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Abstract

Identification of metaphoric language in text is
critical for generating effective semantic rep-
resentations for natural language understand-
ing. Computational approaches to metaphor
identification have largely relied on heuristic
based models or feature-based machine learn-
ing, using hand-crafted lexical resources cou-
pled with basic syntactic information. How-
ever, recent work has shown the predictive
power of syntactic constructions in determin-
ing metaphoric source and target domains
(Sullivan, 2013). Our work intends to ex-
plore syntactic constructions and their rela-
tion to metaphoric language. We undertake
a corpus-based analysis of predicate-argument
constructions and their metaphoric properties,
and attempt to effectively represent syntac-
tic constructions as features for metaphor pro-
cessing, both in identifying source and tar-
get domains and in distinguishing metaphoric
words from non-metaphoric.

1 Metaphor Background

Metaphor can be understood as the conceptual-
ization of one entity using another. Lakoff and
Johnson’s seminal work shows that metaphors are
present at the cognitive level and expressed lin-
guistically (Lakoff and Johnson, 1980). A typical
conceptual metaphor mapping is ARGUMENT IS

WAR, in which ARGUMENT is structured through
the domain of WAR:

1. He defended his position through his publica-
tions.

2. Her speech attacked his viewpoint.

The term ”linguistic metaphor” is used to indi-
cate these types of words and phrases. We will
focus on linguistic metaphor, as identifying these
utterances as metaphoric is critical for generating

correct semantic interpretations. For instance, in
the examples above, literal semantic interpreta-
tions of ’defend’ and ’attack’ will yield nonsen-
sical utterances: a physical position cannot rea-
sonably be defended by a publication, nor can a
speech physically attack any kind of entity.

Automatic metaphor processing tends to in-
volve two main tasks: identifying which words are
being used metaphorically (here called metaphor
identification), and attempting to provide an accu-
rate semantic interpretation for an utterance (here
called metaphor interpretation). The first has
largely been approached as a supervised machine
learning problem, typically using lexical semantic
features and their interaction with context to learn
the kinds of situations where lexical metaphors ap-
pear. The problem of metaphor interpretation is
more complex, with approaches including the im-
plementation of full metaphoric interpretation sys-
tems (Martin, 1990), (Ovchinnikova et al., 2014),
identification of source and target domains (Dodge
et al., 2015), developing knowledge bases (Gor-
don et al., 2015), and providing literal paraphrases
to metaphoric phrases (Shutova, 2010), (Shutova,
2013).

In both identification and interpretation sys-
tems, syntax tends to play a limited role. Many
systems rely only on lexical semantics of target
words, or use only minimal context or dependency
relations to help disambiguate in context (Gargett
and Barnden, 2015), (Rai et al., 2016). Others rely
on topic modeling and other document and sen-
tence level features to provide general semantics,
and compare the lexical semantics to that, ignor-
ing the more ”middle”-level syntactic interactions
(Heintz et al., 2013). While these approaches have
been effective in many areas, there is evidence that
figurative language is significantly influenced by
syntactic constructions, and thus if they can be
represented more effectively, metaphor processing
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capabilities can be improved.
We will examine five kinds of predicate-

argument constructions in corpus data to assess
their metaphoric distributions and usefulness as
features for classification. Our contribution is
twofold. First, we examine the LCC metaphor
corpus, which includes source and target an-
notations, to determine their use in predicate-
argument constructions (Mohler et al., 2016), and
employ syntactic representations as features to im-
prove source/target classification. Second, we in-
vestigate predicate-argument constructions in the
VUAMC corpus of metaphor annotation (Praggle-
jaz Group, 2007), and employ syntactic features to
predict metaphoric vs non-metaphoric words.

2 Metaphor and Constructions

Recent metaphor research has indicated that con-
struction grammar can be employed to deter-
mine the source and target domains of linguistic
metaphors (Sullivan, 2013). In many cases, cer-
tain constructions can determine what syntactic
components are allowable as source and target do-
mains. For example, verbs tend to evoke source
domains. The target domain is then evoked by one
or more of the verb’s arguments (from Sullivan pg
88):

1. the cinema beckoned (intransitive)

2. the criticism stung him (transitive)

3. Meredith flung him an eager glance (ditran-
sitive)

In these instances, the verb is from the source
domain and at least one of the objects is from
the target. However, arguments can also be neu-
tral and don’t necessarily evoke the target domain.
Pronouns like ’him’ in (2) and (3) don’t evoke
any domain. The optionality of domain evocation
makes it harder to predict which elements of the
construction participate in the metaphor. Despite
this limitation, this analysis shows that syntactic
structures beyond the lexical level can be indica-
tive of source and target domains. To better un-
derstand how these structures determine metaphor,
we explored metaphor-annotated corpus data for
predicate-argument constructions.

