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Abstract 

Automatic recognition of biomedical enti-
ties in text is the crucial initial step in bio-
medical text mining. In this paper, we in-
vestigate employing modern neural net-
work models for recognizing biomedical 
entities. To compensate for the small 
amount of training data in biomedical do-
main, we propose to integrate dictionaries 
into the neural model. Our experiments on 
BB3 data sets demonstrate that state-of-
the-art neural network model is promising 
in recognizing biomedical entities even 
with very little training data. When inte-
grated with dictionaries, its performance 
could be greatly improved, achieving the 
competitive performance compared with 
the best dictionary-based system on the en-
tities with specific terminology, and much 
higher performance on the entities with 
more general terminology. 

1 Introduction 

In the microbial community, knowledge about 
habitats of bacteria is crucial for the study, e.g. 
metagenomics. To extract such information from 
the biomedical literature, the very first step is to 
accurately recognize bacteria and habitat entities 
in text. State-of-the-art systems mainly have taken 
two approaches: dictionary-based and feature-
based. 

Dictionary-based approach looks for all the 
possible names in one or more dictionaries (or on-
tologies, or databases, or gazetteers) of entities. 
The performance depends on the quality and 
comprehensiveness of the dictionaries built for 
each entity type, which require a lot of expert 
knowledge and maintenance costs. It is well suited 
for entities with closely defined vocabularies of 
specific names, such as species and diseases, but 
fails to accurately recognize entities with names 
consisting of more common words, e.g. habitat 
entities. TagIt (Cook et al., 2016) is a dictionary-
based system participating BioNLP Shared Task 

2016, which yielded the best performance in rec-
ognizing bacteria entities, however could not 
compete with other machine learning systems on 
recognizing habitat entities. 

Feature-based machine learning systems are 
currently more widely used in biomedical entity 
recognition. When properly trained, a machine 
learning model can potentially recognize new en-
tity names and new spelling variations of an entity 
name. Traditional machine learning approaches, 
are feature-rich supervised learning classifiers, re-
quiring significant domain-specific feature engi-
neering. Recently neural network models gain in-
creasingly more research attention as they could 
automatically learn useful features from raw data. 
Compared with the work on NER in general do-
main (Lample et al., 2016, Chiu and Nichols, 
2016, Ma and Hovy, 2016), there is little pub-
lished work on employing modern neural network 
models for BioNER. It is probably due to the 
small sizes of human-annotated corpora in bio-
medical domain, which makes it very hard to train 
non-trivial neural network models. 

In this paper, we investigate employing state-
of-the-art neural network models to recognize bi-
omedical entities. Our experiments on BB3 data 
sets show that even with very little training data, 
modern neural network model is promising in 
recognizing bacteria and habitat entities. To com-
pensate for the shortage of annotated training data, 
we propose to utilize dictionaries or ontologies, 
which is abundant in biomedical domain, to en-
hance the neural models. The experiment results 
demonstrate that our dictionary-enhanced neural 
model yielded better performance than the cur-
rently best systems, especially on habitat entities. 

2 Dictionary-Enhanced BiLSTM-CRF 
Model 

Following the most state-of-the-art neural network 
models for general domain NER, we design a sim-
ilar BiLSTM-CRF model as shown in Figure 1 for 
recognizing bacteria and habitats in text. 
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When receiving a sentence of tokens as input, 
e.g. “Vibrios are ubiquitous”, the system first 
forms a representation for each token, which is the 
concatenation of its word embedding, character-
based representation and dictionary-matching rep-
resentation of the token.  

Next, the vector representations of tokens are 
fed into a bidirectional LSTM. The hidden state 
for each token position in BiLSTM is the concate-
nation of the hidden states from the forward and 
backward LSTMs. As a result, it contains both the 
left and right context information useful to make 
prediction for this token. 

Finally, a Conditional Random Field (CRF) 
layer, modeling the dependencies between succes-
sive labels, is added on top of the BiLSTM net-
work to find the most likely sequence of labels as 
the final output. 

2.1 Word Embedding 

There are various word embedding techniques, 
e.g. word2vec, Glove and fasttext. They address 
different types of semantic similarities, and thus 
perform differently for different NLP tasks. We 
tested Glove and fasttext for our task and found 
that fasttext performed better. Thus, we used the 
fasttext method to train word embeddings. Word 
embedding dimension is set to 100. 

