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Introduction

Every year, as we send out the call for papers for the Workshop on Innovative Use of NLP for Building
Educational Applications, we wonder which subfield of educational applications will be prevalent in the
submissions. One year it is speech recognition for automated evaluation, the next it may be grammatical
error correction, another year the focus may be on automated scoring of textual assessments. Inevitably,
even with more than 130 Program Committee members, we find ourselves scrambling to recruit more
reviewers for that year’s hot topic.

There was no clear winner this year. The majority of the 2018 submissions were primarily automated
writing assessment, automated test generation, and reading. Overall, there was a nice mix of all of the
topics above and more.

This year we received 41 submissions and accepted 8 papers as oral presentations and 18 as poster
presentations, for an overall acceptance rate of 63 percent. Each paper was reviewed by three members
of the Program Committee who were believed to be most appropriate for each paper. We continue to have
a strong policy to deal with conflicts of interest. First, we made a concerted effort to not assign papers
to reviewers to evaluate if the paper had an author from their institution. Second, organizing committee
members recused themselves from discussions of papers when there was a conflict of interest.

We do recognize that there is a core group of institutions and researchers who work in this area. With
a higher acceptance rate, we were able to include papers from a wider variety of topics and institutions.
The papers accepted were selected on the basis of several factors, including the relevance to a core
educational problem space, the novelty of the approach or domain, and the strength of the research.
The accepted papers were highly diverse – an indicator of the growing variety of foci in this field. We
continue to believe that the workshop framework designed to introduce work in progress and new ideas
needs to be revived, and we hope that we have achieved this with the breadth and variety of research
accepted for this workshop, a brief description of which is presented below.

The BEA13 workshop has presentations on automated writing evaluation, item generation, readability,
dialogue, annotation, speech and grammatical error correction (GEC), annotation and resources:

Automated Writing Evaluation (AWE):

Zhang and Litman present an investigation of using a co-attention based neural network for scoring
essays. Horbach et al. investigate the feasibility of cross-lingual content scoring. Gao et al. examine
how and why automated content analysis can be used to assess precis writing by university students.
Zhang et al. use other texts written by an examinee, in the same test, as extra references in an automated
scoring system.

Automated Item Generation (AIG):

Flor and Riordan present a novel rule-based system for automatic generation of factual questions using
semantic role labeling. Jiang et al. generate a CLOZE test for Chengyu, a special kind of Chinese idiom.
Finally, there are two papers on generating distractors for multiple choice questions. Ha and Yaneva use
the question (stem) and the correct answer as input to produce a ranked list of possible distractors. Liang
et al. use machine learning models to select distractors that resemble those in actual exam questions.

Reading and Text Complexity:

Bingel et al. predict reading mistakes by children who have reading difficulties by using eye-tracking
data. Chinkina et al. automate the selection of reading passages to support teachers. Holz et al. present
a web-based application to automatically enhance syllable structure, word stress, and spacing in texts.
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Three papers focus specifically on text complexity. Nadeem and Ostendorf propose a neural approach
for automated text complexity analysis. Alfter and Volodina investigate the usefulness of previously
created word lists to the task of single-word lexical complexity analysis and prediction. Vajjala and
Rama explore a universal Common European Framework of Reference (CEFR) classification system.

Dialogue:

When interpreting questions in a virtual patient dialogue system, Jin et al. tackle the challenge of
interpreting a long tail of relatively infrequently asked questions. Ramanarayanan and LaMar look at the
psychometrics and validity of CALL technologies when evaluating and providing feedback on student
learning and conversational ability. Kulkarni and Boyer explore the possibility of building a tutorial
question-answering system for Java programming from data sampled from a community-based forum.

Speech:

Loukina et al. look at a new way to test speech systems. As well as training and evaluating against
human scores, they report on a system that evaluates a speech scoring engine against corpora.

Grammatical Error Correction (GEC) – the next steps:

None of these papers report on GEC per se. Instead, they are looking ahead to the next steps. Bryant
and Briscoe re-examine the use of language modeling in GEC and argue that it is possible to build a
simple system that requires minimal annotated data. Rudzewitz et al. develop an approach to provide
feedback for second language learners. Finally, Afrin and Litman focus on the quality of revisions in
writing. They introduce a corpus of between-draft revisions of student essays that are annotated as to
whether each revision improves essay quality.

Annotation:

Two very interesting novel annotation schemas are presented. King and Dickinson investigate issues of
variability and acceptability in written text, for both native and non-native speakers, using a dataset of
picture description task responses. They define and annotate a handful of features pertaining to form
and meaning in order to capture the multi-dimensional ways in which responses can vary. Lugini et al.
annotate student talk in text-based (English Language Arts) classroom discussions. They focus on three
aspects of student talk: argumentation, specificity, and knowledge domain.

Resources:

Three new resources are being introduced this year. Del Rio Gayo et al. present NLI-PT, the first
Portuguese dataset compiled for Native Language Identification. Tack et al. introduce NT2Lex, a lexical
resource for Dutch as a foreign language. Vajalla and Lucic describe the collection and compilation of
the OneStopEnglish corpus, a collection of texts written at three reading levels.

In addition, this year the BEA Workshop is sponsoring two shared tasks.

Shared Task on Second Language Acquisition Modeling (SLAM):

Settles et al. present the Second Language Acquisition Modeling shared task.1 Given a history of errors
made by learners of a second language, the task is to predict errors that they are likely to make in the
future. They describe a large corpus of more than 7M words produced by more than 6k learners of
English, Spanish, and French using Duolingo, a popular online language-learning app. Then they report
on the results of the challenge. Fifteen teams took part in the task and reports appear in these proceedings.

The Second Shared Task on Complex Word Identification (CWI):
1http://sharedtask.duolingo.com
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Yimam et al. report the findings of the Second Complex Word Identification shared task.2 This shared task
features multilingual and multi-genre datasets divided into four tracks: English monolingual, German
monolingual, Spanish monolingual, and a multilingual track with a French test set, and two tasks: binary
classification and probabilistic classification. A total of 12 teams submitted their results in different
task/track combinations and 11 of them wrote system descriptions that appear in these proceedings.

On this 13th edition of the workshop, BEA is officially adolescent. Last year saw the creation of the
Special Interest Group on Education and NLP (SIGEDU) which is a major step in growing our subfield.
SIGEDU held its first elections this winter with over 20 candidates running. The elected SIGEDU
officials are all familiar names with respect to the workshop. Jill Burstein is President, Ekaterina
Kochmar is Secretary, and Helen Yannakoudakis is Treasurer. The four Board Members are Claudia
Leacock, Nitin Madnani, Ildiko Pilan, and Torsten Zesch. Joel Tetreault, who has been the primary
contact for the workshop for the last 11 years, and the interim President, chose not to run for office. At
the end of this workshop, the reins will be handed over to the new team. Another development from
the last year is the creation of a permanent website for the SIGEDU and BEA workshop.3 Created by
Ekaterina Kochmar and Sowmya Vajjala, we hope to develop this into a regularly updated resource and
reference site for the community.

We wish to thank everyone who showed interest and submitted a paper, all of the authors for their
contributions, the members of the Program Committee for their thoughtful reviews, and everyone
who is attending this workshop. We would especially like to thank our sponsors: at the Gold Level,
Duolingo, Grammarly R©, National Board of Medical Examiners (NBME) and Turnitin R©; at the Silver
level, Educational Testing Service (ETS R©) and iLexIR; at the Bronze level, Cognii. Their contributions
help fund workshop extras, such as T-shirts and the dinner, which is a great social and networking event.
Also, thanks to Joya Tetreault for designing the t-shirts again this year.

Joel Tetreault, Grammarly
Jill Burstein, Educational Testing Services
Ekaterina Kochmar, University of Cambridge
Claudia Leacock, Grammarly
Helen Yannakoudakis, University of Cambridge

2https://sites.google.com/view/cwisharedtask2018/
3https://ekaterinakochmar.wixsite.com/sig-edu
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Abstract

Automated scoring engines are usually trained
and evaluated against human scores and com-
pared to the benchmark of human-human
agreement. In this paper we compare the per-
formance of an automated speech scoring en-
gine using two corpora: a corpus of almost
700,000 randomly sampled spoken responses
with scores assigned by one or two raters dur-
ing operational scoring, and a corpus of 16,500
exemplar responses with scores reviewed by
multiple expert raters. We show that the choice
of corpus used for model evaluation has a ma-
jor effect on estimates of system performance
with r varying between 0.64 and 0.80. Sur-
prisingly, this is not the case for the choice of
corpus for model training: when the training
corpus is sufficiently large, the systems trained
on different corpora showed almost identical
performance when evaluated on the same cor-
pus. We show that this effect is consistent
across several learning algorithms. We con-
clude that evaluating the model on a corpus of
exemplar responses if one is available provides
additional evidence about system validity; at
the same time, investing effort into creating a
corpus of exemplar responses for model train-
ing is unlikely to lead to a substantial gain in
model performance.

1 Introduction

Systems that automatically score constructed re-
sponses in an assessment — such as essays or spo-
ken responses — are typically trained and evalu-
ated on a corpus of such test taker responses with
scores assigned by trained human raters, consid-
ered to be the “gold standard” for both training
and evaluation of the automated scoring system
(Page, 1966; Attali and Burstein, 2006; Bernstein
et al., 2010; Williamson et al., 2012). Human
raters follow certain agreed-upon scoring guide-
lines (“rubrics”) that define the characteristics of a

response for each discrete score level of the scor-
ing scale. For instance, in the case of speech
scoring, human raters may evaluate certain aspects
of a test taker’s speech production, such as flu-
ency, pronunciation, prosody, vocabulary diver-
sity, grammatical accuracy, content correctness,
or discourse organization when determining their
score for a given spoken response (Zechner et al.,
2009).

Even as assessment companies try their best to
ensure high quality of human scores, human raters
do not always agree in the scores they assign to
a constructed response. One reason is related to
properties of the responses themselves: the raters
use a unidimensional (holistic) scale to score a
multidimensional performance. In this situation
different raters may differently weight various as-
pects of performance (Eckes, 2008) resulting in
disagreement. The second reason is related to
various imperfections of human raters, e.g., rater
fatigue (Ling et al., 2014), differences between
novice and experienced raters (Davis, 2016), and
the effect of raters’ linguistic background on their
evaluation of the language skill being measured
(Carey et al., 2011).

To guard against such rater inconsistencies, in
addition to extensive rater training and monitoring,
responses for high-stakes tests are often scored by
multiple raters and scores from responses to mul-
tiple test questions are used to compute the final
score reported to the test taker and other stake-
holders, with different responses scored by dif-
ferent raters (Wang and von Davier, 2014; Pen-
field, 2016). As a result, the final score remains
highly reliable despite variation in human agree-
ment at the level of the individual question. How-
ever, since automated scoring engines are usually
trained using response-level scores, any inconsis-
tencies in such scores due to the variety of reasons
outlined above may negatively affect the system
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performance.
To monitor rater performance, testing programs

sometimes use previously scored responses that
are intermixed with the operational responses.
These responses are selected from operational re-
sponses to represent exemplar cases of each score
level and the scores are further reviewed by multi-
ple raters to ensure their accuracy.

In this paper we are examining the effect of us-
ing such “exemplar” responses for scoring model
training and evaluation in the context of automated
speech scoring. In particular, we aim to address
the following research questions:

1. How do automated speech scoring models
perform when trained on a corpus with ran-
domly selected responses vs. a corpus with
exemplar responses?

2. How is performance affected by the choice of
evaluation corpus (random response selection
vs. exemplar responses)?

Our initial hypothesis about research question
(1) is that if the size and score distribution for
the training corpora are comparable, we would
expect to see the scoring model perform better
when trained on the exemplar responses since the
model is trained on clear-cut examples (less noise
in the data). Similarly, as for research question (2),
we hypothesize that when evaluating on clear-cut
exemplar responses, scoring model performance
should be better than in the default case (random
selection) since the machine would likely benefit
from the same response properties that also result
in more consistent and reliable human scores.

Constructing large corpora of exemplar re-
sponses is a very resource-intensive task and there-
fore little is known about the possible impact of
the use of such corpora for training and evalua-
tion of automated scoring models. Our paper uses
a very large corpus of spoken responses and an
exemplar corpus constructed by experts over the
course of multiple years to address this gap and
improve our understanding of the effect of train-
ing data on the performance of automated scoring
models.

2 Related work

Previous studies considered the effect of annota-
tion noise on the performance of various NLP sys-
tems (Schwartz et al., 2011; Reidsma and Carletta,

2008; Martı́nez Alonso et al., 2015; Plank et al.,
2014).

In a series of papers, Beigman Klebanov and
Beigman (2014; 2009; 2009) studied annotation
noise in linguistic data, namely, a situation where
some of the data is easy to judge, with clear-cut an-
notation/classification, whereas some of the data
is harder to judge, yielding disagreements among
raters.

They show that in a binary classification task,
the presence of annotation noise (hard to judge
cases) in the evaluation data could skew bench-
marking, especially in cases of small discrepan-
cies between competing models. They also show
that the presence of hard cases in the training data
could compromise system performance on easy-
to-judge test cases, a phenomenon they termed
hard case bias. Using data annotated through
crowd-sourcing and across five linguistic tasks,
Jamison and Gurevych (2015) extended that work
and showed that filtering out low-agreement cases
improved performance on test data for some of the
tasks without having a substantial detrimental ef-
fect on the rest of the cases. They also showed that
the filtering of low-agreement instances from the
training data ceased being effective if the agree-
ment threshold is set too high, which resulted in
too little training data.

In the context of automated scoring, the size
of the training set has been shown to have a con-
sistent effect on model performance (Chen, 2012;
Heilman and Madnani, 2015; Zesch et al., 2015).
At the same time, a number of studies also con-
sidered the possibility of training automated sys-
tems on a smaller but well-chosen subset of exam-
ples. Horbach et al. (2014) simulated a grading
approach where responses are clustered automati-
cally, teachers labeled only one item per cluster,
and that label was then propagated to the other
items in the cluster. They reported a 90% grading
accuracy of their system. Zesch et al. (2015) fur-
ther applied this approach to selecting responses
for training automated scoring models for short
answer scoring. They used k-means clustering to
identify similar responses and trained their clas-
sifier on responses closest to the centroid of each
cluster. Note that in their study k corresponded to
the number of responses to be annotated, not the
score levels. They found that the system trained
on such responses did not outperform the system
trained on the same number of randomly sampled
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responses. They also found no improvement when
the score was propagated to all responses in the
cluster and the resulting scores were used to train
the model. However, the performance increased
when the training data was limited to ‘pure’ clus-
ters only, that is clusters that contained responses
assigned the same score. This system, trained on
a subset of responses selected in this fashion, sub-
stantially outperformed the system trained on the
same number of randomly sampled responses, and
in the case of short responses, performed as well
as the system trained on the whole training set.

To summarize, previous studies indicate that
training NLP systems including automated scor-
ing engines on a selected subset of responses that
are either more typical in terms of feature values
or easy-to-judge for human annotators may lead
to an increase in system performance despite a re-
duction in the size of the training set.

While previous studies on automated scoring
used automated clustering to identify the exem-
plars, we further extend this work by using a large
corpus of exemplar responses identified by experts
in assessment to train and evaluate an automated
speech scoring engine. We compare the perfor-
mance of the models to those trained on a large
corpus of randomly sampled responses.

3 Description of the data

Both corpora use real responses submitted to a
large-scale assessment of English language profi-
ciency. The test takers whose responses were used
in this study gave their consent for use of their re-
sponses for research purposes during the original
test administration. The responses in both corpora
were anonymized.

3.1 MAIN corpus

The main corpus in this study contains responses
sampled randomly from spoken responses submit-
ted to the same assessment over the course of sev-
eral years. We selected responses to 6 different
types of questions. Each question was designed
to elicit spontaneous speech. For some questions
test-takers were expected to use the provided ma-
terials (e.g., a reading passage) as the basis for
their response, other questions were more general
such as “What is your favorite food and why?”.
Depending on the question type, the speakers were
given 45 seconds or 1 minute to complete their
response. The corpus consisted of 683,694 spo-

Corpus Total Per model
MAIN: Train 464,664 77,444
MAIN: Test 219,030 36,505
MAIN* : Train 12,398 2,066
EXEMPLAR:Train 12,390 2,065
EXEMPLAR:Test 4,137 689

Table 1: Characteristics of the corpora used in this
study. The table shows the total number of responses
in each partition across all 6 question types and the av-
erage number of responses used to train/evaluate the
model for each question type.

ken responses, 113,949 responses for each ques-
tion type. For this study, the responses for each
question were partitioned randomly into a training
(2/3) and evaluation set (1/3).

All responses in the corpus were scored on a
scale of 1-4 by human raters. The raters assigned
a single holistic score to each response using a
scoring rubric that covered three aspects of lan-
guage proficiency: delivery (pronunciation, flu-
ency), language use (vocabulary, grammar), and
content and topical development. Most responses
were scored by a single rater, with 8.5% randomly
selected responses independently scored by two
raters. The average correlation between two hu-
man raters for double-scored responses was Pear-
sons’s r = 0.59.

3.2 EXEMPLAR responses

The second corpus used in this study contained
responses from the same assessment selected for
training and monitoring human raters. These re-
sponses are expected to be typical examples of the
different score levels. They are usually selected
from double-scored responses that were assigned
the same scores by both raters and then reviewed
by multiple experts in human scoring to ensure
that the final score is accurate. The corpus only in-
cludes responses where all experts agree about the
appropriate score. Thus the responses in this cor-
pus have two important characteristics: first, the
final score can be considered a true gold standard;
second, this final score is not controversial.

The original set of responses had a uniform dis-
tribution of human scores. To separate the ef-
fect of distribution, in this study we used a sub-
set sampled to match the score distribution in the
MAIN corpus. This corpus consisted of 16,527 re-
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sponses to the same 6 types of questions1 with on
average 2,754 responses per task. This corpus was
also randomly partitioned into training and test
sets using a 2:1 ratio.

Since the total number of responses in the
EXEMPLAR corpus was much smaller than in
the MAIN corpus, we randomly sampled 12,398
responses from the training partition of the
MAIN corpus matching the score distributions
in the other two corpora. We will use this
MAIN* corpus to separate the effect of the nature
of the training set (random sample vs. exemplar)
from the effect of the size of the training set. Table
1 summarizes main properties of each corpus.

4 Automated scoring engine

4.1 Automated speech recognition
All responses were processed using an automated
speech recognition system using the Kaldi toolkit
(Povey et al., 2011) and the approach described by
Tao et al. (2016). The language model was based
on tri-grams. The acoustic models were based on
a 5-layer DNN and 13 MFCC-based features. Tao
et al. (2016) give further detail about the model
training procedure.

The ASR system was trained on a propri-
etary corpus consisting of 800 hours of non-native
speech from 8,700 speakers of more than 100 na-
tive languages. The speech in the ASR training
corpus was elicited using questions similar to the
ones considered in this study. There was no over-
lap of speakers or questions between the ASR
training corpus and the corpus used in this pa-
per. We did not additionally adapt the ASR to the
speakers or responses in this study.

To estimate the ASR word error rate (WER), we
obtained human transcriptions for 480 responses
randomly selected from the evaluation partition.
The median WER for these responses was 34%.

4.2 Features
For each response, we extracted 77 different fea-
tures which covered two of the three aspects of
language proficiency considered by the human
raters: delivery (51 features) and language use (22
features). For this study we did not use any fea-
tures that cover the content of the response.

Features related to delivery covered general flu-
ency, pronunciation and prosody. Fluency fea-
tures include general speech rate as well as fea-

1The actual questions were different across the corpora.

tures that capture pausing patterns in the response
such as mean duration of pauses, mean number of
words between two pauses, and the ratio of pauses
to speech. Pronunciation quality was measured
using the average confidence scores and acoustic
model scores computed by the ASR system for
the words in the 1-best ASR hypothesis. Finally,
prosody was evaluated by measuring patterns of
variation in time intervals between stressed sylla-
bles as well as the number of syllables between
adjacent stressed syllables and variation in the du-
rations of vowels and consonants.

Features related to language use covered vo-
cabulary, grammar and some aspects of discourse
structure. Vocabulary-related features included
average log of the frequency of all content words
and a comparison between the response vocabu-
lary and several reference corpora. Grammar was
evaluated using CVA-based comparison computed
based on part-of-speech tags, a range of features
which measured occurrences of various syntac-
tic structures and the language model score of re-
sponse. Finally, a set of features measured the oc-
currence of various discourse markers.

4.3 Scoring models

To ensure that the results are not an artifact of a
particular learning algorithms (hereafter referred
to as ‘learners’), we used 7 different regressors,
both linear and non-linear. For the linear models
we used OLS Linear Regression, ElasticNet, Lin-
ear SVR, and Huber Regressor. Non-linear models
included Random Forest Regressor (RF), Gradient
Boosting Regressor (GB), and Multi-layer Percep-
tron regressor (MLP). In the operational scoring
engine the coefficients in the linear models are of-
ten restricted to allow only positive values (Louk-
ina et al., 2015). We did not apply such a restric-
tion in this study to allow for a comparison be-
tween different types of learners.

We used the scikit-learn (Pedregosa et al., 2011)
implementation of the learners and the RSMTool
toolkit (Madnani et al., 2017) for model train-
ing and evaluation. The hyper-parameters for
non-deterministic models were optimized using
a cross-validated search over a grid with mean
squared error (MSE) as the objective function.

The scoring models were trained on the train-
ing partition of each of the three corpora. Sepa-
rate models were trained for each of the 6 question
types for a total of 126 models (3 corpora * 6 ques-
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tion types * 7 regressors). Each model was then
evaluated on the responses to the same task con-
tained in the evaluation partitions of the MAIN and
the EXEMPLAR corpora.

5 Results

5.1 The effect of training set, evaluation set
and learner

We used a linear mixed-effect model (Searle et al.,
1992; Snijders and Bosker, 2012) fitted using
the statsmodels Python package (Seabold and
Perktold, 2010) to identify statistically signifi-
cant differences among the various models. We
used prediction squared error for each response
(N=3,124,338) as a dependent variable, response
as a random factor, and learner, training set and
test set as fixed effects. We included both the
main effects of training and test set as well as
their interaction and used the Linear Regression
and MAIN corpus as the reference categories.

The average model performance for each model
is shown in Table 2. While the model was fitted us-
ing squared prediction error, for ease of interpreta-
tion and comparison with other studies, we report
Pearson’s correlation coefficient in the table and
in the body of the paper. Corresponding values of
root mean squared error (RMSE) are given in the
Appendix. Unless stated otherwise, p < .0001 for
all effects is reported as significant.

The effect of the choice of learner on model
performance was statistically significant but very
small. Most of the more complex models resulted
in higher prediction error than OLS linear regres-
sion. Huber regression (p = 0.007) and MLP re-
gression gave a slight boost in performance. Ran-
dom Forest and Linear SVR gave the highest pre-
diction error. In all cases the differences in per-
formance were very small: for RF and SVR the
difference between these learners and OLS was
0.03%; in other cases the differences were around
0.01%.

The choice of the evaluation set had the
strongest effect on the estimates of model perfor-
mance. The best model trained on the MAIN cor-
pus of randomly selected responses achieved
r = 0.66 (MLP) when evaluated on the MAIN cor-
pus. This is consistent with other results reported
for similar corpora: Loukina et al. (2017) cite val-
ues between 0.60 and 0.67 depending on the ques-
tion type and system used. This model achieved
substantially higher performance on the EXEM-

PLAR corpus with r = 0.80. In other words, the
corpus that contained typical responses that could
be accurately scored by human raters was also ac-
curately scored by the automated engine.

Disappointingly, we did not see any improve-
ment in performance when the models were
trained on the EXEMPLAR corpus: the perfor-
mance on the MAIN corpus was in fact slightly
worse than when the models were trained on the
MAIN corpus, with the highest correlation being
r = 0.64 (vs. r = 0.66). The performance of these
models was also no better than the performance
of the models trained on the same amount of ran-
domly sampled responses (MAIN*).

As expected, models trained on EXEMPLAR re-
sponses reached high agreement when evaluated
on EXEMPLAR responses (r = 0.79). The perfor-
mance of this model was also better than the per-
formance of the model trained on MAIN*. That
is, training on EXEMPLAR responses gives an ad-
vantage over training on the same number of ran-
domly sampled responses when the model is eval-
uated on EXEMPLAR responses. However, there
was no difference between the model trained on
the full training set of the MAIN corpus and the
model trained on the EXEMPLAR corpus.

5.2 Size of the training set

To further evaluate whether training on a larger
number of EXEMPLAR responses may have lead
to better performance on the MAIN corpus, we
re-trained the models using all responses pooled
across the different question types. Such an ap-
proach has been previously used in other stud-
ies in situations where all types of questions are
scored based on the same or similar rubrics and
the scoring models do not include any question-
specific features (Higgins et al., 2011; Loukina
et al., 2015). A substantial increase in the size
of the training set to some extent compensates for
loss of information about question-specific pat-
terns. The models were evaluated by question
type, as in the rest of this paper.

To obtain the learning curves for different train-
ing sets, we trained all models using training sets
of varying sizes from 1000 responses to the full
training partition of a given corpus. For each N
other than where N is the length of full corpus we
trained models 5 times using 5 randomly sampled
training sets. Figure 1 shows the learning curves
for different combinations of training and evalua-
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Evaluation set MAIN EXEMPLAR

Training set MAIN MAIN* EXEMPLAR MAIN MAIN* EXEMPLAR

RandomForestRegressor 0.644 0.619 0.616 0.790 0.762 0.777
GradientBoostingRegressor 0.656 0.621 0.630 0.800 0.764 0.784
ElasticNet 0.643 0.634 0.636 0.783 0.772 0.783
LinearSVR 0.635 0.623 0.636 0.767 0.753 0.782
HuberRegressor 0.652 0.635 0.640 0.792 0.771 0.788
MLPRegressor 0.656 0.636 0.640 0.796 0.774 0.787
LinearRegression 0.653 0.633 0.641 0.793 0.771 0.790

Table 2: Average performance (Pearsons’s r) across 6 question types from the two corpora in these studies using
different combinations of learners and training sets.

tion sets (see Appendix for table with numerical
values). All models were trained using OLS linear
regression.

The comparison between the two curves
showed that when models are evaluated on the
MAIN corpus, training on EXEMPLAR responses
has a small advantage for a very small training
set (N=1000). Once the training set is sufficiently
large (for our data, N > 4, 000) training on ran-
domly sampled responses leads to a slightly higher
performance than training on the same number of
EXEMPLAR responses.

At the same time, training on EXEMPLAR re-
sponses had a clear advantage when models were
evaluated on EXEMPLAR responses, although the
difference between the two models decreased with
the increase in the size of the training set. Thus,
our results are consistent with the phenomenon of
hard case bias described in Beigman Klebanov and
Beigman (2009) – training on noisy data leads to
somewhat weaker performance on clear-cut cases.

To conclude, having a larger set of EXEM-
PLAR responses might have slightly increased the
performance of the models on EXEMPLAR re-
sponses, but it is unlikely that it would have given
a performance boost on the MAIN corpus.

5.3 How similar are predictions from
different models?

While differences in training data do not seem to
yield consistent differences in performance for the
various learners, it is still possible that learners
create somewhat different representations when
trained on MAIN vs. EXEMPLAR, as was the
case, for example, in (Beigman Klebanov and
Beigman, 2014). This would, in turn, suggest that
the two models could embody different and po-
tentially complementary views of the data, each

dealing better with a different subset of the data.
It is likewise possible that different learners cre-
ated usefully different representations. To assess
whether this is likely to be a promising direction
for further investigation, we compared the predic-
tions generated by different models by computing
correlations between the predictions generated by
these models. The correlations were very high:
the average correlations between predictions gen-
erated by different learners trained on the same
data sets were r=0.97 (min r=0.92). Average
correlation between predictions generated by the
same learner trained on different datasets was also
r=0.98 (min r=0.95). In other words, different
learners trained on different corpora seem to be
producing essentially the same predictions; this
suggests that model combination strategies are un-
likely to be very effective.

6 Error analysis

To better understand the source of errors on the
MAIN corpus, we conducted qualitative error anal-
ysis of 80 responses (20 per score level) with the
worst scoring error, based on predictions gener-
ated using OLS linear regression.

Inconsistencies in human scoring accounted for
discrepancies for 25 of these responses. For an
additional 18 responses (11 of these with a human
score of 4), the ASR hypothesis was flagged as
particularly inaccurate.

For the remaining responses we observed dif-
ferent patterns at different score levels. At lower
score points (1 and 2), responses incorrectly
scored by the automated scoring engine often
contained individually intelligible words or even
small chunks of locally grammatical strings but
the response as a whole was incoherent or incom-
prehensible in terms of content. Out of the 37 re-
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Figure 1: Model performance (r) depending on the size of the training set for different combinations of train-
ing and test sets. The dotted line indicates the maximum performance obtained on the EXEMPLAR responses to
facilitate comparison with the MAIN set. Note that the x-axis is plotted on a logarithmic scale.

maining responses, 15 fell into this category, most
of them for score 1 (13 responses). These re-
sponses were over-scored by the automated scor-
ing engine based on fluency features or grammar
features that correctly captured local patterns.

The pattern was reversed at score levels 3 and 4:
these responses were clear, intelligible and syntac-
tically well-formed, with content that was tightly
targeted to the question. Yet the speech was halt-
ing, choppy, slow and contained frequent long
pauses. Out of the 22 remaining responses, 9 fell
into this category. As a result they were scored
lower by the automated scoring engine since such
fluency patterns are generally more common of re-
sponses at lower score levels.

7 Discussion

Based on the results of our evaluations reported in
Table 2, our initial hypothesis for research ques-
tion (1) has to be rejected for the MAIN corpus:
the results show that there is no observable effect
in scoring model performance based on the train-
ing set (the large corpus with randomly selected
responses (MAIN) or the EXEMPLAR corpus) —
average prediction error and Pearson r correla-
tions vary only minimally for these two evaluation
corpora when using the different training corpora
for scoring model building. Training on EXEM-
PLAR responses has a small advantage over train-
ing on the same number of randomly sampled re-
sponses from the MAIN corpus when the models
are evaluated on EXEMPLAR responses, but this

advantage disappears by using a training corpus
with sufficiently large number of randomly sam-
pled responses.

On the other hand, our initial hypothesis for re-
search question (2) is confirmed, i.e., the system
performance increases substantially when evaluat-
ing scoring models on the EXEMPLAR corpus vs.
the MAIN corpus (r = 0.80 vs. r = 0.66). Addi-
tionally, our results also show that all 7 regressors
we used to build scoring models perform similarly
on our data, which is also borne out by high corre-
lations between scores generated by the different
learners.

In short, we can summarize that while the prop-
erties of the evaluation set matter substantially,
this does not hold for the training set (as long as
its size is not too small). On the one hand, this
is somewhat disappointing since we would have
hoped to obtain better scoring models when using
exemplar responses for training; on the other hand,
it is encouraging to see how well automated scor-
ing models work (r = 0.80) when evaluated on
data where human raters are in agreement about
the response scores (true gold standard data). In
some sense, making errors on clear-cut cases is a
bigger validity problem for a scoring system than
making errors on cases where the correct label is
somewhat controversial. Evaluation on clear-cut
cases thus provides additional information about
the performance of a scoring system.

We now consider possible reasons for the lack
of substantial improvement in performance on EX-
EMPLAR data when trained on EXEMPLAR data
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vs. a sufficiently large MAIN corpus. Based
on Beigman and Klebanov (2009), the potential
for hard case bias — namely, a situation where
the presence of hard cases in the training data
compromises performance on “easy” test data —
could arise when the hard cases have an adversar-
ial placement in the feature space for a particular
learning algorithm. For example, they show that
the clustering of hard cases in an area that is far
from the separation plane creates the potential for
hard case bias for a system that is trained through
hinge-loss minimization. Our results thus repre-
sent good news for the feature set: it is apparently
rich enough to not represent data in a way that
puts a large cluster of hard cases in an unfortu-
nate location, for a variety of learning algorithms.
That said, we do observe that Linear SVR suffers
from some hard case bias, as it performs some-
what worse on EXEMPLAR responses when trained
on MAIN vs. EXEMPLAR (0.767 vs. 0.782). We
also note that hard case bias does emerge for Lin-
ear Regression when the amount of noisy training
data is relatively small; a larger dataset thus seems
important for counteracting the detrimental effect
of the presence of hard cases in the training data.

We also performed manual error analysis on a
small set of highly discrepant machine and hu-
man scores and found that a substantial subset of
the data investigated had human rater errors that
caused score discrepancies (around 30%). In most
other cases, the discrepancies between machine
and human scores could be attributed to situations
where different sub-constructs of speaking profi-
ciency diverged substantially from each other. For
instance, we identified responses with locally cor-
rect grammar and reasonable fluency but with no
meaningful content. For the latter reason, such re-
sponses are scored very low by human raters but
somewhat higher by the machine, e.g., based on
features related to fluency and local grammatical
accuracy. We also found the opposite, i.e., re-
sponses with very good content but sub-optimal
fluency characteristics. Human raters typically
award high scores for such responses if the sub-
optimal fluency aspects do not interfere substan-
tially with intelligibility of the response, but the
machine scores are lower based on the sub-optimal
performance in the fluency domain.

For both scenarios, it is important to mention
that our scoring models do not contain any features
related to content or discourse; developing and

adding such features to the automated speech scor-
ing system is an important goal for future work
to remediate the score discrepancy in these situa-
tions, in addition to the overall goal of providing a
comprehensive coverage of the speaking construct
in an automated speech scoring system.

8 Conclusion

In this study, we compared the effect of using
two different corpora of scored spoken responses
for training and evaluation of automated scoring
models built using seven different regressor ma-
chine learning systems. The MAIN corpus con-
tained a large set of randomly selected responses
from an English language assessment. The EXEM-
PLAR corpus contained responses where multiple
human raters had agreed on the scores.

Our main findings were that while the choice of
training corpus has no substantial effect on scoring
model performance, as long as the noisier train-
ing set is sufficiently large, the reverse is true for
the choice of evaluation corpus: human-machine
score correlations were as high as r = 0.80 for the
EXEMPLAR corpus, no matter what training cor-
pus was used to build the model or what regressor
machine learning system was used. This compares
to r = 0.65 when using the MAIN corpus for eval-
uation.

Unfortunately, contrary to our initial assump-
tions, it is not possible to achieve improvement in
performance by simply training the model on the
EXEMPLAR corpus, since the model performance
in our experiments was only minimally dependent
on the training corpus. While we observed that
the number of responses necessary to achieve op-
timal performance is higher when the model is
trained on the randomly-selected responses from
the MAIN corpus than on the EXEMPLAR corpus,
the practical demands of collecting the EXEM-
PLAR corpus of such quality as used in this study
in many real-life situations are likely to outweigh
the cost of collecting a larger set of slightly more
‘noisy’ data, especially considering a very limited
gain in performance.

