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Abstract

It is common practice to adapt machine
translation systems to novel domains, but
even a well-adapted system may be able
to perform better on a particular document
if it were to learn from a translator’s cor-
rections within the document itself. We
focus on adaptation within a single docu-
ment – appropriate for an interactive trans-
lation scenario where a model adapts to a
human translator’s input over the course
of a document. We propose two meth-
ods: single-sentence adaptation (which
performs online adaptation one sentence at
a time) and dictionary adaptation (which
specifically addresses the issue of trans-
lating novel words). Combining the two
models results in improvements over both
approaches individually, and over base-
line systems, even on short documents.
On WMT news test data, we observe an
improvement of +1.8 BLEU points and
+23.3% novel word translation accuracy
and on EMEA data (descriptions of med-
ications) we observe an improvement of
+2.7 BLEU points and +49.2% novel word
translation accuracy.

1 Introduction

The challenge of adapting to a new domain is a
well-studied problem in machine translation re-
search. But even within a particular domain,
each new document may pose unique challenges
due to novelty of vocabulary, word senses, style,
and more.1 It stands to reason that fine-grained
adaptation using sentences from within a docu-
ment (for example, as it is being translated by

∗These authors contributed equally to this work.
1Carpuat et al. (2012) decompose errors into seen, sense,

score, and search; the first two are most relevant to our work.

a human translator in a computer aided transla-
tion (CAT) environment) could provide the added
benefit of a closer in-domain match than existing
approaches that use data from other documents
within the same domain. We propose two com-
plementary approaches to the treatment of novel
words and fine-grained document-level adaptation
of machine translation systems, and show that
the combination of approaches outperforms each
approach individually, resulting in BLEU point
improvements of +1.8 and +2.7 across two do-
mains, in addition to demonstrating improvements
in novel word translation accuracy.

As Carpuat (2009) observed, there is a tendency
for translators to produce translations such that the
“one translation per discourse” hypothesis holds
within a particular document.2 That is, human
translators tend to prefer consistent translations of
individual terms throughout a document. Other
work on “translationese” has also found that trans-
lations show regularities in syntax and punctua-
tion (Baroni and Bernardini, 2005). Thus, even
expanding beyond words with multiple senses, we
expect that learning from the translator’s lexical,
syntactic, and stylistic choices at the beginning of
a document should result in a well-tailored sys-
tem that is better at translating subsequent sen-
tences. We can think of fine-grained adaptation
over a document as producing a document-specific
machine translation system that encodes or high-
lights document context.

Continued training of neural machine transla-
tion (NMT) systems has been shown to be an ef-
fective and efficient way to tune them for a specific
target domain (Luong and Manning, 2015). One
such technique is incremental updating – compar-
ing the system’s predicted translation of an input
sentence to a reference translation and then updat-

2This work follows from “one sense per discourse” (Gale
et al., 1992), which found that the vast majority of polyse-
mous words share only one sense within a given document.



65

Source Reference Baseline MT Output
Ambirix (Ambi/rix) Ambirix (Ambi/rix) Hampshire, Glaurix, Tandemrix, ...
Prepandemic (Prep/an/demic) Präpandemischer (Prä/pandem/ischer) Proteasehemmer
Cataplexy (Cat/ap/lex/y) Kataplexie (Kat/ap/lex/ie) Cataplexy
hormone-dependent (hormon/e-/dependent) hormonabhängig (hormon/abhängig) hormonell

Table 1: Examples of novel words and their mistranslations. The subword segmentation (in parentheses)
is indicated by “/” for the source and reference.

ing the model parameters to improve future pre-
dictions. Though this is typically done in batches
during training, a single sentence pair or even a
word and its translation can be treated as a train-
ing instance.