3 Computational Approaches

While metaphor processing has largely been fo-
cused on capturing lexical semantics, there have

been a variety of approaches that incorporate
syntactic information. Many computational ap-
proaches focus on specific constructions, per-
haps indicating the need to classify different
metaphoric constructions through different means.
The dataset of (Tsvetkov et al., 2014) provides
adjective-noun annotation which has been exten-
sively studied (Rei et al., 2017), (Bulat et al.,
2017). A particularly promising approach is that
of (Gutierrez et al., 2016), who use compositional
distributional semantic models (CDSMs) to repre-
sent metaphors as transformations in vector space,
specifically for adjective-noun constructions. An-
other relevant approach is that of (Haagsma and
Bjerva, 2016) who use clustering and selectional
preference information to detect metaphors in
predicate argument constructions, including verbs
with objects, subjects, and both. Their highest F1
is 57.8 for verbs with both arguments.

Many systems that rely heavily on lexical re-
sources also include some dependency informa-
tion. (Rai et al., 2016) and (Gargett and Barnden,
2015) use a variety of syntactic features including
lemma, part of speech, and dependency relations.
However, both systems are feature-rich and these
syntactic elements’ contribution is unclear. (?) use
lexical features along with contrasting those fea-
tures between the target word and its head. (Dodge
et al., 2015) employ a variety of constructions in
identifying metaphoric source and target domains.
They identify a broad range of constructions and
use these as templates that metaphoric expressions
can fill. Our work expands on this idea by formal-
izing the constructions into features for statistical
metaphor identification.

Perhaps the most syntactically oriented
metaphor identification system is that of (Hovy
et al., 2013), who uses syntactic tree kernels to
identify metaphor. They use combinations of
syntactic features via tree kernels and semantics
via WordNet supersenses and target word embed-
dings. Our approach expands on this by exploring
different syntactic representations and incorporat-
ing semantics through word embeddings into the
syntactic structures.

4 Corpus Analysis

Sullivan identifies a large number of constructions
and the possible configurations of their arguments
with regard to source and target domains. While
some corpus examples are provided that show the
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variety of source-target patterns in each construc-
tion’s argument structure, an in-depth analysis
of how these constructions and their metaphoric
properties are distributed is still needed. We exam-
ined the predicate argument constructions they an-
alyze by using hand-annotated metaphor corpora
to better understand the distributional patterns that
occur. This allows us to make predictions about
what kind of constructions and arguments are use-
ful for metaphor identification and interpretation
and what might be a computationally feasible way
to implement them.

While they examine many kinds of construc-
tions, most of them seem based almost entirely on
the lexical semantics of the words involved, and
thus can be captured simply by effectively rep-
resenting the meaning of individual words. Do-
main and predicative adjective constructions fall
into this category: the construction is identified
by the type of adjective, which needs to be rep-
resented at the lexical level. The more interesting
cases are argument structure constructions, which
take many forms. Sullivan identifies nine different
argument structure constructions that each have
their own source and target properties:

1. Intransitive
2. Transitive
3. Intrasitive Resultative
4. Transitive Resultative
5. Ditransitive
6. Equation
7. Predicative AP
8. Predicative PP
9. Simile

To identify the use of metaphor in these con-
structions, we will rely on two resources: the LCC
metaphor corpus and the VUAMC corpus. The
freely available portion of the LCC corpus con-
tains approximately 7,500 source/target pairs, al-
lowing for a more in-depth look at metaphoric se-
mantics. The VUAMC contains approximately
200,000 words of text with each word tagged as
metaphoric or non-metaphoric. This allows for
large scale analysis of metaphoricity versus non-
metaphoricity at the word level.