Furthermore, we observed effects of differential
profiles of responses in terms of various speak-
ing proficiency sub-constructs: e.g., for responses
with low human scores where the content is less
well rendered than fluency, machine scores may
be inflated; the reverse holds for responses with
high human scores where the content is very well
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rendered but where machine scores can be lower
due to lack of fluency.

One main goal for future work derived from
our results and the associated error analysis is that
features capturing content aspects of the response
need to be developed and integrated into the au-
tomated speech scoring system to yield a more
comprehensive construct coverage and to mitigate
the observed effects of responses that exhibit dif-
ferential performance across various speech sub-
constructs.
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A Appendix: supplementary tables

Evaluation set MAIN EXEMPLAR

Training set MAIN MAIN* EXEMPLAR MAIN MAIN* EXEMPLAR

MLP Regressor 0.525 0.535 0.538 0.418 0.435 0.421
Huber Regressor 0.526 0.536 0.539 0.422 0.438 0.420
Linear Regression 0.525 0.538 0.539 0.421 0.436 0.419
Elastic Net 0.531 0.536 0.540 0.432 0.438 0.425
Linear SVR 0.535 0.544 0.542 0.443 0.451 0.425
Gradient Boosting Regressor 0.523 0.544 0.543 0.413 0.442 0.423
Random Forest Regressor 0.531 0.545 0.550 0.424 0.448 0.430

Table 3: Corresponding RMSE coefficients for values reported in Table 2.

Evaluation set MAIN EXEMPLAR

Training set MAIN EXEMPLAR MAIN EXEMPLAR

N train
1000 0.615 0.623 0.741 0.771
2000 0.632 0.634 0.764 0.785
4000 0.639 0.640 0.773 0.790
8000 0.645 0.641 0.779 0.792
12390 0.646 0.641 0.781 0.793
16000 0.647 0.782
32000 0.648 0.783
64000 0.649 0.785
128000 0.649 0.785
256000 0.649 0.785
464664 0.649 0.785

Table 4: The values for the learning curves presented in Figure 1.

12



Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 13–23
New Orleans, Louisiana, June 5, 2018. c©2018 Association for Computational Linguistics

Using Paraphrasing and Memory-Augmented Models
to Combat Data Sparsity in Question Interpretation

with a Virtual Patient Dialogue System

Lifeng Jin,1 David King,1 Amad Hussein,2 Michael White,1 and Douglas Danforth3

1Department of Linguistics, 2Department of Computer Science and Engineering,
3Department of Family Medicine

The Ohio State University, Columbus, OH, USA
{jin, king, mwhite}@ling.osu.edu

amadh881@gmail.com, doug.danforth@osumc.edu

Abstract

When interpreting questions in a virtual pa-
tient dialogue system, one must inevitably
tackle the challenge of a long tail of rela-
tively infrequently asked questions. To make
progress on this challenge, we investigate the
use of paraphrasing for data augmentation and
neural memory-based classification, finding
that the two methods work best in combina-
tion. In particular, we find that the neural
memory-based approach not only outperforms
a straight CNN classifier on low frequency
questions, but also takes better advantage of
the augmented data created by paraphrasing,
together yielding a nearly 10% absolute im-
provement in accuracy on the least frequently
asked questions.

1 Introduction

To develop skills such as taking a patient history
and developing a differential diagnosis, medical
students interact with actors who play the part of a
patient with a specific medical history and pathol-
ogy, known as Standardized Patients (SPs). Al-
though SPs remain the standard way to test medi-
cal students on such skills, SPs are expensive and
can behave inconsistently from student to student.
A virtual patient dialogue system aims to over-
come these issues as well as provide a means of
supplying automated feedback on the quality of
the medical student’s interaction with the patient
(see Figure 1).

In previous work, Danforth et al. (2009, 2013);
Maicher et al. (2017) used a hand-crafted pattern-
matching system called ChatScript together with a
3D avatar in order to collect chatted dialogues and
provide useful student feedback (Danforth et al.,
2016). ChatScript matches input text using hand-
written patterns and outputs a scripted response for
each dialogue turn. With sufficient pattern-writing
skill and effort, pattern matching with ChatScript

can achieve relatively high accuracy, but it is un-
able to easily leverage increasing amounts of train-
ing data, somewhat brittle regarding misspellings,
and can be difficult to maintain as new questions
and patterns are added.

To address these issues, Jin et al. (2017) de-
veloped an ensemble of word- and character-
based convolutional neural networks (CNNs) for
question identification in the system that attained
79% accuracy, comparable to the hand-crafted
ChatScript patterns. Moreover, they found that
since the CNN ensemble’s error profile was very
different from the pattern-based approach, com-
bining the two systems yielded a nearly 10% boost
in system accuracy and an error reduction of 47%
in comparison to using ChatScript alone. Perhaps
not surprisingly, the CNN-based classifier outper-
formed the pattern-matching system on frequently
asked questions, but on the least frequently asked
questions—where data sparsity was an issue—
the CNN performed much worse, only achieving
46.5% accuracy on the quintile of questions asked
least often.

In this paper, we aim to combat this data spar-
sity issue by investigating (1) whether paraphras-
ing can be used to create novel synthetic train-
ing items, examining in particular lexical substi-
tution from several resources (Miller, 1995; Le
and Mikolov, 2014; Ganitkevitch et al., 2013; Co-
cos and Callison-Burch, 2016) and neural MT for
back-translation (Mallinson et al., 2017); and (2)
whether neural memory-based approaches devel-
oped for one-shot learning (Kaiser et al., 2017)
perform better on low-frequency questions. We
find that the two methods work best in combina-
tion, as the neural memory-based approach not
only outperforms the straight CNN classifier on
low frequency questions, but also takes better ad-
vantage of the augmented data created by para-
phrasing. Together, the two methods yield nearly

13



Figure 1: Virtual Patient Dialogue System

a 10% absolute improvement in accuracy on the
quintile of least frequently asked questions.

2 Related Work

Question identification is a task that can be ap-
proached in at least two ways. One way is to treat
it as a multiclass classification problem (e.g., us-
ing logistic regression), which can take advantage
of class-specific features but tends to require a sub-
stantial amount of training data for each class. For-
mally, letting q be the candidate question, Y be a
set of question classes and φ a feature extractor,
we seek to find the most likely label ŷ:

ŷ = argmax
y∈Y

eφ(q,y)
∑

y′∈Y eφ(q,y′) .

Alternatively, a pairwise setup can be used. For
example, for each class a binary classification de-
cision can be made as to whether a given question
represents a paraphrase of a member of the class,
choosing the highest confidence match. More gen-
erally, let qy

i ∈ Ly be the i-th question variant for
label y (where the question variants are the para-
phrases of the label appearing in the training data);
given some similarity metric σ, we seek to find the
label ŷ with the most similar question variant qŷ

i in
the set Lŷ to the candidate question q:

ŷ = argmax
y∈Y

max
qy

i ∈Ly
σ(q, qy

i )

Early work on question answering (Ravichan-
dran et al., 2003) found that treating the task as

a maximum entropy re-ranking problem outper-
formed using the same system as a multiclass clas-
sifier. By contrast, DeVault et al. (2011) observed
that maximum entropy multiclass classifiers per-
formed well with simple n-gram features when
each class had a sufficient number of training ex-
amples. Jaffe et al. (2015) explored a log-linear
pairwise ranking model for question identification
in a virtual patient dialogue system and found it
outperformed a multiclass baseline along the lines
of DeVault et al. (2011). However, Jaffe et al. used
a much smaller dataset with only about 915 user
turns, less than one-fourth as many as in the cur-
rent dataset. For this larger dataset, a straightfor-
ward logistic regression multiclass classifier out-
performs a pairwise ranking model.

In general it appears reasonable to expect that
the comparative effectiveness of multiclass vs.
pairwise approaches depends on the amount of
training data, and that pairwise ranking meth-
ods have potential advantages for cross-domain
and one-shot learning tasks (Vinyals et al., 2016;
Kaiser et al., 2017) where data is sparse or non-
existent. Notably, in the closely related task
of short-answer scoring, Sakaguchi et al. (2015)
found that pairwise methods could be effectively
combined with regression-based approaches to
improve performance in sparse-data cases.

Other work involving dialogue utterance classi-
fication has traditionally required a large amount
of data. For example, Suendermann-Oeft et al.
(2009) acquired 500,000 dialogues with over 2
million utterances, observing that statistical sys-
tems outperform rule-based ones as the amount of
data increases. Crowdsourcing for collecting ad-
ditional dialogues (Ramanarayanan et al., 2017)
could alleviate data sparsity problems for rare cat-
egories by providing additional training examples,
but this technique is limited to more general do-
mains that do not require special training/skills. In
the current medical domain, workers on common
crowdsourcing platforms are unlikely to have the
expertise required to take a patient’s medical his-
tory in a natural way, so any data collected with
this method would likely suffer quality issues and
fail to generalize to real medical student dialogues.
Rossen and Lok (2012) have developed an ap-
proach for collecting dialogue data for virtual pa-
tient systems, but their approach does not directly
address the issue that even as the number of dia-
logues collected increases, there can remain a long
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Figure 2: Label frequency distribution is extremely
long-tailed, with few frequent labels and many infre-
quent labels. Values are shown above quintile bound-
aries.

tail of relevant but infrequently asked questions.
As an alternative to crowdsourcing, we pur-

sue paraphrasing for data augmentation in this
paper, focusing on the simplest methods to em-
ploy, namely lexical substitution and neural back-
translation (see Section 5). The idea is to augment
the observed question instances for questions with
infrequent labels in the dataset with automatically
generated paraphrases, with the aim of making
such questions easier to recognize using machine-
learned models. In future work, we plan to explore
more complex paraphrasing methods, including
syntactic paraphrasing (Duan et al., 2016) and in-
ducing paraphrase templates from aligned para-
phrases (Fader et al., 2013).

3 Data Imbalance

Our dataset currently consists of 4330 question-
answer pairs from 94 dialogues between first year
medical students and the virtual patient. After
classifying an asked question as having a certain
label, the virtual patient replies with the canned
response for that label, as illustrated in Table 1.
Unfortunately, the labels do not have a uniform
distribution with regards to the number of variants
each label has (that is, the number of question in-
stances for that label in the dataset). In fact, most
of the labels are underrepresented.

On average, each question label has 12 variants,
but 8 labels account for nearly 20% of the data,
while 256 labels account for the bottom 20% (Fig-
ure 2). We define a rare label to be any label that is
in that set of 256 infrequent labels. Supplement-
ing the data to account for this imbalance is the
primary focus of our work.

4 Memory-Augmented CNN Classifier

Because of the data sparsity issue, we cast the
problem of sentence classification for infrequent
labels as a problem of few-shot learning. In par-
ticular, we use Kaiser et al.’s (2017) memory mod-
ule together with a CNN encoder (Kim, 2014; Jin
et al., 2017) as our main model, the memory-
augmented CNN classifier (MA-CNN). Our aim
is to take advantage of the MA-CNN’s one-shot
learning capability to mitigate the issue of data
sparsity and also to make better use of data aug-
mentation to achieve better performance.

4.1 The CNN encoder

The CNN encoder follows Kim (2014) and Jin
et al. (2017). We briefly summarize the architec-
ture here and direct interested readers to these two
papers for implementation details. There are four
layers in the encoder: an embedding layer, a con-
volution layer, a max-pooling layer and a linear
layer. Let xi ∈ Rk be a k-dimensional embed-
ding for the i-th element of the sentence s. We
concatenate all of the element embeddings to get
S ∈ R|s|×k as the representation of the whole sen-
tence.

The convolution layer may have many kernels,
which are defined as weight matrices w j ∈ Rhk,
where h is the width of the kernel. They slide
across the sentence representation and then pass
through a nonlinearity to produce a feature map
c j ∈ R|s|−h+1. Then the max-pooling layer uses
max-over-time pooling (Collobert et al., 2011) on
the feature maps to ensure fixed-dimensional out-
puts.

Finally, we concatenate all the outputs from all
the kernels into a single vector o, multiply it with
the weight matrix Wl and apply p2-normalization
to it as the final fully-connected neural network
layer for the CNN encoder:

e =
o ·Wl + bl

‖o ·Wl + bl‖ (1)

Here Wl and bl are the weight matrix and the bias
term for the final layer, respectively.

4.2 The memory module

We follow Kaiser et al. (2017) for implementation
of our memory module. The memory module is a
tuple of three matrices K, V and A, which stores
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Student question Label detected Canned response
hello mr. wilkins hello mr hello doctor. i am so glad to see

you.
can you tell me a little about your issue <None> i’m sorry, i don’t understand

that question. would you restate it?
what brings you in today what brings you in today i was hoping you could help me

with my back pain, it really
hurts! it has been awful.

Table 1: Sample interactions between a first year medical student and the virtual patient. The virtual patient’s task
is to accurately detect the kind of question the medical student is asking and then reply with the appropriate canned
response.

one key, one label and one age of one memory en-
try in each corresponding row. A key is an en-
coded presentation of a training item, a label is the
class identifier that the key belongs to, and the age
is the number of memory updates that have taken
place since the key was inserted or updated. To use
the memory, a normalized query item q is multi-
plied by the key matrix

s> = q ·K (2)

to yield a vector of cosine similarities s between
the query and every entry in the memory. The pre-
diction made by the memory is then v̂ = V[n̂],
where n̂ = argmax(s) and v̂ is the predicted class
label.

The memory operations include insert, update
and erase, and loss calculation of the memory de-
pends on the memory operations, therefore we
briefly summarize them here. Let n̂ be the row in-
dex in s with the highest similarity score such that
V[n̂] is the true label of the query, ñ be the row
index of the entry with the highest similarity score
that has a different label from the true label, and v
be the true label. When s[n̂] > s[ñ], the memory
loss is a margin loss between the similarity scores
at n̂ and at ñ with some margin α:

loss = [s[ñ] − s[n̂] + α]+ (3)

In this case, the memory entry at n̂ will be updated
by replacing it with the normalized average of it-
self and the query:

K[n̂]← q + K[n̂]
‖q + K[n̂]‖ (4)

When s[n̂] < s[ñ], the memory loss is:

loss = [s[n̂] − s[ñ] + α]+ (5)

In this case, a new entry is inserted at a previously
empty row n′:

K[n′]← q V[n′]← v (6)

In both cases, the entry in A at the update or insert
site will be replaced by 0, and all the other entries
in A will add 1. When the memory is full, a new
insertion will take place where A[n′] is the biggest.

Finally, if there is no entry in K that has the true
label v, the insert operation is carried out without
any loss calculation. The erase operation is to reset
all three matrices to empty, which is used at the
end of a training episode.

4.3 Episodic training and evaluation

We train our memory-augmented CNN classi-
fier using a novel episodic training scheme based
on the episodic training scheme used in one-
shot learning (Vinyals et al., 2016; Kaiser et al.,
2017). The main difference is that in one-shot
learning, most tasks offer a balanced dataset with
many classes but small numbers of instances per
class. In our scenario, the dataset is imbalanced,
and some classes may have a large number of
instances. Moreover, in evaluation, there are
no unseen classes in our case. We modify the
episodic training scheme to accommodate these
differences.

Episodic training
In training, we define an episode to be a complete
k-shot learning trial with gradient updates. At the
beginning of each episode, a batch of |C| × (k + 1)
samples, where |C| is the number of classes, is
sampled from the training data. The first sample
of each class is then encoded and inserted into the
memory with no loss calculated, which we call
loading the memory. From the second sample on,
the encoder encodes each sample, and the mem-
ory calculates its loss according to its prediction.
After all classes have had one sample to complete
this process, the encoder is updated by the gradi-
ents calculated with the memory loss. The mem-
ory is then updated according to the operations
corresponding to its predictions of the seen sam-
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ples in each shot. When all k shots have been pro-
cessed, the memory is completely erased ready for
the next episode (though naturally the updates to
the encoder remain in effect).

It is easy to see that this process involves over-
sampling, which is a known technique for rebal-
ancing imbalanced datasets. Because each class
must have k + 1 samples for each episode, the mi-
nority classes have to be oversampled. However,
experiments show that oversampling itself does
not lead to better performance.

Episodic evaluation
In evaluation, we define a support set to be a batch
of |C| × k samples from the training data. For a
given test set, we first load the memory, then com-
pare each test item to all the entries in the memory
in order to generate the memory prediction for the
test item based on the most similar memory entry.
This forms the model’s 1-shot predictions. Then
we update the memory with the second sample for
each class and redo the prediction step. We now
have the model predictions with 2 shots. We con-
tinue to follow this routine until predictions from
all k shots have been collected.

Because there is some randomness in how a
support set is sampled from the data, we use mul-
tiple support sets in evaluation. Since some of the
classes have a large number of instances, each ran-
domly sampled support set tends to be sufficiently
different from other support sets that using multi-
ple support sets becomes analogous to ensembling
different models.

Finally, letting p be the number of support sets,
we have k × p predicted labels for each item in
the test set. We use majority voting across all the
predicted labels to get the final model prediction.
This capitalizes on the ensembled support sets and
reduces the variance of the model predictions.

5 Data Augmentation

Since previous work (Jin et al., 2017) showed
that the majority of labels in our dataset have 11
variants or fewer, we explore using lexical sub-
stitution (McCarthy and Navigli, 2009) and neu-
ral machine translation (NMT) back-translation
(Mallinson et al., 2017) for data augmentation.
The main difference in our use of lexical substi-
tution and previous works’ is that our setup is un-
supervised, as we have no gold test set for deter-
mining acceptable paraphrases. Similarly for the
NMT system, we do not know which outputs are

acceptable. To mediate this, we employ the use of
both human and automatic filtering of the gener-
ated paraphrases with the end-goal of facilitating
question label identification for infrequent labels.

5.1 Paraphrase generation

We exploit advances in lexical substitution and
NMT to automatically produce paraphrases. We
also combine these approaches to determine their
collective effectiveness in our downstream label
identification task.

Lexical substitution
Lexical substitution has often been held up as a ex-
emplary task for paraphrase generation. In its sim-
plest form, one must simply replace a given word
with an appropriate paraphrase, i.e. one that re-
tains most of the original sentence’s meaning. As
an example, in the question have you ever been
seriously ill?, seriously could be replaced with
severely, and we would consider this to be an ap-
propriate substitution. However, if we instead sub-
stituted solemnly for the same word, we would not
accept this as the meaning would have deviated too
far.

For generating paraphrases, we employ three re-
sources: WordNet (Miller, 1995), Word2Vec (Le
and Mikolov, 2014), and paraphrase clusters from
Cocos and Callison-Burch (2016). To evaluate
these resources, we took the mean average preci-
sion (MAP) of a given resource’s ability to pro-
duce a lexical substitution which matched a word
that already existed in another variant for the same
label. That is, if the label how has the pain affected
your work? had only two variants, has the injury
made your job difficult? and is it hard for you to
do your job?, and a resource successfully produces
the swap of hard → difficult (producing the sen-
tence is it difficult for you to do your job?), this
would positively affect a resource’s MAP score.
We only performed this evaluation on labels with
30 or more variants as this form of evaluation dis-
proportionately penalizes labels with fewer vari-
ants.

These preliminary experiments indicated that
pooling candidates from all three resources per-
formed better than any given one alone did. We
also found that in the case of multiple word senses
(e.g. bug meaning an insect, an illness, or a flaw
in a program), simply picking the first sense pro-
duced a higher MAP score than a variety of other
selection algorithms. This is not surprising since,
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in the case of WordNet, the first synset is the most
frequently used sense of a given word. For Co-
cos and Callison-Burch’s semantic clusters, these
were ordered by a given cluster’s average mutual
paraphrase score as annotated in the Paraphrase
Database (Ganitkevitch et al., 2013). Although
our domain is medical, the dialogues are patient
directed, less technical, and more colloquial, al-
lowing us to use such a simple selection method
for word sense disambiguation.

For augmenting the data in a way that would
help the most sparse labels, we focused our lex-
ical substitution task on labels with less that 11
variants. After pooling all the lexical substitution
candidates from each resource, we ranked the sub-
stitutions by subtracting the original sentence’s n-
gram log probability from its paraphrase’s.1 We
then extracted the top 100 scoring paraphrases for
our initial unfiltered data set.

Neural machine translation
We additionally use Neural Machine Translation
(NMT) to generate paraphrases by pivoting be-
tween languages. In multiple back-translation, a
method developed in Mallinson et al. (2017), we
take a given English source sentence and generate
n-best translations into a pivot language. This is
the forward step. For each pivot translation we
generate an m-best list of translations back into
English. Thus this backward step yields n×m para-
phrases for a given source sentence, where each
paraphrase within this final set has a weight based
on which of the original n translations it came
from in the forward step and its ranking among
the m translations in the back step. Any dupli-
cates within this final set are collapsed and their
weights are combined before the set is ranked ac-
cording to weight. This method favors transla-
tions which come from high quality sources (high-
ranking translations in the lists n and m) as well as
translations which occur multiple times.

In our work we translated each given source
sentence into 10-best forward translations and 10-
best back translations before finally collapsing and
ranking the 100 paraphrases. We used a model
from Sennrich et al. (2016) and chose German as
our pivot language given the quality of the transla-
tions and paraphrases we observed.2

1We used a 5-gram language model with back off, trained
on the Gigaword (Parker et al., 2011).

2We found that the pretrained model for German pro-
duced the best back-translations when compared to other pre-

Figure 3: A graphical representation of the pseudo-
oracle selection process. For a given test item (here
Target), the n-gram overlap with the paraphrase must
be greater than the overlap with the source sentence that
paraphrase was derived from.

5.2 Filtering

Since both the lexical substitution and NMT meth-
ods generate helpful and unhelpful paraphrases,
we needed a way to select useful paraphrases. Al-
though a typical next step might be to manually
filter each system’s output by hand, we were un-
sure if expensive human filtering would produce
any gain in downstream performance. To explore
this question, we experimented with a fully auto-
matic pseudo-oracle.

The pseudo-oracle is an automatic filter which
we designed to look at a particular test item in a
cross-validation setup and select the paraphrases
whose n-gram recall with that test item was higher
than the original source sentence’s, as illustrated in
Figure 3. In using this initial step of filtering, we
are able to isolate the paraphrases which are most
likely to be helpful for classifying question labels.
In preliminary experiments using logistic regres-
sion, we tested the performance of the pseudo-
oracle selection process on the downstream clas-
sification task, where we found that the pseudo-
oracle was able to facilitate classifying question
labels, whereas using all the outputs from the lex-
ical substitution and NMT paraphrase generations
systems (without filtering) led to a drop in perfor-
mance.

Thus, to lessen the expense of human filter-
ing, we used the pseudo-oracle as an automated
first step, under the assumption that the selected
paraphrases would mostly be kept as well using
manual filtering. Next, using the same Giga-
word trained language model from Section 5.1,
we ranked the lexical substitution and NMT out-

trained models. In future work, we plan to train our own mod-
els across various pivot languages to produce an increased
variety of paraphrases.
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puts. From these ranked lists, we extracted the
highest scoring subsets such that each paraphrase
not only had a high log probability, but also con-
tributed a unique n-gram (i.e., if two paraphrases
contributed the same new n-gram, only the highest
scoring paraphrase was selected). This diversity-
enhancing filtering reduced the size of the dataset
to around 20% of the original raw lexical substi-
tution output and 2.5% of the raw NMT output,
greatly lessening human annotation costs.

Since we instructed the annotators (a subset
of the authors) to only select useful paraphrases
which contributed novel n-grams not present in
any other variant, their task was necessarily differ-
ent from the pseudo-oracle’s. Annotators required
16 hours per annotator to manually filter the data.
We found that the annotators selected paraphrases
which might not necessarily help the downstream
task in a cross-validation setup, but which could be
expected to help with completely unseen data. For
this reason, we chose to combine the pre-selected
paraphrases chosen by the pseudo-oracle together
with the human-filtered paraphrases in our evalua-
tion.

6 Experiments

We use the best model in Jin et al. (2017), namely
a stacked convolutional neural network (Stacked-
CNN), together with the model proposed in this
work (MA-CNN) in all of the experiments. Our
task is to accurately predict a question’s label
based solely on the typed input from the medical
student. With improved accuracy, the virtual pa-
tient will be able to more coherently answer the
students’ questions.

We shuffle the gold dataset first and use 10-fold
cross-validation to evaluate our data augmentation
process. We specifically focus our analysis on
rare labels since that is also where we concentrate
our data augmentation efforts. The model we pro-
pose here is targeted at improving performance for
the rare labels, therefore we are interested in how
the model performs on them. Paraphrases are not
added to test sets, and paraphrases derived from
those test items are filtered from training. Finally,
we compute significance using the McNemar test
(McNemar, 1947).

6.1 Hyperparameters

We mostly follow Jin et al. (2017) in setting the
hyperparameters of the CNN encoder in MA-

CNN. We only use word-based features in the en-
coder. Following Jin et al. (2017), we set the num-
ber of kernels of the encoder of MA-CNN to be
300. We use kernels of widths 3 to 5 for the CNN
encoder. All non-linearities in the models are rec-
tified linear units Nair and Hinton (2010). We
use Adadelta (Zeiler, 2012) as the optimizer for
the whole MA-CNN, and use the recommended
values for its hyperparameters (ρ = 0.9, ε = 1 ×
10−6, learning rate = 1.0). We initialize the em-
beddings with Word2Vec but allow them to be
tuned by the system (Mikolov et al., 2013).

For episodic training, we set the number of
shots to be 10. For the episodic evaluation, we use
5 support sets. For each support set, we also do
10-shot evaluation. Therefore for each test item,
there are 50 predictions in total. We combine all
predictions with majority voting, weighted by the
similarity score of each prediction.

6.2 MA-CNN on rare labels
We first train our model MA-CNN and the stacked
CNN model from Jin et al. (2017) using just the
original VP dataset and explore how the model
architecture affects rare label accuracy. Table 2
shows the test accuracy for both models. MA-
CNN performs very well on the rare labels. The
performance difference between the stacked CNN
model and MA-CNN is highly significant, which
shows that the pairwise-classification approach
paired with episodic training is really powerful on
the items which belong to labels with few train-
ing instances. We can also see that MA-CNN does
not perform as well as the CNN ensemble on all
labels, which is consistent with the previous ob-
servation that non-pairwise classifiers work bet-
ter when training data is large. It is worth not-
ing though that the stacked CNN ensemble con-
sists of 10 CNNs that take in word- and character-
based features as their inputs, meanwhile the en-
coder of the MA-CNN is just a single word-based
CNN. This further illustrates how a pairwise sys-
tem which is designed specifically for dealing with
classes with few training instances can help im-
prove performance on those classes by using near-
est neighbor comparison and episodic training in-
spired by one-shot learning.

6.3 Generated paraphrases as training data
We further explore the effect on model perfor-
mance of using the generated paraphrases along
with the gold training data in training. We use the
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System Full Acc Rare Acc
StackedCNN 79.02 46.54

MA-CNN 75.22 51.78***

Table 2: Test results for the stacked CNN ensemble (Jin
et al., 2017) and the memory-augmented CNN clas-
sifier (MA-CNN) without any generated paraphrases.
The difference of performance on the rare items is
highly significant (p = 9.5 × 10−5, McNemar’s test).

System Full Acc Rare Acc
StackedCNN 78.45 53.04

MA-CNN 75.33 56.14***

Table 3: Test results for the stacked CNN ensem-
ble and the memory-augmented CNN classifier (MA-
CNN) with the manually filtered paraphrases. The
gain brought by the adding the automatically generated
paraphrases into training data for MA-CNN is highly
significant (p = 1.6 × 10−4, McNemar’s test).

manually filtered dataset with both paraphrasing
methods, and train both the stacked CNN ensem-
ble and MA-CNN with it plus the gold set. Table 3
shows the results on the test set. First, we can see
that both models benefit in terms of rare label ac-
curacy by using the augmented dataset. The differ-
ence between MA-CNN trained with only the gold
dataset and the augmented dataset is highly signif-
icant, showing that the generated paraphrases are
of high quality and help MA-CNN to achieve even
better performance on the rare labels. It is interest-
ing to note that for full accuracy, performance of
both models does not significantly change, show-
ing that the paraphrases are of high enough quality
to not be harmful to the frequent labels.

6.4 Effects of data augmentation

Table 4 shows the effect of using pseudo-oracle
and manually filtered data on rare labels. We find
that the MA-CNN is able to use the data augmen-
tation in a way that directly benefits the rare labels.
Specifically, the MA-CNN benefits from the hu-
man filtered data, indicating that it benefits from
information provided to it that raw n-gram overlap
does not capture. At the same time, however, fil-
tering using the pseudo-oracle evidently provides
a reasonable approximation of what improvements
in accuracy can be obtained with human filtering
of the generated paraphrases.

System Rare Acc
Pseudo-oracle 54.87

Manual 56.14

Table 4: Test results for the memory-augmented
CNN classifier (MA-CNN) with different filtering tech-
niques.

Paraphrases Rare Acc
No paraphrases 51.78

Lexical substitution 53.16
Neural Machine Translation 55.22

Both 56.14

Table 5: Test results for the memory-augmented CNN
classifier (MA-CNN) with different subsets of the man-
ual filtered paraphrases generated using different para-
phrase methods.

6.5 Quality of generated paraphrases

We also want to see how the performance on rare
labels is connected to the method with which the
paraphrases are generated. We use the individ-
ual subsets each of which is generated by a sin-
gle method to augment the training data. Table 5
shows how these methods compete against each
other. Surprisingly, simple lexical substitution
is already good at providing information that is
helpful to MA-CNN, but the neural machine back
translation is an even better method at providing
paraphrases that have positive impact on rare label
accuracy. We inspect the paraphrases generated by
both methods and find that paraphrases from back
translation are generally more diverse in phrasal
structure and contain more novel words than those
generated with lexical substitution. The combined
dataset gives further improvement, showing that
lexical substitution and neural machine translation
are at least partially complementary to each other
as generation methods.

6.6 Combining the stacked CNN and the
MA-CNN

Given the fact that the MA-CNN performs very
well on rare labels, but not so well on all la-
bels, it is interesting to see if a combined system
with the stacked CNN and MA-CNN can provide
a further performance increase. We here choose
a relatively simple logistic regression model as
our model combiner, though a more sophisticated
model could be used in principle. Using 1-5 grams
of words and stemmed words as well as 2-5 grams
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System Full Acc Rare Acc
StackedCNN 79.02 46.54

MA-CNN 75.33 56.14
Combiner 79.86*** 50.98

Table 6: Test results for the combiner as well as the
two combined subsystems: the stacked CNN ensem-
ble trained with gold and the memory-augmented CNN
classifier trained with gold and generated paraphrases.
The gain compared to stacked CNN on full accuracy is
highly significant (p = 1.9 × 10−9, McNemar’s test).

of characters, we trained the model to predict the
rarity of a label for a question, i.e. if a candidate
question belongs to a rare label or not. This rarity
predictor gets 94.2% accuracy on all labels, and
78.1% accuracy on rare labels. Note that the ma-
jority baseline for all labels is 80%, but for rare
labels it is 20%. This rarity predictor serves as our
combiner; that is, we use the combiner to choose
whose result to trust between the two classifica-
tion systems. If the combiner predicts that an item
belongs to a rare label, we choose the prediction
from the MA-CNN; if the combiner instead pre-
dicts it belongs to a frequent label, we choose the
prediction for it from the stacked CNN. This is
done with 10-fold cross validation, just like how
the classifiers were trained above.

The stacked CNN model we use here is the one
trained with only gold training data, which is the
model with the best accuracy on all labels. We use
the MA-CNN model trained with both gold and
generated data. With the combiner, we get 50.98%
accuracy on rare labels, and 79.86% accuracy on
all labels, as shown in Table 6. The result indicates
that the two systems are complementary to each
other, and simple combination is already effective
in providing a significant performance boost. Al-
though the accuracy on rare labels is not as high as
the MA-CNN by itself, it is higher than the stacked
CNN model by 5 points, and all of these points are
translated into an accuracy increase on all labels
that is close to 1 point.

7 Conclusion

In this paper, we have investigated the use of
paraphrasing for data augmentation and neural
memory-based classification in order to tackle the
challenge of a long tail of relatively infrequently
asked questions in a virtual patient dialogue sys-
tem. We find that both lexical substitution and
neural back-translation yield paraphrases of ob-

served questions that improve system performance
on rare labels once the generated paraphrases are
manually filtered down to ones taken to be use-
ful, with neural back-translation contributing more
to gains in accuracy than lexical substitution. We
also find that neural memory-based classification
with a novel method of episodic training outper-
forms a straight CNN classifier on low frequency
questions and takes better advantage of the gener-
ated paraphrases, together yielding a nearly 10%
absolute improvement in accuracy on the least fre-
quently asked questions. Finally, using a simple
logistic regression model to combine the predic-
tions of the straight CNN and memory-based clas-
sifier, we find that the combined system performs
better on all labels, and the gain is from more ac-
curate predictions of rare labels. We expect these
gains to yield increased user engagement and ulti-
mately better learning outcomes. In future work,
we plan to investigate using the memory-based
classifier for fully automatic paraphrase filtering
as well as more advanced methods of paraphras-
ing, including deep generative paraphrasing, syn-
tactic paraphrasing and using aligned paraphrases
to induce paraphrase templates. More powerful
models may also be explored to better combine the
models.
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Abstract

We present the first work on predicting reading
mistakes in children with reading difficulties
based on eye-tracking data from real-world
reading teaching. Our approach employs sev-
eral linguistic and gaze-based features to in-
form an ensemble of different classifiers, in-
cluding multi-task learning models that let us
transfer knowledge about individual readers to
attain better predictions. Notably, the data we
use in this work stems from noisy readings
in the wild, outside of controlled lab condi-
tions. Our experiments show that despite the
noise and despite the small fraction of mis-
readings, gaze data improves the performance
more than any other feature group and our
models achieve good performance. We further
show that gaze patterns for misread words do
not fully generalize across readers, but that we
can transfer some knowledge between readers
using multitask learning at least in some cases.
Applications of our models include partial au-
tomation of reading assessment as well as per-
sonalized text simplification.