Computer aided translation provides an ideal
use case for exploring model adaptation at such
a fine granularity. As a human translator works,
each sentence that they translate (or each novel
word for which they provide a translation) can
then be used as a new training example for a neu-
ral machine translation system. In an interactive
translation setting or a post-editing scenario, rapid
incremental updating of the neural model will al-
low the neural system to adapt to an individual
translator, a particular new domain, or novel vo-
cabulary over the course of a document.

In an open-vocabulary NMT system that uses
byte-pair encoding (Sennrich et al., 2016b), to-
kens that were never seen in training data are rep-
resented as sequences of known subword units.
These may sometimes be successfully translated
(or copied, subword by subword, when appropri-
ate) on the first try, but sometimes systems gen-
erate incorrect translations or even nonsensical
words. Table 1 shows example mistranslations of
novel words.

We test our two complementary approaches to
document-level NMT adaptation (dictionary train-
ing and single-sentence adaptation) on two very
different domains: news and formal descriptions
of medications, each of which provide their own
challenges. In our datasets, just under 80% of
news documents and just over 90% of medical
documents contain at least one word that was un-
observed in the training data. In the news docu-
ments, 12.8% of lines contain at least one novel
word, whereas in the medical data, 38.3% of lines
contain at least one novel word. We show that
models can learn to correctly translate novel vo-
cabulary items and can adapt to document-specific
terminology usage and style, even in short docu-
ments.

2 Related Work

This work relates closely to three lines of re-
search on neural machine translation models: rare
word translation, copying mechanisms, and do-
main adaptation. Concerns about rare words and
copying mechanisms are closely linked; words
that need to be copied (or nearly copied) are of-
ten proper names or technical vocabulary, which
may be infrequent or unobserved in training data.

Arthur et al. (2016) propose to improve the
translation of rare (low-frequency) content words
through the use of translation probabilities from
discrete lexicons. Nguyen and Chiang (2018)
propose to train a feed-forward neural network
to generate a target word based directly on a
source word. Both then weight these probabili-
ties using the attention mechanism and combine
them with the standard translation approach. Gu
et al. (2016) propose a (monolingual) sequence-
to-sequence model, COPYNET, that can select in-
put sequences to copy to the output within the
course of generating a single sequence. All of
these approaches require modifications to the neu-
ral network architecture. Additionally, some re-
quire knowledge of the rare words during training,
meaning they are inapplicable to novel words.

By modifying the available training data rather
than the neural architecture, Currey et al. (2017)
find that training a neural machine translation sys-
tem to do both translation and copying of target
language text improves results on low-resource
neural machine translation and learns to pass un-
translated words through to the target. They
do this by mixing monolingual target data (as
source-target pairs) with parallel training data. In
contrast, Khayrallah and Koehn (2018) find that
this dramatically hurts performance (in a higher-
resource setting). Ott et al. (2018) provide addi-
tional analysis of copying behavior. Fadaee et al.
(2017) propose to learn better translations of rare
words by generating new sentences that include
them to add to the training data.

Domain adaptation has long been an area of in-
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terest for researchers in the machine translation
community and is relevant both to the translation
of new words and to more general improvements
in translation quality. Recent work (Freitag and
Al-Onaizan, 2016; Luong and Manning, 2015) has
proposed to do domain adaptation for NMT sys-
tems by training a general system then fine-tuning
by continuing to train using only in-domain data
(typically a smaller dataset). Wang et al. (2017)
present a similar approach where they weight each
source-target sentence pair during training based
on scores from in-domain and out-of-domain lan-
guage models. Kobus et al. (2017) use special
tokens to indicate domain. Chu et al. (2017)
compare the approaches. These approaches typ-
ically use larger amounts of in-domain data to
do adaptation, far greater than the amounts that
might be available in a CAT setting. Cettolo et al.
(2014) proposed adapting statistical phrase-based
machine translation systems to particular projects
(multiple documents) and Peris and Casacuberta
(2018) propose adapting neural machine transla-
tion systems in CAT settings. Neither explore very
small amounts of data at the sub-document level.