4.1 Identifying Constructions
To examine metaphors in these corpora, we need
a method for automatically identifying predicate-
argument constructions. The VUAMC corpus,
as a subsection of the BNC baby, comes with

gold-standard dependency parses. For the LCC
dataset, we used the dependency parser from Stan-
ford Core NLP tools (Manning et al., 2014). These
parses are sufficient to identify intransitives, tran-
sitives, and ditransitive constructions. Verb in-
stances that have an indirect object are ditransi-
tive, those that lack an indirect object but have a
direct object are transitive, and those that lack ei-
ther but have a subject are intransitive. Copulas are
marked in the dependency parses, so we can eas-
ily identify equative constructions. While similes
can take many forms, Sullivan’s work focuses on
simile constructions that consist of a copular verb
and the word ’like’. This oversimplifies to some
degree, as many similes don’t need a copula (’she
fretted like a mother hen’, ’they flew like bats’),
but it allows us to create a subset of equative con-
structions that represent copular similes.

This analysis is necessarily limited, as the we
cannot automatically capture more complex con-
structions via dependency parses, and many of
these are often metaphorically rich. While we un-
derstand this limitation, we believe that we can uti-
lize syntactic features of these basic constructions
as a starting point, with a future goal of expanding
to more complex examples.

Also note that we only identify the surface re-
alization of these constructions - any dropped ar-
guments or missing elements that aren’t in the de-
pendency parse aren’t considered a part of the con-
struction. Thus we see examples of typically di-
transitive verbs (like ’give’) that occur intransi-
tively and transitively, as they lack overt direct and
indirect objects.

5 LCC Analysis

To explore source and target domains, we em-
ploy the free portion of the LCC corpus from
Mohler et al, which contains approximately 7,500
source/target metaphor pairs in sentential context,
rated from 0 to 3 on their degree of metaphoric-
ity. For our research, we included only those in-
stances that were rated above 1.5, yielding approx-
imately 3,000 metaphoric sentences. These anno-
tations also include the source and target domains
of the metaphors, and the lexical trigger phrases
that engender the source and target domains. This
allows us to quantify Sullivan’s analysis of source
and target domains in different constructions, and
shows the actual distribution of source and target
domain items in each construction.
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In order to identify constructions in the LCC
data, we extracted syntactic relations from the de-
pendency parses, using the basic patterns previ-
ously defined to identify predicate argument con-
structions. This allows us to identify the five dif-
ferent constructions: intransitives, transitives, di-
transitives, equatives (copulas), and similes (ana-
lyzed as a subset of equative constructions). For
each construction found, we can identify the pred-
icate and the predicate’s arguments, and determine
for each whether they are identified as metaphoric
and whether they belong to the source or target do-
main.

Figure 1: Counts of metaphoric items in the LCC.
Each bar represents the total instances of argument in
each construction, as well as the percentage of items
that belong to source and target domains.

The vast majority of constructions in the LCC
are intransitive, transitive, and equative. Ditransi-
tives (.4%) and similes (.1%) are exceedingly rare.
This may be because the similes found are only the
verbal type: instances of a copula with the word
’like’. Other similes are likely missed by this au-
tomatic approach.

The majority of metaphoric verbs (92%)
are source domain items, supporting Sullivan’s
claims. Subjects and objects tend to be from the
target domain (61% each). Ditransitive verb con-
structions are relatively rare, with only 43 found,
and only 3 of those containing a metaphoric verb.

Figure 1 shows the counts of source and target
items in the LCC data, based on construction and
argument of the construction. Note that in equa-
tive constructions, direct objects are almost always
source domain items, showing a parallel between
copular arguments and verbs. This is likely due to
the predicative nature of the direct objects of cop-
ular verbs.

5.1 Source and Target Identification

Given that verbs and their argument structures
have varying distributions of source and target do-
main items, we believe that these syntactic struc-
tures can be effectively employed in the classifi-
cation of source and target domain words. While
identifying source and target domains at the sen-
tence level requires lexical and sentential seman-
tics and may not require syntactic information,
identifying lexical triggers can be improved by us-
ing better syntactic representations. To this end we
set up a classification task for identifying source
and target elements.

The LCC contains phrase-level annotations for
source and target elements. We split each sen-
tence into words, projecting the source and target
annotations to the word level. From this, we de-
veloped three classification tasks: (1) identifying
source words, (2) identifying target words, and (3)
identifying any metaphoric word (either source or
target). Our classification scheme focuses on verbs
and nouns, as these are the elements that compose
the syntactic structures in question.

We developed a set of different representations
designed to capture construction-like structures,
and employ them for source/target classification.
This approach follows the intuition of (Hovy et al.,
2013): ”metaphorical use differs from literal use in
certain syntactic patterns”. We implemented this
theory by developing various representations of
constructional syntax and pairing them with lex-
ical semantic features.