1 Introduction

Reading disabilities are impairments affecting in-
dividuals’ access to written sources, with down-
stream effects such as low self-confidence in the
classroom and limited access to higher education.
Dyslexia, for instance, while being highly preva-
lent with estimates reaching up to 17.5% of the
entire population of the U.S. (Interagency Com-
mittee on Learning Disabilities, 1987), often goes
undiagnosed, such that unattributed weaknesses
in reading comprehension further intimidate af-
fected persons. Due to these severe and broad-
ranging impacts of reading difficulties, many gov-
ernments have implemented early screening tests
for dyslexia and other reading difficulties and pro-
vide special training and assistance for struggling
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Figure 1: Scanpath and fixations (blue circles)
when reading a sentence. This particularly clear
example from our dataset shows extended process-
ing time for misread words (marked in red).

readers throughout the educational system and
into adulthood.

In Denmark, for example, such programs pro-
vide children with specialist training through fo-
cused multi-week reading courses in one-on-one
or small group settings. Still, the specialized teach-
ers can only attend to one student at a time when
closely monitoring their reading, and the quality of
any analysis is strictly limited by the human ob-
server’s processing “bandwidth” while attending
the live reading.

As a possible mitigation, advances in eye-
tracking technology–in particular the increased
availability of eye trackers–have made it possible
to reliably record children’s gaze during reading,
both allowing teachers to attend to their students’
reading post-hoc as well as providing additional
insight into reading strategies based on gaze, in-
cluding the development of these strategies over
time. For the teacher to track and keep records of
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reading mistakes (henceforth referred to as mis-
readings), however, the students are still required
to read out loud, and the teacher has to review the
entire reading and annotate for misreadings.

In this work, we investigate to what extent we
can predict misreadings from gaze patterns for in-
dividual words. While the aim is not to fully au-
tomate reading reviews, being able to successfully
predict misreadings from gaze data can be part of a
semi-automatic system for reading quality assess-
ment and increase teacher efficiency by pointing
out potential misreadings for closer review.

Another motivation for this work comes from
text simplification, in particular from the obser-
vation that individuals’ highly specific reading
strengths and weaknesses require text simplifica-
tion models to be customized to specific users in
order to unfold their full potential and truly be
helpful. Predicting misreadings in concrete read-
ing scenarios and based on individual gaze pat-
terns can be used as a first step in the typical lexi-
cal simplification pipeline (Shardlow, 2014).1 This
task, known as complex word identification, has
received a considerable amount of attention in the
literature, but has exclusively been approached in
a user-agnostic fashion.

The data used in this study are gaze recordings
of children with reading difficulties, reading Dan-
ish texts assigned by their reading teacher as part
of their reading intervention. The recordings stem
from EyeJustRead, an eye-tracking based soft-
ware used in special reading intervention in Dan-
ish schools.2 In Section 3, we discuss further as-
pects of the treatment of gaze data in general and
the collection of the data used in this study in par-
ticular.

While the difficulty of processing a word is un-
doubtedly reflected in the fixation time on that
word (Rayner et al., 1989), many other factors
affect fixation durations, the most prominent be-
ing word length and word frequency, but also pre-
dictability and relative position in sentence have
strong effects–see Figure 1 for a particularly clear
example from our dataset. Notably, almost all
analyses of eye-tracking reading data use data
collected in research laboratories, where these–

1While today it may hardly sound plausible to equip each
laptop with an eye-tracker in order to track people’s reading,
further technological advances may well make this possible
in the future. Recent development in eye-tracking technology
has taken it from expensive research equipment to a gaming
interface with a price point as low as $100.

2http://www.eyejustread.com

otherwise confounding–factors can be controlled
for. We show that we can perform reasonable mis-
reading detection on real-world eye tracking data,
including a limited number of textual features to
control for these factors.

Contributions a) We present the first work on
the automatic detection of misreadings based on
gaze patterns of children with reading difficulties.
b) This is, to the best of our knowledge, the first
attempt at modeling noisy, real-world eye-tracking
data from readers. c) We also present, to the best
of our knowledge, the first published results using
a multi-task learning setup to transfer knowledge
between individual readers for personalized, com-
plex word identification.

2 Related Work

Our work is a special case of complex word identi-
fication, a task that has recently received a signifi-
cant amount of interest, including two shared tasks
(Paetzold and Specia, 2016; Yimam et al., 2018).
The most successful approaches to these tasks had
in common that they employed ensembles of clas-
sifiers that learned from a number of semantic and
psycholinguistic features. Note however, that these
previous approaches to complex word identifica-
tion aimed at developing generic models that took
no account of any specifics of a certain user.

Children’s eye movements during reading are
not as well-studied as adults’, and previous stud-
ies typically analyze data collected in experiments
designed for research. The overall established ob-
servations with regards to reading development
are: older children have shorter fixation durations,
fewer fixations and fewer regressions. They have
a higher skipping probability and also higher sac-
cade amplitude. See Blythe and Joseph (2011) for
a review. It is not conclusive whether these vari-
ations follow chronological age or their increased
reading proficiency. Regardless of the underlying
cause, due to the observed systematic differences,
the standard procedure is to control as closely
as possible for age and reading proficiency level
when designing reading experiments.

There are several psycholinguistic studies that
show that also in children, the typicality and plau-
sibility of sentences (Joseph et al., 2008) as well
as temporary sentence ambiguity (Traxler, 2002)
can be traced in eye movements, suggesting that
also other types of comprehension difficulties are
reflected in the reading patterns.
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Using gaze data to augment models is a recent
addition to NLP. Previous approaches that have
used gaze data in the context of natural lan-
guage processing include the work of Barrett et al.
(2016), who aim to improve part-of-speech induc-
tion with gaze features, Klerke et al. (2016), where
gaze data is used as an auxiliary task in sentence
compression, and Klerke et al. (2015b), where
gaze data is used to evaluate the output of ma-
chine translation. The most related work is Klerke
et al. (2015a) and Gonzalez-Garduño and Søgaard
(2017). Klerke et al. (2015a) compared gaze from
reading original, manually compressed, and auto-
matically compressed sentences. They found that
the proportion of regressions to previously read
text is sensitive to the differences in human- and
computer-induced complexity. Gonzalez-Garduño
and Søgaard (2017) show that text readability pre-
diction improves significantly from hard parame-
ter sharing when models try to predict word-based
gaze features in a multi-task-learning setup. All
of these works, however, use gaze data that was
collected under laboratory conditions from skilled,
adult readers.

3 Gaze Data

In eye-tracking studies, gaze data is normally
sampled under experimental circumstances, where
e.g. instructions, location, environment, lighting,
participant sampling, textual features, order, dura-
tion etc. are controlled for. Our real-world data, on
the contrary, lacks all of these controls. While in
controlled, cognitive psychology experiments, fix-
ation durations have proven to systematically cor-
relate with cognitive load (see Rayner (1998) for a
review), eye movements from-real world applica-
tions have been largely understudied, and specific
findings from the literature on controlled data may
not apply here or may be swamped by extraneous
factors. Further, the often-used statistical tests of
significant differences between gaze patterns lose
some of their legitimacy when data is retrieved un-
der noisy conditions.

3.1 Data collection and preprocessing

The data we use in this work is collected in Dan-
ish schools using commercial software specifically
developed to record and track children’s reading
development. The system records the eye move-
ments and voice while the children are reading
aloud. The teacher can afterwards replay the read-

ing along with the recorded eye movements. The
software performs some low-level eye-movement
analyses to help the teacher understand how the
child processes the text. The teacher can mark
which words are erroneously read by the child and
later access this and other basic statistics about the
reading – see Klerke et al. (2018) for a workflow
description. The genre is children’s fiction books
and the children read contextualized, running text.

As the data is fairly noisy compared to data
from laboratory-based eye tracking experiments,
we perform thorough cleaning before running any
experiments. This cleaning procedure is described
below. Table 1 contains a summary of the dataset
sizes after each cleaning step. Before any cleaning
is performed, the dataset contains 369 reading ses-
sions from 95 unique readers. In total it has 3,161
read pages.

Help word activated on page We start by re-
moving all pages where the reader activated the
help word function, which dynamically isolates
and enlarges a single word on the screen. This dy-
namic display generates a series of eye movements
that do not resemble typical reading activity. This
step removes 94 pages.

Fixation detection We pre-process the raw gaze
data by first detecting fixations using a custom
implementation of the algorithm of Nyström and
Holmqvist (2010). We remove fixations shorter
than 40ms and longer than 1.5s.3 For the calcu-
lation of gaze features (see below), we further dis-
card all data points that are not detected as a fixa-
tion on text (but instead on images or blank parts
of the page). We remove 19 pages where we do not
have any fixations on text (e.g. due to the reader
just browsing through a book or because of tech-
nical issues).

Bad calibration Prior to reading, the student is
prompted to calibrate the eye tracker. In the data
used in this study, most reading sessions (91%) at-
tain the best calibration score on a five-point scale,
while 6% miss a calibration score. The remaining
3% do not have the best calibration score. We re-
move everything but the 91% with the best cali-
bration score.

Only parts of the readings have been reviewed

3Removing short fixations also removes the majority of
blinks which presents as a sudden downward-upward pattern
of saccades separated by a pause in the signal or a short,
falsely detected fixation.
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Cleaning step Reading sessions Unique readers Read pages Read words Misreadings

No cleaning 369 95 3161 73,965 644
Help word activated 366 95 3067 71,911 619
Fixation detection 366 95 3048 64,191 613
Bad calibration 335 87 2865 56,166 565
Marked by teacher 83 44 405 8,681 565

Table 1: Dataset size after each cleaning step

and marked for misreadings by a teacher. How-
ever, whether a teacher reviewed a reading or not
is not explicitly encoded in the data. Thus, if there
are no marked misreadings in some session, we
do not know whether this is because this reading
was not reviewed or because there actually were
no errors. We therefore remove all readings with-
out any marked misreadings, as well as any data
before the first marked misreading and after the
last marked misreading within marked sessions,
assuming that everything between these two points
has been marked. Twelve cleaned reading sessions
only consist of one misread word – everything be-
fore and after was removed. See Figure 2a for an
overview of the distribution of number of words
per reading after this cleaning step. This leaves
us with the subset of the readings that posed most
problems for the subjects. Figure 2b shows the dis-
tribution of misread words in the cleaned dataset.
It is worth noting that since this is not controlled,
experimental data, “misread” is not necessarily in-
terpreted equally by all teachers, or even consis-
tently across markings from the same teacher, due
to the lack of an annotation protocol. We assume
that “misread” means that the pronounced word
deviates substantially from the written word. Ul-
timately, we retain 83 reading sessions from 44
readers with at least one misread word.

3.1.1 Apparatus
The eye tracker used is a Tobii Eye Tracker 4C
with a sample rate of 90 Hz. It is an affordable,
consumer eye tracker targeted at gaming. The lap-
top computers to which the trackers are attached,
and which run the software, are provided by the
different institutions and vary. Screen resolution is
locked by the eye tracker software to 1366 x 768,
and most systems reportedly run on a 14”–15.6”
monitor. The font size is 50pt, which is equivalent
to approximately 6mm x-height. Distance between
baselines was approximately 18mm with the most
commonly used font–otherwise 24mm.
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Figure 2: Distributions of total number of words
and misreading ratios per session after cleaning.

3.1.2 Subjects
The cleaned dataset contains 44 unique readers
with different reading durations. Readers are prob-
ably between 5 and 15 years old, which is the of-
ficial age of students in the Danish schools, but
we do not know their exact ages. To control for
reading proficiency, we include the texts’ readabil-
ity scores as a feature in all experiments. All stu-
dents receive extra reading classes, because they
struggle with reading. Many of them are probably
dyslexic, but we do not have access to this infor-
mation. Because this is not experimental data, the
students will have received different instructions
from the teachers. We do not know if they picked
the text themselves or for how long they read prior
to each recording. They are not necessarily alone
in the room, but it is a fair assumption that they
all make an effort to read correctly because they
are recorded. The data comes from a number of
different systems that we were informed is in the
range between 10 and 20, but the actual num-
ber of schools and teachers is unknown to us. All
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children and their parents gave consent that the
anonymized eye-tracking data may be used for this
research.

3.2 Features

Reading patterns have been shown to be influ-
enced by a number of factors, including textual
features and the instructions given to a reader, such
as encouraging a specific reading strategy. Read-
ers, or different groups of readers, furthermore dis-
play individual reading styles which affect the eye
movements (Benfatto et al., 2016). Other factors
include the reader’s individual skill level, cogni-
tive abilities and mood, among others.

We extract a number of gaze features that have
been associated with processing load. Some of our
gaze features directly reflect the processing load
associated with a word, especially the two corre-
lated measures total fixation duration and number
of re-fixations, but also the mean fixation duration.
Some gaze features are included to account for
preview effects (whether the next or previous word
was fixated) as well as the scan path immediately
surrounding the word. We split the gaze features
into two groups: GAZE (W) for features directly
associated with word-level processing and GAZE

(C) for features associated with the eye move-
ments on the immediate context of the word. All
features are scaled to the [−1, 1] interval.

We further extract a number of basic features
that are known to affect gaze features and thus
need to be controlled for. These include word
length and word frequency (Hyönä and Olson,
1995), but also position in sentence (Rayner et al.,
2000) and position on the page have shown to af-
fect reading for adults. We also include a range of
linguistic features that we expect to describe word
difficulty. All features and feature groups are listed
in Table 2 and described below.

Gaze features During reading, the reader per-
forms a series of stable fixations of a couple of
hundred milliseconds duration on average. Be-
tween fixations, the eyes perform rapid, targeted
movements, called saccades. All gaze features are
computed on the word level and use the applica-
tion’s definition of the area of interest surrounding
each word.

For gaze duration, we extract both late and early
processing measures. Late measure such as total
fixation duration and number of re-fixations reflect
late syntactic and semantic processing in skilled

adult reading (Rayner et al., 1989). For children
with reading difficulties, we assume these mea-
sures to likely reflect processing difficulty.

For the first three passes over a word, we also
extract the direction and the word distance of both
the ingoing and outgoing saccade.4 These six fea-
tures are expected to map the activity around the
word and, for example, show whether some word
was part of sequential, forward reading or oc-
curred in a series of erratic saccades.

Four features indicate the landing positions of
fixations in four equally-sized parts of the display
width of a word. This captures whether a word,
for instance, has three fixations on the last quarter
of its display width, which would be atypical and
suggest that the reader is struggling with the end-
ing of this word. We further explicitly encode the
landing position of the first and last fixation. Note
that because of the anatomy of the eye, eye track-
ing can never be pixel-accurate, but has at least
2° inaccuracy. For short words (or words printed
very small, which does not apply for this study)
these features may be misleading.

The data also provides pupil sizes for both eyes.
It is well known that the pupil dilates as response
to external lighting factors, but there is also evi-
dence that the pupil systematically–but on a much
smaller scale–dilates as a response to mental state,
emotions or concentration (Beatty et al., 2000).
In an experiment collecting pupil size, one would
control lighting, which was not possible in the
present scenario. For all pupil measures, we sub-
tracted the same side mean of the reading ses-
sion. We confirmed that all changes larger than
0.6 times the mean were captured when remov-
ing short fixations, as they may be caused by
the tracker mistaking eyelashes for pupils during
blinks.

Basic features The basic features span 16 tex-
tual and presentational features that are either di-
rectly accessible via the system or easily obtain-
able. They are included in all our experiments and
serve as control features for the gaze features be-
cause we expect them to explain some of the vari-
ance in the gaze features, e.g. reading changes

4As we removed everything that was not a fixation on
text before calculating the gaze features, intermediary non-
text fixations may have occurred between text fixations, such
as image fixations. We count the last/next fixated word. For
example, if a word has index 5, and the first pass incoming
saccade is from word index 4, we get a feature value of -1 for
first pass ingoing.
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BASIC GAZE ON WORD (W)

Is bold Number of fixations on word
Is italic First fixation duration
Is lowercase Mean fixation duration
Is uppercase Total fixation duration
Has punctuation Count of passes over the word
Line index on page Left pupil size
Word index on line Right pupil size
Page number Refixation counts
Position in sentence (relative) Fixations in first quarter count
Position in sentence (absolute) Fixations in second quarter count
Sentence length (characters) Fixations in third quarter count
Sentence length (words) Fixations in fourth quarter count
Word index Relative landing position of first fixation
Sentence index Relative landing position of last fixation
Word length (characters) Average character index of fixations

GAZE IN CONTEXT (C) LINGUISTIC

1st pass ingoing saccade dist. and dir. LIX score for entire text
1st pass outgoing saccade dist. and dir. Previous occurrences of word stem in text
2nd pass ingoing saccade dist. and dir. Previous occurrences of word type in text
2nd pass outgoing saccade dist. and dir. Vowel count
3rd pass ingoing saccade dist. and dir. Character perplexity
3rd pass outgoing saccade dist. and dir. Word frequency
Next word fixated Universal POS tag
Previous word fixated

Table 2: Overview of the feature groups used in the experiments.

over the course of a line and the course of a sen-
tence (Just and Carpenter, 1980). We further en-
code the line number a word is located in on a
page, as well as its position in that line.

Linguistic features The linguistic features in-
clude the absolute vowel count, which in Dan-
ish is highly correlated with the number of syl-
lables. Universal POS tags are obtained from the
Danish Polyglot tagger.5 We also include the pro-
vided Läsbarhetsindex (LIX) (Björnsson, 1968),
a Swedish readability metric (commonly also ap-
plied to Danish) that considers the mean sentence
length and the ratio of long words (more than
6 characters). The log word probability is esti-
mated from a language model we train on the en-
tire Danish Wikipedia (downloaded in November
2017) using KenLM (Heafield, 2011). Frequency

5http://polyglot.readthedocs.io

affects processing load and thus fixation dura-
tion for adults as well as dyslexic and neurotyp-
ical Finnish children (Hyönä and Olson, 1995),
but there is conflicting evidence whether text fre-
quencies from adult text explain variance in chil-
dren’s eye movements (Blythe and Joseph, 2011).
Character perplexity is estimated using a 5-gram
character language model, also using KenLM on
the Danish Wikipedia. The previous occurrence of
stems and word types is included as reading time
for low-frequency words has shown to decrease on
later repeats in a text (Rayner et al., 1995). We use
NLTK’s snowball stemmer for Danish.

4 Model

In preliminary experiments, we observed that the
relatively small overall amount of data, as well
as the low fraction of positive instances, caused
significant variation between repeated random
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Feature group F1

BASIC 18.78 †
+ GAZE (W) 40.50 *
+ GAZE (C) 18.49 †
+ LINGUISTIC 19.24 †
+ GAZE (W) + GAZE (C) 41.19 *
+ GAZE (W) + LINGUISTIC 41.08 *
+ GAZE (W) + LINGUISTIC 18.65 †

All features 40.42 *

Table 3: Performance across feature groups for Ex-
periment 1. Scores are averaged F1 over ten cross-
validation folds. Using an independent t-test, *
and † indicate results from ten cross validation
rounds significantly different from BASIC and the
best feature combination BASIC + GAZE(W) +
GAZE(C), respectively.

restarts of various classification algorithms. We
thus approach the task of predicting misreadings
from gaze with ensemble methods, training N
classifiers independently on the same data and let-
ting them vote on the instances in a held-out devel-
opment set. Using this development set, we then
optimize a threshold t, which is the fraction of the
number of classifiers that need to cast a positive
vote on an item before we accept it as such.

All of our ensembles consist of 10 random
forest classifiers and 10 feed-forward neural net-
works. The random forests, in turn, consist of
100 trees that create splits based on Gini impu-
rity (Breiman, 2001). The neural network models
are implemented in Pytorch and trained with the
Adam algorithm (Kingma and Ba, 2014), with an
initial learning rate of 3·10−4 and a dropout rate of
0.2 on the hidden layers, whose number and sizes
we vary in our experiments. We further employ
early stopping, monitoring the loss on the devel-
opment set with a patience of 30 steps.

4.1 Multi-task learning for cross-user
knowledge transfer

One of the central questions we investigate in this
paper is to what degree gaze patterns for mis-
read words vary between readers, and whether
we can learn to transfer knowledge about predic-
tors of misreadings between readers. We address
these questions in the experiments reported in Sec-
tion 5.2, for which we use a multi-task learning

(MTL) model that employs hard parameter shar-
ing. MTL has received significant attention in the
natural language processing community over the
past years (see Bjerva (2017) for a review). One
of the most intriguing properties of MTL is that it
allows for the transfer of knowledge between dif-
ferent tasks and datasets, which has been investi-
gated and exploited in a growing number of works
(Klerke et al., 2016; Martı́nez Alonso and Plank,
2017; Bingel and Søgaard, 2017), including work
on the identification of complex words (Bingel and
Bjerva, 2018).

In this work, we view the different readers as
different tasks, motivated by Bingel and Bjerva
(2018), who interpret different languages as dif-
ferent tasks for cross-lingual complex word iden-
tification. We define a feed-forward neural net-
work model with one output layer per reader, all of
which are dense projections from a shared hidden
layer. In this framework, each training step con-
sists of flipping a coin to sample any of the tasks
and retrieving a batch of training data for this task.
This batch is then used to optimize both the shared
and the respective task-specific parameters. For a
detailed definition of the model, see Bingel and
Bjerva (2018).

5 Experiments

5.1 Experiment 1: Across entire dataset

As a first experiment, we investigate the perfor-
mance of our models and the predictiveness of
the individual feature groups through 10-fold cross
validation across the entire dataset. At each fold,
we reserve one tenth of the data for testing and
another tenth to monitor validation loss of the net-
work as the early stopping criterion.

Note that we split the data randomly and do not
stratify the cross-validation splits in any way. In
conjunction with the strong class imbalance, this
means that we are likely to encounter very differ-
ent class distributions across splits. This setup may
generally lead to lower performance scores, likely
with greater variance. However, this was a deliber-
ate choice as we cannot assume a consistent class
distribution across train and test set in the real
world, or in fact hardly any prior knowledge with
regards to class distribution in the test set. Random
splitting also means that data from the same read-
ing will likely be distributed across train and test
partitions for a certain cross-validation iteration.

We perform a first baseline experiment with
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Figure 3: Words and misreading counts for readings of three readers in cross-user experiment

UserId Number of Words per reading Thereof misread
reading sessions Mean std.dev. Mean std.dev.

10 7 285.9 67.5 16.6 9.9
15 6 219.2 148.1 5.0 2.3
16 5 91.6 32.7 8.0 3.1

Table 4: Statistics of (misread) words in sessions for the three readers with most readings.

only the basic features that we list in Section 2. On
top of this baseline feature set, we perform further
experiments, incorporating all combinations over
the other feature groups. The results we present in
Table 3 are based on the best respective model ar-
chitecture for each feature combination, evaluated
via the average over validation splits.6

5.2 Experiment 2: Cross-reader prediction

Without reader’s own data In a second exper-
iment, we are interested in how well our model
can predict misreadings for specific readers. For
this, we identify the three readers with most read-
ing sessions and perform a range of experiments,
testing our models on the readings of each of
these readers after training them on all other data.
We denote the three most active readers by their
unique, anonymized IDs as they appear in the
dataset: 10, 15 and 16. These readers have 7, 6
and 5 recorded and marked readings, respectively,
and we present statistics on these readings in Ta-
ble 4 and Figure 3. As in the previous experiment,
we optimize our model through cross validation to
tune hyperparameters and perform early stopping.
We report test data results for the model with op-
timal validation performance in Figure 4, broken
down into each reader’s different sessions.

6To address the variation in input dimensionality as we
consider different feature group combinations, we train mod-
els with different architectures: (i) a single hidden layer with
20 units, (ii) two hidden layers with 20 units each, and (iii) a
single hidden layer with 40 units.

Learning from reader’s own data Comple-
menting the setup above, we now investigate how
data from the same reader, but from different read-
ing sessions, can inform our models. Therefore,
we further perform cross-validation experiments
across each reader’s sessions. More concretely, for
a reader with n marked readings, we perform n-
fold cross validation, holding out one reading a
time as a test set and another to monitor valida-
tion loss for early stopping of the neural model,
while training on the remaining n− 2 readings.

MTL As outlined in Section 4.1, we now view
readers as tasks in an MTL model. For each of
the three readers identified above and for each test
reading, we train an ensemble whose neural MTL
models define two outputs: one for the reader in
question and one combined output for all other
readers in the entire dataset. The random forest
classifiers are trained on all remaining data except
the held-out validation and test readings.

6 Results and Discussion

From Experiment 1, we observe that gaze fea-
tures of the target word itself contribute strongly to
model improvements over the baseline of textual
features (see Table 3). Contextual gaze features
and linguistic features do so to a lesser degree. The
best feature group combination consists of the ba-
sic features and both gaze feature groups. Adding
the linguistic features to this seems to slightly di-
lute the model.
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Figure 4: F1 score distributions across test readings
for each of the three readers with most sessions for
three tasks.

The results from Experiment 2 in Figure 4 show
that, at least for these three readers, there is a
considerable degree of specificity attested in the
reading patterns of misread words: in the scenario
where we learn only from other users’ gaze pat-
terns (shown in light blue), performance is gen-
erally worse than for the other approaches. The
high degree of reader specificity is also reflected
in the comparison between learning just across a
single user’s readings and a multi-task setup that
also considers other readers. Here, we observe that
the former attains higher mean F1 scores across
readings for readers 10 and 16, although MTL is
superior to the single-task setup for reader 15. An-
other observation is that misreadings can gener-
ally be predicted much better for reader 16 than for
the other readers, which may in part be due to the
higher ratio of misread words in these readings.

As especially our cross-reader experiments
show, there is reason to believe that the manifes-
tations of misreadings in gaze differ strongly be-
tween these readers. However, since we do not
have information on the individual readers’ age
or general reading proficiency, we cannot con-
fidently conclude whether the better stability of
within-user experiments attested in Figure 4 is due
to reader-specific idiosyncrasies or group-internal
patterns (which would be supported by evidence
that readers 10 and 16 were more atypical read-
ers than others in the present dataset). We find
some support for the latter hypothesis in literature
describing children’s reading development, which
identifies a range of patterns common to young
and low-proficiency readers. These patterns in-
clude longer and more frequent fixations, shorter

saccadic amplitude and more regressions – all of
which are also associated with comprehension dif-
ficulties, see Blythe and Joseph (2011) for a re-
view. The presence of group-internal patterns is
further supported by the observation that we are
still able to successfully transfer knowledge about
readings patterns between users in some cases, in-
creasing performance for the readings of user 15.

One disadvantage of noisy, real-world data is
that we do not know to what degree similarities
and differences in the data, as well as our results,
are influenced by chance, or whether they will
generalize to other gaze data. The fact that many
parameters are outside of our control and also out-
side of our knowledge means that we cannot de-
scribe certain biases in the data (such as age or
reading skill) and consider them as causes for sta-
tistical variations in model performance.

7 Conclusion

This paper presented first work in the auto-
matic prediction of reading errors in children
with dyslexia and other reading difficulties using
real-world gaze data. We showed that despite the
noisy conditions under which this data was ob-
tained, features we extract from the gaze patterns
are predictive of reading mistakes among children.
Besides the immediate application in automating
some parts of reading teaching, this could be ex-
ploited in personalized text simplification, where
gaze could be used as feedback to the system.

Our experiments further show that while gaze
patterns for misreadings seem to be largely spe-
cific to individual readers or groups of readers, we
can successfully use MTL to transfer knowledge
between readers at least in some cases. Note also
that we have very little knowledge of the age and
general proficiency of specific readers, including
those investigated in our MTL experiments, and
we expect that our MTL approach can be much
more successful between more similar readers.
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Abstract

Input material at the appropriate level is cru-
cial for language acquisition. Automating the
search for such material can systematically
and efficiently support teachers in their ped-
agogical practice. This is the goal of the
computational linguistic task of automatic in-
put enrichment (Chinkina and Meurers, 2016):
It analyzes and re-ranks a collection of texts
in order to prioritize those containing tar-
get linguistic forms. In the online study de-
scribed in the paper, we collected 240 re-
sponses from English teachers in order to in-
vestigate whether they preferred automatic in-
put enrichment over web search when select-
ing reading material for class. Participants
demonstrated a general preference for the ma-
terial provided by an automatic input enrich-
ment system. It was also rated significantly
higher than the texts retrieved by a standard
web search engine with regard to the represen-
tation of linguistic forms and equivalent with
regard to the relevance of the content to the
topic. We discuss the implications of the re-
sults for language teaching and consider the
potential strands of future research.

1 Introduction

Input material at the appropriate level is impor-
tant for language learners − whether it is a re-
vision of the already acquired linguistic forms
or an introduction of the structures to be ac-
quired next, in line with the input hypothesis by
Krashen (1977). Automating the search for such
material can systematically and efficiently sup-
port teachers and is the goal of the computa-
tional linguistic task of automatic input enrich-
ment (Chinkina and Meurers, 2016): It provides
reading material containing target grammatical
and lexical forms by analyzing and re-ranking a
collection of texts. Automatic input enrichment
systems rely on rigorous NLP analysis of texts

provided either by a search engine or by the user.
As a result, the most linguistically appropriate
texts are prioritized and presented to the user.

Automatic input enrichment is in essence
closely related to the notion of input flood sub-
stantially motivated and discussed in second lan-
guage acquisition research (Trahey and White,
1993) and is a necessary step in providing any
type of text-based activities for language learn-
ing. It has been shown that a richer representa-
tion of target linguistic forms in the input leads to
a better acquisition of these forms by the learner
(Pigada and Schmitt, 2006). However, the bene-
fits of input flood for language teachers have not
been empirically tested so far.

In order to fill this gap, we developed an online
study investigating whether English teachers pre-
ferred automatic input enrichment, or input flood,
over web search when selecting reading material
for class. The study implemented a repeated mea-
sures design: Participants read and rated 20 news
articles on ten different topics. The articles were
presented in pairs, with one of them being the top
search result retrieved by a standard search engine
and the other one provided by an automatic input
enrichment system. A topic and a pair of target
linguistic forms were kept constant for each pair of
articles. The repeated measures design allowed us
to collect a sufficient number of responses (n=240)
discriminating different types of linguistic forms.

We start by reviewing the relevant research from
the field of second language acquisition in Sec. 2
and dwell on the importance of automatic input
enrichment for language teaching and its practical
implementation in Sec. 3. We then describe the
design of the current study and the obtained re-
sults in Sec. 4 and discuss the findings in Sec. 5.
Finally, we conclude with the implications of the
results and ideas for further research in Sec. 6.
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2 Motivation and Related Work

Research on second language acquisition has pro-
vided insights on effective language teaching and
learning techniques. The role of comprehensible
input (Krashen, 1977) has been emphasized by
many researchers, and extensive exposure to writ-
ten input has shown positive effects on vocabulary
(Krashen, 1989; Waring and Nation, 2004) and
grammar acquisition (Pigada and Schmitt, 2006).

While stressing the importance of input, re-
searchers agree that in order for the learner to ac-
quire a linguistic form, it has to be frequent and
salient enough in the input (Slobin, 1985). At the
same time, the learners should be provided with
pedagogical support to notice (Schmidt, 1990) and
process the forms (VanPatten, 1990).

The effectiveness of activities targeting certain
linguistic forms has been thoroughly investigated
by second language acquisition researchers: Ac-
cording to Long (1991), focus on form instruc-
tion encourages learners to attend to form within a
communicative classroom environment, which has
proved to be superior to purely communicative in-
struction (Leeman et al., 1995). Pointing out the
importance of systematic focus on target linguis-
tic forms, VanPatten and Oikkenon (1996) found
that contextualized practice activities were more
effective than explicit explanations of rules for in-
termediate learners of Spanish. In a meta-review
of research on reading and second language acqui-
sition, Chio (2009) also emphasized the potential
of supplementing reading with discussion or inter-
active activities targeting certain linguistic forms.

Either incidentally drawing learners’ attention
to certain vocabulary and grammar or providing
exercises targeting those, all of the aforemen-
tioned approaches rely on the existence of appro-
priate reading material with a rich representation
of linguistic forms for effective language acquisi-
tion. The following section provides information
on how language teachers can efficiently search
for such material.

3 Automatic Input Enrichment for
Language Teaching

Automatic provision of reading material for lan-
guage learners has been guided by text complex-
ity (Vajjala and Meurers, 2012), lexical and gram-
matical properties (Brown and Eskenazi, 2004;
Bennöhr, 2007), and the learner’s language pro-
ficiency (Collins-Thompson et al., 2011).

We refer to automatic selection of lexically and
grammatically appropriate texts as automatic input
enrichment and approach it as a web search task
(Chinkina and Meurers, 2016). We developed a
linguistically aware web search system FLAIR1

that provides automatic input enrichment of cer-
tain lexical and grammatical forms by detecting
them in a collection of texts and reordering the
texts accordingly. This process can be seen as vo-
cabulary and grammar retrieval.

Vocabulary retrieval is indeed the core of any
web search engine: One obtains an appropriate
text containing target lexical items by including
them in a search query. Grammar retrieval, on the
other hand, requires an extension to web search
as the user is unlikely to find appropriate texts by
simply searching for, e.g., texts containing present
perfect. Such an extension is implemented in
FLAIR as an algorithm detecting linguistic forms
relevant for English learners, such as regular and
irregular verb forms. The heatmap at the top of
Fig. 1 demonstrates that although these two lin-
guistic forms are highly frequent, they are not
equally represented across the top 60 search re-
sults retrieved by Microsoft Bing.2 The heatmap
at the bottom of the same figure shows the result
of automatic input enrichment by FLAIR: a re-
ordered list of the same search results with those
containing the best representation of both regular
and irregular verbs closer to the top (i.e., to the left
in the figure).

FLAIR is built on top of a web search engine
Microsoft Bing, relies on third-party tools for text
extraction and parsing, detects 87 linguistic forms
from the grammar section of the official curricu-
lum of English, and uses a ranking algorithm for
prioritizing texts containing the target linguistic
forms specified by the user. Once the user has
typed in a search query, specified the target lin-
guistic forms and a number of search results to re-
trieve, they receive a list of web pages, with those
that contain the best representation of the target
forms at the top of the list. The user can then ex-
plore the retrieved texts with the highlighted target
linguistic forms and select the texts of appropriate
complexity and length (see Fig. 2).

We used FLAIR to find out whether teach-
ers benefit from automatic input enrichment, as
compared to a standard web search engine, when

1www.purl.org/icall/flair
2www.bing.com
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Figure 1: Comparison of the top results retrieved by a standard web search engine before and after automatic input
enrichment. The 60 search results are plotted along the X axis, and the two target linguistic forms, regular and
irregular verbs, are plotted on the Y axis.

searching for reading material for their students.
The following section presents our research ques-
tions and hypotheses, the design of the online
study, and the results.

4 Automatic Input Enrichment vs. Web
Search for Selecting Reading Material

The current study focuses on teachers as media
between students and reading material. It as-
sesses teachers’ experience and satisfaction with
the every-day task of searching for supplementary
texts online and provides insights on this process.

