
Proceedings of the 2nd Workshop on Neural Machine Translation and Generation, pages 11–17
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

11

A Shared Attention Mechanism for Interpretation
of Neural Automatic Post-Editing Systems

Inigo Jauregi Unanue1,2, Ehsan Zare Borzeshi2, Massimo Piccardi1

1 University of Technology Sydney, Sydney, Australia
2 Capital Markets Cooperative Research Centre, Sydney, Australia

{ijauregi,ezborzeshi}@cmcrc.com, massimo.piccardi@uts.edu.au

Abstract

Automatic post-editing (APE) systems
aim to correct the systematic errors made
by machine translators. In this paper, we
propose a neural APE system that encodes
the source (src) and machine translated
(mt) sentences with two separate encoders,
but leverages a shared attention mecha-
nism to better understand how the two in-
puts contribute to the generation of the
post-edited (pe) sentences. Our empiri-
cal observations have showed that when
the mt is incorrect, the attention shifts
weight toward tokens in the src sentence
to properly edit the incorrect translation.
The model has been trained and evaluated
on the official data from the WMT16 and
WMT17 APE IT domain English-German
shared tasks. Additionally, we have used
the extra 500K artificial data provided by
the shared task. Our system has been able
to reproduce the accuracies of systems
trained with the same data, while at the
same time providing better interpretability.

1 Introduction

In current professional practice, translators tend to
follow a two-step approach: first, they run a ma-
chine translator (MT) to obtain a first-cut transla-
tion; then, they manually correct the MT output
to produce a result of adequate quality. The lat-
ter step is commonly known as post-editing (PE).
Stemming from this two-step approach and the re-
cent success of deep networks in MT (Sutskever
et al., 2014; Bahdanau et al., 2014; Luong et al.,
2015), the MT research community has devoted
increasing attention to the task of automatic post-
editing (APE) (Bojar et al., 2017).

The rationale of an APE system is to be able to

automatically correct the systematic errors made
by the MT and thus dispense with or reduce the
work of the human post-editors. The data for train-
ing and evaluating these systems usually consist of
triplets (src, mt, pe), where src is the sentence in
the source language, mt is the output of the MT,
and pe is the human post-edited sentence. Note
that the pe is obtained by correcting the mt, and
therefore these two sentences are closely related.
An APE system is “monolingual” if it only uses
the mt to predict the post-edits, or “contextual” if
it uses both the src and the mt as inputs (Béchara
et al., 2011).

Despite their remarkable progress in recent
years, neural APE systems are still elusive when it
comes to interpretability. In deep learning, highly
interpretable models can help researchers to over-
come outstanding issues such as learning from
fewer annotations, learning with human-computer
interactions and debugging network representa-
tions (Zhang and Zhu, 2018). More specifically
in APE, a system that provides insights on its deci-
sions can help the human post-editor to understand
the system’s errors and consequently provide bet-
ter corrections. As our main contribution, in this
paper we propose a contextual APE system based
on the seq2seq model with attention which allows
for inspecting the role of the src and the mt in the
editing. We modify the basic model with two sep-
arate encoders for the src and the mt, but with a
single attention mechanism shared by the hidden
vectors of both encoders. At each decoding step,
the shared attention has to decide whether to place
more weight on the tokens from the src or the mt.
In our experiments, we clearly observe that when
the mt translation contains mistakes (word order,
incorrect words), the model learns to shift the at-
tention toward tokens in the source language, aim-
ing to get extra “context” or information that will
help to correctly edit the translation. Instead, if
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the mt sentence is correct, the model simply learns
to pass it on word by word. In Section 4.4, we
have plotted the attention weight matrices of sev-
eral predictions to visualize this finding.

The model has been trained and evaluated
with the official datasets from the WMT16 and
WMT17 Information Technology (IT) domain
APE English-German (en-de) shared tasks (Bojar
et al., 2016, 2017). We have also used the 500K
artificial data provided in the shared task for extra
training. For some of the predictions in the test
set, we have analysed the plots of attention weight
matrices to shed light on whether the model relies
more on the src or the mt at each time step. More-
over, our model has achieved higher accuracy than
previous systems that used the same training set-
ting (official datasets + 500K extra artificial data).