We downloaded PubMed 2017 baseline, ex-
tracted all the titles and abstracts, segmented them 
into tokens using different strategies: 
 using a segmentation model for general 

English text or a model specially trained on 
biomedical text. 

 removing punctuations or not. 
 converting all characters into lower case 

and all digits to “0” or not. 
We compared the performance of all the above 
strategies in the experiments, and found that re-

moving punctuations, lowercasing all characters 
and converting all digits to “0” did not result in 
better performed embeddings. So, we generated 
embeddings without removing punctuations and 
any other conversions. 

2.2 Character-Based Representation 

Although the word embeddings capture the se-
mantic similarities between tokens, they ignore 
the character-level regularities of the token, like 
suffixes or prefixes, which are proven to be effec-
tive in NER tasks. We generate a character-based 
representation for each token using a LSTM 
model like that proposed in Lample et al., 2016. 
The dimensions of the character embedding and 
the hidden states of the BiLSTM are both set to be 
25, so the dimension of the final character-level 
representation is 50. 

2.3 Dictionary-Matching Representation 

To train a non-trivial neural network model with-
out overfitting it, a huge amount of annotated data 
are needed, which are much costlier to obtain in 
biomedical domain than in general domain since 
expert domain knowledge is required for annotat-
ing data. On the other hand, dictionaries, ontolo-
gies and databases are abundant in biomedical 
domain. We propose to make better use of such 
available knowledge in neural network models to 
compensate for the small sizes of annotated data. 

In this paper, we incorporate dictionaries into 
the neural network model by adding a third part to 
the token representation: dictionary-matching rep-
resentation. For each given dictionary, a diction-
ary matching feature is assigned to each input to-
ken. The matching feature indicates whether a 
word sequence formed by the token and its con-
secutive neighbors is in the dictionary. The maxi-
mal length of the word sequence is set to 6. When 
there are multiple overlapping matches, longer 
matches are preferred over shorter matches, and 
earlier matches in the sentence are preferred over 
later matches. The matching feature can take one 
of the five values: ‘B’, ‘I’, ‘O’, ‘E’, ‘S’, which 
means ‘Begin’, ‘Inside’, ‘Outside’, ‘End’ and 
‘Single’ respectively, indicating the position of the 
token in the matched word sequence. Figure 2 
shows an example sentence and the dictionary 
matching feature for each of its tokens. There are 
two types of entities to be recognized: bacteria 
and habitats, and two dictionaries are applied, one 
for each entity type. 

 
Figure 1: The BiLSTM-CRF model for entity 

recognition. 



149

 
 
 

   3

To generate the dictionary-matching representa-
tion for the token, we embed the matching feature 
for each dictionary into a 5-dimensional real-
valued vector and then concatenate the vectors for 
all the dictionaries. As in Figure 2, the dictionary-
matching representation of a token will be a 10-
dimensional vector representing the matching fea-
tures of this token in two dictionaries. 

3 Experiments and Results 

We implemented our models based on the open 
source code of NeuroNER1 (Dernoncourt et al., 
2017) and evaluated their performance using the 
dataset provided by the Bacteria Biotope task in 
the BioNLP Shared Task 2016 (BB3). 

The BB3 task has no separate task for named 
entity recognition. It is jointly evaluated with 
downstream applications such as categorization or 
event extraction. Only in the BB3-cat+ner sub-
task, the official BB3 evaluation service addition-
ally outputs the boundaries scoring about the sys-
tem’s ability to predict entity boundaries, in terms 
of SER (Slot Error Rate), Precision and Recall. 
For this reason, we primarily focus on the BB3-
cat+ner subtask. We use the SER, Precision and 
Recall, output by the official BB3 evaluation ser-
vice, as the evaluation metrics for our experi-
ments. According to the official evaluation (De-
léger et al., 2016), TagIt system achieved the best 
performance on detecting bacteria boundaries 
(SER: 0.236, recall: 0.772, precision: 0.954), 
while LIMSI system worked best on habitat enti-
ties (SER: 0.597, recall: 0.504, precision: 0.728). 
Bacteria are easier to recognize than habitats be-
cause bacteria names are mainly specific terms 
from a closely defined vocabulary, i.e. NCBI Tax-
onomy, with little variations, while habitat names 
usually consist of common English nouns and ad-
jectives, e.g. “egg”, “water”, “fish” and expressed 
in various ways. 

3.1 Dataset and Preprocessing 

The dataset of the BB3-cat+ner subtask consists 
of 161 documents, split into training, development 
and test sets, which include 71, 36 and 54 docu-
                                                      
1 http://neuroner.com/ 

ments and 1122, 698, 1022 entity occurrences re-
spectively. 