Two recent papers have tried a domain adapta-
tion approach using very small data sizes, ranging
from 1 sentence to 128 sentences (Farajian et al.,
2017; Li et al., 2016). They adapt models for
new sentences by training on sentence pairs from
a training corpus (or translation memory) that are
similar to the new sentence, which means they
cannot adapt to novel vocabulary.

3 Approaches

We propose two complementary approaches for
adapting an NMT model over the course of a sin-
gle document’s translation and the combination of
the two. For each approach, adaptation is done at
a document level and the model is reset to baseline
between documents.3

3.1 Single-Sentence Adaptation
In this approach, the model is iteratively adapted
over the previous translated sentence (and its refer-
ence), then the updated model is used to translate
the next sentence. Thus, line n of the document
is translated by a model which has been incremen-
tally adapted to all previous lines (1 through n−1)

3In cases where the domain is fairly homogeneous, it
may be beneficial not to reset the model between documents,
while in heterogeneous domains it may be desirable to do so
always. We leave this issue to future work.

of the document. See Algorithm 1 for details.
Such an approach could be applied in a computer
aided translation tool, which would allow the ma-
chine translation system to adapt to translator cor-
rections as produced by post-editing or through an
interactive translation prediction interface (Wue-
bker et al., 2016; Knowles and Koehn, 2016).
Single-sentence adaptation allows the model to
learn the translator’s preferred translations, which
may be specific to the particular document. For ex-
ample, the system might initially produce a valid
translation for a word in the document, while the
translator prefers an alternate translation; after
single-sentence adaptation, the system can learn to
produce the translator’s preferred translation in fu-
ture sentences.

Algorithm 1 Single-Sentence Adaptation
1: M : Baseline Model
2: D : Set of Documents
3: for d ∈ D do
4: . ref : reference translation of d
5: . mi : model trained through ith sentence
6: . di : ith line in d
7: . refi : ith line in ref
8: result← {}
9: m0 ←M

10: for i← 1, NUMLINES(d) do
11: resulti ← INFER(mi−1, di)
12: mi ← ADAPT(mi−1, (di, refi))
13: end for
14: baseHyp← INFER(M,d)
15: baseScore← BLEU(baseHyp, ref)
16: adaptScore← BLEU(result, ref)
17: end for
18: . We compare baseScore and adaptScore

3.2 Dictionary Training
This approach aims to adapt models with the spe-
cific goal of better translating novel words. Given
a new document to translate, we identify words
that are novel (have not appeared in any training or
adaptation data). Next, we obtain a single transla-
tion for each of these words (in a computer aided
translation setting, this might consist of asking a
human translator to provide translations; along the
lines of terminology curation). In this work, we
simulate the collection of such dictionaries (or ter-
minology banks) using the reference. We then
treat the list of novel words and their respective
translations as bitext and continue model training,
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producing a model specifically adapted to this doc-
ument’s novel vocabulary, which we can then use
to decode the complete document. Note that this
is a very small bitext to train on, and each line of
the bitext contains a single word (segmented into
multiple tokens by byte-pair encoding).

To simulate a translator-produced dictionary,
we build a dictionary of novel word translations
from the source and reference. First we run fast-
align (Dyer et al., 2013) over the byte-pair en-
coded representations of the source and reference
sentences.4 The target-side token whose subword
segments most frequently align to the subword
segments of the source-side token is selected as a
candidate translation, and a single final translation
is selected based on the most common candidate
translation within the document.5

3.3 Single-Sentence Adaptation with
Dictionary Training

Dictionary training and sentence adaptation offer
distinct benefits when adapting over a document.
Dictionary training helps the model learn the right
translations for novel words and single-sentence
adaptation can provide a more general adaptation.
The latter can also learn correct translations of re-
peated novel words, but may require multiple in-
stances to do so. Doing dictionary adaptation be-
forehand could ensure that the novel terminology
is correctly and consistently translated from the
beginning of the document, which could elimi-
nate a pain point for human translators. In this
combined approach, we begin with the document’s
dictionary trained model and use that as the initial
model for single-sentence adaptation.

