm(mi

2,m
j
2), ..., rm(mi

ci ,m
j
cj )],

then applies a pooling operation over Rm(ci, cj)
to produce a distributed representation for the
cluster pair rc(ci, cj). The mention-ranking model
assigns a score for each mention pair by applying
a single fully connected layer of size one the
mention pair representation rm(a,m). The model
is then trained with the max-margin training
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objective.

sm(a,m) = Wmrm(a,m) + bm

Similarly, the cluster-ranking model assigns a
coreference score for each cluster pair and an
anaphoricity score for mention m (i.e., how likely
mention m has an antecedent). These scores
are used to decide whether mention m should be
merged with one preceding cluster or not during
testing.

sc(ci, cj) = Wcrc(ci, cj) + bc

sNA(m) = WNArm(NA,m) + bNA

Feature Type Description
Word embedding head word

dependency parent
first word
last word
two preceding words
two following words
averaged of the five preceding words
averaged of five following words
all words in the mention
all words in the mention’s sentence
and all words in the mention’s document

Mention type (pronoun/noun/proper name/list)
position in the document
contained in another mention or not
length of the mention in words

Document genre (broadcast news/newswire/web data)
Distance intervening sentences

number intervening mentions
mentions overlap or not

String matching head match
exact string match
partial string match

Table 1: Feature set of the neural network model
(Clark and Manning, 2016).

The neural network model encodes no explicit
syntactic structures, but it captures semantic in-
formation in its word embedding features. It also
incorporates discourse-level information such as
linear distance between the mention pairs across
several sentences, discourse genre, etc. Clark and
Manning (2016) trained the model on the CoNLL-
2012 Shared Task (Pradhan et al., 2012) and it
achieved state-of-the-art results in both the En-
glish and Chinese test set.

The neural network model was evaluated on
both pronominal and nominal coreference reso-
lution, however, pronouns and full noun phrases
(NPs) may rely on very different set of features.
For example, string matching and measures for se-
mantic similarity are powerful features for nom-
inal coreference resolution, but are not applica-
ble for pronoun resolution as word embeddings do

not represent pronouns well. In addition, it has
been argued that pronouns serve a different dis-
course function from that of full NPs in that full
NPs introduce new entities in the discourse and
pronouns maintain the reference (Sanford et al.,
1988). Based on these arguments, it is reasonable
to say that pronoun resolution and full NP corefer-
ence involves different cognitive processes.

4 Evaluating the Models on Text Data

4.1 Text Data
The text data is an English audiobook version
of Antoine de Saint-Exupéry’s The Little Prince.
Within the audiobook text, 1755 pronouns and
3127 non-pronominal entities (4882 mentions in
total) are identified using the annotation tool brat
(Stenetorp et al., 2012; see Figure 1). Reflex-
ives (e.g., “herself”) and possessives (e.g., “his”)
are excluded from the dataset as they have differ-
ent “binding domains” from pronouns according
to the Binding Theory and hence influences per-
formance of the Hobbs algorithm. Pronouns with
sentential antecedents (e.g, the second “it” in the
conversation “That is funny where you live a day
only last a minute.” “It is not funny at all.”), as
well as dummy pronouns (e.g., “it” in “It said in
the book that ...”) are also removed. The result-
ing dataset contains 645 first person pronouns, 302
second person pronouns and 675 third person pro-
nouns (see Table 2).

1st i me we us
505 121 16 3

2nd you
302

3rd she her he him
41 14 268 64
it they them

136 94 58

Table 2: Attestations of each pronoun type in The
Little Prince.

We decided to focus only on the third person
pronouns because they provide gender and number
information that feeds the Hobbs algorithm. In ad-
dition, third person pronouns have been suggested
to differ from first and second person pronouns in
that first and second person pronouns mark prox-
imity in space and third person pronouns are fur-
ther away (Ariel, 1990). Therefore, we further ex-
cluded third person pronouns whose antecedents
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Figure 1: Sample annotations of pronouns and non-pronoun mentions in English, visualized using the
annotation tool brat (Stenetorp et al., 2012).

are first and second person pronouns. The final
test set contains 465 third person pronouns.

4.2 Model Performance

To evaluate performance of the Hobbs algorithm
and the neural network model for third person pro-
noun resolution in The Little Prince, we compared
the predicted antecedents for the 465 third person
pronouns with the correct immediate antecedents.
We considers only the immediate antecedent as the
Hobbs algorithm only propose one antecedent and
does not group the proposed antecedent into clus-
ters. The syntactic trees for the sentences in the
text are parsed by the Stanford PCFG parser (Klein
and Manning, 2003).

For the neural network model, we used the pre-
trained weights from Clark and Manning (2016)
to output a coreference score for all the poten-
tial pronoun-antecedent pairs. If the score of the
immediate antecedent ranks among top three of
all the candidate antecedents, the prediction is
marked as correct.

Table 3 shows the accuracy of the Hobbs al-
gorithm and the neural network model for third
person pronouns in The Little Prince. The neu-
ral coreference model only achieves a 0.4 accu-
racy. Compared with the high F1 score (0.74)
for pronoun and full NP coreference resolution
on the CoNLL-2012 English test data (Clark and
Manning, 2016), this low accuracy confirmed that
pronominal and nominal coreference resolution
rely on different feature sets. String matching and
semantic similarity, for example, may be less pow-
erful for pronominal resolution.

On the other hand, the Hobbs algorithm identi-

fies the correct immediate antecedent for 60% of
the third person pronouns. Given the elements of
the Hobbs algorithm, it is suggested that linguisti-
cally motivated features, especially syntactic con-
straints and gender/number cues, may be more rel-
evant for third person pronoun resolution in En-
glish.

Accuracy
Hobbs Algorithm 0.60
Neural Network 0.40

Table 3: Performance of the Hobbs algorithm and
the neural network model on third pronoun reso-
lution in The Little Prince.

4.3 Error Analysis
To probe why the neural network model performed
relatively poor than the Hobbs algorithm for third
person pronoun resolution, we further divided the
dataset into “same sentence” and “different sen-
tence” conditions depending on whether the an-
tecedent occurs within the same sentence of the
pronoun. 155 of the 465 third person pronouns
have antecedents in the same sentence. Table 4
lists the accuracy of the two models in the two con-
ditions. It can be seen that the Hobbs algorithm
performs equally well for the same and different
sentence conditions, whereas the neural network
model performs worse if the antecedent is not in
the same sentence as the pronoun.