2 Related work

In an early work, (Simard et al., 2007) combined
a rule-based MT (RBMT) with a statistical MT
(SMT) for monolingual post-editing. The reported
results outperformed both systems in standalone
translation mode. In 2011, (Béchara et al., 2011)
proposed the first model based on contextual post-
editing, showing improvements over monolingual
approaches.

More recently, neural APE systems have at-
tracted much attention. (Junczys-Dowmunt and
Grundkiewicz, 2016) (the winner of the WMT16
shared task) integrated various neural machine
translation (NMT) components in a log-linear
model. Moreover, they suggested creating artifi-
cial triplets from out-of-domain data to enlarge the
training data, which led to a drastic improvement
in PE accuracy. Assuming that post-editing is re-
versible, (Pal et al., 2017) have proposed an atten-
tion mechanism over bidirectional models, mt→
pe and pe → mt. Several other researchers have
proposed using multi-input seq2seq models for
contextual APE (Bérard et al., 2017; Libovickỳ
et al., 2016; Varis and Bojar, 2017; Pal et al.,
2017; Libovickỳ and Helcl, 2017; Chatterjee et al.,
2017). All these systems employ separate en-
coders for the two inputs, src and mt.

2.1 Attention mechanisms for APE

A key aspect of neural APE systems is the atten-
tion mechanism. A conventional attention mech-
anism for NMT first learns the alignment scores
(eij) with an alignment model (Bahdanau et al.,

2014; Luong et al., 2015) given the j-th hid-
den vector of the encoder (hj) and the decoder’s
hidden state (si−1) at time i − 1 (Equation 1).
Then, Equation 2 computes the normalized atten-
tion weights, with Tx the length of the input sen-
tence. Finally, the context vector is computed as
the sum of the encoder’s hidden vectors weighed
by the attention weights (Equation 3). The de-
coder uses the computed context vector to predict
the output.

eij = aligment model(hj , si−1) (1)

αij =
exp(eij)∑Tx

m=1 exp(e
im)

(2)

ci =
Tx∑
j=1

αi,jhj (3)

In the APE literature, two recent papers have
extended the attention mechanism to contextual
APE. (Chatterjee et al., 2017) (the winner of
the WMT17 shared task) have proposed a two-
encoder system with a separate attention for each
encoder. The two attention networks create a con-
text vector for each input, csrc and cmt, and con-
catenate them using additional, learnable param-
eters, Wct and bct, into a merged context vector,
cmerge (Equation 4).

cimerge = [cisrc; cimt] ∗Wct + bct (4)

(Libovickỳ and Helcl, 2017) have proposed,
among others, an attention strategy named the
flat attention. In this approach, all the attention
weights corresponding to the tokens in the two in-
puts are computed with a joint soft-max:

αij
(k) =

exp(eij(k))∑2
n=1

∑T
(n)
x

m=1 exp(e
im
(n))

(5)

where eij(k) is the attention energy of the j-th step
of the k-th encoder at the i-th decoding step and
T
(k)
x is the length of the input sequence of the k-th

encoder. Note that because the attention weights
are computed jointly over the different encoders,
this approach allows observing whether the sys-
tem assigns more weight to the tokens of the src
or the mt at each decoding step. Once the atten-
tion weigths are computed, a single context vector
(c) is created as:
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ci =
N∑
k=1

T
(k)
x∑

j=1

αi,j
(k)Uc(k)h

j
(k)

(6)

where hj
(k) is the j-th hidden vector from the k-

th encoder, T (k)
x is the number of hidden vectors

from the k-th encoder, and Uc(k) is the projection
matrix for the k-th encoder that projects its hidden
vectors to a common-dimensional space. This pa-
rameter is also learnable and can further re-weigh
the two inputs.