4 Data and Models

We use two distinct datasets and baseline models
to evaluate our approaches, translating from En-
glish into German. We evaluate on WMT news
data and EMEA medical data using baseline WMT
and EMEA domain adapted models, respectively.
The different domains (news vs. medical) allow us
to evaluate our approaches in different scenarios.

4The fast-align model is trained over the byte-pair en-
coded representations of the full training data: WMT data,
backtranslations released by Sennrich et al. (2016b), and
EMEA data used for adaptation.

5Note that, particularly for words with morphological
variants in the target language, there may have been more
than one correct translation. We account for this in evalua-
tion, but only train on one translation option.

4.1 WMT

WMT Data: We test on the full WMT 2017 news
translation test set, splitting it into 130 unique doc-
uments (derived from the document splits in the
original SGM file). Each document is a short news
story. These stories are drawn from a number of
news sources, covering a wide range of topics.
While all documents are in the “news” domain,
this is a fairly heterogeneous dataset. The docu-
ments range in length from 2 to 64 lines, with an
average length of 22.1 lines (median 20).

We used the first 20 documents from the 2016
WMT news translation test set as a development
set for selecting training parameters for dictionary
training experiments, and a subset of 8 of these
documents for selecting parameters for the single-
sentence training experiments. The development
set documents had a similar range of lengths (3
lines to 62 lines, with an average of 19.0).

The number of novel word types per document
in our test set ranged from 0 (no novel words; no
dictionary adaptation) to 15 novel words. There
are 295 novel types (across all documents com-
bined) and 442 novel tokens. Across the test set,
12.8% of lines contain at least one novel word. In
some cases, up to 75% of the lines within a single
document contain at least one novel word.

WMT Baseline Model: We use a publicly avail-
able English-German model.6 The model is
trained using Nematus (Sennrich et al., 2017) on
the WMT parallel text, supplemented by synthetic
back-translated data as described in Edinburgh’s
WMT 2016 submission (Sennrich et al., 2016a).
They use byte-pair encoding (Sennrich et al.,
2016b) to allow for (near) open-vocabulary NMT.
The model uses 512 length word-embeddings with
an hidden layer size of 1024. As this was trained
for the 2016 WMT evaluation, both the 2016 and
2017 test sets can be safely used for development
and testing, respectively, as they were not included
in training data.

4.2 EMEA

EMEA Data: We use a subset7 of the European
Medicines Agency (EMEA) parallel corpus.8 It
consists of sentence-aligned documents focusing

6data.statmt.org/rsennrich/wmt16 systems
7We select only those documents labeled as “humandocs”

and filter out documents that contain only or primarily highly-
repetitive dosage information.

8http://opus.lingfil.uu.se/EMEA.php
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on medical products (Tiedemann, 2009). The cor-
pus contains high levels of domain-specific termi-
nology and repetition, making it appropriate for
this task. Each document describes a new medica-
tion, meaning that new documents contain novel
vocabulary. The medication name is typically re-
peated frequently within the document. Other
novel vocabulary items include highly-specific
medical terminology; these tend to appear fewer
times within the document.

We divide the documents into training, develop-
ment, and test sets such that all documents about
a particular medication are in the same set. Thus
most novel medication names in the development
and test data will have been unobserved in the
training data. We use four splits of the data: 500
document pairs (375K sentence pairs) for training
a baseline EMEA-adapted model, 22 document
pairs (5K sentence pairs) as validation for that
training, 5 document pairs (285 sentence pairs) for
a small grid search over parameters, and 47 docu-
ments (2,755 sentence pairs) for testing.