The research questions of the study address
the importance of content and linguistic form and
teachers’ attitude towards their optimal balance:
Does automatic input enrichment succeed in giv-
ing teachers the material that:

• is enriched with target linguistic forms rele-
vant in the context of language learning,

• is in line with the information need expressed
via a search query, and

• is suitable as a reading assignment for their
students?

The online study was designed to operationalize
these research questions. In the study, news arti-
cles retrieved by the standard web search engine

Microsoft Bing were compared to those provided
by the automatic input enrichment system FLAIR.
As FLAIR relies on Bing for retrieving web pages,
the study in fact evaluates the impact of the NLP-
driven re-ranking provided by FLAIR. The follow-
ing hypotheses guided the design and the contents
of our study:

H1: Teachers prefer texts provided by FLAIR
over those provided by Bing when choosing a
reading assignment for their students.

H2: Texts provided by FLAIR are perceived
to have a richer representation of target linguistic
forms than those provided by Bing.

H3: Texts provided by FLAIR are perceived to
be less relevant to the topic than those provided by
Bing.

H4: The more infrequent the target linguistic
forms are, the more teachers prefer texts provided
by FLAIR over those provided by Bing.

4.1 Design of Online Study

In order to address the aforementioned hypothe-
ses, we designed an online study where the par-
ticipants were asked to rate and compare pairs of
news articles: One was the top search result from
a standard search engine and the other one was a
search result prioritized by FLAIR after specify-
ing the target linguistic forms. Each article had to
be rated on two scales: (i) its relevance to a given
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Figure 2: FLAIR interface.

topic and (ii) the representation of given linguis-
tic forms in it. These two criteria are an integral
part of language teachers’ pedagogical practice:
Teachers want to expose their students to language
richly containing the structure to be taught or re-
vised using a text that is on a topic that is relevant
and motivating to the students.

We opted for a repeated-measures within-
subjects design and ensured a random order of
news articles retrieved from Bing and FLAIR as
well as a random combination of topics and pairs
of linguistic forms in the main task. The study
proceeded as follows.

Procedure Participants received a message with
the link to the online study and were asked to care-
fully read the information for the participants and
the consent form before registering. Upon regis-
tration, they filled out a short questionnaire ask-
ing for their age, gender, native language(s), En-
glish language proficiency, the highest degree in
teaching, and the proficiency level(s) of their stu-
dents. They were also asked whether they used
web search to look for reading material for their
classes. Once they submitted the answers to the
questionnaire, they could read the detailed instruc-
tions, which were displayed on every login.

The flow of the main task is demonstrated in
Fig. 3: Participants were presented with a topic
and a pair of target linguistic forms. They read and
rated each of the two provided news articles by an-

swering two questions and were asked to pick one
article as a reading assignment for their students
with a preference scale from Definitely Text 1 to
Definitely Text 2.

Once they have completed the ten topics, partic-
ipants filled out a debriefing questionnaire, where
they explained general strategies for answering
each of the questions in the main task (e.g., How
did you decide on the relevance of an article to a
given topic?). Finally, they submitted their email
address and received a 20 Euro voucher as reim-
bursement.

4.2 Implementation of Online Study

We implemented the online study as a Java J2EE
web application. To ensure anonymity, the user
personal information obtained from the question-
naire was stored separately from their responses.
Upon registration, each user was assigned a list
of ten topics in a random order. Each topic was
randomly matched with one of the three types of
linguistic forms (see Sec. 4.3 below), one news
article provided by FLAIR and one news article
retrieved by Bing. For each topic, the two articles
were displayed in a random order, and participants
could not change their rating of the first news arti-
cle once the second one was displayed.

4.3 Data and Participants

The total of 60 news articles were used in the
study. The texts were presented in pairs that shared
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Figure 3: The main task in the online study included
reading and rating two news articles and selecting one
of them as a reading assignment for class.

the same topic (e.g., Brexit) and the same pair of
target lingusitic forms (e.g., the present simple and
the present continuous tenses). One article in each
pair was obtained by submitting a search query to
the web search engine Microsoft Bing and select-
ing the top search result. The other article in each
pair was obtained by submitting the same query to
FLAIR, configuring the settings to prioritize texts
with the two target linguistic forms and selecting
the top search result from the re-ranked list. As
FLAIR relies on Microsoft Bing for retrieving the
original search results, the only variable that dif-
fered between the two conditions was the auto-
matic input enrichment component implemented
in FLAIR.

Linguistic forms For the current study, we se-
lected three pairs of linguistic forms (frequent,
mixed, and infrequent) based on their document
co-occurrence frequency in a corpus of 2400 news
articles. Table 1 provides the distribution of their
mean relative term frequencies across the texts
provided by Bing and FLAIR.

The frequent pair was represented by regular
(e.g., typed) and irregular (e.g., wrote − written)
verb forms. It had a high document co-occurrence
frequency of 95%. This means that these two lin-
guistic forms occur together in 95 out of 100 doc-
uments, on average. Both constructions are also
highly frequent: in the texts chosen for our study,
regular and irregular verbs both had an average rel-
ative term frequency of 0.016. We did not count
those forms when they occurred in modifier posi-
tions (e.g., is interested, coloured balloons).

The mixed pair of linguistic forms was repre-
sented by two grammatical tenses, present sim-
ple (e.g., Kate plays guitar.) and present contin-
uous (e.g., Kate is playing guitar now.). Their
respective relative term frequencies in the study
were 0.012 and 0.003, with their document co-
occurrence frequency being 50%. Predicates con-
taining modal verbs were not counted as the
present simple tense (e.g., He can swim.), with the
exception of the verbs have to, need, and want.
When a form constituted a part of a conditional
sentence, it was not counted either (e.g., I will not
go out if it is still raining.).

The infrequent pair was represented by the com-
parative degree of short adjectives and adverbs
(e.g., nicer) and that of long adjectives and ad-
verbs (e.g., more beautiful). In addition to only
co-occurring in 4% of documents, these linguis-
tic forms had low term frequencies of 0.002 and
0.001. When the comparative form more occurred
as part of a longer form (e.g., more intelligent), the
whole expression was counted as a long form, and
more was not additionally counted as a short one.

Texts Using Microsoft Bing, we did a web
search for Reuters3 news articles by expanding the
search query with site:reuters.com. The follow-
ing ten topics popular on Bing at the time served
as search queries: Game of Thrones, healthcare,
street artists, Roger’s Cup 2017, SpaceX, electric
cars, Bitcoin, Venezuela coup, Brexit, opioid epi-
demic. The top result for each topic was stored in
our database as a Bing result, and the top 20 results

3www.reuters.com
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Bing FLAIR
fr

eq
ue

nt regular verbs 0.012 0.020

irregular verbs 0.012 0.019

m
ix

ed present simple 0.011 0.014

present continuous 0.001 0.005

in
fr

eq
ue

nt comparative d. of
short adj. and adv. 0.001 0.003

comparative d. of
long adj. and adv. 0 0.001

Table 1: Mean relative term frequencies of the linguis-
tic forms used in the study across the top search results
provided by Bing and FLAIR.

were used for further reordering.4 For each topic,
we repeatedly configured the FLAIR settings to
prioritize texts containing each of the three pairs
of linguistic forms presented above and stored the
three top hits as FLAIR results. In the end, we
had three pairs of news articles per topic: One
was the top web search result from Bing and the
other one was the top one from FLAIR. The two
texts for a given topic and a given pair of linguis-
tic forms were of comparable length (the differ-
ence was at most 50% of the shortest article) and
at the same or adjacent readability levels calcu-
lated using a simple Automated Readability Index
(Senter and Smith, 1967).

Participants Twelve English teachers working
with upper-intermediate and advanced learners of
English in Germany were recruited through uni-
versity and social media channels. Each partici-
pant was reimbursed with a 20 Euro voucher, and
all 240 responses were anonymized.

The ages of the participants ranged from 25 to
59 years old, 91% of them being women. The first
language of the majority of the participants was
German (75%) followed by English (8%), French

4The number of texts to be retrieved can be configured in
the interface. Fig. 1 presented the top 60 results for demon-
stration purposes. In practice, 20 results are quite heteroge-
neous and provide a good balance of sufficient variability and
speed of analysis.

(8%), and Spanish (8%). All participants had an
advanced level of English proficiency and a degree
in teaching English. They worked at a secondary
school (50%), a high school (42%), or a university
(8%). The majority (75%) specified that they were
using web search to look for reading material for
their students, and 25% said they sometimes used
web search for this purpose.

4.4 Results
All the analyses were conducted using R version
3.2.1 (R Core Team, 2009). Packages for individ-
ual tests and models are specified in the footnotes.

First, we compared the general preference for
FLAIR to that for Bing. The option Doesn’t matter
was selected 25% of the time, and the correspond-
ing responses were not included in the analysis. A
chi-square test5 revealed a significant preference
for FLAIR: Participants chose it over Bing 71% of
the time; χ2(1) = 16.04, p < .001. They were
also more confident in choosing FLAIR: The an-
swer Definitely was selected three times more for
FLAIR than for Bing; χ2(1) = 12.60, p < .001.
Thus, our first hypothesis could be confirmed:
Teachers indeed preferred the linguistically en-
riched texts provided by FLAIR over those pro-
vided by Bing when choosing a reading assign-
ment for their students.

We conducted two logistic regression analyses6

to investigate how texts provided by FLAIR and
Bing compared in terms of (i) representation of
linguistic forms and (ii) relevance of the content
to the topic. In line with the descriptive statis-
tics in Tab. 1, logistic regression models showed
that FLAIR (M = 3.22, SD = 1.07) was sig-
nificantly more likely to be rated higher in terms
of representation of linguistic forms than Bing
(M = 2.51, SD = 1.15); b = 1.89, SE = 0.51,
p < .001. Moreover, texts provided by FLAIR
(M = 3.67, SD = 1.08) were perceived to be
slightly more relevant to the topic than those pro-
vided by Bing (M = 3.58, SD = 1.00) although
the difference failed to reach statistical signifi-
cance; b = 0.53, SE = 0.74, p = .470.

In order to test whether the absence of statistical
significance was due to chance or texts provided
by FLAIR and Bing were indeed comparable with
regard to content, we conducted two one-sided
tests of equivalence (Schuirmann, 1987).7 The

5R native stats package, method chisq.test()
6R native stats package, method glm()
7R package TOSTER, method TOSTtwo()
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results were statistically significant (t1 = 4.55,
t2 = −3.19, p1 < .001, p2 < .001, 90% CI
[−0.13; 0.31]), so we could confirm that the sam-
ples were equivalent with a medium effect size of
0.5 and an alpha level of .05.

Finally, we used a two-way repeated-measures
analysis of variance8 to test whether the prefer-
ence for FLAIR depended on the type of linguis-
tic forms. We hypothesized that the more infre-
quent the target linguistic forms were, the more
teachers would prefer texts provided by FLAIR.
The first factor was the preference for FLAIR (a
five-point scale), and the second factor was the
type of linguistic forms (frequent, mixed, or in-
frequent). ANOVA did not show the tendency that
we expected; F (2, 90) = 0.87, p = .419; so we
inspected the means of all three groups and per-
formed paired samples t-tests.

The biggest mean preference for FLAIR
was found for the mixed pair of linguistic
forms (present simple and present continuous;
M = 3.92, SD = 1.99), followed by the infre-
quent group (comparative degree of short adjec-
tives and adverbs; M = 3.69, SD = 1.30) and
the frequent one (regular and irregular verbs;
M = 3.46, SD = 1.39). When we turned the
five-point scale into a binary outcome variable
(i.e., either selected FLAIR as a reading assign-
ment or not) and calculated the percentage of
responses, we found 76% of responses favoring
FLAIR in the infrequent group, 75% in the mixed
group, and 65% in the frequent one.

As the data in the three groups were not
normally distributed (Shapiro-Wilk’s normality
test9 yielded significant differences from a nor-
mal distribution), we opted for paired two-
samples Wilcoxon tests.10 The paired tests
revealed that there was no significant differ-
ence between the groups with regard to prefer-
ence for FLAIR: infrequent and mixed groups,
Z = 128, p = .352; mixed and frequent groups,
Z = 157, p = .643; infrequent and frequent
groups, Z = 217, p = .727.

5 Discussion

English teachers demonstrated an overall prefer-
ence for FLAIR over a standard web search en-
gine when choosing a reading assignment for their

8R native stats package, method aov()
9R package dplyr, method shapiro.test()

10R native stats package, method wilcox.test()

students. This is in line with our first hypothesis
and a strong argument in support of the automatic
input enrichment approach.

Feedback from teachers suggested that the rel-
evance of the article to the topic and the content
of the article were the decisive factors in choos-
ing one article over the other as a reading assign-
ment. We were, therefore, particularly interested
whether there was a trade-off between the content
and the representation of linguistic forms in the ar-
ticles because a large number of the news articles
retrieved by FLAIR (40%) were not among the top
ten original search results. Thus, we hypothesized
that the texts retrieved by FLAIR would have a
richer representation of linguistic forms while be-
ing less relevant to the topic.

As the number of occurrences of the given lin-
guistic forms in the texts retrieved by FLAIR was
higher (see Tab. 1), this indeed resulted in sig-
nificantly higher teachers’ ratings for the repre-
sentation of linguistic forms. However, counter
to our expectations, the texts provided by FLAIR
were neither inferior nor superior to those origi-
nally retrieved by Bing in terms of content: They
were rated slightly, but not significantly, more rel-
evant to the given topic. This suggests that the
most appropriate texts for language learners may
not appear within the top web search results, and
those texts that are not ranked high by standard
web search engines can have a higher linguistic
and pedagogical potential than the top hits.

As the study showed, automatic input enrich-
ment is particularly beneficial for retrieving texts
containing target linguistic forms of lower fre-
quency levels, although the differences were non-
significant. This can be explained by document
and term frequencies: The high term and doc-
ument frequencies of frequent linguistic forms
make it likely for every retrieved text to contain at
least several instances of each form. In this case,
the texts prioritized by an automatic input enrich-
ment system may not differ from the original top
hits with regard to their linguistic characteristics.
Other frequently co-occurring pairs of linguistic
forms relevant for language teaching are, for ex-
ample: adjectives and adverbs (co-occur in 97%
of documents), the definite and the indefinite arti-
cles (96%), present simple and past simple (93%),
to infinitives and ing verb forms (90%). We pro-
pose a way to improve the functionality of auto-
matic input enrichment systems targeting frequent
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linguistic forms in the next section.
Infrequent linguistic forms, on the contrary, ap-

pear in few texts together, with a small number
of occurrences within each text. The advantage
of automatic input enrichment in this case is that
it can detect those few texts containing the target
infrequent linguistic forms. Other pairs of linguis-
tic forms with a low document co-occurrence fre-
quencies as well as low term frequencies are, for
example: the modal verbs can and may (14%),
past perfect and past progressive (12%), future
simple and going to (9%), wh- questions and
yes/no questions (7%), real and unreal condition-
als (4%).

In case of mixed pairs of linguistic forms (i.e.,
the ones consisting of one frequent and one infre-
quent form), the reordering algorithm pushes the
few texts containing the infrequent form to the top.
Those texts are at the same time likely to also con-
tain several occurrences of the frequent form be-
cause of its high term and document frequencies.
Other mixed pairs of linguistic forms relevant for
teaching English are: past simple and present per-
fect (63%), positive and comparative degrees of
short adjectives (58%) and adverbs (45%), present
simple and future simple (40%), past simple and
past continuous (30%). The full list of pairs of lin-
guistic forms with their co-occurrence document
frequency was compiled by Chinkina (2015).

The aforementioned results show that, while re-
lying on a standard web search engine for retriev-
ing the results, automatic input enrichment suc-
ceeds in providing the texts that are a) enriched
with respect to the linguistic forms, b) in line with
the information need, and c) suitable as a reading
assignment.

6 Conclusion and Outlook

In this paper, we described an online study inves-
tigating the effects of automatic input enrichment
on English teachers selecting reading material for
class. The results of the study show that partici-
pants preferred the texts provided by automatic in-
put enrichment over those originally retrieved by
a standard web search engine both in terms of rep-
resentation of linguistic forms and content. The
study also provides insights about which linguis-
tic forms benefit the most from automatic input
enrichment.

It is important to note that our goal was not
to compare automatic input enrichment to web

search but to show that the linguistically motivated
re-ranking of texts leverages the content and form
aspects of the retrieved material. With the abun-
dance of authentic texts available on the web, such
reordering does not prioritize texts of low qual-
ity but selects the most linguistically appropriate
ones in the pool of relevant texts. This means that
such systems as FLAIR can rely on standard web
search engines for retrieving texts of sound con-
tent. Whether automatic input enrichment systems
also provide an effective learning environment for
language learners should be tested in further end-
to-end empirical studies.

Another interesting empirical question would
be: For which kind of queries will an input enrich-
ment system find enough texts? Our assumption is
that the topics covered in a language classroom are
current, prominent, and widely discussed: This is
why we selected the texts on popular topics for
our online study. However, when searching for
texts on more specific topics − or in other less
represented languages − fewer relevant texts may
be retrieved and the balance of content and form
may be skewed. This could be the case for courses
targeting English for specific purposes, though for
such courses it is likely that special repositories of
sample texts from that specific domain would be
used. Thus, the automatic analysis and re-ranking
can be done on the provided corpus, which is also
a capability of the FLAIR system.

Therefore, FLAIR provides an ecologically
valid, real-life setting for an empirical evaluation
of a number of phenomena discussed in second
language acquisition research, such as input flood,
input enhancement, structured input activities, and
extensive reading. For instance, one could con-
duct a randomized controlled field study and com-
pare the learning outcomes of two groups of stu-
dents: one reading and working with the results re-
ranked by FLAIR and the other one working with
the standard Bing results. In fact, such an exper-
imental yet real-world evaluation in essence only
becomes possible thanks to a technology-enabled
input enrichment approach such as FLAIR.

Finally, based on the feedback from the English
teachers who took part in our study, we identi-
fied two strands for potential improvement of au-
tomatic input enrichment systems:

1. Providing a variety of contexts in which lin-
guistic forms are used. This challenge can
be addressed by the tasks of word and tense
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sense disambiguation (Stevenson and Wilks,
2003; Reichart and Rappoport, 2010) that
could be expanded to the disambiguation of
other linguistic forms. The insights from
the task of finding good dictionary exam-
ples (Kilgarriff et al., 2008) can help make
sure that the contexts in which target linguis-
tic form occur are informative, typical, and
intelligible for the learner (Atkins and Run-
dell, 2008). This could be particularly ad-
vantageous for frequent linguistic forms that
currently benefit the least from automatic in-
put enrichment as they are richly represented
across texts.

2. Integration of a component that automati-
cally generates exercises targeting the se-
lected linguistic forms. The task of automatic
question generation has explored generating
factual wh- questions (Heilman, 2011), gap
sentences (Becker et al., 2012), a combina-
tion of those, and grammar-concept questions
asking for the meaning of linguistic forms
(Chinkina and Meurers, 2017). In line with
the idea of providing a variety of contexts,
one could generate different types of ques-
tions targeting not only different linguistic
forms but also different contexts in which
those forms occur.
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Abstract

Evaluation of text difficulty is important both
for downstream tasks like text simplification,
and for supporting educators in classrooms.
Existing work on automated text complexity
analysis uses linear models with engineered
knowledge-driven features as inputs. While
this offers interpretability, these models have
lower accuracy for shorter texts. Traditional
readability metrics have the additional draw-
back of not generalizing to informational texts
such as science. We propose a neural ap-
proach, training on science and other informa-
tional texts, to mitigate both problems. Our
results show that neural methods outperform
knowledge-based linear models for short texts,
and have the capacity to generalize to genres
not present in the training data.

1 Introduction

A typical classroom presents a diverse set of stu-
dents in terms of their reading comprehension
skills, particularly in the case of English language
learners (ELLs). Supporting these students often
requires educators to estimate accessibility of in-
structional texts. To address this need, several
automated systems have been developed to es-
timate text difficulty, including readability met-
rics like Lexile (Stenner et al., 1988), the end-to-
end system TextEvaluator (Sheehan et al., 2013),
and linear models (Vajjala and Meurers, 2014; Pe-
tersen and Ostendorf, 2009; Schwarm and Osten-
dorf, 2005). These systems leverage knowledge-
based features to train regression or classifica-
tion models. Most systems are trained on liter-
ary and generic texts, since analysis of text diffi-
culty is usually tied to language teaching. Existing
approaches for automated text complexity analy-
sis pose two issues: 1) systems using knowledge
based features typically work better for longer
texts (Vajjala and Meurers, 2014), and 2) complex-

ity estimates are less accurate for informational
texts such as science (Sheehan et al., 2013). In
the context of science, technology and engineer-
ing (STEM) education, both problems are signif-
icant. Teachers in these areas have less expertise
in identifying appropriate reading material for stu-
dents as opposed to language teachers, and shorter
texts become important when dealing with assess-
ment questions and identifying the most difficult
parts of instructional texts to modify for support-
ing students who are ELLs.

Our work specifically looks at ways to address
these two problems. First, we propose recurrent
neural network (RNN) architectures for estimating
linguistic complexity, using text as input without
feature engineering. Second, we specifically train
on science and other informational texts, using the
grade level of text as a proxy for linguistic com-
plexity and dividing grades k-12 into 6 groups. We
explore four different RNN architectures in order
to identify aspects of text which contribute more
to complexity, with a novel structure introduced
to account for cross-sentence context. Experi-
mental results show that when specifically trained
for informational texts, RNNs can accurately pre-
dict text difficulty for shorter science texts. The
models also generalize to other types of texts, but
perform slightly worse than feature-based regres-
sion models on a mix of genres for texts longer
than 100 words. We use attention with all mod-
els, both to improve accuracy, and as a tool to
visualize important elements of text contributing
to linguistic complexity. The key contributions of
the work include new neural network architectures
for characterizing documents and experimental re-
sults demonstrating good performance for predict-
ing reading level of short science texts.

The rest of the paper is organized as follows:
section 2 looks at existing work on automated
readability analysis and introduces RNN architec-
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tures we build on for this work. Section 3 lays out
the data sources, section 4 covers proposed mod-
els, and section 5 presents results. Discussion and
concluding remarks follow in sections 6 and 7.

2 Background

Studies have shown that language difficulty of in-
structional materials and assessment questions im-
pacts student performance, particularly for lan-
guage learners (Hickendorff, 2013; Abedi and
Lord, 2001; Abedi, 2006). This has lead to exten-
sive work on readability analysis, some of which
is explored here. The second part of this section
looks at work that leverages RNNs in automatic
text classification tasks and the use of attention
with RNNs.

2.1 Automated Readability Analysis

Traditional reading metrics including Flesch-
Kincaid (Kincaid et al., 1975) and Coleman-Liau
index (Coleman and Liau, 1975) are often used
to assess a text for difficulty. These metrics uti-
lize surface features such as average length of sen-
tences and words, or word lists (Chall and Dale,
1995). The development of automated text analy-
sis systems has made it possible to leverage addi-
tional linguistic features, as well as conventional
reading metrics, to estimate text complexity quan-
tified as reading level. NLP tools can be used to
extract a variety of lexical, syntactic and discourse
features from text, which can then be used with
traditional features as input to models for predict-
ing reading level. Some of the models include sta-
tistical language models (Collins-Thompson and
Callan, 2004), support vector machine classifiers
(Schwarm and Ostendorf, 2005; Petersen and Os-
tendorf, 2009), and logistic regression (Feng et al.,
2010). Text coherence has also been explored as
a predictor of difficulty level in (Graesser et al.,
2004), with an extended feature set that includes
syntactic complexity and discourse in addition to
coherence (Graesser et al., 2011).

A study conducted in (Nelson et al., 2012) in-
dicates that metrics that incorporate a large set of
linguistic features perform better at predicting text
difficulty level; the metrics were specifically tested
on the Common Core Standards (CCS) texts.1

Features from second language acquisition com-
plexity measures were used in (Vajjala and Meur-
ers, 2012) to improve readability assessment. This

1http://www.corestandards.org/

feature set was further extended to include mor-
phological, semantic and psycholinguistic features
to build a readability analyzer for shorter texts (Va-
jjala and Meurers, 2014). A tool specifically built
for text complexity analysis for teaching and as-
sessing is the TextEvaluatorTM. While knowledge-
based features offer interpretability, a drawback is
that if the text being analyzed is short, the feature
vector is sparse, and prediction accuracy drops
(Vajjala and Meurers, 2014). This is particularly
true for assessment questions, which are shorter
than the samples most models are trained on.

Generally, for any text classification task, the
type of text used for training the model is im-
portant in terms of how well it performs; train-
ing on more representative text tends to improve
performance. The work in (Sheehan et al., 2013)
shows that traditional readability measures under-
estimate the reading level of literary texts, and
overestimate that of informational texts, such as
history, science and mathematics articles. This is
due, in part, to the vocabulary specific to the genre.
Science texts have longer words, though they may
be easier to infer from context. Literary texts,
on the other hand, might have simpler words, but
more complicated sentence structure. The work
demonstrated that more accurate grade level esti-
mates can be obtained by two stage classification:
i) classify the text as either literary, informational,
or mixed, and then ii) use a genre-dependent ana-
lyzer to estimate the level. In an analysis on how
well a model trained on news and informational
articles generalizes to the categories in CCS, the
work in (Vajjala and Meurers, 2014) shows better
performance on informational genre than literary
texts. Training on more representative text, how-
ever, requires genre-specific annotated data.

2.2 Text Classification with RNNs
Recurrent neural networks (RNNs) are adept at
learning text representations, as demonstrated by
language modeling (Mikolov et al., 2010) and text
classification tasks (Yogatama et al., 2017). Addi-
tional RNN structures have been proposed for im-
proved representation, including tree LSTMs (Tai
et al., 2015) and a hierarchical RNN (Yang et al.,
2016). In addition, hierarchical models have been
proposed to better represent document structure
(Yang et al., 2016).

Attention mechanisms were introduced to im-
prove neural machine translation tasks (Bahdanau
et al., 2014), and have also been shown to im-
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prove the performance of text classification (Yang
et al., 2016). In machine translation, attention is
computed over the source sequence when predict-
ing the words in the target sequence. This “con-
text” attention is based on a score computed be-
tween the target hidden state ht and a subset of the
source hidden states hs. The score can be com-
puted in several ways, of which a general form is
score(ht, hs) = hTt Wαh

T
s (Luong et al., 2015).

Attention has also been used for a variety of
other language processing tasks. In particular, for
text classification, attention weights are learned
that target the final classification decision. This
approach is referred to as “self attention” in (Lin
et al., 2017), but will be referred to here as “task
attention.” The hierarchical RNN in (Yang et al.,
2016) uses task attention mechanisms at both word
and sentence levels. Since our work builds on this
model, it is described in further detail in section
4. In addition, we propose extensions of the hi-
erarchical RNN that leverage attention in different
ways, including combining the concept of context
attention from machine translation with task atten-
tion to capture interdependence of adjoining sen-
tences in a document.

3 Data

For our work we consider grade level as a proxy
for linguistic complexity. Within a grade level,
there is variability across different genres, which
students are expected to learn. Since there is no
publicly available data set for estimating grade
level and text difficulty aimed at informational
texts, we created a corpus using online science,
history and social studies textbooks. The text-
books are written for either specific grades, or for
a grade range, e.g. grades 6-8. There are a total
of 44 science textbooks and 11 history and social
studies textbooks, distributed evenly across grades
K-12. Given the distribution of textbooks for each
grade level, we decide to classify into one of six
grade bands: K-1, 2-3, 4-5, 6-8, 9-10 and 11-12.
Because of our interest in working with short texts,
we split the books into paragraphs, using end line
as the delimiter.2 In addition to the textbooks, we
also used the WeeBit corpus (Vajjala and Meurers,
2012) for training, again split into paragraphs.

2In splitting the text into paragraphs, we are implicitly as-
suming that all paragraphs have the same linguistic complex-
ity as the textbook, which is probably not the case. Thus,
there will be noise in both the training and test data, so some
variation in the predicted levels is to be expected.

Grade Level All chapters Test set
chapters

K-1 25 -
2-3 22 2
4-5 53 9
6-8 165 12
9-10 48 5
11-12 28 3

Table 1: Chapter-based test data split

We have three different sources of test data: i)
the CCS appendix B texts, ii) a subset of the on-
line texts that we collected,3 and iii) a collection
of science assessment items.

The CCS appendix B data is of interest be-
cause it has been extensively used for evaluat-
ing linguistic complexity models, e.g. in (Sheehan
et al., 2013; Vajjala and Meurers, 2014). It in-
cludes both informational and literary texts. We
use document-level samples from the CCS data
for comparison to prior work, and paragraph-level
samples to provide a more direct comparison to
the information test data we created.

For the informational texts, we selected chap-
ters from multiple open source texts. Since we had
so few texts at the K-1 level, the test data only in-
cluded texts from higher grade levels, as shown
in table 1. The paragraphs in these chapters were
randomly assigned to test and validation sets.

To assess the models on stand alone texts, we
assembled a corpora of science assessment ques-
tions from (Khot et al., 2015; Clark et al., 2018),
AI2 Science Questions Mercury,4 and AI2 Sci-
ence Questions v2.1 (October 2017).5 This test
set includes 5470 questions for grades 6-8 from
sources including standardized state and national
tests. The average length of a question is 49 words.

For training, two data configurations were used.
When testing on the CCS data and the science
assessment questions, there is no concern about
overlap between training and test data, so all text
can be used for training. We held out 10% of this
data for analysis, and the remaining text is used for
the D1 training configuration. Data statistics are
given in table 2. About 20% of the training sam-

3Available at https://tinyurl.com/yc59hlgj.
4http://data.allenai.org/

ai2-science-questions-mercury/
5http://data.allenai.org/

ai2-science-questions/
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Grade
Level

Train
Samples

Mean
Length

K-1 739 24.42
2-3 723 62.05
4-5 4570 63.82
6-8 15940 74.79

9-10 3051 68.24
11-12 2301 75.28

Table 2: Training data (D1) with mean length of text in
words

ples (5152) are from WeeBit, spread across grades
2-12. For testing on all three sets, we defined
a training configuration D2 that did not include
any text from chapters overlapping with the test
data, so there training set is somewhat smaller than
for D1, except for grades K-1. The same WeeBit
training data was included in both cases.

For the elementary grade levels, we have much
less data than for middle school, and for high
school, we have substantial training data with
coarser labels (grades 9-12). To work around both
issues, we first used all training samples to train
the RNN to predict one of four labels (grades K-3,
4-5, 6-8 and 9-12). We then used the training data
with fine labels to train to predict one of six labels.
This approach was more effective than alternating
the training.

4 Models for Estimating Linguistic
Complexity

This section introduces the four RNN structures
for linguistic complexity estimation, including: a
sequential RNN with task attention, a hierarchical
attention network, and two proposed extensions
of the hierarchical model using multi-head atten-
tion and attention over bidirectional context. In all
cases, the resulting document vector is used in a fi-
nal stage of ordinal regression to predict linguistic
complexity. All systems are trained in an end-to-
end fashion.

4.1 Sequential RNN
The basic RNN model we consider is a sequential
RNN with task attention, where the entire text in
a paragraph or document is taken as a sequence.
For a document ti with words K words wik k ∈
{1, 2, ...,K}, a bidirectional GRU is used to learn
representation for each word hik, using a forward
run from wi1 to wiK , and a backward run from

wiK to wi1.

−→
hik =

−−−→
GRU(wik) (1)

←−
hik =

←−−−
GRU(wik) (2)

hik = [
−→
hik,
←−
hik] (3)

Attention is computed over the entire sequence
αik, and used to compute the document represen-
tation vseqi :

uik = tanh(Wshik + bs) (4)

αik =
exp(uTikus)∑
ik
exp(uT

ik
us)

(5)

vseqi =
∑
k αikhik (6)

The document vector is used to predict reading
level. Since the grade levels are ordered categori-
cal labels, we implement ordinal regression using
the proportional odds model (McCullagh, 1980).
For the reading level labels j ∈ {1, 2, ..., J}, the
cumulative probability is modeled as

P (y ≤ j|vseqi ) = σ(βj − wTordv
seq
i ), (7)

where σ(.) is the sigmoid function, and βj and
word are estimated during training by minimizing
the negative log-likelihood

Lord = −∑i log(σ(βj(i) − wTordv
seq
i )− (8)

σ(βj(i)−1 − wTordv
seq
i )).

4.2 Hierarchical RNN

While a sequential RNN has the capacity to cap-
ture discourse across sentences, it does not capture
document structure. Therefore, we also explored
the hierarchical attention network for text classifi-
cation from (Yang et al., 2016). The model builds
a vector representation vi for each document ti
with L sentences sl, l ∈ {1, 2, .., L}, each with
Tl words wlt, t ∈ {1, 2, ..., Tl}. The first level of
the hierarchy takes words as input and learns a rep-
resentation for each word hlt using a bidirectional
GRU. Task attention at the word level αlt high-
lights words important for the classification task,
and is computed using the word level context vec-
tor uw. The word representations are then aver-
aged using attention weights to form a sentence
representation sl

αlt =
exp(uTltuw)∑
t
exp(uT

lt
uw)

(9)

sl =
∑
t αlthlt, (10)
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where ult = tanh(Wwhlt + bw) is a projection
of the target hidden state for learning word-level
attention. The second level of the hierarchy takes
the sentence vectors as input, learns representation
hl for them using a bidirectional GRU. Using a
method similar to the word-level attention, a doc-
ument representation vi is created using sentence-
level task attention αl which is computed using the
sentence level context vector us

αl =
exp(uTl us)∑
l
exp(uT

l
us)

(11)

vi =
∑
l αlhl, (12)

where ul = tanh(Wshl+bs) is analogous to ult at
the sentence level. The word- and sentence-level
context vectors, uw and us, as well asWw, Ws, bw
and bs, are learned during training.

4.3 Multi-Head Attention

Work has shown that having multiple attention
heads improves neural machine translation tasks
(Vaswani et al., 2017). To capture multiple aspects
contributing to text complexity, we learn two sets
of word level task attention over the word level
GRU output. These two sets of sentence vectors
feed into separate sentence-level GRUs to give us
two document vectors by averaging using task at-
tention weights at the sentence level. The doc-
ument vectors are then concatenated to form the
document representation. The multi-head atten-
tion RNN is shown in figure 1.