A closer examination on the wrong 279 cases
predicted by the neural network model revealed
that the model tends to be misled by the “partial
string match” feature, such that it gives high coref-
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Hobbs Neural Network
Same Sentence 0.60 0.50
Different Sentence 0.60 0.35

Table 4: Accuracy of the Hobbs algorithm and the
neural network model for third person pronouns
that have antecedents in the same or different sen-
tences.

erence scores for “that” and “they”. This con-
firmed our hypothesis that pronominal and nom-
inal coreference resolution rely on different set of
features.

5 Correlating Model Prediction with
Brain Activity

5.1 Linking Hypotheses
To explain how the model performance are specif-
ically brought to bear on brain activity, we further
correlated activation levels of the antecedents with
fMRI time-courses when participants listened to
The Little Prince in the scanner.

We first selected the 277 third person pronouns
whose antecedents are correctly predicted by the
Hobbs algorithm, i.e., the true positives, and we
calculated the Hobbs distance for each of the 277
pronouns, namely, the number of NPs that the
Hobbs algorithm skips before the antecedent NP
is proposed. Our linking hypotheses is that a
higher Hobbs distance induces a processing ef-
fort for pronoun resolution, hence higher hemo-
dynamic response.

Note that the Hobbs distance is different from
the number of NP nodes between the pronoun
and the antecedents, as the Hobbs algorithm al-
ways searches the antecedent to the left of the pro-
noun in a left-to-right, breadth-first order. Figure
2 shows the Hobbs distance for the two “they” in
the example sentence. The immediate antecedent
for “they 1” is “their”, and the Hobbs distance be-
tween “their” and “they 1” is 2 because the algo-
rithm skips the NP “boa constrictors” before pro-
poses “their” as the antecedent. The Hobbs dis-
tance for “they 2” is 1 because the correct an-
tecedent is the first proposal by the algorithm.

In comparison, we recorded the coreference
score Sm(a,m) generated by the neural network
model for the 277 pronouns that correctly pre-
dicted by the Hobbs algorithm. We took the neg-
ative of the score as a complexity measure for the
neural coreference model: the higher the score,

the more difficult to retrieve the antecedent. Pear-
son’s r revealed no significant correlation between
the Hobbs distance and the negative neural coref-
erence score for the 227 third person pronouns
(r = 0.05, p = 0.43).

5.2 Predicted Brain Activation

Based on the elements in the Hobbs algorithm and
the neural network model, we expected the diffi-
culty of pronoun resolution modeled by the Hobbs
distance and the neural coreference score to tease
apart brain areas that are associated with syntac-
tic and morphological processing, and brain areas
that are sensitive to semantic and discourse-level
information.

Previous neuroimaging results on pronoun res-
olution have reported the bilateral Inferior Frontal
Gyrus (IFG), the left Medial Frontal Gyrus (MFG)
and the bilateral Supramarginal/Angular Gyrus in
gender mismatch between pronoun and antecedent
(Hammer et al., 2007). We therefore expect activ-
ity in these regions for the Hobbs distance met-
ric. We also expect to see activity in the bi-
lateral Superior Temporal Gyrus (STGs) as they
have been associated with long distance pronoun-
antecedent linking (Matchin et al., 2014). These
regions could be relevant for both the Hobbs dis-
tance and neural coreference score as they both
incorporate some form of “distance” between the
pronoun-antecedent pairs. The Precuneus cortex
may also be activated with pronouns in general
as it has been suggested to track different sorts of
story characters (Wehbe et al., 2014).

6 Brain Data

6.1 Participants

Participants were 49 healthy, right-handed, young
adults (30 female, mean age = 21.3, range = 18-
37). They self-identified as native English speak-
ers, and had no history of psychiatric, neurologi-
cal or other medical illness that could compromise
cognitive functions. All participants were paid for,
and gave written informed consent prior to partic-
ipation, in accordance with the guidelines of the
Human Research Participant Protection Program
at Cornell University.

6.2 Stimuli

The stimulus was an audiobook version of Antoine
de Saint-Exupéry’s The Little Prince, translated
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Figure 2: Demonstration of Hobbs distance for third person pronouns in a sentence. The red numbers
below the pronouns indicates the Hobbs distance.

by David Wilkinson and read by Nadine Eckert-
Boulet. This text contains 3127 non-pronominal
mentions and 645 first person pronouns, 302 sec-
ond person pronouns and 675 third person pro-
nouns (see Table 2). Following the pruning criteria
described in Section 5, the final set of data include
277 third person pronouns.

6.3 Procedure

After giving their informed consent, participants
were familiarized with the MRI facility and as-
sumed a supine position on the scanner. The pre-
sentation script was written in PsychoPy (Peirce,
2007). Auditory stimuli were delivered through
MRI-safe, high-fidelity headphones (Confon HP-
VS01, MR Confon, Magdeburg, Germany) in-
side the head coil. The headphones were secured
against the plastic frame of the coil using foam
blocks. An experimenter increased the sound
volume stepwise until the participants could hear
clearly.

The audiobook lasts for about 94 minutes, and
was divided into nine sections, each lasts for about
ten minutes. Participants listened passively to the
nine sections and completed four quiz questions
after each section (36 questions in total). These
questions were used to confirm their comprehen-
sion and were viewed by the participants via a mir-
ror attached to the head coil and they answered
through a button box. The entire session lasted
around 2.5 hours.

6.4 MRI Data Collection and Preprocessing

The brain imaging data were acquired with a
3T MRI GE Discovery MR750 scanner with
a 32-channel head coil. Anatomical scans
were acquired using a T1-weighted volumet-
ric Magnetization Prepared RApid Gradient-Echo

(MP-RAGE) pulse sequence. Blood-oxygen-
level-dependent (BOLD) functional scans were
acquired using a multi-echo planar imaging
(ME-EPI) sequence with online reconstruction
(TR=2000 ms; TE’s=12.8, 27.5, 43 ms; FA=77◦;
matrix size=72 x 72; FOV=240.0 mm x 240.0
mm; 2 x image acceleration; 33 axial slices, voxel
size=3.75 x 3.75 x 3.8 mm). Cushions and clamps
were used to minimize head movement during
scanning.

All fMRI data is preprocessed using AFNI ver-
sion 16 (Cox, 1996). The first 4 volumes in
each run were excluded from analyses to allow
for T1-equilibration effects. Multi-echo inde-
pendent components analysis (ME-ICA; Kundu
et al.,2012) were used to denoise data for motion,
physiology and scanner artifacts. Images were
then spatially normalized to the standard space of
the Montreal Neurological Institute (MNI) atlas,
yielding a volumetric time series resampled at 2
mm cubic voxels.