3 The proposed model

The main focus of our paper is on the interpretabil-
ity of the predictions made by neural APE sys-
tems. To this aim, we have assembled a contex-
tual neural model that leverages two encoders and
a shared attention mechanism, similarly to the flat
attention of (Libovickỳ and Helcl, 2017). To de-
scribe it, let us assume that Xsrc = {x1src, ..., xNsrc}
is the src sentence and Xmt = {x1mt, ..., xMmt} is
the mt sentence, where N and M are their respec-
tive numbers of tokens. The two encoders encode
the two inputs separately:

hj
src = encsrc(xjsrc,h

j−1
src ) j = 1, ..., N

hj
mt = encmt(xjmt,h

j−1
mt ) j = 1, ...,M

(7)

All the hidden vectors outputs by the two en-
coders are then concatenated as if they were com-
ing from a single encoder:

hjoin = {h1
src, ...,h

N
src,h

1
mt, ...,h

M
mt} (8)

Then, the attention weights and the context vec-
tor at each decoding step are computed from the
hidden vectors of hjoin (Equations 9-11):

eij = aligment model(hj
join, s

i−1) (9)

αij =
exp(eij)∑N+M

m=1 exp(eim)
(10)

ci =
N+M∑
j=1

αi,jhj
join (11)

where i is the time step on the decoder side, j is
the index of the hidden encoded vector. Given that

the αi,j weights form a normalized probability dis-
tribution over j, this model is “forced” to spread
the weight between the src and mt inputs. Note
that our model differs from that proposed by (Li-
bovickỳ and Helcl, 2017) only in that we do not
employ the learnable projection matrices, Uc(k).
This is done to avoid re-weighing the contribution
of the two inputs in the context vectors and, ul-
timately, in the predictions. More details of the
proposed model and its hyper-parameters are pro-
vided in Section 4.3.

4 Experiments

4.1 Datasets

For training and evaluation we have used
the WMT17 APE1 IT domain English-German
dataset. This dataset consists of 11,000 triplets for
training, 1,000 for validation and 2,000 for test-
ing. The hyper-parameters have been selected us-
ing only the validation set and used unchanged
on the test set. We have also trained the model
with the 12,000 sentences from the previous year
(WMT16), for a total of 23,000 training triplets.

4.2 Artificial data

Since the training set provided by the shared
task is too small to effectively train neural net-
works, (Junczys-Dowmunt and Grundkiewicz,
2016) have proposed a method for creating extra,
“artificial” training data using round-trip transla-
tions. First, a language model of the target lan-
guage (German here) is learned using a mono-
lingual dataset. Then, only the sentences from
the monolingual dataset that have low perplex-
ity are round-trip translated using two off-the-
shelf translators (German-English and English-
German). The low-perplexity sentences from the
monolingual dataset are treated as the pe, the
German-English translations as the src, and the
English-German back-translations as the mt. Fi-
nally, the (src, mt, pe) triplets are filtered to only
retain sentences with comparable TER statistics
to those of the manually-annotated training data.
These artificial data have proved very useful for
improving the accuracy of several neural APE
systems, and they have therefore been included
in the WMT17 APE shared task. In this paper,
we have limited ourselves to using 500K artificial
triplets as done in (Varis and Bojar, 2017; Bérard

1http://www.statmt.org/wmt17/ape-task.html
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# encoders 2
encoder type B-LSTM
encoder layers 2
encoder hidden dim 500
# decoders 1
decoder type LSTM
decoder layers 2
decoder hidden dim 500
word vector dim 300
attention type general
dropout 0.3
beam size 5

Table 1: The model and its hyper-parameters.

et al., 2017). To balance artificial and manually-
annotated data during training, we have resampled
the official 23K triplets 10 times.

4.3 Training and hyper-parameters

Hereafter we provide more information about the
model’s implementation, its hyper-parameters, the
pre-processing and the training to facilitate the re-
producibility of our results. We have made our
code publicly available2.

To implement the encoder/decoder with sepa-
rate encoders for the two inputs (src, mt) and a
single attention mechanism, we have modified the
open-source OpenNMT code (Klein et al., 2017).