4.4 Hierarchical RNN with Bidirectional
Context

The hierarchical model is designed for represent-
ing document structure, however, the sentences
within a document are encoded independently. To
capture information across sentences, we extend
the concept of context attention used in machine
translation, using it to learn context vectors for
adjoining sentences. We extend the hierarchical
RNN by introducing bi-directional context with
attention. Using the word level GRU output, a
“look-back” context vector cl−1(wlt) is calculated
using context attention over the preceding sen-
tence, and a “look-ahead” context vector cl+1(wlt)
using context attention over the following sen-
tence for each word in the current sentence.

α(l−1)t(wlt) =
exp(score(hlt,h(l−1)t))∑
t′ exp(score(hlt,h(l−1)t′ ))

(13)

cl−1(wlt) =
∑
t′ α(l−1)t′(wlt)h(l−1)t′ (14)

α(l+1)t(wlt) =
exp(score(hlt,h(l+1)t))∑
t′ exp(score(hlt,h(l+1)t′ ))

(15)

cl+1(wlt) =
∑
t′ α(l+1)t′(wlt)h(l+1)t′ (16)

where score(hlt, hkt) = hltWαh
T
kt and a single

Wα is used for computing the score in both direc-
tions. The context vectors are concatenated with
the hidden state to form the new hidden state h′lt.

h′lt = [cl−1(wlt), hlt, cl+1(wlt)] (17)

The rest of the structure is the same as a hierarchi-
cal RNN, using equations 9-12 with h′lt instead of
hlt. Figure 2 shows the structure for calculating
‘look-back” context.

4.5 Implementation Details
The implementation is done via the Tensorflow
library (Abadi et al., 2016).6 All RNNs use
GRUs (Cho et al., 2014) with layer normalization
(Ba et al., 2016), trained using Adam optimizer
(Kingma and Ba, 2014) with a learning rate of
0.001. Regularization was done via drop out. The
validation set was used to do hyper-parameter tun-
ing, with a grid search over drop out rate, number
of epochs, and hidden dimension of GRU cells.
Good result for all four architectures are obtained
with a batch size of 10, a dropout rate of 0.5-0.7, a
cell size of 75-250 for the word-level GRU, and a
cell size of 40-75 for the sentence-level GRU. For
the RNN, we also trained a version with a larger
word-level hidden layer cell size of 600.

Pre-trained Glove embeddings7 are used for all
models (Pennington et al., 2014), using a vocabu-
lary size of 65000-75000.8 The out of vocabulary
(OOV) percentage on the CCS test set was 3%,
and on the informational test set was 0.5%. All
OOV words were mapped to an ‘UNK’ token. The
text was lower-cased, and split into sentences for
the hierarchical models using the natural language
toolkit (NLTK) (Loper and Bird, 2002).

5 Results and Analysis

We test our models on the two science test sets,
as well as on the CCS appendix B document
level texts and a paragraph-level version of these
texts. We also evaluated the best performing

6The code and trained models are available at https:
//github.com/Farahn/Liguistic-Complexity.

7http://nlp.stanford.edu/data/glove.
840B.300d.zip

8In vocabulary words not present in Glove had randomly
initialized word embeddings.
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Figure 1: RNN with Multi-Head Attention

Figure 2: RNN with Bidirectional Context and Atten-
tion

model on the middle school science questions data
set. Since both the true reading level and predicted
levels are ordered variables, we use Spearman’s
rank correlation as the evaluation metric to cap-
ture the monotonic relation between the predic-
tions and the true levels.

As a baseline, we use the WeeBit linear regres-
sion system (Vajjala and Meurers, 2014). The
WeeBit system uses knowledge-based features as
input to a linear regression model to predict read-
ing level as a number between 1 and 5.5, which
maps to text appropriate for readers 7-16 years
of age. The feature set includes parts-of-speech
(e.g. density of different parts-of-speech), lexical
(e.g. measurement of lexical variation), syntactic
(e.g. the number of verb phrases), morphological
(e.g. ratio of transitive verbs to total words) and
psycholinguistic (e.g. age of acquisition) features.
There are no features related to discourse, thus it
is possible to compute features for sentence level
texts. The system was trained on a subset of the
data that our system was trained on, so it is at a
disadvantage. We did not have the capability to

retrain the system.

5.1 Results by Genre
Results for the different models:

• sequential RNN with self attention (RNN),

• large sequential RNN with self attention
(RNN 600),

• hierarchical RNN with attention at the word
and sentence level (HAN),

• hierarchical RNN with bidirectional context
and attention (BCA), and

• multi-head attention (MHA)

are shown in table 3, together with the results for
the WeeBit system which has state-of-the-art re-
sults on the CCS documents. For the CCS data,
both D1 and D2 training configurations are used
for the neural models; only D2 is used for the in-
formational test set. For all of these models the
hidden layer dimension for the word level was be-
tween 125 and 250. We also trained a sequential
RNN with a larger hidden layer dimension of 600.

The HAN does better for document level sam-
ples than a sequential RNN; the converse is true
for paragraph level texts. The RNN with a larger
hidden layer dimension performs better for longer
texts, while the performance for smaller dimen-
sion RNN deteriorates with increasing text length.
The BCA model seems to generalize to longer
documents and new genres better than the other
neural networks.

Figure 3 shows the error distribution for
BCA(D1) in terms of distance from true prediction
broken down by genre on the 168 CCS documents.
The category of informational texts is often over
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Test Set Model Samples WeeBit RNN RNN 600 HAN BCA MHA
CCS Document D1 168 0.69 0.28 0.43 0.47 0.55 0.42
CCS Paragraphs D1 1532 0.36 0.30 0.25 0.29 0.32 0.28
CCS Document D2 168 0.69 0.34 0.38 0.43 0.48 0.43
CCS Paragraphs D2 1532 0.36 0.27 0.26 0.24 0.30 0.29
Informational
Paragraphs

D2 1361 0.22 0.51 0.60 0.60 0.62 0.60

Table 3: Results (Spearman Rank Correlation)

Figure 3: Error distribution for the CCS documents
BCA(D1)

predicted, which we hypothesize is roughly due to
specific articles related to the United States history
and constitution. The only training data for our
models with that subject is in the grades 6-8 and
9-12 categories. The performance for literary and
mixed texts, on the other hand, is roughly unbi-
ased; this shows that the model is better at general-
izing to non-informational texts, even when there
are no literary text samples in the training data.

5.2 Results by Length

Figures 4 and 5 show the performance of our mod-
els and the WeeBit model as a function of docu-
ment length, both on the informational paragraphs
test set and the CCS paragraph level test set. The
results indicate that for shorter texts, particularly
under 100 words, neural models tend to do better.
Even for a mixture of genres, the model with bidi-
rectional context performs better than the feature-
based regression model, as shown in figure 5.

It is likely that the WeeBit results results on
shorter texts would improve if trained on the same
training set that is used for the neural models.
However, we hypothesize that the feature-based
approach is less well suited for shorter documents
because the feature vector will be more sparse.

Figure 4: Performance vs. text length for informational
paragraphs BCA(D2)

Comparing the CCS document- and paragraph-
level test sets, the average percentage of features
that are zero-valued is 28% for document-level
texts and 44% for paragraph-level texts. The most
sparse vectors are 40% and 81% for document and
paragraph-level texts, respectively.

5.3 Results for Science Assessment Questions
Finally, we apply both the baseline WeeBit system
and our best model (BCA trained onD1) to the set
of 5470 grade 6-8 science questions. The results
are shown in figures 6 and 7, where the grade 6-
8 category (ages 11-14) corresponds to predicted
level 3 for BCA and predicted level 4 for WeeBit.
The results indicate that BCA predictions are bet-
ter aligned with human rankings than the baseline.
As expected, grade 6 questions more likely to be
predicted as less difficult than grade 8 questions.

5.4 Attention Visualization
Attention can help provide insight into what the
model is learning. In the analyses here, all at-
tention values are normalized by dividing by the
highest attention value in the sentence/document
to account for different sequence lengths.

Figure 8 shows the word-level attention for the
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Figure 5: Performance vs. maximum text length for
CCS paragraphs BCA(D1)

BCA and HAN for a sample text from the science
assessment questions test set. (Attention weights
in the figure are smoothed to reflect the fact that
a word vector from a biLSTM reflects the word’s
context.) The results show that attention weights
are more sparse for HAN than for BCA. At the
sentence level (not shown here), the BCA sentence
weights tend to be more uniformly distributed,
whereas HAN weights are again more selective.

Another aspect of the attention is that a word
does not have the same attention level for all oc-
currences in a document. We look at maximum
and minimum values of attention as a function of
word frequency for each grade band, shown in fig-
ure 9 for grade 6-8 science assessment questions.

The pattern is similar for each grade band in
the validation and test sets. The minimum atten-
tion values assigned to a word drop with increas-
ing word frequency, while the maximum values
increase. This suggests that the attention weights
are more confident for more frequent words, such
as of. Words like fusion and m/s get high max-

Figure 6: BCA predicted levels for middle school sci-
ence assessment questions

imum attention values, despite not being as high
frequency as words like of and the. This may in-
dicate that they are likely to contribute to linguis-
tic complexity. The fact that transformation has a
high minimum is also likely an indicator of its im-
portance. For HAN without bidirectional context,
a similar visualization shows that while the trend
is similar, the attention weights typically tend to be
lower, both for minimum and maximum values.

We find that sentence-end tokens (period, ex-
clamation and question mark) have high average
attention weight, ranging from 0.54 to 0.81, while
sentence-internal punctuation (comma, colon and
semicolon) get slightly lower weights, ranging
from 0.20 to 0.47. The trend is similar for all
grades. These high attention values might be due
to punctuation serving as a proxy for sentence
structure. It is interesting to note that the question
mark gets higher minimum attention value than
period, despite being high frequency. It may be
that questions carry information that is particularly
relevant to informational text difficulty.

6 Discussion

Our work differs from existing models that es-
timate text difficulty since we do not use engi-
neered features. There are advantages and dis-
advantages to both approaches, which we briefly
discuss here. Models using engineered features
based on research on language acquisition offer
interpretability and insight into which specific lin-
guistic features are contributing to text difficulty.
An additional advantage of using engineered fea-
tures in a regression or classification model is that
less training data is required.

However, given both the evolving theories in

Figure 7: WeeBit predicted levels for middle school
science assessment questions
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Figure 8: Word level attention visualization for BCA
(top) and HAN (bottom) for a middle school science
assessment question

Figure 9: Maximum and minimum values of attention
as a function of word count for BCA

language acquisition and the large number of vari-
ables that impact second language acquisition, the
methodologies used in language acquisition re-
search have certain limitations. For example, the
number of variables that can be considered in a
study is practically limited, the sample popula-
tion is often small, and the question of qualita-
tive vs. quantitative methodologies used can influ-
ence outcomes (more details in (Larsen-Freeman
and Long, 2014; Mitchell et al., 2013)). These
limitations can carry into the feature engineering
process. Using a model with text as input ensures
that these constraints are not inherently part of the
model; the performance of the system is not lim-
ited by the features provided. Of course, perfor-
mance is limited by the training data, both in terms
of the cost of collection and any biases inherent in
the data. In addition, with advances in neural ar-
chitectures such as attention modeling, there may

be opportunities for identifying specific aspects of
texts that are particularly difficult, though research
in this direction is still in early stages.

7 Conclusion

In summary, this work explored different neural
architectures for linguistic complexity analysis, to
mitigate issues with accuracy of systems based on
engineered features. Experimental results show
that it is possible to achieve high accuracy on texts
shorter than 100 words using RNNs with attention.
Using hierarchical structure improves results, par-
ticularly with attention models that leverage bidi-
rectional sentence context. Testing on a mix of
genres shows that the best neural model can gen-
eralize to subjects beyond what it is trained on,
though it performs slightly worse than a feature-
based regression model on texts longer than 100
words. More training data from other genres will
likely reduce the performance gap. Analysis of
attention weights can provide insights into which
phrases/sentences are important, both at the aggre-
gate and sample level. Developing new methods
for analysis of attention may be useful both for
improving model performance and for providing
more interpretable results for educators.

Two aspects not considered in this work are ex-
plicit representation of syntax and discourse struc-
ture. Syntax can be incorporated by concatentat-
ing word and dependency embeddings at the token
level. Our BCA model was designed to capture
cross-sentence coherence and coordination, but it
may be useful to extend the hierarchy for longer
documents and/or introduce explicit models of the
types of discourse features used in Coh-Metrix
(Graesser et al., 2004).
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Černockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In
Eleventh Annual Conference of the International
Speech Communication Association.

Rosamond Mitchell, Florence Myles, and Emma Mars-
den. 2013. Second language learning theories.
Routledge.

Jessica Nelson, Charles Perfetti, David Liben, and
Meredith Liben. 2012. Measures of text difficulty:
Testing their predictive value for grade levels and
student performance. Council of Chief State School
Officers, Washington, DC.

54



Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Sarah E Petersen and Mari Ostendorf. 2009. A ma-
chine learning approach to reading level assessment.
Computer speech & language, 23(1):89–106.

Sarah E Schwarm and Mari Ostendorf. 2005. Reading
level assessment using support vector machines and
statistical language models. In Proceedings of the
43rd Annual Meeting on Association for Computa-
tional Linguistics, pages 523–530. Association for
Computational Linguistics.

Kathleen M Sheehan, Michael Flor, and Diane Napoli-
tano. 2013. A two-stage approach for generating un-
biased estimates of text complexity. In Proceedings
of the Workshop on Natural Language Processing
for Improving Textual Accessibility, pages 49–58.

AJ Stenner, Ivan Horabin, Dean R Smith, and Malbert
Smith. 1988. The lexile framework. Durham, NC:
MetaMetrics.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075.

Sowmya Vajjala and Detmar Meurers. 2012. On im-
proving the accuracy of readability classification us-
ing insights from second language acquisition. In
Proceedings of the Seventh Workshop on Building
Educational Applications Using NLP, pages 163–
173. Association for Computational Linguistics.

Sowmya Vajjala and Detmar Meurers. 2014. Read-
ability assessment for text simplification: From
analysing documents to identifying sentential sim-
plifications. ITL-International Journal of Applied
Linguistics, 165(2):194–222.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alexander J Smola, and Eduard H Hovy. 2016. Hi-
erarchical attention networks for document classifi-
cation. In HLT-NAACL, pages 1480–1489.

Dani Yogatama, Chris Dyer, Wang Ling, and Phil Blun-
som. 2017. Generative and discriminative text clas-
sification with recurrent neural networks. arXiv
preprint arXiv:1703.01898.

55



Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 56–65
New Orleans, Louisiana, June 5, 2018. c©2018 Association for Computational Linguistics

Second Language Acquisition Modeling

Burr Settles∗ Chris Brust∗ Erin Gustafson∗ Masato Hagiwara∗ Nitin Madnani†
∗Duolingo, Pittsburgh, PA, USA †ETS, Princeton, NJ, USA

{burr,chrisb,erin,masato}@duolingo.com nmadnani@ets.org

Abstract

We present the task of second language acqui-

sition (SLA) modeling. Given a history of er-

rors made by learners of a second language, the

task is to predict errors that they are likely to

make at arbitrary points in the future. We de-

scribe a large corpus of more than 7M words

produced by more than 6k learners of English,

Spanish, and French using Duolingo, a popular

online language-learning app. Then we report

on the results of a shared task challenge aimed

studying the SLA task via this corpus, which

attracted 15 teams and synthesized work from

various fields including cognitive science, lin-

guistics, and machine learning.

1 Introduction

As computer-based educational apps increase in

popularity, they generate vast amounts of student

learning data which can be harnessed to drive per-

sonalized instruction. While there have been some

recent advances for educational software in do-

mains like mathematics, learning a language is

more nuanced, involving the interaction of lexi-

cal knowledge, morpho-syntactic processing, and

several other skills. Furthermore, most work that

has applied natural language processing to lan-

guage learner data has focused on intermediate-to-

advanced students of English, particularly in as-

sessment settings. Much less work has been de-

voted to beginners, learners of languages other

than English, or ongoing study over time.

We propose second language acquisition (SLA)

modeling as a new computational task to help

broaden our understanding in this area. First, we

describe a new corpus of language learner data,

containing more than 7.1M words, annotated for

production errors that were made by more than

6.4k learners of English, Spanish, and French, dur-

ing their first 30 days of learning with Duolingo

(a popular online language-learning app).

Then we report on the results of a “shared task”

challenge organized by the authors using this SLA

modeling corpus, which brought together 15 re-

search teams. Our goal for this work is three-

fold: (1) to synthesize years of research in cog-

nitive science, linguistics, and machine learning,

(2) to facilitate cross-dialog among these disci-

plines through a common large-scale empirical

task, and in so doing (3) to shed light on the most

effective approaches to SLA modeling.

2 Shared Task Description

Our learner trace data comes from Duolingo:

a free, award-winning, online language-learning

platform. Since launching in 2012, more than

200 million learners worldwide have enrolled in

Duolingo’s game-like courses, either via the web-

site1 or mobile apps.

Figure 1(a) is a screen-shot of the home screen,

which specifies the game-like curriculum. Each

icon represents a skill, aimed at teaching themati-

cally or grammatically grouped words or concepts.

Learners can tap an icon to access lessons of new

material, or to review material once all lessons are

completed. Learners can also choose to get a per-

sonalized practice session that reviews previously-

learned material from anywhere in the course by

tapping the “practice weak skills” button.

2.1 Corpus Collection

To create the SLA modeling corpus, we sampled

from Duolingo users who registered for a course

and reached at least the tenth row of skill icons

within the month of November 2015. By limit-

ing the data to new users who reach this level of

the course, we hope to better capture beginners’

broader language-learning process, including re-

peated interaction with vocabulary and grammar

1https://www.duolingo.com
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(a) home screen (b) reverse_translate (c) reverse_tap (d) listen

Figure 1: Duolingo screen-shots for an English-speaking student learning French (iPhone app, 2017). (a) The home

screen, where learners can choose to do a “skill” lesson to learn new material, or get a personalized practice session

by tapping the “practice weak skills” button. (b–d) Examples of the three exercise types included in our shared task

experiments, which require the student to construct responses in the language they are learning.

over time. Note that we excluded all learners who

took a placement test to skip ahead in the course,

since these learners are likely more advanced.

2.2 Three Language Tracks

An important question for SLA modeling is: to

what extent does an approach generalize across

languages? While the majority of Duolingo users

learn English—which can significantly improve

job prospects and quality of life (Pinon and Hay-

don, 2010)—Spanish and French are the second

and third most popular courses. To encourage re-

searchers to explore language-agnostic features,

or unified cross-lingual modeling approaches, we

created three tracks: English learners (who speak

Spanish), Spanish learners (who speak English),

and French learners (who speak English).

2.3 Label Prediction Task

The goal of the task is as follows: given a his-

tory of token-level errors made by the learner in

the learning language (L2), accurately predict the

errors they will make in the future. In particular,

we focus on three Duolingo exercise formats that

require the learners to engage in active recall, that

is, they must construct answers in the L2 through

translation or transcription.

Figure 1(b) illustrates a reverse translate item,

where learners are given a prompt in the language

they know (e.g., their L1 or native language), and

learner: wen can help
reference: when can I help ?

label: 7 3 7 3

Figure 2: An illustration of how data labels are gener-

ated. Learner responses are aligned with the most simi-

lar reference answer, and tokens from the reference that

do not match are labeled errors.

translate it into the L2. Figure 1(c) illustrates a re-

verse tap item, which is a simpler version of the

same format: learners construct an answer using a

bank of words and distractors. Figure 1(d) is a lis-

ten item, where learners hear an utterance in the L2

they are learning, and must transcribe it. Duolingo

does include many other exercise formats, but we

focus on these three in the current work, since con-

structing L2 responses through translation or tran-

scription is associated with deeper levels of pro-

cessing, which in turn is more strongly associated

with learning (Craik and Tulving, 1975).

Since each exercise can have multiple correct

answers (due to synonyms, homophones, or ambi-

guities in tense, number, formality, etc.), Duolingo

uses a finite-state machine to align the learner’s re-

sponse to the most similar reference answer form

a large set of acceptable responses, based on token

string edit distance (Levenshtein, 1966). For ex-

ample, Figure 1(b) shows an example of corrective

feedback based on such an alignment.
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Figure 2 shows how we use these alignments to

generate labels for the SLA modeling task. In this

case, an English (from Spanish) learner was asked

to translate, “¿Cuándo puedo ayudar?” and wrote

“wen can help” instead of “When can I help?” This

produces two errors (a typo and a missing pro-

noun). We ignore capitalization, punctuation, and

accents when matching tokens.

2.4 Data Set Format

Sample data from the resulting corpus can be found

in Figure 3. Each token from the reference an-

swer is labeled according to the alignment with the

learner’s response (the final column: 0 for cor-

rect and 1 for incorrect). Tokens are grouped

together by exercise, including user-, exercise-,

and session-level meta-data in the previous line

(marked by the # character). We included all ex-

ercises done by the users sampled from the 30-day

data collection window.

The overall format is inspired by the Universal

Dependencies (UD) format2. Column 1 is a unique

B64-encoded token ID, column 2 is a token (word),

and columns 3–6 are morpho-syntactic features

from the UD tag set (part of speech, morphology

features, and dependency parse labels and edges).

These were generated by processing the aligned

reference answers with Google SyntaxNet (Andor

et al., 2016). Because UD tags are meant to be

language-agnostic, it was our goal to help make

cross-lingual SLA modeling more straightforward

by providing these features.

Exercise meta-data includes the following:

• user: 8-character unique anonymous user ID

for each learner (B64-encoded)

• countries: 2-character ISO country codes

from which this learner has done exercises

• days: number of days since the learner started

learning this language on Duolingo

• client: session device platform

• session: session type (e.g., lesson or practice)

• format: exercise format (see Figure 1)

• time: the time (in seconds) it took the learner

to submit a response for this exercise.

Lesson sessions (about 77% of the data set)

are where new words or concepts are introduced,

although lessons also include previously-learned

material (e.g., each exercise attempts to introduce

only one new word or inflection, so all other to-

kens should have been seen by the student be-

2http://universaldependencies.org

TRAIN DEV TEST

Track Users Tokens (Err) Tokens (Err) Tokens (Err)

English 2.6k 2.6M (13%) 387k (14%) 387k (15%)

Spanish 2.6k 2.0M (14%) 289k (16%) 282k (16%)

French 1.2k 927k (16%) 138k (18%) 136k (18%)

Overall 6.4k 5.5M (14%) 814k (15%) 804k (16%)

Table 1: Summary of the SLA modeling data set.
.

fore). Practice sessions (22%) should contain only

previously-seen words and concepts. Test sessions

(1%) are mini-quizzes that allow a student to skip

out of a single skill in the curriculum (i.e., the stu-

dent may have never seen this content before in the

Duolingo app, but may well have had prior knowl-

edge before starting the course).

It is worth mentioning that for the shared task,

we did not provide actual learner responses, only

the closest reference answers. Releasing such data

(at least in the TEST set) would by definition give

away the labels and might undermine the task.

However, we plan to release a future version of the

corpus that is enhanced with additional meta-data,

including the actual learner responses.

2.5 Challenge Timeline

The data were released in two phases. In phase 1

(8 weeks), TRAIN and DEV partitions were re-

leased with labels, along with a baseline system

and evaluation script, for system development. In

phase 2 (10 days), the TEST partition was released

without labels, and teams submitted predictions to

CodaLab3 for blind evaluation. To allow teams to

compare different system parameters or features,

they were allowed to submit up to 10 predictions

total (up to 2 per day) during this phase.

Table 1 reports summary statistics for each of

the data partitions for all three tracks. We created

TRAIN, DEV, and TEST partitions as follows. For

each user, the first 80% of their exercises were

placed in the TRAIN set, the subsequent 10% in

DEV, and the final 10% in TEST. Hence the three

data partitions are sequential, and contain ordered

observations for all users.

Note that because the three data partitions are

sequential, and the DEV set contains observations

that are potentially valuable for making TEST

set predictions, most teams opted to combine the

TRAIN and DEV sets to train their systems in fi-

nal phase 2 evaluations.

3http://codalab.org
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# user:XEinXf5+ countries:CO days:2.678 client:web session:practice format:reverse_translate time:6
oMGsnnH/0101 When ADV PronType=Int|fPOS=ADV++WRB advmod 4 1
oMGsnnH/0102 can AUX VerbForm=Fin|fPOS=AUX++MD aux 4 0
oMGsnnH/0103 I PRON Case=Nom|Number=Sing|Person=1|PronType=Prs|fPOS=PRON++PRP nsubj 4 1
oMGsnnH/0104 help VERB VerbForm=Inf|fPOS=VERB++VB ROOT 0 0

# user:XEinXf5+ countries:CO days:5.707 client:android session:practice format:reverse_translate time:22
W+QU2fm70301 He PRON Case=Nom|Gender=Masc|Number=Sing|Person=3|PronType=Prs|fPOS=PRON++PRP nsubj 3 0
W+QU2fm70302 's AUX Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin|fPOS=AUX++VBZ aux 3 1
W+QU2fm70303 wearing VERB Tense=Pres|VerbForm=Part|fPOS=VERB++VBG ROOT 0 0
W+QU2fm70304 two NUM NumType=Card|fPOS=NUM++CD nummod 5 0
W+QU2fm70305 shirts NOUN Number=Plur|fPOS=NOUN++NNS dobj 3 0

# user:XEinXf5+ countries:CO days:10.302 client:web session:lesson format:reverse_translate time:28
vOeGrMgP0101 We PRON Case=Nom|Number=Plur|Person=1|PronType=Prs|fPOS=PRON++PRP nsubj 2 0
vOeGrMgP0102 eat VERB Mood=Ind|Tense=Pres|VerbForm=Fin|fPOS=VERB++VBP ROOT 0 1
vOeGrMgP0103 cheese NOUN Degree=Pos|fPOS=ADJ++JJ dobj 2 1
vOeGrMgP0104 and CONJ fPOS=CONJ++CC cc 2 0
vOeGrMgP0105 they PRON Case=Nom|Number=Plur|Person=3|PronType=Prs|fPOS=PRON++PRP nsubj 6 0
vOeGrMgP0106 eat VERB Mood=Ind|Tense=Pres|VerbForm=Fin|fPOS=VERB++VBP conj 2 1
vOeGrMgP0107 fish NOUN fPOS=X++FW dobj 6 0

Figure 3: Sample exercise data from an English learner over time: roughly two, five, and ten days into the course.

2.6 Evaluation

We use area under the ROC curve (AUC) as

the primary evaluation metric for SLA model-

ing (Fawcett, 2006). AUC is a commonmeasure of

ranking quality in classification tasks, and can be

interpreted as the probability that the system will

rank a randomly-chosen error above a randomly-

chosen non-error. We argue that this notion of

ranking quality is particularly useful for evaluating

systems that might be used for personalized learn-

ing, e.g., if we wish to prioritize words or exer-

cises for an individual learner’s review based on

how likely they are to have forgotten or make er-

rors at a given point in time.

We also report F1 score—the harmonic mean of

precision and recall—as a secondary metric, since

it is more common in similar skewed-class label-

ing tasks (e.g., Ng et al., 2013). Note, however,

that F1 can be significantly improved simply by

tuning the classification threshold (fixed at 0.5 for

our evaluations) without affecting AUC.

3 Results

A total of 15 teams participated in the task, of

which 13 responded to a brief survey about their

approach, and 11 submitted system description pa-

pers. All but two of these teams submitted predic-

tions for all three language tracks.

Official shared task results are reported in Ta-

ble 2. System ranks are determined by sorting

teams according to AUC, and using DeLong’s test

(DeLong et al., 1988) to identify statistical ties.

For the remainder of this section, we provide a

summary of each team’s approach, ordered by the

team’s average rank across all three tracks. Certain

teams are marked with modeling choice indicators

(♢, ♣, ‡), which we discuss further in §5.
SanaLabs (Nilsson et al., 2018) used a combi-

nation of recurrent neural network (RNN) predic-

tions with those of a Gradient Boosted Decision

Tree (GBDT) ensemble, trained independently for

each track. This was motivated by the observa-

tion that RNNs work well for sequence data, while

GBDTs are often the best-performing non-neural

model for shared tasks using tabular data. They

also engineered several token context features, and

learner/token history features such as number of

times seen, time since last practice, etc.

singsound (Xu et al., 2018) used an RNN ar-

chitecture using four types of encoders, represent-

ing different types of features: token context, lin-

guistic information, user data, and exercise for-

mat. The RNN decoder integrated information

from all four encoders. Ablation experiments re-

vealed the context encoder (representing the token)

contributed the most to model performance, while

the linguistic encoder (representing grammatical

information) contributed the least.

NYU (Rich et al., 2018) used an ensemble of

GBDTs with features engineered based on psy-

chological theories of cognition. Predictions for

each track were averaged between a track-specific

model and a unifiedmodel (trained on data from all

three tracks). In addition to the word, user, and ex-

ercise features provided, the authors includedword

lemmas, corpus frequency, L1-L2 cognates, and

features indicating user motivation and diligence

(derived from usage patterns), and others. Abla-

tion studies indicated that most of the performance

was due to the user and token features.
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English Track

↑ Team AUC F1

1 SanaLabs ♢♣ .861 .561

1 singsound ♢ .861 .559

3 NYU ♣‡ .859 .468

4 TMU ♢‡ .848 .476

5 CECL ‡ .846 .414

6 Cambridge ♢ .841 .479

7 UCSD ♣ .829 .424

8 nihalnayak .821 .376

8 LambdaLab ♣ .821 .389

10 Grotoco .817 .462

11 jilljenn .815 .329

12 ymatusevych .813 .381

13 renhk .797 .448

14 zlb241 .787 .003

15 SLAM_baseline .774 .190

Spanish Track

↑ Team AUC F1

1 SanaLabs ♢♣ .838 .530

2 NYU ♣‡ .835 .420

2 singsound ♢ .835 .524

4 TMU ♢‡ .824 .439

5 CECL ‡ .818 .390

6 Cambridge ♢ .807 .435

7 UCSD ♣ .803 .375

7 LambdaLab ♣ .801 .344

9 Grotoco .791 .452

9 nihalnayak .790 .338

11 ymatusevych .789 .347

11 jilljenn .788 .306

13 renhk .773 .432

14 SLAM_baseline .746 .175

15 zlb241 .682 .389

French Track

↑ Team AUC F1

1 SanaLabs ♢♣ .857 .573

2 singsound ♢ .854 .569

2 NYU ♣‡ .854 .493

4 CECL ‡ .843 .487

5 TMU ♢‡ .839 .502

6 Cambridge ♢ .835 .508

7 UCSD ♣ .823 .442

8 LambdaLab ♣ .815 .415

8 Grotoco .813 .502

10 nihalnayak .811 .431

10 jilljenn .809 .406

10 ymatusevych .808 .441

13 simplelinear .807 .394

14 renhk .796 .481

15 SLAM_baseline .771 .281

Table 2: Final results. Ranks (↑) are determined by statistical ties (see text). Markers indicate which systems

include recurrent neural architectures (♢), decision tree ensembles (♣), or a multitask model across all tracks (‡).

TMU (Kaneko et al., 2018) used a combination

of two bidirectional RNNs—the first to predict po-

tential user errors at a given token, and a second to

track the history of previous answers by each user.

These networks were jointly trained through a uni-

fied objective function. The authors did not engi-

neer any additional features, but did train a single

model for all three tracks (using a track ID feature

to distinguish among them).

CECL (Bestgen, 2018) used a logistic regres-

sion approach. The base feature set was expanded

to include many feature conjunctions, including

word n-grams crossed with the token, user, format,
and session features provided with the data set.

Cambridge (Yuan, 2018) trained two RNNs—

a sequence labeler, and a sequence-to-sequence

model taking into account previous answers—and

found that averaging their predictions yielded the

best results. They focused on the English track, ex-

perimenting with additional features derived from

other English learner corpora. Hyper-parameters

were tuned for English and used as-is for other

tracks, with comparable results.

UCSD (Tomoschuk and Lovelett, 2018) used a

random forest classifier with a set of engineered

features motivated by previous research in mem-

ory and linguistic effects in SLA, including “word

neighborhoods,” corpus frequency, cognates, and

repetition/experience with a given word. The sys-

tem also included features specific to each user,

such as mean and variance of error rates.

LambdaLab (Chen et al., 2018) used GBDT

models independently for each track, deriv-

ing their features from confirmatory analysis

of psychologically-motivated hypotheses on the

TRAIN set. These include proxies for student en-

gagement, spacing effect, response time, etc.

nihalnayak (Nayak and Rao, 2018) used a lo-

gistic regression model similar to the baseline,

but added features inspired by research in code-

mixed language-learning where context plays an

important role. In particular, they included word,

part of speech, and metaphone features for previ-

ous:current and current:next token pairs.

Grotoco (Klerke et al., 2018) also used logis-

tic regression, including word lemmas, frequency,

cognates, and user-specific features such as word

error rate. Interestingly, the authors found that ig-

noring each user’s first day of exercise data im-

proved their predictions, suggesting that learners

first needed to familiarize themselves with app be-

fore their data were reliable for modeling.

jilljenn (Vie, 2018) used a deep factorization

machine (DeepFM), a neural architecture devel-

oped for click-through rate prediction in recom-

mender systems. This model allows learning from

both lower-order and higher-order induced fea-

tures and their interactions. The DeepFM outper-

formed a simple logistic regression baseline with-

out much additional feature engineering.

Other teams did not submit system description

papers. However, according to a task organizer

survey ymatusevych used a linear model with

multilingual word embeddings, corpus frequency,

and several L1-L2 features such as cognates. Ad-

ditionally, simplelinear used an ensemble of some

sort (for the French track only). renhk and zlb241

provided no details about their systems.
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SLAM_baseline is the baseline system pro-

vided by the task organizers. It is a simple logis-

tic regression using data set features, trained sepa-

rately for each track using stochastic gradient de-

scent on the TRAIN set only.

4 Related Work

SLA modeling is a rich problem, and presents a

opportunity to synthesize work from various sub-

fields in cognitive science, linguistics, and ma-

chine learning. This section highlights a few key

concepts from these fields, and how they relate to

the approaches taken by shared task participants.

Item response theory (IRT) is a common psy-

chometric modeling approach used in educational

software (e.g., Chen et al., 2005). In its simplest

form (Rasch, 1980), an IRT model is a logistic re-

gression with two weights: one representing the

learner’s ability (i.e., user ID), and the other rep-

resenting the difficulty of the exercise or test item

(i.e., token ID). An extension of this idea is the ad-

ditive factor model (Cen et al., 2008) which adds

additional “knowledge components” (e.g., lexical,

morphological, or syntactic features). Teams that

employed linear models (including our baseline)

are essentially all additive factor IRT models.