Test documents ranged in length from 48 lines
to 95 lines. In general, the EMEA documents
have a greater variation in length than this (with
some having 1000 or more lines). For data with
200 or more lines, considerable BLEU improve-
ments have been documented with online adapta-
tion and continued training. However, we seek to
demonstrate that adaptation can be done with even
shorter documents, and so focus this test set on
documents with fewer than 100 lines.

The number of novel types per document in our
test set ranged from 0 (no novel words; no dic-
tionary adaptation) to 10 novel words. There are
a total of 151 novel types (all documents com-
bined) and 1,129 novel tokens. Across the test set,
38.3% of lines contain at least one novel word.
In some cases, up to 63.5% of the lines within a
single document contain at least one novel word.
Some novel word types occurred more than 30
times within a single document.

EMEA Baseline Model: The WMT model is
trained on data which is significantly different
from the EMEA data’s medical domain. We see
considerable differences including vocabulary and
sentence lengths. If we were to use the unadapted
WMT model as our baseline, we might expect
high gains from very small amounts of data due to
the domain differences. Instead, in order to deter-
mine what marginal gains are possible in a real-life

use scenario where a client already has access to
a domain-specific model, we first adapt the WMT
model on the EMEA train data so that it is familiar
with the general style and vocabulary of the new
dataset. Thus, improvements are attributable to
document-specific adaptation rather than general
domain adaptation.

We use the 375K sentence pair training set,
validating on the 5K sentence pair development
set, to perform continued training (Freitag and Al-
Onaizan, 2016; Luong and Manning, 2015). We
use the same subword vocabulary and preprocess-
ing pipeline as the WMT model. We clip sentence
lengths to 50 tokens and train with a batch size of
80 over 15 epochs. We use a learning rate of 0.001
with the Adam optimizer (Kingma and Ba, 2014).

While training, external validation is done every
1,000 batches and models are saved accordingly.
We choose the model that gives the best validation
score over the development set. Results are con-
sistent with prior work: performance on the new
domain peaks around the first few epochs and then
tails off (Freitag and Al-Onaizan, 2016; Luong and
Manning, 2015).

The performance of the baseline WMT model
on the EMEA development set gives a BLEU
score of 18.2. Our best adapted model gives a
BLEU of 51.5. With over 30 points increase in
BLEU, the adapted model is well-tuned to the
EMEA corpus. We use this adapted model as the
baseline for further document-level adaptation.

5 Experiments

The two domains and their respective baseline
models provide us two distinct scenarios to eval-
uate our methodology. Both simulate a relatively
data-rich realistic setting in which translators have
completed translations of in-domain data and con-
tinue to work on new documents (with novel ter-
minology) within that domain. Each domain pro-
vides its own challenges: the WMT data covers a
wide range of topics and sources of news stories,
while the EMEA data includes highly technical
medical vocabulary, presented in fairly consistent
ways. Due to the way our EMEA data splits were
produced, this in particular means that the new
EMEA documents will likely contain novel vo-
cabulary (such as names of medications and other
specific terminology). Similarly, we expect news
stories to cover new names, locations, and more as
news breaks over time.
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Source Breast-feeding should be stopped while taking Siklos .
Reference Das Stillen sollte während der Behandlung mit Siklos eingestellt werden .
Baseline Während der Einnahme von Xenlos sollte abgestillt werden .
Dict.-Adapt. Während der Einnahme von Siklos sollte abgestillt werden .
Single-Sent.-Adapt. Während der Behandlung mit Ivlos sollte abgestillt werden .
Dict.+Single-Sent.-Adapt. Während der Behandlung mit Siklos sollte abgestillt werden .

Table 2: Complementary nature of two approaches: single-sentence approach learns the preferred trans-
lation of “while taking” (“Während der Behandlung”), but mistranslates Siklos as Ivlos. Dictionary
training produces Siklos correctly, but makes no other changes. Combined, the overall translation is
improved, though it would still require post-editing for correctness.