6.5 Statistical Analysis

At the single subject level, the observed BOLD
time course in each voxel were modeled by the
difficulty of pronoun resolution derived by the
Hobbs Algorithm and the Neural Network Model
for third person pronouns time-locked at the off-
set of each third person pronoun in the audiobook.
To further examine the status of Hobbs and Neural
Network Models as cognitive models for pronoun
resolution, we also included a binary regressor that
simply marks the presence of a third person pro-
noun time-locked at the offset of each third person
pronoun in the audiobook.

In addition, three control variables of non-
theoretical interest were included in the GLM
analysis: RMS intensity at every 10 ms of the au-
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dio; word rate at the offset of each spoken word in
time; frequency of the individual words in Google
Book unigrams 2. These regressors were added to
ensure that any conclusions about pronoun resolu-
tion would be specific to those processes, as op-
posed to more general aspects of speech percep-
tion.

At the group level, the activation maps for the
Hobbs, neural network and binary regressor were
computed using one sample t-test. The voxelwise
threshold was set at p ≤ 0.05 FWE, with an ex-
tent threshold of 50 contiguous voxels (k ≥ 50).

7 fMRI Results

The largest clusters for the binary third person
pronoun regressor were observed in the bilateral
Superior Temporal Gyrus (STGs), the left Infe-
rior Frontal Gyrus (IFG), the left Superior Frontal
Gyrus (STG), the right Cerebellum and the right
Angular Gyrus (p < 0.05 FWE; see Figure 3a).

Hobbs algorithm shows significant activation in
the left Precuneus, the bilateral Angular Gyrus,
the left IFG and the left SFG (p < 0.05 FWE;
see Figure 3b). For the neural network model, al-
though the cluster size is relatively small at the
corrected threshold, it has significant clusters in
the right STG and the left Middle Temporal Gyrus
(MTG; p < 0.05 FWE; see Figure 3c). Table 5
lists all the significant clusters using region names
from the Harvard-Oxford Cortical Structure Atlas.

8 Discussion

Activation map for third person pronoun resolu-
tion modeled by the Hobbs distance is a subset
of the activation map for the binary third per-
son pronoun regressor. Additional activity is ob-
served in the Precuneus for the Hobbs regressor,
suggesting that the Precuneus is involved in the
process of pronoun-antecedent linking, consistent
with Wehbe et al.’s (2014) finding that the Pre-
cuneus tracks the characters in a story.

Only the Hobbs algorithm showed an increased
activation in the left Broca’s area, which has been
recurrently reported as correlating with syntac-
tic processing cost linked to antecedent pronoun
(Santi and Grodzinsky, 2012), and particularly to
the distance between the antecedent and the pro-
noun (Matchin et al., 2014; Santi and Grodzinsky,
2007).

2 http://books.google.com/ngrams

The bilateral Angular Gyrus activity was also
significant for the Hobbs algorithm. Notably, pre-
vious literature on German gender agreement in
anaphoric reference reported increased activation
in the left Angular Gyrus (BA 39) for incongru-
ent biological gender matching (Hammer et al.,
2007). Our results supported the role of morpho-
syntactic processing for gender matching during
pronoun resolution at the Angular Gyrus.

The neural network model encodes different
brain activity patterns at the right STG and the left
MTG, although the cluster size is relatively small
at the corrected threshold. The right STG has
been reported to encode linear distance between
pronouns and antecedents (Hammer et al., 2007,
2011) and for long distance back anaphora com-
pared to short-distance back anaphora (Matchin
et al., 2014). The MTGs have been associated with
intra-sentential co-referential link (Fabre, 2017).
This is expected as the neural network model en-
codes the linear distance between the pronoun
and the antecedent. The MTGs were also re-
ported to respond to highly predictive lexical ac-
cess (Fruchter et al., 2015), suggesting that diffi-
culty of pronoun resolution modeled by the neural
network scores is likely to involve lexical semantic
processing.

9 Conclusion

Comparison of model performance between the
Hobbs algorithm and the neural network model on
pronoun resolution suggest an important role for
syntactic and morphological cues during pronoun
resolution. These two types of information were
integrated in the Hobbs distance measure that re-
flects processing difficulty of pronoun resolution.
This difficulty measure is associated with signifi-
cant activity in the left Broca’s area, the bilateral
Angular Gyrus and the left IFG — a network that
has been reported in the neuroimaging literature
for anaphora resolution.

Overall, our results show that crossing com-
putational approach and naturalistic stimuli is a
promising perspective in neuroimaging to tease
apart strongly interwoven cognitive processes. As
such, they pave the way for increasing cross-
fertilization between computational linguistics
and the cognitive neuroscience of language.
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(a) T-score map for the binary third person pronoun regressor

(b) T-score map for the Hobbs distance regressor

(c) T-score map for the negative neural network score regressor

Figure 3: Whole-brain effect with significant clusters for (a) binary third person pronouns effect, (b)
difficulty for third pronoun resolution based on the Hobbs algorithm and (c) difficulty for third person
pronoun resolution based on the neural coreference model. All images underwent FWE voxel correction
for multiple comparisons with p < 0.05.

MNI coordinates Region p-value k-size t-score
x y z FWE-corr cluster peak

Third Person Pronoun -60 -12 -6 left Superior Temporal Gyrus < 0.001 4411 12.92
(binary) 64 -10 -2 right Superior Temporal Gyrus < 0.001 1625 10.95

-46 30 -12 left Inferior Frontal Gyrus < 0.001 706 10.53
-10 42 46 left Superior Frontal Gyrus < 0.001 2394 10.45
18 -74 -30 right Cerebellum < 0.001 283 7.15
52 -60 26 right Angular Gyrus 0.004 68 5.84

Hobbs Algorithm -6 -68 50 left Precuneus < 0.001 1163 8.86
-32 -62 42 left Angular Gyrus < 0.001 1216 8.42
-52 -56 -16 left Inferior Temporal Gyrus < 0.001 285 6.54
34 -52 34 right Angular Gyrus 0.001 119 6.31
-44 6 34 left Inferior Frontal Gyrus 0.005 55 5.01
-26 12 60 left Superior Frontal Gyrus 0.007 62 5.63

Neural Network 62 -28 14 right Superior Temporal Gyrus 0.005 48 5.69
-46 -54 4 left Middle Temporal Gyrus 0.008 13 5.55

Table 5: Significant clusters of BOLD activation for (a) third person pronouns, (b) difficulty for third
person pronoun resolution based on the Hobbs algorithm and (c) difficulty for third person pronoun
resolution based on the neural coreference model. Peak activations are given in MNI Coordinates (p <
0.05, FWE).
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Abstract

This paper presents a left-corner parser for
minimalist grammars. The relation be-
tween the parser and the grammar is trans-
parent in the sense that there is a very sim-
ple 1-1 correspondence between deriva-
tions and parses. Like left-corner context-
free parsers, left-corner minimalist parsers
can be non-terminating when the grammar
has empty left corners, so an easily com-
puted left-corner oracle is defined to re-
strict the search.