Table 1 lists all hyper-parameters which have
all been chosen using only training and validation
data. The two encoders have been implemented
using a Bidirectional Long Short-Term Memory
(B-LSTM) (Hochreiter and Schmidhuber, 1997)
while the decoder uses a unidirectional LSTM.
Both the encoders and the decoder use two hidden
layers. For the attention network, we have used the
OpenNMT’s general option (Luong et al., 2015).

As for the pre-processing, the datasets come al-
ready tokenized. Given that German is a mor-
phologically rich language, we have learned the
subword units using the BPE algorithm (Sennrich
et al., 2015) only over the official training sets
from the WMT16 and WMT17 IT-domain APE
shared task (23,000 sentences). The number of
merge operations has been set to 30,000 under the
intuition that one or two word splits per sentence
could suffice. Three separate vocabularies have
been used for the (src, mt and pe) sentences. Each
vocabulary contains a maximum of 50,000 most-

2https://github.com/ijauregiCMCRC/Shared
Attention for APE

Model TER BLEU
MT (Bojar et al., 2017) 24.48 62.49
SPE (Bojar et al., 2017) 24.69 62.97
(Varis and Bojar, 2017) 24.03 64.28
(Bérard et al., 2017) 22.81 65.91
train 11K 41.58 43.05
train 23K 30.23 57.14
train 23K + 500K 22.60 66.21

Table 2: Results on the WMT17 IT domain
English-German APE test set.

frequent subword units; the remaining tokens are
treated as unknown (<unk>).

As mentioned in Section 4.2, we have trained
our model with 500K extra triplets as in (Bérard
et al., 2017). We have oversampled the 23K offi-
cial triplets 10 times, added the extra 500K, and
trained the model for 20 epochs. We have used
Stochastic Gradien Descent (SGD) with a learn-
ing rate of 1 and a learning rate decay of 0.5. The
learning rate decays if there are no improvements
on the validation set.

In all cases, we have selected the models and
hyper-parameters that have obtained the best re-
sults on the validation set (1,000 sentences), and
reported the results blindly over the test set (2,000
sentences). The performance has been evaluated
in two ways: first, as common for this task, we
have reported the accuracy in terms of Translation
Error Rate (TER) (Snover et al., 2006) and BLEU
score (Papineni et al., 2002). Second, we present
an empirical analysis of the attention weight ma-
trices for some notable cases.

4.4 Results

Table 2 compares the accuracy of our model on the
test data with two baselines and two state-of-the-
art comparable systems. The MT baseline simply
consists of the accuracy of the mt sentences with
respect to the pe ground truth. The other baseline
is given by a statistical PE (SPE) system (Simard
et al., 2007) chosen by the WMT17 organizers.
Table 2 shows that when our model is trained with
only the 11K WMT17 official training sentences,
it cannot even approach the baselines. Even when
the 12K WMT16 sentences are added, its accuracy
is still well below that of the baselines. However,
when the 500K artificial data are added, it reports a
major improvement and it outperforms them both
significantly. In addition, we have compared our
model with two recent systems that have used our



15

Figure 1: An example of perfect correction of an
mt sentence.

Figure 2: Partial improvement of an mt sentence.

Figure 3: Passing on a correct mt sentence.

Figure 4: A completely incorrect prediction.
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same training settings (500K artificial triplets +
23K manual triplets oversampled 10 times), re-
porting a slightly higher accuracy than both (1.43
TER and 1.93 BLEU p.p. over (Varis and Bojar,
2017) and 0.21 TER and 0.30 BLEU p.p. over
(Bérard et al., 2017)). Since their models explic-
itly predicts edit operations rather than post-edited
sentences, we speculate that these two tasks are of
comparable intrinsic complexity.