For our lexical semantics component, we ex-
perimented with the word embeddings from
word2vec (Mikolov et al., 2013), using the pre-
trained Google News data, as well as the Glove
embeddings (Pennington et al., 2014). We found
in validation that the Google News vectors yielded
slightly better performance, and so those were
used in further experiments.

5.2 Syntactic Representations

Hovy et al use tree kernels to represent the seman-
tic structure of instances, providing information
from dependency parses, part of speech tags, and
WordNet supersenses. Our approach follows this
work by experimenting with a variety of different
ways of meshing syntactic and semantic compo-
nents. This involves creating a computationally
feasible syntactic representation and combining it
with semantics (in our case, word embeddings)
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Construction Verb Subject Direct Object Indirect Object
% SRC TRG -MET SRC TRG -MET SRC TRG -MET SRC TRG -MET

Intransitive 66.5 454 24 6329 128 204 2385 - - - - - -
Transitive 20.0 391 8 1648 53 186 1808 183 265 1599 - - -
Ditransitive .4 3 0 40 0 3 40 3 1 39 1 2 40
Equation 13.0 0 6 1323 57 161 909 288 29 1012 - - -
-Simile .1 0 0 13 1 2 10 8 5 0 - - -

Table 1: % Metaphor by Construction (LCC). For each predicate, the count of source (SRC), target (TRG), and
non-metaphoric (-MET) instances are counted, as well as those for all of each construction’s defining arguments.

from relevant contexts.

5.2.1 Predicate Argument Construction

For a basic integration of syntax, we used the
above corpus analysis technique to identify which
predicate-argument construction the verb token
belongs to. This results in a one-hot vector rep-
resenting either an intransitive, transitive, ditransi-
tive, equative, or simile construction. This pro-
vides basic, purely syntactic knowledge of how
many arguments this particular instance of a verb
currently has. For nouns, we extend this to include
which slot in the construction the noun is filling
(subject, direct object, indirect object) in addition
to the type of predicate-argument construction.

5.2.2 Head and Dependent Features

Including representations of the head word and
dependent words of the word to be classified is
a straightforward way to include basic syntactic
information. For verbs, this mainly involves the
dependents, although many verbs also have head
words. We include a concatenation of the aver-
age embedding over the word’s dependents and the
embedding of the word’s head.

5.2.3 Dependency Relations

A more general and perhaps more powerful way
of converting dependency relations into syntacti-
cally relevant features is to include the specific de-
pendency relations for each dependent of the tar-
get. For verbs, these include things like subjects,
direct objects, adverbial modifiers, nominal mod-
ifiers, passive subjects, and more. Capturing the
fine-grained dependencies for each verb is analo-
gous to determining the exact syntactic construc-
tion it is being realized in. Combining this feature
with the embeddings of dependents and heads is
a promising avenue for linking syntax and seman-
tics.

5.2.4 VerbNet Class
VerbNet is a lexical semantic resource that groups
verbs into classes based on their syntactic behavior
(Kipper-Schuler, 2005). It categorizes over 6,000
verbs into classes, each of which contains syntac-
tic frames that the verbs in the class can appear
in. It also contains distinct senses, allowing it to
distinguish between different verb uses in context.
Previous approaches have employed VerbNet as a
lexical resource (Beigman Klebanov et al., 2016),
but aggregated the senses of each verb, removing
the syntactic distinctions that VerbNet makes for
different word senses.

We ran word-sense disambiguation to deter-
mine the VerbNet class for each verb token
(Palmer et al., 2017). We included one-hot vec-
tors representing verb senses for each token, and
combining this with knowledge of the particular
constructions and the lexical semantics provided
by embeddings for each token gives syntactically
motivated information about the semantics of the
utterance. For noun identification, we include the
VerbNet class of the head of that noun.

5.3 Experiments

As a baseline, we began with using the embed-
ding of the word to be classified. We concate-
nated this with the embeddings of the single pre-
vious and following words, as this proved the best
context in our validation. This creates a represen-
tation of lexical semantics and a word’s context,
without any specific knowledge of the syntactic
relations the word is involved in. We then added
each syntactic representation. These experiments
were done using a training-validation-test split of
76/12/12. We experimented with Maximum En-
tropy, Naive Bayes, Random Forest and Support
Vector Machine classifiers, and through validation
chose a SVM with a linear kernel, L2 regulariza-
tion and squared hinge loss. We then ran the clas-
sifier using our baseline, and added each feature
separately. Finally, we combined the best feature

21



set for each classification task, judged by the im-
proved performance of each feature over the base-
line. The classification was split into three tasks:
identifying source items, identifying target items,
and identifying metaphoric (either source or tar-
get) from non-metaphoric. The results of these ex-
periments are in table 2.