1 Introduction

Minimalist grammars (MGs) (Stabler, 1997)
were inspired by proposals in Chomskian syn-
tax (Chomsky, 1995). MGs are strictly more
expressive than context free grammars (CFGs)
and weakly equivalent to multiple context free
grammars (MCFGs) (Michaelis, 2001; Harkema,
2001a). The literature presents bottom-up and top-
down parsers for MGs (Harkema, 2001b), which
differ in the order in which derivations are con-
structed, and consequently they may differ in their
memory demands at each point in the parse. But
partly because of those memory demands, parsers
that mix top-down and bottom-up steps are often
regarded as psycholinguistically more plausible
(Hale, 2014; Resnik, 1992; Abney and Johnson,
1991).

Among mixed strategies, left-corner
parsing (LC) is perhaps the best known
(Rosenkrantz and Lewis, 1970). A left-corner
parser does not begin by guessing what’s in the
string, as a top-down parser does. But it also does
not just reduce elements of the input, as a bottom-
up parser does. A left-corner parser looks first
at what is in the string (completing the left-most
constituent, bottom-up) and then predicting the

sisters of that element (top-down), if any. The
following CFG trees have nodes numbered in the
order they would be constructed by bottom-up,
left-corner and top-down strategies:

1
2

3 4
5

6 7

4
2

1 3
6

5 7

7
3

1 2
6

4 5
top-down left-corner bottom-up

LC parsing is bottom-up on the leftmost leaf, but
then proposes a completed parent of that node on
condition that its predicted sister is found.

For CFGs, LC parsing is well understood
(Aho and Ullman, 1972; Rosenkrantz and Lewis,
1970). In a CF rule A → B C , the left cor-
ner is of course always B. Johnson and Roark
(2000) generalize from CFGs to unification-based
grammars and show how to allow some selected
categories to be parsed left-corner while others
are parsed top-down. Extending these ideas to
MGs, we must deal with movements, with rules
that sometimes have their first daughter on the
left and sometimes on the right, and with cate-
gories that are sometimes empty and sometimes
not. Left corner parsers were developed for some
other discontinuous formalisms with similar prop-
erties (van Noord, 1991; Dı́az et al., 2002) but in
all cases these parsers fall in the category of
the arc-standard left corner parsing. Here we
present a left corner parser that is of arc-eager
type which is argued to be more cognitively plau-
sible due to its higher degree of incrementality
(Abney and Johnson, 1991; Resnik, 1992).

A first approach to left-corner MG parsing, de-
signed to involve a kind of psycholinguistically
motivated search, has been presented (Hunter,
2017), but that proposal does not handle all MGs.
In particular, remnant movement presents the main
challenge to Hunter’s parser. The parser proposed
here handles all MGs, and it is easily shown to be
sound and complete via a simple 1-1 correspon-
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dence between derivations and parses. (However,
as mentioned in the conclusion, the present pro-
posal does not yet address the psycholinguistic is-
sues raised by Hunter.) Following similar work
on CFGs (Pereira and Shieber, 1987, §6.3.1), we
show how to compute a left-corner oracle that can
improve efficiency. And probabilities can be used
in a LC beam-parser to pursue the most proba-
ble parses at each step (Manning and Carpenter,
1997).

2 Minimalist grammars

We present a succinct definition adapted from
Stabler (2011, §A.1) and then consider a sim-
ple example derivation in Figure 1. An MG
G=〈Σ, B, Lex,C, {merge,move}〉, where Σ is the
vocabulary, B is a set of basic features, Lex is a
finite lexicon (as defined just below), C ∈ B is the
start category, and {merge,move} are the gener-
ating functions. The basic features of the set B are
concatenated with prefix operators to specify their
roles, as follows:

categories, selectees = B
selectors = {=f | f ∈ B}
licensees = {-f | f ∈ B}
licensors = {+f | f ∈ B}.

Let F be the set of role-marked features, that is,
the union of the categories, selectors, licensors and
licensees. Let T={::, :} be two types, indicat-
ing ‘lexical’ and ‘derived’ structures, respectively.
Let C = Σ∗ × T × F ∗ be the set of chains. Let
E = C+ be the set of expressions. An expression
is a chain together with its ‘moving’ sub-chains,
if any. Then the lexicon Lex ⊂ Σ∗ × {::} × F ∗

is a finite set. We write ǫ for the empty string.
Merge and move are defined in Table 1. Note that
each merge rule deletes a selection feature =f and
a corresponding category feature f, so the result
on the left side of the rule has 2 features less than
the total number of features on the right. Simi-
larly, each move rule deletes a licensor feature +f
and a licensee feature -f. Note also that the rules
have pairwise disjoint domains; that is, an instance
of a right side of a rule is not an instance of the
right side of any other rule. The set of structures,
everything you can derive from the lexicon using
the rules, S(G)=closure(Lex,{merge,move}). The
sentences L(G) = {s| s ·C ∈ S(G) for some type
· ∈ {:, ::}}, where C is the ‘start’ category.

Example grammar G1 with start category c uses
features +wh and -wh to trigger wh-movements:

ǫ :: =v c knows :: =c =d v
ǫ :: =v +wh c likes :: =d =d v
Aca :: d what :: d -wh
Bibi :: d

These 7 lexical items define an infinite language.
An example derivation is shown in Figure 1.

Grammar G1 is simple in a way that can be
misleading, since the mechanisms that allow sim-
ple wh-movement also allow remnant movements,
that is, movements of a constituent out of which
something has already moved. Without remnant
movements, MGs only define context-free lan-
guages (Kobele, 2010). So remnant movements
are responsible for deriving copying and other
sorts of crossing dependencies that cannot be en-
forced in a CFG. Consider G2:

⊥ :: T -r -l ⊤ :: =T +r +l T
a :: =A +l T -l a :: =T +r A -r
b :: =B +l T -l b :: =T +r B -r

With T as the start category, this grammar defines
the copy language ⊥XX⊤ where X is any string
of a’s and b’s. Bracketing the reduplicated string
with ⊥ and ⊤ allows this very simple grammar
with no empty categories, and makes it easy to
track how the positions of these elements is de-
fined by the derivation tree on the left in Figure 2,
with 6 movements numbered 0 to 4, with TP(0)
moving twice.