For decades, tutoring systems have also em-

ployed sequence models like HMMs to perform

knowledge tracing (Corbett and Anderson, 1995),

a way of estimating a learner’s mastery of knowl-

edge over time. RNN-based approaches that en-

code user performance over time (i.e., that span

across exercises) are therefore variants of deep

knowledge tracing (Piech et al., 2015).

Relatedly, the spacing effect (Dempster, 1989)

is the observation that people will not only learn

but also forget over time, and they remember more

effectively through scheduled practices that are

spaced out. Settles and Meeder (2016) and Ridge-

way et al. (2017) recently proposed non-linear re-

gressions that explicitly encode the rate of forget-

ting as part of a decision surface, however none of

the current teams chose to do this. Instead, forget-

ting was either modeled through engineered fea-

tures (e.g., user/token histories), or opaquely han-

dled by sequential RNN architectures.

SLA modeling also bears some similarity to re-

search in grammatical error detection (Leacock

et al., 2010) and correction (Ng et al., 2013). For

these tasks, amodel is given a (possibly ill-formed)

sequence of words produced by a learner, and

the task is to identify which are mistakes. SLA

modeling is in some sense the opposite: given

a well-formed sequence of words that a learner

should be able to produce, identify where they are

likely to makemistakes. Given these similarities, a

few teams adapted state-of-the-art GEC/GED ap-

proaches to create their SLA modeling systems.

Finally,multitask learning (e.g., Caruana, 1997)

is the idea that machine learning systems can do

better at multiple related tasks by trying to solve

them simultaneously. For example, recent work

in machine translation has demonstrated gains

through learning to translate multiple languages

with a unified model (Dong et al., 2015). Simi-

larly, the three language tracks in this work pre-

sented an opportunity to explore a unified multi-

task framework, which a few teams did with posi-

tive results.

5 Meta-Analyses

In this section, we analyze the various modeling

choices explored by the different teams in order to

shed light on what kinds of algorithmic and feature

engineering decisions appear to be useful for the

SLA modeling task.

5.1 Learning Algorithms

Here we attempt to answer the question of whether

particular machine learning algorithms have a sig-

nificant impact on task performance. For example,

the results in Table 2 suggest that the algorithmic

choices indicated by (♢, ♣, ‡) are particularly ef-
fective. Is this actually the case?

To answer this question, we partitioned the

TEST set into 6.4k subsets (one for each learner),

and computed per-user AUC scores for each

team’s predictions (83.9k observations total). We

also coded each team with indicator variables to

describe their algorithmic approach, and used a re-

gression analysis to determine if these algorithmic

variations had any significant effects on learner-

specific AUC scores.

To analyze this properly, however, we need to

determine whether the differences among model-

ing choices are actually meaningful, or can simply

be explained by sampling error due to random vari-

ations among users, teams, or tracks. To do this,

we use a linear mixed-effects model (cf., Baayen,

2008, Ch. 7). In addition to modeling the fixed

effects of the various learning algorithms, we can

also model the random effects represented by the
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Fixed effects (algorithm choices) Effect p-value

Intercept .786 <.001 ***

Recurrent neural network (♢) +.028 .012 *

Decision tree ensemble (♣) +.018 .055 .

Linear model (e.g., IRT) −.006 .541

Multitask model (‡) +.023 .017 *

Random effects St. Dev.

User ID ±.086

Team ID ±.013

Track ID ±.011

Table 3: Mixed-effects analysis of learning algorithms.

user ID (learners may vary by ability), the team ID

(teams may differ in other aspects not captured by

our schema, e.g., the hardware used), and the track

ID (tracks may vary inherently in difficulty).

Table 3 presents a mixed-effects analysis for the

algorithm variations used by at least 3 teams. The

intercept can be interpreted as the “average” AUC

of .786. Controlling for the random effects of user

(which exhibits a wide standard deviation of±.086

AUC), team (±.013), and track (±.011), three of

the algorithmic choices are at least marginally sig-

nificant (p < .1). For example, we might expect

a system that uses RNNs to model learner mas-

tery over time would add+.028 to learner-specific

AUC (all else being equal). Note that most teams’

systems that were not based on RNNs or tree en-

sembles used logistic regression, hence the “linear

model” effect is negligible (effectively treated as a

control condition in the analysis).

These results suggest two key insights for SLA

modeling. First, non-linear algorithms are particu-

larly desirable4, and second,multitask learning ap-

proaches that share information across tracks (i.e.,

languages) are also effective.

5.2 Feature Sets

We would also like to get a sense of which fea-

tures, if any, significantly affect system perfor-

mance. Table 4 lists features provided with the

SLA modeling data set, as well as several newly-

engineered feature types that were employed by at

least three teams (note that the precise details may

vary from team to team, but in our view aim to cap-

4 Interestingly, the only linear model to rank among the

top 5 (CECL) relied on combinatorial feature conjunctions—

which effectively alter the decision surface to be non-linear

with respect to the original features. The RNN hidden nodes

and GBDT constituent trees from other top systems may in

fact be learning to represent these same feature conjunctions.

Features used Popularity Effect

Word (surface form) +.005

User ID +.014

Part of speech −.008

Dependency labels −.011

Morphology features −.021

Response time +.028 *

Days in course +.023 .

Client +.005

Countries +.012

Dependency edges −.000

Session +.014

Word corpus frequency +.008

Spaced repetition features +.013

L1-L2 cognates +.001

Word embeddings +.020

Word stem/root/lemma +.007

Table 4: Summary of system features—both provided

(top) and team-engineered (bottom)—with team popu-

larity and univariate mixed-effects estimates.
.

ture the same phenomena). We also include each

feature’s popularity and an effect estimate5.

Broadly speaking, results suggest that feature

engineering had a much smaller impact on system

performance than the choice of learning algorithm.

Only “response time” and “days in course” showed

even marginally significant trends.

Of particular interest is the observation that

morpho-syntactic features (described in §2.4) ac-
tually seem to have weakly negative effects. This

echoes singsound’s finding that their linguistic en-

coder contributed the least to system performance,

andCambridge determined through ablation stud-

ies that these features in fact hurt their system. One

reasonable explanation is that these automatically-

generated features contain too many systematic

parsing errors to provide value. (Note that NYU

artificially introduced punctuation to the exercises

and re-parsed the data in their work.)

As for newly-engineered features, word infor-

mation such as frequency, semantic embeddings,

and stemming were popular. It may be that these

features showed such little return because our cor-

pus was too biased toward beginners—thus rep-

resenting a very narrow sample of language—for

these features to be meaningful. Cognate features

were an interesting idea used by a few teams, and

may have been more useful if the data included

5This is similar to the analysis in §5.1, except that we
regress on each feature separately. That is, a feature is the

only fixed effect in the model (alongside intercept), while still

controlling for user, team, and track random effects.

62



users from a wider variety of different L1 lan-

guage backgrounds. Spaced repetition features

also exhibited marginal (but statistically insignif-

icant) gains. We posit that the 30-day window

we used for data collection was simply not long

enough for these features to capture more long-

term learning (and forgetting) trends.

5.3 Ensemble Analysis

Another interesting research question is: what is

the upper-bound for this task? This can be esti-

mated by treating each team’s best submission as

an independent system, and combining the results

using ensemblemethods in a variety of ways. Such

analyses have been previously applied to other

shared task challenges and meta-analyses (e.g.,

Malmasi et al., 2017).

The oracle system is meant to be an upper-

bound: for each token in the TEST set, the oracle

outputs the team prediction with the lowest error

for that particular token. We also experiment with

stacking (Wolpert, 1992) by training a logistic re-

gression classifier using each team’s prediction as

an input feature6. Finally, we also pool system pre-

dictions together by taking their average (mean).

Table 5 reports AUC for various ensemblemeth-

ods as well as some of the top performing team sys-

tems for all three tracks. Interestingly, the oracle

is exceptionally accurate (>.993 AUC and >.884

F1, not shown). This indicates that the potential

upper limit of performance on this task is quite

high, since there exists a near-perfect ranking of

tokens in the TEST set based only on predictions

from these 15 diverse participating teams.

The stacking classifier produces significantly

better rankings than any of the constituent sys-

tems alone, while the average (over all teams)

ranked between the 3rd and 4th best system in all

three tracks. Inspection of stacking model weights

revealed that it largely learned to trust the top-

performing systems, so we also tried simply av-

eraging the top 3 systems for each track, and this

method was statistically tied with stacking for the

English and French tracks (p = 0.002 for Spanish).

Interestingly, the highest-weighted team in each

track’s stacking model was singsound (+2.417

on average across the three models), followed

6Note that we only have TEST set predictions for each

team. While we averaged stacking classifier weights across

10 folds using cross-validation, the reported AUC is still

likely an over-estimate, since the models were in some sense

trained on the TEST set.

System English Spanish French

Oracle .995 .996 .993

Stacking .867 .844 .863

Average (top 3) .867 .843 .863

1st team .861 .838 .857

2nd team .861 .835 .854

3rd team .859 .835 .854

Average (all) .857 .832 .852

4th team .848 .824 .843

Table 5: AUC results for the ensemble analysis.

by NYU (+1.632), whereas the top-performing

team SanaLabs had a surprisingly lower weight

(+0.841). This could be due to the fact that their

system was itself an ensemble of an RNN and

GBDT models, which were used (in isolation) by

each of the other two teams. This seems to add

further support for the effectiveness of combining

these algorithms for the task.

6 Conclusion and Future Work

In this work, we presented the task of second

language acquisition (SLA) modeling, described a

large data set for studying this task, and reported on

the results of a shared task challenge that explored

this new domain. The task attracted strong par-

ticipation from 15 teams, who represented a wide

variety of fields including cognitive science, lin-

guistics, and machine learning.

Among our key findings is the observation that,

for this particular formulation of the task, the

choice of learning algorithm appears to be more

important than clever feature engineering. In par-

ticular, the most effective teams employed se-

quence models (e.g., RNNs) that can capture user

performance over time, and tree ensembles (e.g.,

GBDTs) that can capture non-linear relationships

among features. Furthermore, using a multitask

framework—in this case, a unified model that

leverages data from all three language tracks—can

provide further improvements.

Still, many teams opted for a simpler algo-

rithm (e.g., logistic regression) and concentrated

instead on more psychologically-motivated fea-

tures. While these teams did not always perform as

well, several demonstrated through ablation stud-

ies that these features can be useful within the lim-

itations of the algorithm. It is possible that the

constraints of the SLAmodeling data set (beginner

language, homogeneous L1 language background,

short 30-day time frame, etc.) prevented these

features from being more useful across different

63



teams and learning algorithms. It would be inter-

esting to revisit these ideas using a more diverse

and longitudinal data set in the future.

To support ongoing research in SLA mod-

eling, current and future releases of our data

set will be publicly maintained online at:

https://doi.org/10.7910/DVN/8SWHNO.
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Abstract

We report the findings of the second Com-
plex Word Identification (CWI) shared task
organized as part of the BEA workshop co-
located with NAACL-HLT’2018. The sec-
ond CWI shared task featured multilingual and
multi-genre datasets divided into four tracks:
English monolingual, German monolingual,
Spanish monolingual, and a multilingual track
with a French test set, and two tasks: binary
classification and probabilistic classification.
A total of 12 teams submitted their results
in different task/track combinations and 11 of
them wrote system description papers that are
referred to in this report and appear in the BEA
workshop proceedings.

1 Introduction

The most common first step in lexical simplifi-
cation pipelines is identifying which words are
considered complex by a given target population
(Shardlow, 2013). This task is known as complex
word identification (CWI) and it has been attract-
ing attention from the research community in the
past few years.

In this paper we present the findings of the sec-
ond Complex Word Identification (CWI) shared
task organized as part of the thirteenth Work-
shop on Innovative Use of NLP for Building
Educational Applications (BEA) co-located with
NAACL-HLT’2018. The second CWI shared
task follows a successful first edition featuring 21
teams organized at SemEval’2016 (Paetzold and
Specia, 2016a). While the first CWI shared task
targeted an English dataset, the second edition fo-
cused on multilingualism providing datasets con-
taining four languages: English, German, French,
and Spanish.

In an evaluation paper (Zampieri et al., 2017), it
has been shown that the performance of an ensem-
ble classifier built on top of the predictions of the
participating systems in the 2016 task degraded,
the more systems were added. The low perfor-
mance of the CWI systems that competed in the
first CWI task left much room for improvement
and was one of the reasons that motivated us to
organize this second edition.

1.1 Task Description
The goal of the CWI shared task of 2018 is to
predict which words challenge non-native speak-
ers based on the annotations collected from both
native and non-native speakers. To train their sys-
tems, participants received a labeled training set
where words in context were annotated regarding
their complexity. One month later, an unlabeled
test set was provided and participating teams were
required to upload their predictions for evaluation.
More information about the data collection is pre-
sented in Section 3.

Given the multilingual dataset provided, the
CWI challenge was divided into four tracks:

• English monolingual CWI;

• German monolingual CWI;

• Spanish monolingual CWI; and

• Multilingual CWI with a French test set.

For the first three tracks, participants were pro-
vided with training and testing data for the same
language. For French, participants were provided
only with a French test set and no French training
data. In the CWI 2016, the task was cast as binary
classification. To be able to capture complexity
as a continuum, in our CWI 2018 shared task, we
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additionally included a probabilistic classification
task. The two tasks are summarized as follows:

• Binary classification task: Participants were
asked to label the target words in context as
complex (1) or simple (0).

• Probabilistic classification task: Partici-
pants were asked to assign the probability of
target words in context being complex.

Participants were free to choose the task/track
combinations they would like to participate in.

2 Related Work

Until the appearance of the CWI shared task of
2016, there was no manually annotated and veri-
fied CWI dataset. The 2016 shared task brought us
one of the largest CWI datasets to that date, con-
sisting of a total of 9,200 sentences manually an-
notated by 400 different non-native English speak-
ers. In total, 200 sentences are used as a training
set where each target is annotated by 20 annota-
tors. The rest of the dataset (9,000 sentences) are
used for test set where each target is annotated by
a single annotator from the entire pool of 400 an-
notators.

The approaches used in the first SemEval 2016
Task 11: Complex Word Identification are de-
scribed in Table 1.

3 Datasets

We have used the CWIG3G2 datasets from (Yi-
mam et al., 2017b,a) for the complex word iden-
tification (CWI) shared task 2018. The datasets
are collected for multiple languages (English, Ger-
man, Spanish). The English datasets cover differ-
ent text genres, namely News (professionally writ-
ten news), WikiNews (news written by amateurs),
and Wikipedia articles. Below, we will briefly de-
scribe the annotation process and the statistics of
collected datasets. For detail explanation of the
datasets, please refer to the works of Yimam et al.
(2017b,a)

Furthermore, to bolster the cross-lingual CWI
experiment, we have collected a CWI dataset for
French. The French dataset was collected through
the same method used for the CWIG3G2 cor-
pus (Yimam et al., 2017b,a). The dataset con-
tains Wikipedia texts extracted from a compara-
ble simplified corpus collected by Brouwers et al.
(2014). Similar to CWIG3G2, for each article,

all paragraphs containing between 5 and 10 sen-
tences were extracted. From this pool of para-
graphs, only the best paragraph was selected via
a ranking procedure maximizing sentence length
and lexical richness, and minimizing the ratio of
named entities and foreign words. From this large
selection of best paragraphs per article, an optimal
subset of 100 paragraphs was then selected using
a greedy search procedure similar to that of Tack
et al. (2016), minimizing the vocabulary overlap
between pairs of paragraphs using the Jaccard co-
efficient. Finally, a random test split of 24 para-
graphs was selected to be annotated.

3.1 Annotation Process
Annotations were collected using the Amazon
Mechanical Turk (MTurk). Instead of showing a
single sentence, we presented 5 to 10 sentences to
the annotator in a single HIT (Human Intelligence
Task) and requested them to highlight words or
phrases that could pose difficulty in understanding
the paragraph. The annotation system is unique
in many aspects such as: 1) The instruction makes
clear that the annotators should assume a given tar-
get reader such as children, language learners or
people with reading impairments. 2) A bonus re-
ward is offered when the user’s selection matches
at least half of the other annotations to encourage
extra care during the complex word or phrase (CP)
selection. 3) The maximum number of annotations
allowed is limited to 10 so that we could prohibit
an arbitrarily large number of selections intend-
ing to attain the bonus reward. 4) For the English
dataset, more than 20 annotators were able to an-
notate the same HIT, among which are at least 10
native English speakers and 10 non-native English
speakers so that it is possible to investigate if na-
tive and non-native speakers have different CWI
needs. 5) Complex words are not pre-highlighted,
as in previous contributions, so that annotators
are not biased to the pre-selection of the complex
phrases. 6) In addition to single words, we allowed
the annotation of multi-word expressions (MWE),
up to a size of 50 characters.

Table 2 shows the total, native, and non-native
number of annotators that participated in the an-
notation task.

3.2 Analysis of Collected Datasets
Table 3 shows statistics of the datasets for the
English (combinations of three genres), German,
Spanish and French (test set only) CWI tasks.
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Team Approach System Paper
SV000gg System voting with threshold and machine learning-based classi-

fiers trained on morphological, lexical, and semantic features
(Paetzold and Specia, 2016b)

TALN Random forests of lexical, morphological, semantic & syntactic
features

(Ronzano et al., 2016)

UWB Maximum Entropy classifiers trained over word occurrence
counts on Wikipedia documents

(Konkol, 2016)

PLUJAGH Threshold-based methods trained on Simple Wikipedia (Wróbel, 2016)
JUNLP Random Forest and Naive Bayes classifiers trained over semantic,

lexicon-based, morphological and syntactic features
(Mukherjee et al., 2016)

HMC Decision trees trained over lexical, semantic, syntactic and psy-
cholinguistic features

(Quijada and Medero, 2016)

MACSAAR Random Forest and SVM classifiers trained over Zipfian features (Zampieri et al., 2016)
Pomona Threshold-based bagged classifiers with bootstrap re-sampling

trained over word frequencies
(Kauchak, 2016)

Melbourne Weighted Random Forests trained on lexical/semantic features (Brooke et al., 2016)
IIIT Nearest Centroid classifiers trained over semantic and morpho-

logical features
(Palakurthi and Mamidi, 2016)

LTG Decision Trees trained over number of complex judgments (Malmasi et al., 2016)
MAZA Ensemble methods various word frequency features (Malmasi and Zampieri, 2016)
Sensible Ensembled Recurrent Neural Networks trained over embeddings (Gillin, 2016)
ClacEDLK Random Forests trained over semantic, morphological, lexical

and psycholinguistic features
(Davoodi and Kosseim, 2016)

Amrita-CEN SVM classifiers trained over word embeddings and various se-
mantic and morphological features

(S.P et al., 2016)

AI-KU SVM classifier trained with word embeddings of the target and
surrounding words

(Kuru, 2016)

BHASHA SVM and Decision Tree trained over lexical and morphological
features

(Choubey and Pateria, 2016)

USAAR Bayesian Ridge classifiers trained over a hand-crafted word sense
entropy metric and language model perplexity

(Martı́nez Martı́nez and Tan, 2016)

CoastalCPH Neural Network and Logistic Regression system trained over
word frequencies and embedding

(Bingel et al., 2016)

Table 1: SemEval 2016 CWI – Systems and approaches

Language Native Non-native Total
English 134 49 183
German 12 11 23
Spanish 48 6 54
French 10 12 22

Table 2: The number of annotators for different lan-
guages

Language Train Dev Test
English 27,299 3,328 4,252
German 6,151 795 959
Spanish 13,750 1,622 2,233
French - - 2,251

Table 3: The number of instances for each training, de-
velopment and test set

An analysis of the English dataset shows that
around 90% of complex phrases have been se-
lected by at least two annotators (both native and
non-native). When separated by language, the

percentage of agreements decreases to 83% at
the lowest. This might be because native and
non-native annotators have a different perspective
what is a complex phrase. Furthermore, we have
seen that native annotators agree more within their
group (84% and above) than non-native speakers
(83% and above). We also see that the absolute
agreement between native and non-native anno-
tators is very low (70%), which further indicates
that the two user groups might have different CWI
needs.

For the German annotation task, we have fewer
annotators than the other languages. As it can
be seen from Table 2, there are more native an-
notators, but they participate on fewer HITs than
the non-native annotators (on average, 6.1 non-
native speakers and 3.9 native speakers partici-
pated in a HIT). Unlike the English annotation
task, non-native annotators have a higher inter-
annotator agreement (70.66%) than the native an-
notators (58.5%).
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The Spanish annotation task is different from
both the English and the German annotation tasks
since its annotations come almost exclusively
from native annotators. In general, Spanish anno-
tators have shown lower agreements than the En-
glish and German annotators. Also the Spanish
annotators highlight more MWEs than the English
and German annotators.

Regarding the French annotation task, we ob-
serve a comparable distribution in the number of
native and non-native annotators compared to the
German annotation task (Table 2). There were
slightly more non-native participants than native
ones, but the number of native annotators who
completed the same number of HITs was consid-
erably larger. This means that although there were
more non-native participants, they did not partici-
pate equally in all HITs.

Train Dev Test
# % # % # %

EN 11,253 41 1,388 42 1,787 42
DE 2,562 42 334 42 376 39
ES 5,455 40 653 40 907 41
FR - - 657 29

Table 4: The number (#) and ratio (%) of complex in-
stances per language

A striking difference that can be observed in
the French dataset pertains to the proportion of
identified complex words. Compared to the other
languages, we have a considerably lower relative
count of complex instances (Table 4). However,
this does not necessarily mean that the texts were
simpler for French than for the other languages.
Looking at the proportion of MWEs annotated as
complex (Table 5), we observe that the French
dataset contains more MWE annotations than sin-
gle words compared to the other datasets. One
plausible explanation for this could be attributed
to the limitation of allowing at most 10 unique an-
notations per HIT in MTurk. Indeed, a number
of annotators highlighted the fact that they some-
times found more than 10 possible annotations of
complex words. As a result, in order to account for
all of these possibilities, the annotators sometimes
grouped nearly adjacent single complex words as
one sequence, leading to a larger relative propor-
tion of MWE (3-gram+) annotations. Another ex-
planation for this disparity could be attributed to
the lower number of annotators for French com-

pared to English or Spanish. If we had had a sim-
ilar number of annotators for French, we would
probably also have obtained a more varied sam-
ple and hence a higher relative amount of different
complex word annotations.

1-gram 2-gram 3-gram+ total

EN
# 10,676 2,760 992 14,428
% 74.00 19.13 6.87

DE
# 2,770 307 195 3,272
% 84.66 9.38 5.96

ES
# 4,712 1,276 1,027 7,015
% 67.17 18.19 14.64

FR
# 414 118 125 657
% 63.01 17.96 19.03

Table 5: The distribution of single and MWE annota-
tions of complex words per language

4 System Descriptions and Results

In this section, we briefly describe the systems
from all 11 teams that have participated in the
2018 CWI shared task and wrote a system descrip-
tion paper to be presented at the BEA conference.
Table 6 and 7 shows the results of all systems for
the monolingual and multilingual binary classifi-
cation tasks while Table 8 and 9 presents the prob-
abilistic classification results for the monolingual
and multilingual tracks.

4.1 Baseline Systems

For both the binary and probabilistic classification
tasks, we build a simple baseline system that uses
only the most basic features described in Yimam
et al. (2017b,a), namely only frequency and length
features. The Nearest Centroid classifier and the
Linear Regression algorithms from the scikit-learn
machine learning library are used for the binary
and probabilistic classification tasks resp. For the
binary classification task, we have used the accu-
racy and macro-averaged F1 evaluation metrics.
For the probabilistic classification task, the Mean
Absolute Error (MAE) measure is used. The base-
line results are shown in Table 6, 7, 8, and 9 for
the monolingual and multilingual tracks.

4.2 Shared Task Systems

UnibucKernel The UnibucKernel (Butnaru and
Ionescu, 2018) team participated on the monolin-
gual CWI shared task, specifically on the NEWS,
WIKINEWS, and WIKIPEDIA domain datasets.
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News F-1 Rank WikiNews F-1 Rank Wikipedia F-1 Rank
Camb 0.8736 1 Camb 0.84 1 Camb 0.8115 1
Camb 0.8714 2 Camb 0.8378 2 NILC 0.7965 2
Camb 0.8661 3 Camb 0.8364 4 UnibucKernel 0.7919 3
ITEC 0.8643 4 Camb 0.8378 3 NILC 0.7918 4
ITEC 0.8643 4 NLP-CIC 0.8308 5 Camb 0.7869 5
TMU 0.8632 6 NLP-CIC 0.8279 6 Camb 0.7862 6
ITEC 0.8631 7 NILC 0.8277 7 SB@GU 0.7832 7
NILC 0.8636 5 NILC 0.8270 8 ITEC 0.7815 8
NILC 0.8606 9 NLP-CIC 0.8236 9 SB@GU 0.7812 9
Camb 0.8622 8 CFILT IITB 0.8161 10 UnibucKernel 0.7804 10
NLP-CIC 0.8551 10 CFILT IITB 0.8161 10 Camb 0.7799 11
NLP-CIC 0.8503 12 CFILT IITB 0.8152 11 CFILT IITB 0.7757 12
NLP-CIC 0.8508 11 CFILT IITB 0.8131 12 CFILT IITB 0.7756 13
NILC 0.8467 15 UnibucKernel 0.8127 13 CFILT IITB 0.7747 14
CFILT IITB 0.8478 13 ITEC 0.8110 14 NLP-CIC 0.7722 16
CFILT IITB 0.8478 13 SB@GU 0.8031 15 NLP-CIC 0.7721 17
CFILT IITB 0.8467 14 NILC 0.7961 17 NLP-CIC 0.7723 15
SB@GU 0.8325 17 NILC 0.7977 16 NLP-CIC 0.7723 15
SB@GU 0.8329 16 CFILT IITB 0.7855 20 SB@GU 0.7634 18
Gillin Inc. 0.8243 19 TMU 0.7873 19 TMU 0.7619 19
Gillin Inc. 0.8209 24 SB@GU 0.7878 18 NILC 0.7528 20
Gillin Inc. 0.8229 20 UnibucKernel 0.7638 23 UnibucKernel 0.7422 24
Gillin Inc. 0.8221 21 hu-berlin 0.7656 22 hu-berlin 0.7445 22
hu-berlin 0.8263 18 SB@GU 0.7691 21 SB@GU 0.7454 21
Gillin Inc. 0.8216 22 LaSTUS/TALN 0.7491 25 UnibucKernel 0.7435 23
UnibucKernel 0.8178 26 LaSTUS/TALN 0.7491 25 LaSTUS/TALN 0.7402 25
UnibucKernel 0.8178 26 SB@GU 0.7569 24 LaSTUS/TALN 0.7402 25
CFILT IITB 0.8210 23 hu-berlin 0.7471 26 NILC 0.7360 26
CFILT IITB 0.8210 23 Gillin Inc. 0.7319 28 hu-berlin 0.7298 27
hu-berlin 0.8188 25 Gillin Inc. 0.7275 30 CoastalCPH 0.7206 28
UnibucKernel 0.8111 28 Gillin Inc. 0.7292 29 LaSTUS/TALN 0.6964 29
NILC 0.8173 27 Gillin Inc. 0.7180 31 Gillin Inc. 0.6604 30
LaSTUS/TALN/TALN 0.8103 29 LaSTUS/TALN 0.7339 27 Gillin Inc. 0.6580 31
LaSTUS/TALN 0.8103 29 Gillin Inc. 0.7083 32 Gillin Inc. 0.6520 32
LaSTUS/TALN 0.7892 31 UnibucKernel 0.6788 33 Gillin Inc. 0.6329 33
UnibucKernel 0.7728 33 SB@GU 0.5374 34 SB@GU 0.5699 34
SB@GU 0.7925 30 - - - CoastalCPH 0.5020 35
SB@GU 0.7842 32 - - - LaSTUS/TALN 0.3324 36
LaSTUS/TALN 0.7669 34 - - - - - -
UnibucKernel 0.5158 36 - - - - - -
SB@GU 0.5556 35 - - - - - -
LaSTUS/TALN 0.2912 37 - - - - - -
LaSTUS/TALN 0.1812 38 - - - - - -
LaSTUS/TALN 0.1761 39 - - - - - -
Baseline 0.7579 - Baseline 0.7106 - Baseline 0.7179 -

Table 6: Binary classification results for the monolingual English tracks.

The pipeline consists of feature extraction, com-
puting a kernel matrix and applying an SVM clas-
sifier.

The feature sets include low-level features such
as character n-grams, and high-level features such
semantic properties extracted from lexical re-
sources and word embeddings. The low-level fea-
tures were extracted based on the target complex

word, and include count of characters, count of
vowels, count of consonants, count of repeating
characters, and count of character n-grams (up to
4 characters).

The first set of word embedding features take
into account the word’s context which is obtained
by computing the cosine similarity between the
complex word and each of the other words in the
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German F-1 Rank Spanish F-1 Rank French F-1 Rank
TMU 0.7451 1 TMU 0.7699 1 CoastalCPH 0.7595 1
SB@GU 0.7427 2 ITEC 0.7637 3 TMU 0.7465 2
hu-berlin 0.6929 4 NLP-CIC 0.7672 2 SB@GU 0.6266 3
SB@GU 0.6992 3 CoastalCPH 0.7458 5 SB@GU 0.6130 4
CoastalCPH 0.6619 5 CoastalCPH 0.7458 5 hu-berlin 0.5738 6
Gillin Inc. 0.5548 10 NLP-CIC 0.7468 4 SB@GU 0.5891 5
Gillin Inc. 0.5459 11 NLP-CIC 0.7419 6 hu-berlin 0.5343 7
Gillin Inc. 0.5398 12 SB@GU 0.7281 7 hu-berlin 0.5238 8
Gillin Inc. 0.5271 14 SB@GU 0.7259 8 hu-berlin 0.5124 9
Gillin Inc. 0.5275 13 CoastalCPH 0.7238 9 - - -
CoastalCPH 0.6078 6 hu-berlin 0.7080 11 - - -
CoastalCPH 0.5818 7 CoastalCPH 0.7153 10 - - -
CoastalCPH 0.5778 8 Gillin Inc. 0.6804 13 - - -
CoastalCPH 0.5771 9 Gillin Inc. 0.6784 14 - - -
- - - Gillin Inc. 0.6722 15 - - -
- - - Gillin Inc. 0.6669 16 - - -
- - - Gillin Inc. 0.6547 17 - - -
- - - CoastalCPH 0.6918 12 - - -
Baseline 0.7546 - Baseline 0.7237 - Baseline 0.6344 -

Table 7: Binary classification results for the multilingual German, Spanish and French tracks.

sentence (minimum, maximum and mean simi-
larity values are used). Furthermore, sense em-
beddings are used, which are computed based on
WordNet synsets. Lastly, using word embeddings,
additional features were designed based on the lo-
cation of the complex word in a dimensionally re-
duced embedding space. For this, they used PCA
to reduce the dimension of the embeddings from
300 to 2 dimensions.

Once features are extracted, kernel-based learn-
ing algorithms are employed. For the binary clas-
sification setup, the SVM classifiers based on the
Lib-SVM were used. For the regression setup,
they used v-Support Vector Regression (v-SVR).
For both setups, different parameters were tuned
using the development dataset.

SB@GU systems (Alfter and Pilán, 2018) are
adapted from a previous system, which was used
to classify Swedish words into different language
proficiency levels and participated on the mul-
tilingual binary classification part of the shared
task. For each target word or MWE, the follow-
ing set of feature categories were extracted: 1)
count and word form features such as length of the
target, number of syllables, n-gram probabilities
based on Wikipedia, binary features such as “is
MWE” or “is number”, and so on 2) morpholog-
ical features, mainly part-of-speech tag and suffix
length, 3) semantic features, such as the number
of synsets, number of hypernyms, and number of

hyponyms, 4) context features, like topic distribu-
tions and word embeddings, and 5) psycholinguis-
tic features, such as British National Corpus fre-
quency, reaction time, bigram frequency, trigram
frequency, and so on. For MWE, they averaged
the feature values for each word in them.

For English datasets, experiments are con-
ducted with context-free, context-only and
context-sensitive features, mainly by excluding
word embeddings, using only word embeddings,
and combining all features explained above
respectively. Classifiers such as Random Forest,
Extra Trees, convolutional networks, and recur-
rent convolutional neural networks were tested.
Furthermore, feature selection is performed using
the SelectFromModel feature selection method
from scikit-learn library. The best performing
features includes word frequency, word sense and
topics, and language model probabilities.

For the German, Spanish, and French datasets,
features such as character-level n-grams were ex-
tracted from n-gram models trained on Wikipedia.
For the French dataset, the n-gram models from
English, German and Spanish were used to obtain
n-gram probabilities of each entry. They config-
ured two setups to extract features for the French
dataset: 1) Uses English, German and Spanish
classifiers and apply majority voting to get the fi-
nal label, 2) Uses only the Spanish classifier as
French and Spanish are both Romance languages.
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An Extra Tree classifier with 1000 and 500 es-
timators was their best classifier.

hu-berlin The systems (Popović, 2018) mainly
explored the use of character n-gram features us-
ing a multinomial Naive Bayes classifier specifi-
cally designed for the multilingual binary classi-
fication task. For each target word, all the char-
acter n-grams of a given length and their frequen-
cies were extracted and the target word was rep-
resented as a ”bag of n-grams”. Different lengths
of n-grams such as a combination of 2-gram, 3-
gram, 4-gram, and 5-grams have been experi-
mented with. The experimental results show that
the combinations of 2-gram and 4-gram features
are the best character level n-gram features for the
binary classification task.

For the English datasets, they combined all
the training datasets (NEWS, WIKINEWS, and
WIKIPEDIA), used 3-gram, 4-gram and 5-gram
character level n-gram features in order to max-
imize performance. The results show that char-
acter level n-gram features do not work well for
cross-language complex word identification as the
performance generally degraded.

For English, two variants of results were sub-
mitted, one classified using the corresponding in-
domain training corpus and the second one classi-
fied using the concatenated training data. For Ger-
man and Spanish, one result was submitted using
the corresponding training data sets. For French,
four submissions were made 1) one classified with
English Wikipedia training, 2) one classified with
all three English datasets, 3) one classified with
Spanish data, and 4) one classified with German
data.

NILC present systems (Hartmann and dos San-
tos, 2018) for the monolingual binary and prob-
abilistic classification tasks. Three approaches
were created by 1) using traditional feature
engineering-based machine learning methods, 2)
using the average embedding of target words as
an input to a neural network, and 3) modeling the
context of the target words using an LSTM.