5.1 Single-Sentence Adaptation Experiments

For hyperparameter optimization, we did a com-
plete grid search over a span of learning rates (0.1,
0.01, 0.001, 0.0001, 0.00001), train epochs (1, 5,
10, 20), and optimizers (Adam, SGD) on WMT
data and a partial search on EMEA data. We use
BLEU (Papineni et al. (2002)) to measure the ef-
fect of adaptation. We found the optimum con-
figurations (optim, lr, epochs) of (SGD, 0.01,
5) for EMEA9 and (SGD, 0.1, 20) for WMT.
The difference in optimum configurations can be
partly attributed to the different domains of the
two datasets. We note that the best EMEA con-
figuration matched the second-best WMT one.

5.2 Dictionary Training Experiments

For the EMEA dictionary experiments, we com-
pleted a grid search over number of epochs (1, 2, 5,
10) and learning rate (0.1, 0.5, 1.0) using SGD as
the optimizer.10 Finding consistent results, we ran
a smaller grid search (epochs: 2 and 5 and learn-
ing rates 0.1, 0.5, and 1.0) over a development
set of the first 20 documents from WMT 2016.
Setting the learning rate and/or number of epochs
too low resulted in minimal changes, while setting
them too high resulted in pathological overfitting
(loops of repeated tokens, etc.). Based on these
initial experiments, we set a learning rate of 0.5
for both data sets, with 5 epochs for EMEA data
and 2 epochs for WMT data. The parameters cho-
sen were those that maximized BLEU score on the
development sets.

5.3 Lexically Constrained Decoding
Experiments

We compare our dictionary training approach
against an approach that uses the same dictionaries

9During hyperparameter selection, document lengths
were clipped to the first 60 lines.

10We also considered lower learning rates (0.01, 0.001,
0.0001), but found that they did not result in much, if any,
change to the model.

Model BLEU Nov. Acc.
EMEA-Adapt. Baseline 51.1 39.9%

Single-Sent. Adapt. 52.8 62.3%
Lex. Const. Decoding 50.4 86.5%
Dictionary Training 53.3 87.9%
Dict. + Single-Sent. 53.8 89.1%

Table 3: Results of baseline and dictionary train-
ing across the full set of EMEA test documents.
Accuracy is computed for novel words only.

and enforces a lexical constraint: if one of the dic-
tionary entries appears in the source, its translation
(acquired as described in Section 3.2) must ap-
pear in the translated output. We do this using the
grid beam search approach described in Hokamp
and Liu (2017). Rather than adapting the underly-
ing machine translation model, this approach con-
strains the search space to translations containing
specified sub-sequences (in this case, the byte-pair
encoded representations of the translation of any
words from the dictionary which appears in the
source sentence). We use the publicly released im-
plementation for Nematus, with a beam size of 12.

5.4 Single Sentence Adaptation with
Dictionary Training Experiments

Here we combine the approaches: for every doc-
ument, we first do dictionary training. Using
that as the starting point, we perform single sen-
tence adaptation. We use the best hyperparame-
ters obtained from the grid search for the individ-
ual methods.

6 Results & Analysis

We evaluate on two metrics. First, we compute
BLEU over the full set of test documents and com-
pare against the baseline translations. Across both
domains, single-sentence adaptation provides con-
sistent improvements in BLEU score (1.6 BLEU
points on WMT data and 1.7 BLEU points on
EMEA data). The dictionary training approach
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Model BLEU Nov. Acc.
WMT Baseline 25.1 48.9%

Single-Sent. Adapt. 26.7 58.4%
Lex. Const. Decoding 25.0 76.9%
Dictionary Training 25.1 71.7%
Dict. + Single-Sent. 26.9 72.2%

Table 4: Results of baseline and dictionary train-
ing across the full set of WMT test documents.
Accuracy is computed for novel words only.