This example shows that simple mechanisms
and simple lexical features can produce sur-
prising patterns. Some copy-like patterns
are fairly easy to see in human languages
(Bresnan et al., 1982; Shieber, 1985), and many
proposals with remnant derivations have become
quite prominent in syntactic theory, even where
copy-like patterns are not immediately obvious
(den Besten and Webelhuth, 1990; Kayne, 1994;
Koopman and Szabolcsi, 2000; Hinterhölzl, 2006;
Grewendorf, 2015; Thoms and Walkden, 2018).
Since remnant-movement analyses seem appropri-
ate for some constructions in human languages,
and since grammars defining those analyses are
often quite simple, and since at least in many
cases, remnant analyses are easy to compute, it
would be a mistake to dismiss these derivations too
quickly. For present purposes, the relevant and ob-
vious point is that a sound and complete left corner
parser for MGs must handle all such derivations.

66



Aca knows what Bibi likes:c

ǫ::=v c
1

Aca knows what Bibi likes:v

knows what Bibi likes:=d v

knows::=c =d v
3

what Bibi likes:c

Bibi likes:+wh c,what:-wh

ǫ::=v +wh c
55

Bibi likes:v,what:-wh

likes:=d v,what:-wh

likes::=d =d v
7

what::d -wh
4

Bibi::d
6

Aca::d
2

cP

c

ǫ
1

vP

dP

Aca
2

v’

v

knows
3

cP

dP(0)

what
4

c’

c

ǫ
5

vP

dP

Bibi
6

v’

v

likes
7

dP(0)

Figure 1: Derivation tree from G1 on the left, and corresponding X-bar derived tree on the right. In
the derivation tree, the binary internal nodes are applications of merge rules, while the unary node is an
application of move1. Computing the derived X-bar structure from the derivation is briefly described in
§5 below. Note that in the X-bar tree, P is added to each category feature when the complex is the ‘max-
imal projection’ of the head, while primes indicate intermediate projections, and the moved constituent
is ‘coindexed’ with its origin by marking both positions with (0). For the LC parser, the derivation tree
(not the derived X-bar tree) is the important object, since the derivation is what shows whether a string
is derived by the grammar. But which daughter is ‘leftmost’ in the derivation tree is determined by the
derived string positions, counted here from 1 to 7, left to right. Derived categories become left corners
when they are completed, so for the nodes in the derivation tree, the leftmost daughter, in the sense
relevant for LC parsing, is the one that is completed first in the left-to-right parse of the derived string.

⊥ a b a b ⊤:T

a b ⊤:+l T,⊥ a b:-l

⊤:+r +l T,⊥ a b:-l,a b:-r

⊤::=T +r +l T ⊥ a b:T -l,a b:-r

b:+l T -l,a b:-r,⊥ a:-l

b::=B +l T -l a b:B -r,⊥ a:-l

b:+r B -r,⊥ a:-l,a:-r

b::=T +r B -r ⊥ a:T -l,a:-r

a:+l T -l,a:-r,⊥:-l

a::=A +l T -l a:A -r,⊥:-l

a:+r A -r,⊥:-r -l

a::=T +r A -r ⊥::T -r -l

TP

TP(4)

TP(2)

TP(0)

⊥

T’

T

a

AP(1)

T’

T

b

BP(3)

T’

BP(3)

AP(1)

TP(0) A’

A

a

TP(0)

B’

B

b

TP(2)

T’

T

⊤
TP(4)

Figure 2: Derivation tree from G2 on the left, and corresponding derived tree on the right. Note that the
empty TP(0) moves twice, first with MOVE2 and then landing with MOVE1. That TP is just the empty
head, the only element of G2 with 2 licensees. Graf et al. (2016) show that all MG languages can be
defined without moving any phrase more than once, but G2 is beautifully small and symmetric.
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merge is the union of the following 3 rules, each with 2 elements on the right,
for strings s, t ∈ Σ∗, for types · ∈ {:, ::} (lexical and derived, respectively),
for feature sequences γ ∈ F ∗, δ ∈ F+, and for chains α1, . . . , αk, ι1, . . . , ιl (0 ≤ k, l)

(MERGE1) lexical item s selects non-mover t to produce the merged st
st : γ, α1, . . . , αk ← s :: =fγ t · f, α1, . . . , αk

(MERGE2) derived item s selects a non-mover t to produce the merged ts
ts : γ, α1, . . . , αk, ι1, . . . , ιl ← s : =fγ, α1, . . . , αk t · f, ι1, . . . , ιl

(MERGE3) any item s selects a mover t to produce the merged s with chain t
s : γ, α1, . . . , αk, t : δ, ι1, . . . , ιl ← s · =fγ, α1, . . . , αk t · fδ, ι1, . . . , ιl

move is the union of the following 2 rules, each with 1 element on the right,
for δ ∈ F+, such that none of the chains α1, . . . , αi−1, αi+1, . . . , αk has -f as its first feature:

(MOVE1) final move of t, so its -f chain is eliminated on the left
ts : γ, α1, . . . , αi−1, αi+1, . . . , αk ← s : +fγ, α1, . . . , αi−1, t : -f, αi+1, . . . , αk

(MOVE2) nonfinal move of t, so its chain continues with features δ
s : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk ← s : +fγ, α1, . . . , αi−1, t : -fδ, αi+1, . . . , αk

Table 1: Rules for minimalist grammars from (Stabler, 2011, §A.1). Where a CFG has →, these
rules have ← as a reminder that they are usually used ‘bottom-up’, as functions from the elements on
their right sides to the corresponding value on the left. To handle movements, MGs show the strings
s, t explicitly. And where CFG rules have categories, these rules have complexes, i.e. comma-separated
chains. Intuitively, each chain is a string with a type and syntactic features, and each constituent on either
side of these rules is a sequence of chains, an initial head chain possibly followed by moving chains.

3 Left corner MG parsing

A left corner parser uses an MG rule when the left-
most element on the right side is complete, where
by leftmost element we do not mean the one that
appears first in the rules of Table 1. Rather, the
leftmost element is the one that is completed first
in the left-to-right parse. For MOVE rules, there
is just one element on the right side, so that ele-
ment is the left-corner. When the right side of a
MOVE rule is complete, it is replaced by the corre-
sponding left side. But matters are more interest-
ing for MERGE rules, which have two constituents
on their right sides. Because the first argument s
of MERGE1 is lexical, it is always the left corner
of that rule. But for MERGE2 and MERGE3, either
argument can have moved elements that appear to
the right, so which argument is the left corner de-
pends on the particular grammar and even some-
times on the particular derivation.

In the derivation shown in Figure 1, for exam-
ple, there is one application of MERGE3, to com-
bine likes with what, and in that case, the selectee
lexical item what is the left corner because it is the
4th terminal element, while its sister in the deriva-

tion tree is terminal element 7. In Figure 2, we
can see that ⊥ occurs first in the input, and is pro-
cessed in the very first step of the successful left
corner parse, even though it is the deepest, right-
most element in the derivation tree.