Entities occurring in the training or develop-
ment documents are annotated in BRAT format. 
We preprocessed the data by first segmenting all 
the text into sentences of tokens using spaCy2, and 
then tagging each token with a label in BIOES la-
belling scheme. For example, “B-Bacteria” means 
the token is the beginning word of a bacteria enti-
ty mention, and “S-Habitat” means the token is by 
itself the mention for a habitat entity. 

3.2 Word Embeddings 

For segmenting text to train word embeddings, we 
could use a segmentation model for general Eng-
lish text, or alternatively a model specifically 
trained on biomedical text. For the general model, 
we used spaCy, and for the specific model, we ap-
plied OpenNLP with its specially trained model 
on the GENIA corpus. 

As shown by the first two lines in Table 1, us-
ing a specific model trained on domain text gained 
higher precision while lower recall than using a 
general English model. It also shows that the 
state-of-the-art BiLSTM-CRF model is a promis-
ing approach for recognizing biomedical entities, 
even with very little training data like in BB3 task. 

3.3 Integration of Dictionaries 

In general, performance of neural models could 
get far improved by using more training data. 
However, it is costly to collect a large amount of 
training data in biomedical domain. Recently, 
more and more research work focused on finding 
ways to compensate for the shortage of training 
data, e.g. using semi-supervised learning or multi-
task learning techniques. In this paper, we exploit-
ed the way of integrating dictionaries or ontolo-
gies into the neural network model to improve 
performance. For detecting bacteria and habitats, 
we use the most recent comprehensive dictionar-
ies3 specially built for these two types of entities 
by TagIt. We tested two strategies of matching 
with dictionary entries: case-sensitive and case-

                                                      
2 https://spacy.io/ 
3 https://github.com/bitmask/BioNLP-BB3 

 Vibrios are ubiquitous to oceans , coastal waters , and estuaries . 
Bacteria S O O O O O O O O O O O 
Habitat O O O O S O B E O O S O 

 

Figure 2: Dictionary matchings of an example sentence. 
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insensitive matching. In Table 1, “B+H” repre-
sents for using bacteria and habitat dictionaries, 
and “lower” means case-insensitive matching with 
the dictionary. 

From Table 1, we can have the following ob-
servations: 
(1) By comparing the “B+H” lines with the first 

two lines, we can observe that integrating dic-
tionaries into neural models can significantly 
improve the performance. For example, the 
overall SER is reduced by 12%-16%. 

(2) By comparing the “B+H” lines with “B+H, 
lower” lines, we see that case-insensitive 
matching with dictionary is more effective 
than case-sensitive matching. 

(3) Compared with the existing two best systems 
using traditional dictionary-based (TagIt) or 
feature-based (LIMSI) approaches, our best 
model “OpenNLP (B+H, lower)” can perform 
competitively on recognizing bacteria entities 
and much better on recognizing habitat enti-
ties. 

4 Conclusions and Future Work 

To the best of our knowledge, this is the first work 
of applying state-of-the-art neural network models 
in recognizing bacteria and biotope entities. The 
experiment results on BB3 task show that it is 
promising even with very small sized training da-
ta. Its performance can be much improved by in-
tegrating dictionaries, achieving competitive per-
formance on bacteria entities and much better per-
formance on habitat entities compared with the 
best traditional methods. 

As for future work, we intend to (1) test our 
model on more types of biomedical entities; (2) 
investigate other ways of integrating dictionaries 

or ontologies with neural networks; (3) extend our 
model to deal with the embedded entities and dis-
continuous entities, which are special challenges 
for BioNER. 
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Systems Overall Bacteria boundaries Habitat boundaries 

SER Recall Prec. F1 SER Recall Prec. SER Recall Prec. 

spaCy 0.487 0.596 0.789 0.678 0.415 0.693 0.814 0.519 0.544 0.775 

OpenNLP 0.493 0.549 0.830 0.661 0.376 0.656 0.891 0.558 0.490 0.785 

spaCy (B+H) 0.435 0.624 0.828 0.712 0.324 0.701 0.919 0.503 0.578 0.768 

spaCy (B+H, lower) 0.429 0.617 0.852 0.715 0.318 0.710 0.918 0.499 0.556 0.801 

OpenNLP (B+H) 0.442 0.578 0.876 0.697 0.330 0.684 0.925 0.514 0.511 0.835 

OpenNLP (B+H, lower) 0.415 0.617 0.867 0.721 0.301 0.707 0.938 0.483 0.563 0.816 

TagIt (Cook et al., 2016) - - - - 0.236 0.772 0.954 0.599 0.476 0.675 

LIMSI (Grouin, 2016) - - - - 0.277 0.751 0.903 0.597 0.504 0.728 

Table 1:  Experiment results. 