From these results we can see that classifying
source-domain words in the LCC data is harder
than classifying target-domain words. This may
be because of the broad range of domains, as the
corpus contains 114 possible source domains. Tar-
get items are much easier to classify, likely be-
cause the dataset contains only a limited number
(32) of target domains. Embeddings are effective
at representing semantics, and they can accurately
determine the domain of lexical items, allowing
for easy classification of target items.

Our syntactic features show mixed results.
Adding sentential context is consistently effec-
tive, showing that naive contextual approaches are
helpful. Adding dependency embeddings is also
consistently effective, supporting our hypothesis
that knowledge of syntactic properties can be help-
ful in metaphor classification. Other syntactic fea-
tures are inconsistent, especially in predicting the
metaphoricity of verbs. Selecting only the feature
sets that showed improvement over the baseline
yields the best results for most categories.

6 VUAMC Analysis

The LCC allows for an in-depth examination
of source and target domains, but is relatively
small compared to the VUAMC. We can use
the VUAMC data to inspect the distribution of
word metaphoricity with regard to argument struc-
ture constructions. While Sullivan’s work focuses
on source and target domain elements and not
whether or not words are used metaphorically,
we can examine the binary classifications in the
VUAMC to provide insight into the distribution
of metaphoric verbs and the predicate-argument
constructions they participate in. Counts of ar-
gument structure verbs and arguments and their
metaphoricity are shown in table 3.

From the data in table 3, we can see clear dis-
tinctions between different constructions and the
metaphoricity of their arguments. Verbs in in-
stransitive constructions are much less likely to be
metaphoric than those used in transitives, and both
less so than those in ditransitive constructions.

Figure 2: Verb types by percent of metaphoric use
in each construction. Each bar represents the number
of verb types that match the X axis for percentage of
metaphoric usages.

The VUAMC chooses not to mark copular verbs
as metaphoric, and only one instance was found of
equative constructions having a metaphoric verb.

We might expect that different constructions
would also impact the distribution of the predi-
cates’ arguments. However, from the data we see
that verb arguments are fairly consistent. Indirect
objects in ditransitive constructions were never ob-
served to be metaphoric, but direct objects are be-
tween 11% and 16% metaphoric throughout. Sub-
jects vary from 2.8% in ditransitives to 11.7% in
equative constructions. One distinctive feature is
that subjects are much less likely than objects to
be metaphoric.

The overall distribution of metaphoric uses by
verb construction shows that the more arguments
that are present in the construction, the more likely
the verb is being used metaphorically. For fur-
ther evidence, we can examine the distribution of
metaphoric usages on a verb-specific basis.

We calculated the average metaphoricity of
each verb found in the VUAMC, and sorted them
by the type of construction they are found in. We
performed this analysis on a type and token ba-
sis, shown in figures 2 and 3. From the data, we
see that the majority of verbs in all constructions
are used exclusively non metaphorically. While a
large number of verb types only occur metaphori-
cally, this accounts for a much smaller number of
verb tokens. Verb types that occur only metaphor-
ically are relatively rare. We can also see that di-
transitive and copula verb types are exceedingly
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Verbs Nouns
Features Src Trg Met Src Trg Met
Baseline (Embedding,1-word context) .467 .316 .483 .440 .701 .597
+Context .494 .545 .436 .487 .705 .593
+Dependent Embeddings .482 .421 .444 .570 .717 .631
+Dependency Relations .488 .384 .482 .486 .718 .601
+Argument Construction .459 .461 .457 .456 .661 .598
+VerbNet Class .467 .555 .473 .433 .684 .589
Best Combination .551 .600 .505 .519 .705 .630

Table 2: Classification of Source and Target elements in the LCC Corpus. Metaphor (MET) is the classification
of a word as either Source or Target against non-metaphoric words.