The MERGE3 rule of MGs raises another tricky
issue. After the output of this rule with the pre-
dicted right corner is computed, we need to re-
member it, sometimes for a number of steps, since
left and right corners can be arbitrarily far apart.
Even with the simple G1, we can get Aca knows
what Bibi knows Aca knows Bibi knows. . . Aca
likes. We could put the MERGE3 output into a
special store, like the HOLD register of ATNs
(Wanner and Maratsos, 1978), but here we adopt
the equivalent strategy of keeping MERGE3 pre-
dictions in the memory that holds our other com-
pleted left corners and predicted elements. We call
this memory a queue, since it is ordered like a
stack, but the parser can access elements that are
not on top, as explained below. Queue could be
treated as a multiset (since elements can be ac-
cessed even if they are not on the top) but treating
queue as an ordered structure allows easier defini-
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tion of oracle and easier definition of which con-
stituent is triggering the next parser’s operation.

It will be convenient to number string positions
as usual: 0 Aca 1 knows 2 what 3 Bibi 4 likes 5.
Substrings can then be given by their spans, so Aca
in our example is represented by 0-1, knows is 1-2,
and an initial empty element would have the span
0-0.

So the parser state is given by

(remaining input, current position, queue),

and we begin with

(input, 0, ǫ).

For any input of length n, we then attempt to apply
the LC rules to get

(ǫ, n, 0-n·c),

where · is any type and c is the start category. The
LC rules are these:

(0) The SHIFT rule takes an initial (possibly
empty) element w with span x-y from the begin-
ning of the remaining input, where the lexicon has
w :: γ, and puts x-y::γ onto the queue.

(1) For an MG rule R of the form A ← B C
with left corner B, if an instance of B is on top of
the queue, lc1(R) removes B from the top of the
queue and replaces it with an element C ⇒ A.
Since any merge rule can have the selector as its
left corner, we have the LC rules LC1(MERGE1),
LC1(MERGE2), and LC1(MERGE3).

Let’s be more precise about being ‘an instance’.
When R is A ← B C , the top element B′ of
the queue is an instance of B iff we can find a
(most general) substitution θ such that B′θ = Bθ.
In that case, lc(R) replaces B′ with (C ⇒ A)θ.
This computation of substitutions can be done by
standard unification (Lloyd, 1987). For example,
looking at MERGE1 in Table 1, note that the first
constituent on the right specifies the feature f , the
sequence γ, and the string s, but not the string t
or the 0 or more moving chains α1, . . . , αk. So
when LC1(MERGE1) applies, the unspecified el-
ements are left as variables, to be instantiated by
later steps. So when s :: =fγ (for some particu-
lar s, f, γ) is on top of the queue, LC1(MERGE1)
replaces it by

(t · f, α1, . . . , αk ⇒ st : γ, α1, . . . , αk).

where underlined elements are variables.

(2) For an MG rule R of the form A ← B C ′

with completed left corner C and Cθ = C ′θ,
lc2(R) replaces C on top of the queue by (B ⇒
A)θ. For this case, where the second argument on
the right side is the left corner, we have the LC
rules LC2(MERGE2) and LC2(MERGE3).

(3) Similarly for MG rules A ← B, the
only possible leftcorner is a constituent B where
Bθ = B′θ, replacing B′ by Aθ. So we have
LC1(MOVE1) and LC1(MOVE2) in this case.

(4) We have introduced 8 LC rules so far. There
is SHIFT, and there are 7 LC rules corresponding
to the 5 MG rules in Table 1, because of the fact
that the left corner of MERGE2 and MERGE3 can
be either the first or second element on the right
side of the rule. Each LC rule acts to put some-
thing new on top of the queue. The ‘arc-eager’
variant of LC parsing, which we will define here,
adds additional variants of those 8 rules: instead of
just putting the new element on top of the queue,
the element created by a rule can also be used to
complete a prediction on the queue, ‘connecting’
the new element with structure already built.1 Im-
portantly, the following completion variants of the
LC rules can search below the top element to find
connecting elements:

c(R) If LC rule R creates a constituent B, and
the queue has B′ ⇒ A, where Bθ = B′θ, then
c(R) removes B′ ⇒ A puts Aθ onto the queue.

c1(R) If LC rule R creates B ⇒ A and we al-
ready have C ⇒ B′ on the queue, where Bθ =
B′θ, then c1(R) removes C ⇒ B′ and puts (C ⇒
A)θ onto the queue.

c2(R) If LC rule R creates C ⇒ B and we al-
ready have B′ ⇒ A on the queue, where Bθ =
B′θ, c2(R) removes B′ ⇒ A and puts (C ⇒ A)θ
onto the queue.

c3(R) If LC rule R creates a constituent C ⇒ B
and we already have B′ ⇒ A and D ⇒ C ′ on the
queue, where Bθ = B′θ and Cθ = C ′θ c3(R)
removes B′ ⇒ A and D ⇒ C ′ and puts (D ⇒
A)θ onto the queue.

These completion rules are similar to the ‘com-
position’ rules of combinatory categorial grammar
(Steedman, 2014).

1Instead of requiring completions to happen when an ele-
ment is added to the queue, the ‘arc-standard’ variant of LC
parsing uses separate complete rules, which means that a con-
stituent need not (and sometimes cannot) be connected to pre-
dicted structure at the time when it is first proposed.
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That completes the specification of an arc-eager
left corner parser for MGs. The rules are non-
deterministic; that is, at many points in a parse,
various different LC rules can apply. But for each
n-node derivation tree, there is a unique sequence
of n LC rule applications that accepts the derived
string. This 1-1 correspondence between deriva-
tions and parses is unsurprising given the defini-
tion of LC. Intuitively, every LC rule is an MG
rule, except that it’s triggered by its left corner, and
it can ‘complete’ already predicted constituents.
This makes it relatively easy to establish the cor-
rectness of the parsing method (§5, below).