In addition to experimenting with the proposed
model (Equation 11), we have also tried to add
the projection matrices of the flat attention of (Li-
bovickỳ and Helcl, 2017) (Equation 6). However,
the model with these extra parameters showed ev-
ident over-fitting, with a lower perplexity on the
training set, but unfortunately also a lower BLEU
score of 53.59 on the test set. On the other hand,
(Chatterjee et al., 2017) and other participants of
the WMT 17 APE shared task 3 were able to
achieve higher accuracies by using 4 million ar-
tificial training triplets. Unfortunately, using such
a large dataset sent the computation out of mem-
ory on a system with 32 GB of RAM. Nonetheless,
our main goal is not to establish the highest pos-
sible accuracy, but rather contribute to the inter-
pretability of APE predictions while reproducing
approximately the same accuracy of current sys-
tems trained in a comparable way.

For the analysis of the interpretability of the sys-
tem, we have plotted the attention weight matrices
for a selection of cases from the test set. These
plots aim to show how the shared attention mech-
anism shifts the attention weights between the to-
kens of the src and mt inputs at each decoding
step. In the matrices, the rows are the concatena-
tion of the src and mt sentences, while the columns
are the predicted pe sentence. To avoid cluttering,
the ground-truth pe sentences are not shown in the
plots, but they are commented upon in the discus-
sion. Figure 1 shows an example where the mt sen-
tence is almost correct. In this example, the atten-
tion focuses on passing on the correct part. How-
ever, the start (Wählen) and end (Längsschnitte)
of the mt sentence are wrong: for these tokens, the
model learns to place more weight on the English
sentence (click and Select Profiles). The predicted
pe is eventually identical to the ground truth.

Conversely, Figure 2 shows an example where
the mt sentence is rather incorrect. In this case,
the model learns to focus almost completely on

3http://www.statmt.org/wmt17/ape-task.html

Sentence Focus
src 23%
mt 45%
Both 31%

Table 3: Percentage of the decoding steps with
marked attention weight on either input (src, mt)
or both.

the English sentence, and the prediction is very
aligned with it. The predicted pe is not identical
to the ground truth, but it is significantly more ac-
curate than the mt. Figure 3 shows a case of a per-
fect mt translation where the model simply learns
to pass the sentence on word by word. Eventually,
Figure 4 shows an example of a largely incorrect
mt where the model has not been able to properly
edit the translation. In this case, the attention ma-
trix is scattered and defocused.

In addition to the visualizations of the attention
weights, we have computed an attention statistic
over the test set to quantify the proportions of the
two inputs. At each decoding time step, we have
added up the attention weights corresponding to
the src input (αi

src =
∑N

j=1 α
ij) and those cor-

responding to the mt (αi
mt =

∑N+M
j=N+1 α

ij). Note
that, obviously, αi

src+α
i
mt = 1. Then, we have set

an arbitrary threshold, t = 0.6, and counted step i
to the src input if αi

src > t. If instead αi
src < 1−t,

we counted the step to the mt input. Eventually, if
1 − t ≤ αi

src ≤ t, we counted the step to both in-
puts. Table 3 shows this statistic. Overall, we have
recorded 23% decoding steps for the src, 45% for
the mt and 31% for both. It is to be expected that
the majority of the decoding steps would focus on
the mt input if it is of sufficient quality. However,
the percentage of focus on the src input is signifi-
cant, confirming its usefulness.

5 Conclusion

In this paper, we have presented a neural APE sys-
tem based on two separate encoders that share a
single, joined attention mechanism. The shared
attention has proved a key feature for inspecting
how the selection shifts on either input, (src and
mt), at each decoding step and, in turn, under-
standing which inputs drive the predictions. In ad-
dition to its easy interpretability, our model has re-
ported a competitive accuracy compared to recent,
similar systems (i.e., systems trained with the of-
ficial WMT16 and WMT17 data and 500K extra
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training triplets). As future work, we plan to con-
tinue to explore the interpretability of contempo-
rary neural APE architectures.
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Jindřich Libovickỳ and Jindřich Helcl. 2017. Attention
strategies for multi-source sequence-to-sequence
learning. arXiv preprint arXiv:1704.06567 .
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