For the feature engineering-based systems, fea-
tures such as linguistic, psycholinguistic, and lan-
guage model features were used to train different
binary and probabilistic classifiers. Lexical fea-
tures include word length, number of syllables,
and number of senses, hypernyms, and hyponyms
in WordNet. For N-gram features, probabilities
of the n-gram containing the target words were

computed based on language models trained on
the BookCorpus dataset and One Billion Word
dataset. Furthermore, psycholinguistic features
such as familiarity, age of acquisition, correctness
and imagery values were used. Based on these
features (38 in total), models were trained using
Linear Regression, Logistic Regression, Decision
Trees, Gradient Boosting, Extra Trees, AdaBoost,
and XGBoost classifiers.

For embedding-based systems, a pre-trained
GloVe model (Pennington et al., 2014) was used
to get the vector representations of target words.
For MWE, the average of the vectors is used. In
the first approach, the resulting vector is passed on
to a neural network with two ReLu layers followed
by a sigmoid layer, which predicted the probabil-
ity of the target word being complex.

Their experiments show that the feature engi-
neering approach achieved the best results using
the XGBoost classifier for the binary classifica-
tion task. They submitted four systems using XG-
Boost, average embeddings, LSTMs with trans-
fer learning, and a voting system that combines
the other three. For the probabilistic classification
task, their LSTMs achieve the best results.

TMU submitted multilingual and cross-lingual
CWI systems for both of the binary and probabilis-
tic classification tasks (Kajiwara and Komachi,
2018). The systems use two variants of frequency
features from the learner corpus (Lang-8 corpus)
from Mizumoto et al. (2011) and from the general
domain corpus (Wikipedia and WikiNews). The
list of features used in building the model include
the number of characters in the target word, num-
ber of words in the target phrase, and frequency
of the target word in learner corpus (Lang-8 cor-
pus) and general domain corpus (Wikipedia and
WikiNews).

Random forest classifiers are used for the binary
classification task while random forest regressors
are used for the probabilistic classification task us-
ing the scikit-learn library. Feature ablation shows
that both the length, frequency, and probability
features (based on corpus statistics) are important
for the binary and probabilistic classification tasks.
They also discover that features obtained from the
learner corpus are more influential than the general
domain features for the CWI tasks. The systems
perform very well both for the binary and proba-
bilistic classification tasks, winning 5 out of the 12
tracks.
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ITEC addresses both the binary and probabilis-
tic classification task for the English and Spanish
multilingual datasets (De Hertog and Tack, 2018).
They have used 5 different aspects of the target
word in the process of feature extractions, namely,
word embedding, morphological structure, psy-
chological measures, corpus counts, and topi-
cal information. Psychological measures are ob-
tained from the MRC Psycholinguistic Database,
which includes age of acquisition, imageability,
concreteness, and meaningfulness of the target
word. Word frequencies and embedding features
are computed based on a web corpus. The word
embedding model is computed using the gensim
implementation of word2vec, with 300 dimen-
sional embedding space, window-size of 5 and
minimum frequency threshold of 20.

They have employed deep learning structure us-
ing the keras deep learning library with the ten-
sorflow gpu as a backend. Word embeddings are
employed in two input layers, first to replace tar-
get words with the appropriate embeddings and
second to represent the entire sentences as an in-
put sequence which is considered the topical ap-
proximation using contextual cues. The final layer
takes into account morphological features based
on character embeddings that are trained with a
convolutional network. The systems perform rea-
sonably better than the average systems, for both
of the binary and probabilistic classification tasks.

Camb describes different systems (Gooding
and Kochmar, 2018) they have developed for the
monolingual English datasets both for the binary
and probabilistic classification tasks. They have
used features that are based on the insights of
the CWI shared task 2016 (Paetzold and Spe-
cia, 2016a) such as lexical features (word length,
number of syllables, WordNet features such as
the number of synsets), word n-gram and POS
tags, and dependency parse relations. In addi-
tion, they have used features such as the num-
ber of words grammatically related to the target
word, psycholinguistic features from the MRC
database, CEFR (Common European Framework
of Reference for Languages) levels extracted
from the Cambridge Advanced Learner Dictio-
nary (CALD), and Google N-gram word frequen-
cies using the Datamuse API The MCR fea-
tures include word familiarity rating, number of
phonemes, thorndike-lorge written frequency, im-
ageability rating, concreteness rating, number of

categories, samples, and written frequencies, and
age of acquisition.

For the binary classification task, they have used
a feature union pipeline to combine the range
of heterogeneous features extracted from differ-
ent categories of feature types. The best perform-
ing classification algorithms are obtained based on
the ensemble techniques where AdaBoost classi-
fier with 5000 estimators achieves the highest re-
sults, followed by the bootstrap aggregation clas-
sifier of Random Forest. All the features are used
for the NEWS and WIKINEWS datasets, but for the
WIKIPEDIA dataset, MCR psycholinguistic fea-
tures are excluded. For the probabilistic classifi-
cation task, the same feature setups are used and
the Linear Regression algorithm is used to esti-
mate values of targets.

As it can be seen from Tables 6, 7, 8, and 9,
most of the systems submitted ranked first for En-
glish monolingual binary and probabilistic classi-
fication tasks.

CoastalCPH describe systems developed for
multilingual and cross-lingual domains for the bi-
nary and probabilistic classification tasks (Bingel
and Bjerva, 2018). Unlike most systems, they have
focused mainly on German, Spanish, and French
datasets in order to investigate if multitask learn-
ing can be applied to the cross-lingual CWI task.
They have devised two models, using language-
agnostic approach with an ensemble that com-
prises of Random Forests (random forest classi-
fiers for the binary classification task and random
forest regressors for the probabilistic classification
tasks, with 100 trees) and feed-forward neural net-
works.

Most of the features are similar for all languages
except some of them are language-specific fea-
tures. The set of features incorporated include
1) log-probability features: unigram frequen-
cies as a log-probabilities from language-specific
Wikipedia dumps computed using KenLM, char-
acter perplexity, number of synsets, hypernym
chain. 2) Inflectional complexity: number of suf-
fixes appended to a word stem. 3) Surface fea-
tures: length of the target and lower-case informa-
tion. 4) Bag-of-POS: for each tag based on Uni-
versal Parts-of-Speech project, count the number
of words in a candidate that belong to the respec-
tive class. 5) Target-sentence similarity: the cosine
similarity between averaged word embeddings for
the target word or phrase and the rest of the words
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News MAE Rank WikiNews MAE Rank Wikipedia MAE Rank
TMU 0.051 1 Camb 0.0674 1 Camb 0.0739 1
ITEC 0.0539 2 Camb 0.0674 1 Camb 0.0779 2
Camb 0.0558 3 Camb 0.0690 2 Camb 0.0780 3
Camb 0.056 4 Camb 0.0693 3 Camb 0.0791 4
Camb 0.0563 5 TMU 0.0704 4 ITEC 0.0809 5
Camb 0.0565 6 ITEC 0.0707 5 NILC 0.0819 6
NILC 0.0588 7 NILC 0.0733 6 NILC 0.0822 7
NILC 0.0590 8 NILC 0.0742 7 Camb 0.0844 8
SB@GU 0.1526 9 Camb 0.0820 8 TMU 0.0931 9
Gillin Inc. 0.2812 10 SB@GU 0.1651 9 SB@GU 0.1755 10
Gillin Inc. 0.2872 11 Gillin Inc. 0.2890 10 NILC 0.2461 11
Gillin Inc. 0.2886 12 Gillin Inc. 0.3026 11 Gillin Inc. 0.3156 12
NILC 0.2958 13 Gillin Inc. 0.3040 12 Gillin Inc. 0.3208 13
NILC 0.2978 14 Gillin Inc. 0.3044 13 Gillin Inc. 0.3211 14
Gillin Inc. 0.3090 15 Gillin Inc. 0.3190 14 Gillin Inc. 0.3436 15
SB@GU 0.3656 16 NILC 0.3203 15 NILC 0.3578 16
NILC 0.6652 17 NILC 0.3240 16 NILC 0.3819 17
Baseline 0.1127 - Baseline 0.1053 - Baseline 0.1112 -

Table 8: Probablistic classification results for the monolingual English tracks.

German MAE Rank Spanish MAE Rank French MAE Rank
TMU 0.0610 1 TMU 0.0718 1 CoastalCPH 0.0660 1
CoastalCPH 0.0747 2 ITEC 0.0733 2 CoastalCPH 0.0660 1
CoastalCPH 0.0751 3 CoastalCPH 0.0789 3 CoastalCPH 0.0762 2
Gillin Inc. 0.1905 4 CoastalCPH 0.0808 4 TMU 0.0778 3
Gillin Inc. 0.2099 5 Gillin Inc. 0.2513 5 CoastalCPH 0.0866 4
Gillin Inc. 0.2102 6 Gillin Inc. 0.2634 6 - - -
Gillin Inc. 0.2122 7 Gillin Inc. 0.2638 7 - - -
- - - Gillin Inc. 0.2644 8 - - -
- - - CoastalCPH 0.2724 9 - - -
- - - CoastalCPH 0.2899 10 - - -
Baseline 0.0816 - Baseline 0.0892 - Baseline 0.0891 -

Table 9: Probablistic classification results for the multilingual German, Spanish, and French tracks.

in the sentence where out-of-vocabulary problems
are addressed using a pre-trained sub-word em-
beddings (Heinzerling and Strube, 2017).

They have made qualitative and quantitative er-
ror analysis, mainly for the cross-lingual French
dataset experiments and reported that: 1) The sys-
tem picks longer targets as positive examples. 2)
Short targets are predicted as false negative but
they are potentially unknown named entities and
technical terms. 3) Complex words are generally
longer than simple words. 4) Language models
produce lower log-probability for complex words.

The systems submitted performed the best out
of all systems for the cross-lingual task (the
French dataset) both for the binary and probabilis-
tic classification tasks, showing a promising direc-
tion in the creation of CWI dataset for new lan-
guages.

LaSTUS/TALN present systems for the
monolingual English binary classification task
(AbuRa’ed and Saggion, 2018). Two different
systems are designed, the first system is based on
a set of lexical, semantic and contextual features,
and the second system incorporates word embed-
ding features. The word embedding features are
obtained from a pre-trained word2vec model1.

For each sentence, the centroid of the dimen-
sions of the context before the target word, the
target word itself, and the context after the tar-
get word are computed using word2vec embed-
ding vectors (300 dimensions each), resulting in
a total of 900 feature dimensions. Furthermore,
two extra features are generated using the embed-
ding vectors, which represent the distance between

1https://code.google.com/archive/p/word2vec/
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the target word and the context before and after
the target word respectively. These features are
computed using the cosine similarity measures be-
tween each pair of the vectors.

A large set of shallow lexical and semantic fea-
tures are also used in addition to the embedding
features. These features include target word length
(number of characters), the position of the tar-
get word in the sentence, number of words in
the sentence, word depth in the dependency tree,
parent word length in dependency relation, fre-
quency features based on the BNC, Wikipedia, and
Dale and Chall list corpora, number of synsets and
senses in WordNet, and so on.

The experiment is conducted using the Weka
machine learning framework using the Support
vector machine (with linear and radial basis func-
tion kernels), Naı̈ve Bayes, Logistic Regression,
Random Tree, and Random Forest classification
algorithms. The final experiments employ Support
Vector Machines and Random Forest classifiers.

CFILT IITB Developed ensemble-based clas-
sification systems for the English monolingual bi-
nary classification task (Wani et al., 2018). Lexi-
cal features based on WordNet for the target word
are extracted as follows: 1) Degree of Polysemy:
number of senses of the target word in WordNet,
2) Hyponym and Hypernym Tree Depth: the po-
sition of the word in WordNet’s hierarchical tree,
and 3) Holonym and Meronym Counts: based on
the relationship of the target word to its compo-
nents (meronyms) or to the things it is contained
in (Holonym’s). Additional feature classes include
size-based features such as word count, word
length, vowel counts, and syllable counts. They
also use vocabulary-based features such as Ogden
Basic (from Ogden’s Basic Word list), Ogden Fre-
quency (Ogden’s Frequent Word List), and Bar-
ron’s Wordlist (Barron’s 5000 GRE Word List).

They have used 8 classifiers namely Random
Forest, Random Tree, REP Tree, Logistic Model
Tree, J48 Decision Tree, JRip Rules Tree, PART,
and SVM. Using these classifiers, a hard voting
approach is used to predict a label for the target
word. Voting of the positive or negative class is
decided if more than 4 classifiers agree on the la-
bel. Word-embedding-based classifier is used to
decide in the case of a 4-4 tie.

An ablation test shows that size-based features
such as word length, vowel counts, and syllable
counts, word counts constitute the four top impor-

tant features. Their best system shows an aver-
age performance compared to the other systems in
the shared task for the monolingual English binary
classification track.

NLP-CIC present systems for the English and
Spanish multilingual binary classification tasks
(Aroyehun et al., 2018). The feature sets include
morphological features such as frequency counts
of target word on large corpora such as Wikipedia
and Simple Wikipedia, syntactic and lexical fea-
tures, psycholinguistic features from the MRC
psycholinguistic database and entity features using
the OpenNLP and CoreNLP tools, and word em-
bedding distance as a feature which is computed
between the target word and the sentence.

Tree learners such as Random Forest, Gradient
Boosted, and Tree Ensembles are used to train dif-
ferent classifiers. Furthermore, a deep learning
approach based on 2D convolutional (CNN) and
word embedding representations of the target text
and its context is employed.

Their best system ranked 10th, 5th, and 16th for
the NEWS, WIKINEWS, and WIKIPEDIA mono-
lingual English tracks, which is better than the
average systems in the shared task. The system
based on the CNN model on the Spanish monolin-
gual dataset ranked 2nd.

5 Conclusions

This paper presented the results and findings of the
second CWI shared task. Thirty teams enrolled to
participate in the competition and 12 of them sub-
mitted their results. Subsequently, 11 teams wrote
system description papers that have been reviewed
in this report.

Overall, traditional feature engineering-based
approaches (mostly based on length and frequency
features) perform better than neural network and
word embedding-based approaches. However,
compared to the SemEval 2016 Task 11 shared
task systems presented in Table 1, we have ob-
served that more systems employed deep learning
approaches and the results are getting better for the
CWI task; the difference is less pronounced for the
probabilistic classification tasks.

One of our most important findings is that cross-
lingual experimental results are very promising,
which we think implies in fundamental progress
for CWI research. Despite the fact that we do
not provide a training dataset for French, the re-
sults obtained have superior or equivalent scores

75



(though they of course cannot be directly com-
pared) to the German and Spanish datasets, when
the system uses either one or several training
datasets from the other languages.
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Abstract

In this paper we present work-in-progress
where we investigate the usefulness of previ-
ously created word lists to the task of single-
word lexical complexity analysis and predic-
tion of the complexity level for learners of
Swedish as a second language. The word lists
used map each word to a single CEFR level,
and the task consists of predicting CEFR lev-
els for unseen words. In contrast to previous
work on word-level lexical complexity, we ex-
periment with topics as additional features and
show that linking words to topics significantly
increases accuracy of classification.

1 Introduction

A way of addressing the second-language (L2) ac-
quisition needs of the recent influx of new immi-
grants to Sweden would be to provide an extensive
amount of digitally accessible self-study materi-
als for practice. This could be achieved through
the development of specific algorithms for exer-
cise/material generation, but such algorithms gen-
erally heavily rely on linguistic resources, such as
descriptions of vocabulary and grammar scopes
per each stage of language development, so that
automatic generation of learning materials would
follow some order of increasing complexity.

Vocabulary scope can be described through
graded vocabulary lists. These are lexical re-
sources where each lexical item is linked to a
level at which the item is appropriate for learn-
ers to study, one prominent example being the
English Vocabulary Profile (Capel, 2010, 2012).
Graded lexical resources are useful, for exam-
ple, for course book writers, language test design-
ers, language teachers and language learners, since
they can inform the users as to what knowledge is
to be expected at which proficiency level, as well
as which words to teach and test at which levels.

However, any graded list is a finite resource, as
it would never be possible to list by levels all items
that learners might encounter. We intend, there-
fore, to use previously compiled graded vocabu-
lary lists to learn from them to predict levels of
previously unseen, out-of-vocabulary (OOV), lex-
ical items.

In practical terms, we look at three auto-
matically created corpus-based vocabulary lists,
namely Kelly list (Volodina and Kokkinakis,
2012), a resource based on L1 web corpora that
identifies frequent vocabulary to guide language
learners in their acquisition of vocabulary1, as well
as SVALex (François et al., 2016) and SweLLex
(Volodina et al., 2016b), two L2-targeted word
lists covering receptive vocabulary and productive
vocabulary respectively2. The aim of this work is,
thus, to create a model that is able to predict the
difficulty (i.e. appropriate CEFR3 level) of any
Swedish word with regard to productive and re-
ceptive aspects. These graded vocabulary lists are
then intended for use in generation of exercises
for learners of different levels, though other usage
scenarios are also possible.

2 Related Work

There has been some work on the creation and
evaluation of automatically graded vocabulary
lists (Gala et al., 2013, 2014; Tack et al., 2016b).

Gala et al. (2013) aim at identifying criteria that
make words easy to understand, independently
of the context in which they appear. Since it
has been shown that the concept of difficulty de-
pends on the target group (Blache, 2011; François,

1Swedish Kelly list is available with CC-BY license from
https://spraakbanken.gu.se/eng/resource/kelly

2Both lists are a part of CEFRLex family of resources, and
are available from http://cental.uclouvain.be/cefrlex/

3Common European Framework of Reference for Lan-
guages (Council of Europe, 2001) describes six levels of pro-
ficiency, starting from A1 to C2
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2012), and thus different combinations of fea-
tures might model certain groups better than oth-
ers, they focus on speech productions by patients
with Parkinson’s disease. Gala et al. (2013) look
at 27 intra-lexical and psycholinguistic variables.
The intra-lexical variables include number of let-
ters, number of phonemes, number of syllables,
syllable structure (CV structure), consistency be-
tween graphemes and phonemes, and selected dif-
ficult spelling patterns such as double vowels and
double consonants. Among psycholinguistic vari-
ables are orthographic neighborhood (words that
only differ by one letter), lexical frequency and
presence/absence from the Gougenheim list, a list
of easy-to-understand vocabulary items.

They train a Support Vector Machine (SVM)
classifier on the nine (out of initial 27) most
predictive features to predict the difficulty level
of unseen words. 5-fold cross-validation on the
data shows an average accuracy of 62% in the
three-way classification. They conclude that syl-
labic structures and spelling patterns are not very
predictive of difficulty and that the most predic-
tive features are the lexical frequency and pres-
ence/absence from the Gougenheim list.

Gala et al. (2014) focus on learners of French,
both L1 learners and learners of French as a for-
eign language. They use Manulex (Lété et al.,
2004) to model L1 learners’ vocabulary and
FLELex (François et al., 2014) to model L2 learn-
ers’ vocabulary. In contrast to Gala et al. (2013),
they use 49 features which can be grouped into or-
thographic features (e.g. number of letters, num-
ber of phonemes, number of syllables), morpho-
logical features (number of morphemes, affix fre-
quency, compounding), semantic features (degree
of polysemy) and statistical features (frequency,
Gougenheim list). They train two SVM classifiers,
one for L1 learners and one for learners of French
as a foreign language. The first one is a three-way
classification while the latter is a six-way classifi-
cation. On the three-way classification, they reach
63% accuracy and on the six-way classification
they reach 43% accuracy. As in Gala et al. (2013),
they find the most predictive features to be lexical
frequency and presence/absence from the Gougen-
heim list. However, they also find the binary poly-
semous status, i.e. whether the word polysemous
or not, as well as the degree of polysemy to cor-
relate well with the complexity of words. This is
an interesting finding, as the degree of polysemy

is not directly correlated with frequency.
A related area of work is complex word iden-

tification for text simplification. For this task, it
is important to identify target difficult words or
phrases that need simplification (Shardlow, 2013;
Paetzold and Specia, 2016; Štajner et al., 2018).
However, in contrast to our work, complex word
identification is a binary classification and the fo-
cus is slightly different, although there are sig-
nificant overlaps. Tack et al. (2016a) and Tack
et al. (2016b) for example aim at identifying and
classifying words of a text into known and un-
known ones either for an individual learner or
for learners of a given proficiency level as a
group. They compare different personalized mod-
els with a model based on the graded vocabulary
list FLELex (François et al., 2014). Their per-
sonalized models also use frequency information,
CEFR levels of single words as calculated in Gala
et al. (2014), number of letters, and number of
senses of a word. For the FLELex vocabulary
based model and a learner of a given CEFR level,
the model considers all words that are of the same
or lower level as the learner’s level as known and
all words that are of higher level as unknown.

Our recent participation in the Complex Word
Identification Task 2018 (Štajner et al., 2018) has
yielded interesting findings that we hope will fur-
ther improve the presented system (Alfter and
Pilán, 2018).

3 Data

Our data consists of three different word lists for
Swedish, namely SVALex (François et al., 2016),
SweLLex (Volodina et al., 2016b) and Kelly list
(Volodina and Kokkinakis, 2012).

SVALex is compiled from the COCTAILL text-
book corpus (Volodina et al., 2014), comprised
of reading comprehension texts marked for CEFR
levels, and covers receptive vocabulary knowl-
edge. SweLLex is derived from the pilot SweLL
learner essay corpus (Volodina et al., 2016a)
graded for CEFR levels and covers productive vo-
cabulary knowledge. Kelly list is derived from the
Swedish Web-as-Corpus (SweWaC) and contains
the 8425 most frequent lemmas appearing in na-
tive speaker writing divided into CEFR level ac-
cording to the frequency of the items and corpus
coverage. See table 1 for the overview of the three
resources.

While Kelly list already assigns each word to a
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Figure 1: Distribution of the verb arbeta ‘to work’, in receptive and productive resources

A1 A2 B1 B2 C1 Total

SVALex 968 1973 2761 6223 3697 15 681
SweLLex 602 1258 1317 1024 1248 6 965
Kelly list 1404 1404 1404 1404 2809 8 425

Table 1: Data distribution across lists. In SVALex and SweLLex vocabulary items partially overlap between levels,
and hence the total number of items in the list does not equal the sum of items per level.

target CEFR level, SVALex and SweLLex present
distributions over CEFR levels, i.e. how often a
word occurs at the different CEFR levels, as ex-
emplified in table 2. Since SVALex and SweLLex
cover 5 proficiency levels and Kelly list covers 6
proficiency levels, we assimilated the highest level
in Kelly list (C2) to the previous level (C1).

To go from distributions to target levels in
SweLLex and SVALex, we use the mapping pro-
cedures described in Gala et al. (2013), Gala et al.
(2014) (first occurrence) and Alfter et al. (2016)
(threshold). For first-occurrence mapping, we as-
sign each word to the level it first occurs at. For
threshold mapping, we assign each word to the
level where it occurs significantly more often than
at the preceding level, with the level of signifi-
cance set at 30%.

Figure 1 shows the distribution of frequencies
for the word arbeta (Eng. “to work”) over the five
CEFR levels in SVALex (receptive resource, 1st
bar) and SweLLex (productive resource, 2nd bar).
According to the first occurrence approach, the
target level for both receptive and productive com-
petence for the word arbeta would be A1, whereas
the threshold approach suggests that A1 would be
the target level for receptive knowledge, and A2

would be the target level for productive level.

We did a comparison of both mapping meth-
ods to find out to what degree they agree. Ta-
ble 3 shows the levels assigned by both methods
for the two resources SVALex and SweLLex. By
comparing the output of these two mapping meth-
ods, we can see that both methods agree to a large
extend. When both methods did not agree, they
tended to still assign levels that were adjacent, e.g.
if one method assigned level B1, the other would
assign B2 or A2. This is not a surprise, as the
border between different proficiency levels can be
fluid. We call this type of disagreement within one
level. We also see that a certain amount of words
were classified as different levels but with the lev-
els assigned being more than one level apart, e.g.
one method assigns level A2 and the other method
assigns level B2. We call this type of disagree-
ment more than one level. Given this finding, and
for comparability between studies, e.g. with Gala
et al. (2013) and Gala et al. (2014), we have opted
to use the first-occurrence approach in the remain-
der of the study.

The SVALex and SweLLex data is noisy, be-
cause, for one, we cannot validate whether the au-
tomatically assigned (mapped) levels are accurate
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Lemma Part-of-
Speech

A1 A2 B1 B2 C1

beta ‘to graze’ VB 0.0 0.0 0.0 19.27 13.21
bo ‘to live’ VB 4978.93 2515.92 1252.19 718.53 497.75
hund ‘dog’ NN 251.89 81.26 250.26 74.29 98.87

Table 2: Example of word distributions over levels in SVALex

Resource Same
level

Within
one level

More than
one level

SVALex 12775 1592 1255
SweLLex 5689 706 516

Table 3: Number of items that were assigned the same
level, within one level and more than level by both
mapping techniques

due to missing gold standard annotations, and sec-
ondly because of certain errors resulting from au-
tomatic corpus annotation. The data is also sparse,
and since the mapping procedure for SVALex and
SweLLex very much depends on the data avail-
able, this introduces further noise. These are the
limitations we are aware of and plan to address in
the future by collecting and annotating more data.

4 Features

From each word, including multi-word expres-
sions such as göra ont ‘to hurt’ and god morgon
‘good morning’, we extract features, grouped into
count-based features (i), morphological features
(ii), semantic features (iii) and context-based fea-
tures (iv). Table 4 gives an overview of the av-
erage values for some selected features per level
and resource. As can be seen from this table,
words at higher levels tend to be longer, have
more syllables, longer suffixes, a higher number
of compounds and lower degrees of polysemy and
homonymy. Indeed, concerning polysemy, more
common words, which are typically found at lower
levels, tend to have more different senses than
more specialized words found at higher levels.

(i) Count-based and surface form features

• Length is the length of the word in char-
acters, our example word arbeta (Eng “to
work”) containing 6 characters. Word length
has previously been used to assess linguis-

tic complexity, among others in readability
assessment formulas, for example in Smith
(1961); Björnsson (1968); O’Regan and Ja-
cobs (1992).

• Syllable count is the number of syllables in
the word, where arbeta contains three syl-
lables. Syllables are counted as number of
vowels except for diphthongs ending in ‘u’
(e.g. ‘eu’, ‘au’) which are counted as one
syllable. Syllable count has been applied in
readability assessment as a measure of in-
creasing text difficulty, e.g. in Flesch (1948);
Kincaid et al. (1975), where multi-syllable
words have been proven to increase the over-
all linguistic complexity of a text. By anal-
ogy, we assume that the same applies on a
single word level.

• Contains non-alphanumeric characters is a
boolean value that is true if the word contains
non-alphanumeric characters, i.e. any charac-
ter other than A-Z and digits 0-9, for example
13-åring (Eng. 13-year old).

• Contains number is a boolean value that is
true if the word contains digits or consists
solely of digits.

• The multi-word feature indicates whether the
lexical expression is made up of more than
one single word.

• For bigrams, we calculated all character-level
bigrams from each word list and retained
only the 53 most predictive ones. This feature
is a vector indicating the presence or absence
of these 53 bigrams in the target word.

• For n-gram probabilities, we calculate
character-level unigram, bigram and trigram
probabilities with a language model based on
the Swedish Wikipedia dump from February
2018. We surmise this also implicitly cap-
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A1 A2 B1 B2 C1

Average word length
SVALex 6.00 7.49 8.51 8.85 9.58
SweLLex 5.10 5.98 7.66 8.89 9.91
Kelly 5.74 7.00 7.54 7.86 7.80

Average syllable count
SVALex 2.08 2.52 2.88 2.91 3.24
SweLLex 1.80 2.01 2.58 2.94 3.28
Kelly 2.04 2.44 2.62 2.78 2.76

Average suffix length
SVALex 0.54 0.63 0.77 0.80 0.91
SweLLex 0.47 0.51 0.56 0.63 0.71
Kelly 0.70 0.80 0.86 0.88 0.87

Average number of compounds
SVALex 0.014 0.037 0.052 0.062 0.067
SweLLex 0.038 0.058 0.112 0.125 0.162
Kelly 0.043 0.095 0.137 0.175 0.167

Average degree of polysemy
SVALex 0.64 0.51 0.39 0.29 0.24
SweLLex 0.55 0.62 0.46 0.36 0.30
Kelly 0.84 0.73 0.67 0.56 0.56

Average degree of homonymy
SVALex 1.25 1.11 1.06 1.05 1.02
SweLLex 1.35 1.18 1.10 1.08 1.04
Kelly 1.30 1.13 1.08 1.10 1.05

Table 4: (Selected) feature averages per level and resource

tures information about grapheme-phoneme
correspondence, frequency and suffixes.

(ii) Morphological features

• Part-of-speech corresponds to the part-of-
speech of the word. For multi-word expres-
sions, the part-of-speech of the head noun is
taken.

• For suffix length, we stem the word using the
NLTK stemmer (Bird et al., 2009) and sub-
tract the length of the resulting stem from the
length of the original word. In arbeta, the
final -a is a suffix. Previous work on order
of acquisition of inflectional versus deriva-
tional morphemes, e.g. Derwing (1976),
argue that knowledge of derivational mor-
phology is acquired gradually in the learn-
ing progress, thus motivating this feature for
our experiments. This intuition also seems to

hold when looking at average suffix length by
level, as shown in table 4.

• For compound count, we run the word
through the SPyRo/SALDO pipeline (Östling
and Wirén, 2013), which generates possible
analyses of the word with regard to com-
pounding. Compound count is the number of
possible compounding alternatives. Arbeta
can theoretically be analyzed as ar ‘are (unit
of measurement)’ + beta ‘to graze’ and thus
would have a compound count of 1. Glasskål
on the other hand can be analyzed as glas
‘glass’ + skål ‘bowl’, glass ‘ice cream’ + skål
‘bowl’ and glass ‘ice cream’ + kål ‘cabbage’
and thus would have a compound count of 3.
The cognitive load for processing a word, that
potentially has several (compounding) inter-
pretations, hypothetically also influences the
word’s complexity, and hence the level at
which it is acquired.
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• For compounds, we calculate all compound
elements, i.e. words that have been identified
in compounds, in all lists and selected the 12
most predictive compounds. This feature is a
vector indicating the presence or absence of
these compounds in the target word.

• Gender for nouns is taken from Saldo’s mor-
phology (Borin et al., 2008) and encoded nu-
merically as -1 (no information about gen-
der or not applicable), 0 (common gender,
aka “en-ord”), 1 (neuter, aka “ett-ord”) and 2
(variable gender). For arbeta the value would
be -1 since gender only applies to nouns. The
majority of nouns in Swedish are of com-
mon gender (e.g. in the Kelly-list there are
3465 nouns of common gender, while 1065
are neuter).

(iii) Semantic features

• Degree of polysemy is calculated by count-
ing the sub-entries of a given dictionary en-
try in Lexin (Gellerstam, 1999). The verb
arbeta has only one sub-entry, and is thus
non-polysemous. From empirical sources
(e.g. various frequency lists), we can observe
that non-polysemous words tend to be less
used constituting a large bulk of non-frequent
words, something that is quite logical given
that most word lists are compiled based on
lem-grams (e.g. a combination of base form
of a word plus its part-of-speech), and not
on senses. Usages of several senses of the
same lem-gram are thus grouped together in
one entry and push the word to the top of the
frequency lists. Highly polysemous words,
like komma ‘to come’ are thus often learned
in the beginning. This seems to be a con-
tradictory trend with regards to our example
word, arbeta ‘to work’. However, if we ex-
tend the search to phrasal verbs with arbeta
in Saldo, there would be seven more entries,
and in Lexin four more.

• Degree of homonymy is calculated by count-
ing the number of dictionary entries in Lexin
with the same orthographic form. An ex-
ample of a homonym across word classes
would be gift: it could either be the adjec-
tive meaning “married” or the noun mean-
ing “poison”. Homonymy within the same
word class would be vara (Eng. “to last”,

“to be”). The example word arbeta has only
one entry in Lexin. Studies on homonymy
within second language learning (Mashhady
et al., 2012) show that honomymous words
take longer to remember and differentiate be-
tween meanings than e.g. several synonyms
relating to the same concept, demanding dis-
ambiguation of a homonym given the con-
text, which makes homonymy an interesting
feature to include into our experiments.

(iv) Context features

• For topic distributions, we indicate in which
topic lists the target word occurs. Topic lists
were extracted from the COCTAILL corpus,
where each reading text is assigned one or
more topics. We thus extracted all lemmata
from reading texts, assigning them to the top-
ics as given in the corpus. We then ran a
TF-IDF algorithm over the lists to eliminate
words that occurred across all topic lists. This
yielded 33 topic lists, such as animals, arts,
daily life, food and drink, nature, places, or
technology.

Thus, for the verb arbeta, we can summarize
the above features into the following (simplified)
word complexity description: 6-letter 3-syllable
non-polysemous non-homonymous verb with one
possible suffix, one possible compound analysis,
no gender information (since this only applies to
nouns), not a multi-word expression and a word
used in topics characteristic of presenting people
(CEFR levels A1 and A2) which is - supposedly
- the reason why the empiric data points out A1
level for receptive and productive knowledge ac-
cording to first-occurrence approach; and A1 for
receptive and A2 for productive knowledge if we
follow the threshold mapping strategy.

5 Classification

In order to check how well the features we have
chosen model single word complexity, we use
different classifiers and stratified 10-fold cross-
validation on the different data sets.

For classification of unseen words, we train
classifiers on the available data. We train one clas-
sifier for receptive predictions on SVALex and one
classifier for productive predictions on SweLLex.

The classification task consists in assigning
each word in our word lists a target CEFR level.
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Svalex Swellex Kelly

Majority baseline 0.29± 0.00 0.29± 0.00 0.33± 0.00

SVM 0.32± 0.02 0.37± 0.05 0.39± 0.04
MLP 0.32± 0.03 0.37± 0.04 0.39± 0.04
ET 0.27± 0.02 0.33± 0.05 0.32± 0.04

SVM+T 0.44± 0.03 0.41± 0.04 0.45± 0.05
MLP+T 0.53± 0.04 0.38± 0.05 0.44± 0.05
ET+T 0.55± 0.05 0.37± 0.06 0.43± 0.05

SVM+TL 0.48± 0.03 0.41± 0.05 0.45± 0.04
MLP+TL 0.53± 0.04 0.39± 0.06 0.44± 0.03
ET+TL 0.59± 0.03 0.37± 0.06 0.42± 0.03

Table 5: Results: Accuracy and standard deviation using 10-fold cross-validation

For evaluation of the features, accuracy is calcu-
lated by comparing the predicted level with the
level given by the graded word list. We cannot, at
this moment, evaluate classifiers for unseen words,
as we would have to have manually graded word
lists against which to compare our predictions.