The 14 node derivation tree in Figure 1 has this
14 step LC parse, indicating the rule used, the
remaining input, and queue contents from top to
bottom, with variables M and N for chain se-
quences, Fs for features, for span positions, and
[] represents the remaining input ǫ in the last 2
steps of the listing:
1. shift [Aca,knows,what,Bibi,likes]

0-0::=v c
2. lc1(merge1) [Aca,knows,what,Bibi,likes]

(0-_.v _M => 0-_:c _M)
3. shift [knows,what,Bibi,likes]

0-1::d
(0-_.v _M => 0-_:c _M)

4. c1(lc2(merge2)) [knows,what,Bibi,likes]
(1-_:=d v _M => 0-_:c _M)

5. shift [what,Bibi,likes]
1-2::=c =d v
(1-_:=d v _M => 0-_:c _M)

6. c1(lc1(merge1)) [what,Bibi,likes]
(2-_.c _M => 0-_:c _M)

7. shift [Bibi,likes]
2-3::d -wh
(2-_.c _M => 0-_:c _M)

8. lc2(merge3) [Bibi,likes]
(_-_.=d _Fs_M => _-_:_Fs,2-3:-wh )
(2-_.c _M => 0-_:c _M)

9. shift [Bibi,likes]
3-3::=v +wh c
(_-_.=d _Fs => _-_:_Fs,2-3:-wh )
(2-_.c _M => 0-_:c _M)

10. lc1(merge1) [Bibi,likes]
(3-_.v _M => 3-_:+wh c _M)
(_-_.=d _Fs => _-_:_Fs,2-3:-wh )
(2-_.c _N => 0-_:c _N)

11. shift [likes]
3-4::d
(3-_.v _M => 3-_:+wh c _M)
(_-_.=d _Fs => _-_:_Fs,2-3:-wh )
(2-_.c _N => 0-_:c _N)

12. c3(lc2(merge2)) [likes]
(4-_.=d =d v => 3-_:+wh c ,2-3:-wh )
(2-_.c _M => 0-_:c _M)

13. c(shift) []
3-5:+wh c ,2-3:-wh
(2-_.c _M => 0-_:c _M)

14. c(lc1(move1)) []
0-5:c

The derivation tree in Figure 2 has 17 nodes,

and so there is a corresponding 17 step LC parse.
For lack of space, we do not present that parse
here. It is easy to calculate by hand (especially
if you cheat by looking at the tree in Figure 2), but
much easier to calculate using an implementation
of the parsing method.2

4 A left corner oracle

The description of the parsing method above spec-
ifies the steps that can be taken, but does not spec-
ify which step to take in situations where more
than one is possible. As in the case of CFG parsing
methods, we could take some sequence of steps
arbitrarily and then backtrack, if necessary, to ex-
plore other options, but this is not efficient, in gen-
eral (Aho and Ullman, 1972). A better alternative
is to use ‘memoization’, ‘tabling’ – that is, keep
computed results in an indexed chart or table so
that they do not need to be recomputed – compare
(Kanazawa, 2008; Swift and Warren, 2012). An-
other strategy is to compute a beam of most prob-
able alternatives (Manning and Carpenter, 1997).
But here, we will show how to define an ora-
cle which can tell us that certain steps cannot
possibly lead to completed derivations, following
similar work on CFGs (Pereira and Shieber, 1987,
§6.3.1). This oracle can be used with memoizing
or beam strategies, but as in prior work on CFG
parsing, we find that sometimes an easily com-
puted oracle makes even backtracking search effi-
cient. Here we define a simple oracle that suffices
for G1 and G2. For each grammar, we can effi-
ciently compute a link relation that we use in this
way: A new constituent A′ or B′ ⇒ A′ can be put
onto the queue only if A′ stands in the LINK rela-
tion to a predicted category, that is, where the start
category is predicted when the queue is empty, and
a category B is predicted when we have B ⇒ A
on top of the queue. For many grammars, this
use of a LINK oracle eliminates many blind alleys,
sometimes infinite ones.

Let LINK(X,Y ) hold iff at least one of these
conditions holds: (1) X is a left corner of Y , (2)
Y contains a initial licensee -f and the first feature
of Y is +f, or (3) X and Y are in the transitive
closure of the relation defined by (1) and (2). To
keep things finite and simple, the elements related
by LINK are like queue elements except the mover

2An implementation of this parser and our example
grammars is provided at https://github.com/stanojevic/Left-
Corner-MG-parser
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lists are always variables, and spans are always un-
specified. Clearly, for any grammar, this LINK re-
lation is easy to compute. Possible head feature se-
quences are non-empty suffixes of lexical features,
suffixes that do not begin with -f. The possible left
corners of those head sequences are computable
from the 7 left corner rules above. This simple
LINK relation is our oracle.

5 Correctness, and explicit trees

We sketch the basic ideas needed to demonstrate
the soundness of our parsing method (every suc-
cessful parse is of a grammatical string) and its
completeness (every grammatical string has a suc-
cessful parse). Notice that while the top-down MG
parser in Stabler (2013) needed indices to keep
track of relative linear positions of predicted con-
stituents, no such thing is needed in the LC parser.
This is because in LC parsing, every rule has a
bottom-up left corner, and in all cases except for
MERGE3, that left corner determines the linear or-
der of any predicted sisters.

For MERGE3, neither element on the right side
of the rule, neither the selector nor the selectee,
determines the relative position of the other. But
the MERGE3 selectee has a feature sequence of the
form: fγ-g, and this tells us that the linear posi-
tion of this element will be to the left of the cor-
responding +g constituent that is the left corner
of move1. That is where the string part of the -g
constituent ‘lands’. The Shortest Move Constraint
(SMC) guarantees that this pairing of the +g and -g
constituents is unique in any well formed deriva-
tion, and the well-formedness of the derivation is
guaranteed by requiring that constituents built by
the derivation are connected by instances of the 5
MG rules in Table 1.

Locating the relevant +g move1 constituent also
sufficiently locates the MERGE3 selector with its
feature sequence of the form =fγ. It can come
from anywhere in the +g move1 constituent’s
derivation that is compatible with its features.
Consequently, when predicting this element, the
prediction is put onto the queue when the +g con-
stituent is built, where the compose rules can use
it in any feature-compatible position.

With these policies there is a 1-1 correspon-
dence between parses and derivations. In fact,
since all variables are instantiated after all subsi-
tutions have applied, we can get the LC parser to
construct an explicit representation of the corre-

sponding derivation tree simply by adding tree ar-
guments to the syntactic features of any grammar,
as in (Pereira and Shieber, 1987, §6.1.2). For ex-
ample, we can augment G1 with derivation tree
arguments as follows, writing R/L for trees where
R is root and L a list of subtrees, where • is merge
and ◦ is move, and single capital letters are vari-
ables:
ǫ :: =v(V) c(•/[ǫ::=v c/[],V])
ǫ :: =v(V) +wh c(◦/[•/[ǫ::=v c/[],V]])
knows :: =c(C) =d(D) v(•/[•/[knows::=c =d v/[],C],D])
likes :: =d(E) =d(D) v(•/[•/[likes::=d =d v/[],E],D])
Aca :: d(Aca::d/[])
Bibi :: d(Bibi::d/[])
what :: d(what::d -wh/[]) -wh

Without any change in the LC method above, with
this grammar, the final start category in the last
step of the LC parse of Aca knows what Bibi likes
will have as its argument an explicit representation
of the derivation tree of Figure 1, but with binary
internal nodes replaced by • and unary ones by ◦.