has more varied results. We see no clear improve-
ment on the WMT data, but training on these small
dictionaries does not hurt BLEU score overall.
However, for the EMEA data, dictionary training
produces a 2.2 BLEU point improvement. This
gain can be primarily attributed to producing cor-
rect translations of the novel vocabulary, which
can make a large difference in n-gram matches.11

The lexically constrained decoding approach re-
sults in a decrease in BLEU score on both do-
mains. Combining both dictionary training and
single-sentence adaptation results in modest im-
provements (0.2 on WMT and 0.5 on EMEA) over
the best single approach for each domain. Full re-
sults are shown in Tables 3 and 4. The combined
approach produces improvements over the base-
line for 79.2% of the WMT documents and 83.0%
of the EMEA documents.

Figure 1 shows difference in BLEU produced
by single-sentence adaptation as compared to the
baseline on EMEA data. The overall trend is a net
improvement in BLEU which shows up as early as
10 sentences from the start.

We also observe qualitative results that sug-
gest that single-sentence adaptation is perform-
ing as expected, learning document- or translator-
specific translations. For example, the baseline
WMT system initially translates the English bi-
gram “delicate operation” as “delikater Betrieb”
while the reference translation prefers “heikle
Tätigkeit” as the translation. In the next sentence
in which “delicate operation” is observed, the
sentence-adapted model successfully translates it
as “heikle Tätigkeit” instead. Table 2 shows an-
other example in which the two approaches com-
bine to produce improvements.

We also compute accuracy for the translations
of novel words. To compute accuracy, we first run

11Consider the case of the baseline translation Was ist
AFluntis ? and the (correct) dictionary-adapted version Was
ist Aflunov ? – the former contains no 4-gram matches.

Figure 1: The X-axis shows the number of sen-
tences to which the model has been adapted. The
Y-axis shows the difference in BLEU score be-
tween this adapted model and the baseline on the
document’s remaining lines. Dotted lines repre-
sent individual documents; the average trend is
shown in bold.

a trained fast-align model over the byte-pair en-
coded source and the byte-pair encoded reference.
We use this alignment to map full tokens from the
source to full tokens in the reference (as was done
for producing the dictionaries). We then align the
source sentence and the machine translation out-
put the same way. For each instance of a novel
word, we score its aligned machine translated to-
ken as correct if it matches the aligned reference
token. The dictionary training approach shows,
as expected, a major jump in translation accuracy.
The single-sentence adaptation approach shows
results between the baseline and the dictionary ap-
proach. Lexically constrained decoding underper-
forms dictionary training on EMEA data (in part
because it sometimes produces medication names
that are concatenated with other subwords, or pro-
duces the medication name more times than re-
quired), while it outperforms other methods on the
WMT data (at a cost to the overall BLEU score,
whereas all other methods produce improvements
in BLEU). Table 3 shows that EMEA improves
from a baseline accuracy of 39.9% to an accu-
racy of 87.9% after dictionary training, and Ta-
ble 4 shows a slightly smaller jump from 48.9%
to 71.7% for WMT. Both show slight improve-
ments after combining single-sentence adaptation
and dictionary training.

With this increase in accuracy comes an in-
crease in consistency of translating the novel
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Model WMT EMEA
Copy Trans. Copy Trans.

Baseline 80.8% 11.3% 41.9% 28.4%
S.-Sent. 87.9% 23.6% 67.2% 32.7%
Dict. 92.5% 47.3% 92.5% 60.5%
Dict. + S. 94.6% 45.8% 92.9% 66.7%

Table 5: Novel word accuracy divided into tokens
to be copied (Copy) vs. translated (Trans.).

words. In the baseline EMEA-adapted model,
the average type-token ratio12 for translations of
novel words that occur at least 3 times (in the
source text) is 0.29. With dictionary adaptation,
this drops to 0.14 – lower than the reference type-
token ration of 0.16 – meaning that the new model
produces the exact translation from the dictionary
even when a variant (e.g. different case ending)
may be appropriate. As we use only one transla-
tion per novel source token in the dictionaries used
for training, the model overfits slightly. This issue
could potentially be alleviated by training on mul-
tiple translation options, at the risk of introducing
errors from incorrect alignments.