Verb Predicate Subject Direct Object Indirect Object
% +M -M %Met +M -M %Met +M -M %Met +M -M %Met

Intransitive 75.1 5118 24301 17.4 284 4627 5.8 - - - - - -
Transitive 13.1 1517 3612 29.6 119 3125 3.7 654 4475 12.8 - - -
Ditransitive .2 24 35 40.7 1 35 2.8 9 50 15.2 59 0 0
Equation 11.6 1 4548 .02 449 3376 11.7 468 3736 11.1 - - -
-Simile .1 0 35 0.0 2 28 6.7 7 26 21.2 - - -

Table 3: % Metaphor by Construction (VUAMC). For each predicate, the count of metaphoric (+M) and non-
metaphoric (-M) instances are counted, as well as those for all of each construction’s defining arguments.

Figure 3: Verb tokens by percent of metaphoric use in
each construction. Each bar represents the number of
verb tokens that belong to verb types that match the X
axis for percentage of metaphoric usages.

rare, but copula tokens are very common and al-
most always literal.

We extended this analysis by examining the dis-
tribution of the verb types that can appear intran-
sitively, transitively, and ditransitively. Our hy-
pothesis in studying these verbs is that the type
of construction the verb appears in is predictive
of that verb’s metaphoric use, independent of the
verb’s overall behavior. Eleven verbs appeared in
all three constructions, and the analysis of their

metaphoricity is presented in figure 4.
From the distribution in the VUAMC corpus,

the data indicates that the type of argument struc-
ture construction does not significantly change the
distribution of metaphoricity. The verbs generally
have the same percentage of metaphoric usages
regardless of which construction they appear in.
Only ’give’ appears in more than 2 instances of
the ditransitive, and its distribution mirrors that of
its use in other constructions.

Two components from our corpus analysis stand
relevant for automatic metaphor processing. First,
in broad scope over all verb tokens, predicates’
metaphor distributions are dependent on the kind
of construction they occur in. Second, the verb
itself is critical, as each verb tends to follow the
same pattern of metaphoricity throughout its con-
structions. This supports our belief that identifica-
tion of metaphor requires modeling of the interac-
tion of syntactic and semantic information.

6.1 Metaphor Identification (VUAMC)

We employ the same experimental set up of the
previous classification task using the VUAMC.
The VUAMC doesn’t contain source or target an-
notations, so the classification problem is lim-
ited to identifying metaphoric words from non-
metaphoric words. We employ the same baseline
and syntactic representation features. Again, we
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Figure 4: Counts of metaphoric uses by verb and construction for those verbs that occur in intransitive, transitive,
and ditransitive constructions

used a split of 76/12/12, using a linear SVM.
For metaphoric identification in the VUAMC,

all of the syntactic features improved classifica-
tion over the baseline for verbs. For nouns, the
dependency embeddings and VerbNet class of the
noun’s head were effective. For both, combin-
ing all of the syntactic representations yields the
best performance. While this classification based
on syntactic is slightly lower than some recent
experiments (Beigman Klebanov et al., 2016), it
shows improvement over using purely lexical se-
mantics, and we believe the incorporation of better
syntactic representations can be used to improve
metaphor identification systems.

7 Conclusions

The type of syntactic construction a verb is present
in provides unique evidence of how it is being used
metaphorically. It is important to effectively inte-

Model Verbs Nouns
Baseline (Embedding, 1-Word context) .339 .303
+Context .488 .224
+Dependency Embeddings .425 .349
+Dependency Relations .466 .393
+Argument Construction .471 .289
+VerbNet Class .418 .330
+All .531 .505

Table 4: Results of adding different syntactic models
for VUAMC verb classification.

grate syntax and semantics to detect and interpret
metaphor, and because there are so many types of
metaphors and they occur in such a wide array of
contexts, it may be helpful to use separate methods
of representing metaphoric semantics depending
on the syntactic constructions involved. While our
results indicate that these integrations of syntac-
tic representations do not yet achieve state of the

24



art performance, we believe that improving repre-
sentations of syntactic constructions can provide
some benefit to metaphor processing.

To that end, our future goals include explor-
ing better representations of the interaction be-
tween syntax and semantics. Models like syntactic
tree kernels, compositional distributional semantic
models, and other syntactically driven methods are
likely to improve classification if they can prop-
erly combine syntactic and semantic representa-
tions. Additionally, as different constructions are
likely to yield different types of metaphoricity, we
aim to employ ensemble methods that incorporate
construction-based knowledge to select the most
effective classifier, and extending our approach to
identifying source and target domains in addition
to lexical triggers.
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