A slightly different version of G1 will build the
the derived X-bar tree for the example in Figure 1,
or any other string in the infinite language of G1:

ǫ :: =v(V) c(cP/[c/[ǫ/[],V]])
ǫ :: =v(V) +wh(W) c(cP/[W,c’/[c/[ǫ/[]],V]])
knows :: =c(C) =d(D) v(vP/[D,v’/[v/[knows/[]],C]])
likes :: =d(E) =d(D) v(vP/[D,v’/[v/[likes/[]],E]])
Aca :: d(dP/[Aca/[]])
Bibi :: d(dP/[Bibi/[]])
what :: d(dP(I)/[]) -wh(dP(I)/[what/[]])

Notice how this representation of the grammar
uses a variable I to coindex the moved element
with its original position. In the X-bar tree of Fig-
ure 1, that variable is instantiated to 0. Note also
how the variable W gets bound to the moved ele-
ment, so that it appears in under cP, that is, where
the moving constituent ‘lands’. See e.g. Stabler
(2013, Appendix B) for an accessible discussion
of how this kind of X-bar structure is related to the
derivation, and see Kobele et al. (2007) for techni-
cal details. (See footnote 2 for an implementation
of the approach presented here.)

6 Conclusions and future work

This paper defines left-corner MG parsing. It is
non-deterministic, leaving the question of how to
search for a parse. As in context free LC pars-
ing, when there are empty left corners, backtrack-
ing search is not guaranteed to terminate. So we
could use memoization or a beam or both. All of
these search strategies are improved by discard-
ing intermediate results which cannot contribute
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to a completed parse, and so we define a very sim-
ple oracle which does this. That oracle suffices to
make backtrack LC parsing of G1 and G2 feasible
(see footnote 2). For grammars with empty left
corners, stronger oracles can also be formulated,
e.g. fully specifying all features and testing spans
for emptiness. But for empty left corners, prob-
ably the left corner parser is not the best choice.
Other ways of mixing top-down and bottom-up
can be developed too, for the whole range of gen-
eralized left corner methods (Demers, 1977), some
of which might be more appropriate for models
of human parsing than LC (Johnson and Roark,
2000; Hale, 2014).

As noted earlier, Hunter (2017) aims to define
a parser that appropriately models certain aspects
of human sentence parsing. In particular, there is
some evidence that, in hearing or reading a sen-
tence from beginning to end, humans are inclined
to assume that movements are as short as possi-
ble – “active gap-filling”. It looks like the present
model has a structure which would allow for mod-
eling this preference in something like the way
Hunter proposes, but we have not tried to capture
that or any other human preferences here. Our
goal here has been just to design a simple left-
corner mechanism that does exactly what an arbi-
trary MG requires. Returning to Hunter’s project
with this simpler model will hopefully contribute
to the project of moving toward more reasonable
models of human linguistics performance.

There are many other natural extensions of
these ideas:

- The proposed definition of LC parsing is de-
signed to make correctness transparent, but
now that the idea is clear, some simplifica-
tions will be possible. In particular, it should
be possible to eliminate explicit unification,
and to eliminate spans in stack elements.

- The LC parser could also be extended to
other types of MG rules proposed for head-
movement, adjunction, coordination, copy-
ing, etc. (Torr and Stabler, 2016; Fowlie,
2014; Gärtner and Michaelis, 2010; Kobele,
2006).

- Our LC method could also be adapted to mul-
tiple context free grammars (MCFGs) which
are expressively equivalent, and to other
closely related systems (Seki et al., 1991;
Kallmeyer, 2010).

- Stanojević (2017) shows how bottom-up
transition-based parsers can be provided for
MGs, and those allow LSTMs and other
neural systems to be trained as oracles
(Lewis et al., 2016). It would be interesting
to explore similar oracles for slightly more
predictive methods like LC, and trained on
recently built MGbank (Torr, 2018).

- For her ‘geometric’ neural realizations
of MG derivations (Gerth and beim Graben,
2012), Gerth (2015, p.78) says she would
have used an LC MG parser in her neural
modeling if one had been available, so that
kind of project could be revisited.

We leave these to future work.
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Miloš Stanojević. 2017. Minimalist grammar
transition-based parsing. In International Confer-
ence on Logical Aspects of Computational Linguis-
tics, LACL. Springer, LNCS 10054, pages 273–290.

Mark J. Steedman. 2014. Categorial grammar. In
A. Carnie, Y. Sato, and D. Siddiqi, editors, Rout-
ledge Handbook of Syntax, Routledge, NY, pages
670–701.

Terrance Swift and David S. Warren. 2012. XSB:
Extending prolog with tabled logic programming.
Theory and Practice of Logic Programming 12(1-
2):157–187. ArXiv:1012.5123.

Gary Thoms and George Walkden. 2018. vP-fronting
with and without remnant movement. Journal of
Linguistics pages 1–54.

John Torr. 2018. Constraining mgbank: Agreement,
l-selection and supertagging in minimalist gram-
mars. In Proceedings of the 56th Annual Meeting
on Association for Computational Linguistics. Asso-
ciation for Computational Linguistics, Melbourne,
Australia.

John Torr and Edward Stabler. 2016. Coordination in
minimalist grammars. In Proceedings of the 12th
Annual Workshop on Tree-Adjoining Grammars and
Related Formalisms, TAG+.

Gertjan van Noord. 1991. Head corner parsing for dis-
continuous constituency. In Proceedings of the 29th
Annual Meeting on Association for Computational
Linguistics. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, ACL 1991, pages 114–
121.

Eric Wanner and Michael P. Maratsos. 1978. An ATN
approach to comprehension. In M. Halle, J. Bres-
nan, and G. A. Miller, editors, Linguistic Theory and
Psychological Reality, MIT Press, Cambridge, Mas-
sachusetts.

74



Author Index

António Rodrigues, João, 1
Asahara, Masayuki, 36

Branco, António, 1
Branco, Ruben, 1

Calvillo, Jesús, 17
Crocker, Matthew, 17

Demberg, Vera, 6

Fabre, Murielle, 56

Gao, Wenqiang, 27

Hale, John, 56

Kluth, Thomas, 47

Li, Jixing, 56
Lim, KyungTae, 41
Liu, Yi, 27
Luh, Wen-Ming, 56

McGregor, Stephen, 41

Nambu, Satoshi, 36

Saedi, Chakaveh, 1
Sano, Shin-Ichiro, 36
Schultheis, Holger, 47
Silva, João, 1
Stabler, Edward, 65
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