We perform more detailed analysis across two
kinds of novel words: those which should simply
be copied from source to target (e.g. medication
names) and those which must be translated. Ta-
ble 5 shows results for the baseline and our ap-
proaches. WMT data is almost evenly split be-
tween these: 46.8% of novel types (54.1% of to-
kens) must by copied, while EMEA data is skewed
towards words that should be copied, with 51.7%
of novel types (85.7% of tokens). On WMT data,
baseline accuracy of terms to be copied is already
quite high, but accuracy of terms to be translated
is very low. The EMEA baseline has a much
harder time with tokens that should be copied, but
does better on non-copied terms. We hypothe-
size that this may have to do with differences in
the morphological attributes of the novel tokens in
the different datasets (WMT contains many names
of people or places, while EMEA contains many
drug names, which tend to contain character se-
quences not frequent in either source or target
language) or with the contexts in which they ap-
pear. We observe that for many of the medication
names, it takes 10 or more instances of the name
being observed for the single-sentence adaptation

12The number of different machine translation outputs for
the source type, divided by the number of times that source
type appears.

approach alone to successfully learn to copy the
word (if ever). Though there remains a gap be-
tween novel word accuracy on tokens that should
be copied and those that should be translated, our
approaches demonstrate improvements for both
types of novel words.

A concern with training on a dictionary as bi-
text is that the model may overfit to the sentence
length; we do not find that to be the case here, as
the difference between the full hypothesis lengths
is 48,641 tokens for the EMEA-adapted data com-
pared to 48,627 for the dictionary-trained models.
However, this is dependent on choosing the cor-
rect learning rate and number of epochs. Similarly,
there’s a potential concern that single-sentence
training on the previous sentence may cause some
type of overfitting (memorization of the sentence,
etc.). We do not observe that to be the case either.

7 Conclusions and Future Work

We propose two approaches to document-level
adaptation of NMT systems (single-sentence
adaptation, dictionary training) and their combi-
nation, which can be effectively used to improve
performance, both in terms of BLEU score and in
the translation of novel words. Both approaches
have minimal training data requirements, can be
effective applied with an existing NMT architec-
ture, and show considerable improvements even
for short documents.

One area meriting further study is dynamic
adaptation of hyper-parameters based on docu-
ment length or content. During our develop-
ment and test-runs, we found correlations be-
tween hyper-parameter configurations and docu-
ment lengths with some learning rates and train
epochs working better for shorter documents
while some working better for longer ones. We
could foresee dynamically adapting the hyperpa-
rameters based on the overlap between the current
sentence being translated and the remainder of the
document as a possible area of future study. Addi-
tionally, it would be useful to explore these meth-
ods in a user-study, to better determine the trade-
off between improvement and user input required
(such as for dictionary creation).

Acknowledgments

Rebecca Knowles was partially supported by a
National Science Foundation Graduate Research
Fellowship under Grant No. DGE-1232825.



72

References
Philip Arthur, Graham Neubig, and Satoshi Nakamura.

2016. Incorporating discrete translation lexicons
into neural machine translation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1557–1567, Austin,
Texas. Association for Computational Linguistics.

Marco Baroni and Silvia Bernardini. 2005. A new
approach to the study of translationese: Machine-
learning the difference between original and trans-
lated text. Literary and Linguistic Computing,
21(3):259–274.

Marine Carpuat. 2009. One translation per discourse.
In Proceedings of the Workshop on Semantic Evalu-
ations: Recent Achievements and Future Directions,
DEW ’09, pages 19–27, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Marine Carpuat, Hal Daumé III, Alexander Fraser,
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