6 Results

Table 5 shows the results of 10-fold cross-
validation classification using different algo-
rithms. Majority baseline always predicts the ma-
jority class. Since our data is not balanced, this de-
viates from the expected chance baseline of 0.2 for
five-class classification. SVM is a support vector
machine with default parameters C = 1 and radial
basis function (rbf) kernel. MLP is a multilayer
perceptron with 100 hidden layers and a learning
rate of 0.01. These parameters were chosen based
on a randomized grid search over the parameter
space. ET is an extra trees classifier, a classifier
from the group of random tree classifiers. Prelim-
inary experiments have shown an initial increase
in accuracy with an increase in the number of es-
timators of the ET algorithm but which shows no
further improvement after 100 estimators. We thus
have fixed the number of estimators for the ET al-
gorithm at 100. SVM+T, MLP+T and ET+T show
the accuracies obtained by the same algorithms but
with topic distributions added to the data. For
comparability, since we have included all word
classes in our experiments, we also tried classi-
fying only lexical word classes (nouns, verbs, ad-
jectives and adverbs) as in Gala et al. (2014). The
results of these experiments are shown in the rows
SVM+TL, MLP+TL and ET+TL.

Figure 2: User interface for lexical complexity predic-
tion

In addition, we have created a user interface4,
as shown in figure 2. This user interface can be
used for getting predictions of any word, not only
words present in the word lists . The input word
is transformed into a feature vector as described
above and then fed into the classifier, which pre-
dicts a label. Figure 2 shows the predictions for
hund ‘dog’, vovve ‘childish or endearing term for
dog’ and byracka ‘derogatory term for dog’.

7 Discussion

We found that our features excluding topic distri-
butions barely outperform the majority baseline,
yielding even lower scores than the baseline in
some cases. Adding topic distributions signifi-

4https://spraakbanken.gu.se/larkalabb/
siwoco

85



cantly improves accuracy.
In comparison to the results presented in Gala

et al. (2014), we can see an expected trend. In-
deed, on the L1 resource Manulex and Kelly
(which is based on L1 data but intended for L2
audiences), they reach 63% accuracy in a three-
way classification while we reach 45% accuracy
in a five-way classification. On the L2 textbook
corpus resources FLELex and SVALex, they reach
43% accuracy in a six-way classification while we
reach 59% accuracy in a five-way classification.

If we are comparing our results without topic
distributions, which are more similar to the results
presented in Gala et al. (2014) due to the simi-
larity of features, we see that our best system on
L2 data performs worse in a five-way classifica-
tion (0.32) than theirs in a six-way classification
(0.43). This is probably due to the size of the cor-
pus that was used to compile these lists. While
FLELex was compiled from 28 textbooks and 29
readers, COCTAILL was compiled from 12 text-
books only. As such, their distributions are less
sparse and hypotheses about the target level can
be made with more certainty.

Another point is that, in contrast to previous
work, we have not included information about lex-
ical frequency explicitly. Including such informa-
tion could possibly further improve accuracy. It
can be argued that n-gram probabilities latently
encode this information, but it would be interest-
ing to see whether a more explicit approach would
lead to better results.

We also ran cross-validated recursive feature
elimination (Guyon et al., 2002) to get a rank-
ing of features and discard useless features.
This interestingly identified bigram features (pres-
ence/absence of most predictive bigrams; not to be
confused with bigram frequency) and compound
features as useless, but excluding those features
does not lead to an increase in accuracy. However,
looking at the most predictive bigram and com-
pound files, it seems that something went wrong
during calculation of these, since, for example in
bigrams, there are only very rare combinations
such as ‘åä’, ‘åo’, ‘xf’ and ‘xb’. We would like to
address this issue in future work. The final model
uses 64 features.

One problem for the classifiers could be that
representing words as vectors can lead to the same
representation for different words with different
levels, which leads to a decrease in learnability

since it introduces contradictory data points. We
have checked for this and found out that our data
contains about 5% of contradictory data points. A
possible approach could be to add more disam-
biguating features.

8 Conclusion and future work

We have presented insights from work-in-progress
on single word lexical complexity. In contrast to
previous work, we show that adding topic infor-
mation significantly improves results on the clas-
sification task. However, the current topic lists can
be further refined, for example by synonym expan-
sion, in the hope of improving accuracy.

For future work, one concern that was also ex-
pressed in Gala et al. (2014) is that the current
lists do not discriminate between different senses
of a word. Thus, words like glas, meaning either
‘glass’ as substance or ‘glass’ as receptacle for
drinks, would be assigned one single level while
their different senses clearly should be assigned
different levels. We are currently working on re-
calculating the resources SVALex and SweLLex
on the sense level by including a word sense dis-
ambiguation component in the pipeline.

Another interesting experiment could be to in-
clude number of phonemes in our study, since
Swedish has some non-transparent grapheme-to-
phoneme correspondences.

There is currently ongoing work concerning the
collection and annotation of learner essays, which
we hope will alleviate the data sparseness problem
that we face at the moment, especially with regard
to the learner essay based word list.

We would also like to implicitly crowdsource
learner knowledge by embedding words from
these automatically mapped lists in automatically
generated learner exercises. By monitoring how
learners of a given level are dealing with words
predicted to be of their level, we hope to be able to
draw conclusions about the target level of words,
i.e. if learners of intermediate B1 level consis-
tently have problems with certain words that our
mapping predicts to be of B1 level, we can assume
that the prediction was incorrect.

In the future, we intend to evaluate these re-
sources both with teachers of Swedish as a second
language as well as language learners to estimate
the validity of the automatic mapping. We would
also like to create gold standard annotations, both
based on these resources as well as new resources.
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sity Electronic Press.
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Abstract

This paper presents COAST, a web-based ap-
plication to easily and automatically enhance
syllable structure, word stress, and spacing in
texts, that was designed in close collaboration
with learning therapists to ensure its practical
relevance. Such syllable-enhanced texts are
commonly used in learning therapy or private
tuition to promote the recognition of syllables
in order to improve reading and writing skills.

In a state of the art solutions for automatic syl-
lable enhancement, we put special emphasis
on syllable stress and support specific marking
of the primary syllable stress in words. Core
features of our tool are i) a highly customiz-
able text enhancement and template function-
ality, and ii) a novel crowd-sourcing mecha-
nism that we employ to address the issue of
data sparsity in language resources. We suc-
cessfully tested COAST with real-life practi-
tioners in a series of user tests validating the
concept of our framework.

1 Introduction

Reading and writing disabilities are a pressing is-
sue for today’s society – approximately 4–8 % of
the German population suffer from dyslexia (Moll
and Landerl, 2009; Bundesverband Legasthenie
und Dyskalkulie e.V, 2014). Research on reading
acquisition has shown that phonological awareness
is a crucial skill for successful reading and writing
acquisition (Röber-Siekmeyer, 2005). Important
dimensions of phonological awareness are syllable
synthesis and analysis. Syllable synthesis refers
to the ability to blend syllables to a whole word,
and syllable analysis to the ability of segmenting a
word into its syllables. Experimental studies have
shown that syllable synthesis and syllable analysis
are essential components of evidence-based read-
ing training (Galuschka and Schulte-Körne, 2016;

∗ These authors contributed equally to this work.
† http://icall-research.de

Galuschka et al., 2014). Scheerer-Neumann (1981)
have shown that specific training of segmenting
words into syllables can improve reading accuracy
of impaired German primary-school children sig-
nificantly. Additionally, computer-based programs
for primary-school children that sequentially speak
and highlight syllables can facilitate the learning
process of reading (Jiménez et al., 2007; Olson and
Wise, 1992).

Based on these empirical findings, enhanced
texts with custom spacing and syllables alternately
displayed in different font colors are commonly
used in teaching and learning therapy to support ac-
quisition of reading and writing. This so-called Sil-
benmethode (syllable method) (Mildenberer Verlag,
2018) teaches children to focus on and understand
syllables and their structures rather than single char-
acters and is commonly used in Germany, which
is reflected by popular reading materials , such as
ABC der Tiere and Leselöwe, and by available tools
that facilitate the learning process of reading and
writing, such as Celeco Druckstation and ABC Sil-
bengenerator.

While first language acquisition happens through
mere exposure, learning to read and write is a
learned skill and thus requires explicit instruction,
similar to Second Language Acquisition (SLA). In
this regard, insights form SLA research on input
enhancement relate to reading and writing acqui-
sition. The well-established Noticing Hypothesis
(Schmidt, 1990) states that learning requires the
exposure to salient linguistic constructions that
may be recognized by the learner. To facilitate
this recognition of relevant linguistic constructions,
Input Enhancement (Smith, 1993) has been suc-
cessfully used, in particular in terms of visual en-
hancement of texts (e.g. colors, font changes, cap-
italization, spacing), cf. (Rello and Baeza-Yates,
2017; Zorzi et al., 2012; Meurers et al., 2010).

In response to this, we developed COAST.1

1www.sfs.uni-tuebingen.de/coast/
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COAST is a web-based application to easily and au-
tomatically enhance syllable structure, word stress,
and spacing in texts. Its primary focus is on func-
tionality and practicability. In terms of functional-
ity, COAST offers a high degree of customization
for text enhancement, supports management of an-
notation schemes, and includes syllable stress. The
performance of detecting syllable stress strongly
predicts dyslexia (e.g., Goswami et al. (2013); Lan-
derl (2003)) and correlates highly with reading and
writing skills (Sauter et al., 2012) and, thus, is of
special importance for dyslexic children. Trainings
to improve the awareness of syllable stress are be-
ing developed and evaluated (Holz et al., 2017). We
extend the approach of text enhancement that are
provided by state of the art tools to make syllable
structures and stress more salient for German native
(dyslexic) speakers using NLP resources. Enhanc-
ing the text with such additional linguistic infor-
mation might boost children’s ability to segment
words into relevant components and might help
them to learn to focus on relevant areas of words
– as major orthographic challenges, such as vowel
length markers, mainly occur in (conjunction with)
stressed syllables (Staffeldt, 2010). To account for
practicability, we implement this functionality by
collaborating closely with prospective users and in
particular teaching practitioners to meet real-life
demands.

The remainder of the article is structured as fol-
lows: In Section 2, we report findings of a require-
ment analysis that we conducted in form of expert
interviews prior to the system design to determine
the wishes and needs of practitioners and compare
COAST to two state of the art tools currently used
in learning therapy and reading and writing acqui-
sition. In Section 3, we describe the framework
of COAST and explain the two core functional-
ities crowd-sourcing and text enhancement with
real-life use cases. In Section 4, we evaluate the
usability and user experience of COAST by means
of user tests conducted with learning therapists and
validate its practical applicability. We conclude
by describing the current state of COAST and pro-
viding an outlook for its further development in
Section 5.

2 Requirements Analysis

2.1 Expert Interviews

As the primary focus of our work was on the design
of a tool that allowed for the immediate practical

application by language teachers and learning ther-
apists, we performed a requirement analysis for
our system preceding its implementation. We con-
ducted four expert interviews with teaching thera-
pists to establish their wishes and requirements for
a text-enhancement tool that would facilitate their
work. During this process, we identified a series of
concrete requests going beyond the tool’s basic text
analysis functionality. They were centered around
four main issues: i) input/output options, ii) flex-
ible customization settings, iii) user profiles and
re-usability of settings, and iv) optional expert/user
judgments.

Input/Output Options proved to be of particu-
lar interest for prospective users. They emphasized
the wish to not only be allowed to upload their own
texts, but also to be able to flexibly edit them while
seeing the syllable enhancement. Therefore, we
provide a text box for users in which they may enter
and alter their texts. Regarding output options users
expressed interest in being able to choose between
the formats HTML, MS Word, and PDF/printing,
or simply copying texts with enhancements to the
clipboard. All of these were incorporated into our
system.

Flexible Customization Settings were, aside
from the I/O options, one of the most prominent
user concerns. We found that the text represen-
tations should be customizable not only in terms
of the basic text layout, but also preferably in all
aspects of the actual syllable enhancement. Thus,
users may freely customize the spacing of lines,
words, syllables, and characters, as well as differ-
ent font sizes. Furthermore, the visual syllable
enhancement is customizable in terms of the colors
used for stressed and unstressed syllables with the
additional options to assign a separate color to sec-
ondary unstressed syllables. Colors may either be
applied to the background or the font. Users may
further decide to additionally highlight stressed syl-
lables with bold font. They may also choose to
mark syllable boundaries with a freely selectable
delimiter. Finally, users can select certain parts-
of-speech to be either i) annotated, ii) marked as
unstressed, or iii) ignored. Combined, these param-
eters allow for a highly customizable text design
and visual enhancement, that gives users a high
degree of freedom regarding the representation of
their texts.
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User Profiles and Re-Usability became rele-
vant concerns in the course of our expert interviews:
Our flexible customization options give users the
freedom to design text representations and visual
enhancements that are tailored specifically to their
purposes. However, users stressed the importance
that they could re-use their elaborate customization
across sessions, and that they need to be able to
switch between various customized enhancement
templates. To allow users to save, manage, and
re-use their templates, we created user accounts
that allow users to locally save their customization.
Users may also save the texts they uploaded under
a user-defined title in previous sessions.

Expert/User Judgments proved to be a final,
pressing issue for prospective users: The option to
adjust the automatic analyses in cases where users
disagree with the syllabification or stress annota-
tion performed by the system was crucial to our
prospective users. To give them complete authority
over their analyses, each of both analyses may be al-
tered by the user on click. Furthermore, they asked
us to flag words that were unknown to our system
and thus more error prone. To facilitate manual
corrections, we offer users to review all unknown
words consecutively in a separate view, where they
are supported by the syllabification and stress sug-
gestions of our systems. All changes conducted by
users are saved in their local syllabification data
base and used for future analyses. Users may re-
view and edit these new entries in their account
settings. A final suggestion of our expert users was
to allow the system to learn from user feedback.
We thus include a crowd-sourcing based mecha-
nism for updates to the global data base, which is
explained in detail in Section 3.2.

2.2 Related Work

There are two dominant syllable enhancement tools
for German whose functionality is centered around
the so called Silbenmethode (“syllable method”),
in which reading is taught by focusing on sylla-
bles and their pronunciation rather than single char-
acters: the Silbengenerator (“syllable generator”)
and the Celeco Druckstation (“Celeco printing sta-
tion”).2 Table 1 shows a comparison of the tools
with COAST based on the characteristics that we
identified in our expert interviews and some more

2We are not aware of any tools for the English market that
provide any syllable enhancement beyond character-based
markings.

System Feature Silbengenerator Celeco COAST

Platform Independent 7 7 3

Web-Based 7 7 3

Freely Available (3) 7 3

Free Text Input 3 3 3

Text Box 7 3 3

Basic Text Layout Customization 3 3 3

Additional Text Layout Customization 7 (3) 3

Customizable Syllable Enhancement 7 3 3

Configuration Templates 7 n.a. 3

Stress Annotation 7 7 3

Syllable Arcs 7 3 7

Customizable Analysis (3) (3) 3

Crowd-Sourcing 7 7 3

Exercise Generation 3 3 7

Table 1: Comparison of ABC Silbengenerator,
Celeco Druckstation, and COAST.

general usability considerations.

Silbengenerator is a Windows program pub-
lished by Mildenberger Verlag (2018).3 It is part of
their ABC der Tiere (“animal alphabet”) series of
learning materials based on syllabification as read-
ing aid. Its main functionality is to allow teachers
to visually enhance syllables in their reading ma-
terials. While the full version has to be purchased,
a free demo is freely available for downloads on
their web page.The tool allows users to upload own
texts for analyses, but not to modify them from
within the tool via some form of text box. Sup-
ported output formats for enhanced texts are MS
Word or PDF/print. The general text layout is ad-
justable in terms of line spacing, fonts, font sizes,
text alignment, line breaks, and background color.
However, more advanced changes to the text lay-
out, such as customized syllable, character, or word
distances are not supported. The latest customized
layout may be re-used upon system restart, but it
is not possible to store multiple templates. Sylla-
bles are visually enhanced using the conventions
of the ABC der Tiere materials, which hyphenates
syllables and additionally marks alternating sylla-
bles with red and blue font. Monosyllabic words
default to blue. Word stress is not encoded. To
accommodate limited printing capacities, syllables
may be enhanced using gray and black instead of
red and blue, but further customization is not sup-
ported. Users may locally overwrite the syllable
boundaries set by the system for individual words
by editing a plain text file outside of the program.
Changes are applied to all documents upon restart.
Changes during run-time or for individual docu-
ments are not supported User corrections are not

3For details, see: www.abc-der-tiere.de/index.
php?id=388
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re-used to improve the system’s syllabification per-
formance. The Silbengenerator also includes a
limited tutoring functionality, which includes two
variations of syllable reading exercises as well as
capitalization, vowel, and spelling training.

Celeco Druckstation is a Windows program dis-
tributed by Celeco (Klische, 2007).4 Since there is
no free demo version, we base our review on the
elaborate tool description provided on their web
page. It should be pointed out that – unlike the Sil-
bengenerator and our system – the Celeco Druck-
station is distributed as a full fledged diagnosis and
therapy tool for reading disorders for learning ther-
apists and home tutoring alike. It thus provides a
number of tests and exercises for reading and diag-
nosis, which are generated from texts specified by
the user. This also includes a syllable enhancement
facility that allows to load texts into the program,
visually enhance syllables, and print them. Celeco
Druckstation offers to adjust the basic text layout
in terms of fonts, font size, font color, and back-
ground color. It also supports advanced layout
modifications in terms of text segmentation: users
may choose to put spaces after every syllable or
every 3rd, 4th, or 5th character. Syllables are en-
hanced with two alternating, freely customizable
colors, or with syllable arcs. No special encoding
of word stress is offered. Users may provide indi-
vidual syllable analyses of unknown words. These
are saved in a local data base. However, the syllab-
ification of known words can – as far as we could
determine – not be altered by the user. We could
not determine whether enhancement settings may
be saved and re-used as templates.

3 Tool

3.1 System Description
We developed COAST as a platform-independent
web-based tool that is deployed with Apache on
a server hosted on the Amazon Web Services
(AWS).5 The front-end was developed with HTML,
CSS, JavaScript, and AngularDart. 6 The back-
end was developed with Python using the frame-
works Flask,7 and SQLAlchemy. 8 We use spaCy
(Honnibal and Johnson, 2015) for natural language
processing (NLP).

4www.celeco.de/
5www.aws.amazon.com/
6www.angulardart.org/
7www.flask.pocoo.org/
8www.sqlalchemy.org/

Target Users are on the one hand teaching prac-
titioners, but on the other hand any person with an
interest in syllabified reading material, such as tu-
tors or parents. We account for this divide with two
separate types of user accounts: regular and expert
users. Currently, this distinction is relevant for our
crowd-sourcing mechanism, which is discussed in
Section 3.2.

Analyzing Input Texts is the core functionality
of COAST. Figure 1 shows the workflow of auto-
matic text analysis and enhancement. Before users
can enhance texts in the front-end as described
in Section 3.2, texts need to be processed accord-
ingly: First, spaCy is used for parsing, tokenization,
and part-of-speech (PoS) tagging. The letters of
a word and its PoS are used as a combined pri-
mary key to query the global and local database
stored in SQLite. The global database is initialized
with the German version of the language corpus
CELEX2 of Baayen et al. (1995) and is available
to all users. For the approximately 360,000 lem-
mas and inflected word forms that are included in
CELEX2, we infer primary word stress and syl-
lable structure from CELEX2’s orthographic and
phonetic transcriptions.The local database consists
of manually annotated entries and is only avail-
able to the specified user. If an entry was found,
the syllabification, syllable stress, and lemma of
the word are returned. If no entry was found, the
word is marked as unknown and must be manually
annotated. Manually annotated entries are auto-
matically stored in the local database of the user
and forwarded to the crowd-sourcing mechanism
explained in detail in Section 3.2. The annotated
information is used afterwards to enhance syllables
and words of the text as can be seen in Appendix A,
Figure 5. Further linguistic information for each
enhanced word may be obtained individually, see
Appendix A, Figure 6.

3.2 Features

Crowd-Sourcing is one of COAST’s most inno-
vative features. We exploit the crowd-knowledge
for long-term improvements of our automatic syl-
labification and word stress analysis. Currently, the
crowd is derived from COAST’s active users. To re-
liably identify not only syllable boundaries but also
stress patterns is one of the biggest challenges in
automatic syllable enhancement due to limitations
of the available linguistic resources. This is espe-
cially true for languages other than English and
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Figure 1: System overview of COAST.

for German this issue is particularly pressing, be-
cause irrespective of the size of the underlying data
base, morphological composition and derivation
are highly productive in German, which makes the
occurrence of unknown words more likely. This
issue of data sparsity is well-known from other
NLP applications such as machine translation or
information retrieval, and often addressed in work
on compound splitting (Ziering and van der Plas,
2016; Weller et al., 2014). Furthermore, both pro-
cesses may alter the word stress making the issue
more difficult (Féry, 1998).

During the expert interviews it became apparent
that prospective users prefer to be alerted to un-
known words that may have been mis-analyzed, so
they may review and if necessary manually correct
them. In this context, we found that users would
also prefer the system to learn from their correc-
tions so that they could contribute to making the
system more efficient in the long run. Together
with our experts we therefore developed a crowd-
sourcing mechanism, that would allow local cor-
rections of users to be incorporated to our system’s
global data base after they have been verified by
either two more users or an expert user. We de-
rived this role of an expert user to prioritize the
votes of learning therapists and linguists over lay-
man judgments. Upon registration, new users may
self-identify as experts or as regular users. A veri-
fication of this self-assignment remains for future
work.Experts may also revoke crowd-induced up-
dates to the data base. With this combined expertise

and additional layer of control through experts, our
system may draw from a constantly growing pool
of analyses, which ultimately increases its usability
and robustness while building a promising resource
for future work.

The verification mechanism is located on a sep-
arate page that asks users to voluntarily identify
syllable boundaries and word stress of words un-
known to the system. To facilitate analyses, we
provide users with information on how our auto-
matic tools would analyze a word as help as well
as with previous analyses of other users. We incor-
porate the freely accessible MARY-TTS (Schröder
and Trouvain, 2003) for automatic suggestions for
stress annotation and Pyphen for syllabification.
We require users to manually annotate each word
unknown to the database due to insufficient per-
formance of automatic stress assignment. This is
an extensible framework, which may be expanded
with more detailed information in the future.

The following use case illustrates this process:
User 1 uploads a text containing two words un-
known to the system: Hitzeschock (“heat shock”)
and Hacken (“heels”). She is asked to determine
the syllable boundaries and stress (marked in bold
font) for both words and submits Hit-ze-schock and
Hac-ken. This syllabification assumes a bisyllabic
consonant doubling for both terms. While this is
correct for most consonants at syllable boundaries,
ck is an exception to this rule which is unknown
to many laymen. Thus, when our system prompts
Users 2 and 3 to verify User 1’s analysis, they agree
with her and both analyses are updated to the global
data base. User 4 uploads another text containing
Hitzeschock. Afterwards, the word is not flagged
as unknown, but analyzed together with all other
words that were originally included in the data base.
Expert User 5 is asked to review the updates to the
data base. She identifies the mistake that has been
made and revokes the analysis of Hacken to Ha-
cken. The entry is immediately corrected in the
global data base and will be displayed correctly for
all future analyses.

Text Enhancement is the core functionality of
our tool. We enhance syllable boundaries as well
as – unlike other systems – stress. For this, we
rely on automatic analyses and manual post-hoc
corrections by the user for words that are flagged
as unknown: Our expert interviews clearly showed
that prospective users not only prefer a high de-
gree of customization in the visual representation
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Figure 2: Template inspired by ABC der Tiere.

of their texts, but also want to re-use and switch be-
tween templates. Therefore, we not only facilitate
advanced customization options for the text and
enhancement layout, but also allow users to store
various templates, which may be consecutively ap-
plied to a text with a simple click.

Our settings feature two main categories: First,
they allow to modify the enhancement of syllable
stress by allowing users to choose freely the col-
ors assigned to i) stressed syllables, ii) unstressed
syllables, and optional iii) the second unstressed
syllable. Stressed syllables may be enhanced with
bold font. Users can choose whether to apply
the color enhancement to the font or the syllables’
background. Furthermore, syllable boundaries may
be made more salient by using a syllable delim-
iter character that users may choose freely. Finally,
users may specify to which extend certain parts of
speech should be analyzed, e.g. they may choose
to ignore articles or to default connectives to be
enhanced as unstressed. Second, they allow users
to customize the text layout independent of the syl-
lable enhancement. This includes basic options
such as adjusting font size or line space. How-
ever, we also allow to freely choose the distance of
words, syllables, and characters. Users may further
make word boundaries more salient by choosing
a background color for them. The combination
of these syllable enhancement and text layout set-
tings may be saved under a descriptive title as a
template, which may be re-used and altered at any
point across texts or sessions.

The following use case illustrates how this
works: User 1 works with children with reading dis-
abilities from two groups: Group A uses the ABC
der Tiere materials in school. The children are thus
used to the blue and red layout, which User 1 wants
to alter as little as possible, while still providing her
pupils with materials that also mark syllable stress.
Therefore, she customizes a template to use the

Figure 3: Template inspired by Leselöwen.

ABC der Tiere style for her enhancement. Figure 2
shows the result for the sentence Ich beratschlagte
mein Meisterwerk mit einem Elefanten und einer
Riesenschlange (“I consulted my masterpiece with
an elephant and a giant snake”).

She sets the marking color of stressed syllables
to dark red and of unstressed to blue. In order to
make the alternation of syllables more salient, sec-
ondary unstressed syllables are also marked in red.
To clearly distinguish them from stressed syllables,
she additionally uses bold font to mark stress and
uses a lighter type of red to mark secondary un-
stressed syllables. Because ABC der Tiere colors
monosyllabic words in blue, User 1 further sets
typically monosyllabic parts of speech, such as
articles and prepositions, from the analysis to be
analyzed as unstressed. Finally, she makes syllable
boundaries more salient by widening the distance
between syllables. To make word boundaries more
salient, despite this increased syllable distance, she
further widens word distance and assigns a beige
background color to words.

Children from Group B do not use the ABC der
Tiere materials at school, but they are reading syl-
labified stories at home from the Leselöwen (“read-
ing lions”) materials by the Loewe publisher.9

These materials use three colors to mark alternating
syllables and they do not treat monosyllabic words
differently from others. For this group, too, User
1 wants to make stressed syllables more salient in
her materials, while otherwise not deviating much
from the layout the children are already used to.
Thus, she designs a second layout which mimics
the Leselöwen style. The result of applying this
template to the same sentence she used for Group
A may be seen in Figure 3.

The colors used by Leselöwen are green, red,
and blue. She assigns stressed syllables the color

9www.loewe-verlag.de/
content-1013-1013/leseloewen/
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green and again additionally marks them with bold
font. Unstressed and secondary unstressed sylla-
bles are colored red and blue. Because this style
already features three colors, she does not want to
use a background color for words. At the same
time, she wants to make word as well as syllable
boundaries more salient. For this, User 1 chooses
to mark syllable boundaries with a delimiter (in
this case =) but without additional space between
syllables and increases the distance between words.
While the initial customization took a couple of
minutes, User 1 may re-apply her two templates to
any text in the future, reducing the time required
for customization to mere seconds. She may also
alter the templates at any time or add new ones
when required.

4 Evaluation

We conducted user tests to evaluate COAST with
both practitioners as well as with non-experts. Prior
to these, we performed an internal pilot testing to
identify runtime issues that are not directly related
to the functionality of COAST.

Five scenarios were defined to evaluate the
tool’s functionality, usability, and user experience.
They cover i) account creation, ii) text analysis and
enhancement, iii) generation and use of annotation
templates, iv) reuse of previously stored texts, and
v) verification of user-generated entries (“crowd-
sourcing”).

In the first scenario, the users were asked to
create an account with given credentials.

The second scenario consisted of four major
steps: First, users were asked to log into the re-
cently created account. Secondly, they had to
switch to the Text Analysis view of the tool and
to analyze and enhance a given text. After analyz-
ing the text, they were told to clarify all words un-
known to the system, which are flagged and shaded
in red. Finally, users were asked to adjust the anno-
tation settings based on their personal preferences.

The third scenario covered the instructed genera-
tion and use of annotation templates. Users were
asked to rebuild two annotation schemes by adjust-
ing the annotation settings and save them as new
templates.

In the fourth scenario, users were asked to store
the analyzed text in their account and re-analyze it
by selecting the stored text in the Account view of
the tool.

In the fifth and final scenario, users were re-
quired to verify entries added by other users that
are unknown to the global database. In order to do
so, they were asked to switch to the Verification
view (see Figure 7) and approve or edit five entries.

The second, third, and fifth scenario are of spe-
cial importance as they cover the core-functionality
of COAST and can be seen in Figure 8.

User Tests were conducted by seven users from
two groups: three experts (learning therapists) to
receive subject-specific feedback and four laymen
to evaluate the general usability of the tool. The
three experts were women aged between 40 and 51
(M = 45). The laymen aged between 22 and 27
(M = 25) included two men and two women with
non-educational professions. The user test was
carried out equally for both groups. None of the
participants had interacted with the system before.

We used the after-scenario questionnaire (ASQ)
by Lewis (1995) for quantitative data analysis.
They were answered for each scenario directly after
its completion. The ASQ consists of three ques-
tions covering ease of use, time efficiency, and
documentation of the tool:

1. Overall, I am satisfied with the ease of use of
completing the tasks in this scenario

2. Overall, I am satisfied with the amount of time
it took to complete the tasks in this scenario

3. Overall, I am satisfied with the support and
documentation when completing the tasks

We used a five-point Likert scale ranging from
strongly agree to strongly disagree.

For qualitative analysis, the users were explic-
itly instructed to “think-aloud” (Rauterberg, 1996)
while working on a scenario, thus told to accurately
comment each of their actions and to express ex-
pectations, thoughts, and critics.

The user test was carried out as follows: Users
were free to use their preferred browser for the
user test. The default browser was Google Chrome.
The user test was conducted on the users’ personal
laptop if possible, to recreate their home or work
environment and to mimic a real-life application
as close as possible. If no personal laptop was
available, users were provided with one. All input
devices were configured according to user prefer-
ences. After setting up the work place, users were
informed and instructed about the procedure of the
user test, its purpose and the think-aloud method.
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After clarifying all questions, users processed all
scenarios consecutively in fixed order. The user
tests were concluded with an interview to get gen-
eral feedback and to assess the usefulness of the
tool with respect to the users’ professions.

4.1 Results
The results of the second, third, and fifth scenario
are explained in detail due to their relevance, results
for scenario one and four can be found in the Table
2.

We normalized the options of the ASQ to range
from −2 (strongly disagree) to +2 (strongly agree)
with 0 (neither) being neutral. In the following, we
report positive values (i.e. agree, strongly agree)
as positive feedback, negative values (i.e. disagree,
strongly disagree) as negative feedback. For a more
detailed differentiation of the user feedback, please
see Figure 4.

The second scenario was successfully completed
by all users. The ease of use (M = 1.57, SD =
0.53) and documentation (M = 1.57, SD = 0.53)
of the tool was rated 100 % positively in the ASQ,
time efficiency received 86 % positive and 16 %
neutral ratings (M = 1.57, SD = 0.78). Some
users criticized the layout of the Text Analysis view,
suggesting a more compact representation of the
annotation settings.

The third scenario was completed by five users
without help, two needed hints from the investiga-
tor to complete all tasks. While the first template
could be rebuilt by all users, two users required
help with the second template. Error source was
the confusion about and between the features Silbe
hervorheben (enhance syllables), with which either
the fore- or background color of syllables could
be adjusted accordingly, and Wort Hintergrund-
farbe (word background color), with which the
background color of words could be set (see Fig-
ure 5). Three users completed this scenario by
trial-and-error. The ease of use of this scenario was

Question Rating
-2 -1 0 1 2

Scenario 1
ease of use 0 % 0 % 0 % 29.0% 71.0%
time efficiency 0 % 0 % 0 % 0 % 100%
documentation 0 % 0 % 0 % 29.0% 71.0%

Scenario 4
ease of use 0 % 0 % 0 % 28.6% 71.4%
time efficiency 0 % 0 % 0 % 28.6% 71.4%
documentation 0 % 0 % 0 % 28.6% 71.4%

Table 2: Results of the ASQ for scenario 1 and 4.
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Figure 4: Results of the after-scenario questionnaire
completed for scenario 2, 3, and 5.

rated 71.4 % positively and 28.57 % negatively
(M = 0.57, SD = 1.27), the time efficiency 71%
positively and 29 % negatively (M = 0.86, SD =
1.34), and 57.2 % positively, 14.3% neutral, and
28.6% negatively in terms of documentation and
support (M = 0.57, SD = 1.14).

The fifth and last scenario was completed by all
users successfully. Ease of use, time efficiency,
and documentation of this functionality were rated
100 % positively (M = 1.71, SD = 0.49 for each
item respectively). Users suggested to design this
functionality to be more user friendly by displaying
and processing multiple entries at once.

The think-aloud and concluding interviews addi-
tionally revealed general layout and design flaws
of COAST’s visual appearance. While this goes
beyond the scope of this paper, we list problems,
comments, and feature requests directly linked to
the core features of our tool: i) the general navi-
gation of the tool was not very intuitive and self-
explaining, ii) some features could only be ac-
cessed with scrolling, which was not explicitly visi-
ble to the users, iii) some features, e.g. background
color of words and syllable enhancement, need
explicit documentation/tutorials, iv) some users
asked for a simple solution to color syllables al-
ternately independently of syllable stress, v) the
feature to not enhance monosyllabic words instead
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of unchecking the annotation of typically monosyl-
labic parts of speech was requested, vi) fore- and
background color of syllables and words should
independently be customizable.

5 Conclusion and Outlook

COAST is a highly user-oriented, platform inde-
pendent, web-based and easily extensible frame-
work for the automatic augmentation of texts with
syllable, stress, and word enhancement. It was de-
veloped in close collaboration with practitioners
and includes a series of features which were ex-
plicitly requested by prospective users and that are
lacking from currently available, state of the art
systems. This paper presents and evaluates its abil-
ity to generate appropriate reading materials based
on real-life use cases. Additionally, we evaluated
the practical applicability of our tool by conducting
user tests based on a series of real-life scenarios.

Our exemplary enhanced texts (see Figure 2 and
3) prove that appropriate reading materials can be
easily generated automatically, customized, and
exported with COAST. The use cases show that
the tool meets the requirements deduced from the
a priori requirement analysis based on our expert
interviews. Compared to other tools that support
syllable enhancement, COAST offers a higher de-
gree of customization and more features, such as
annotating syllable stress, setting spacing of lines,
words, syllables, and characters. The automatic
analysis of syllable stress and part of speech also
make COAST linguistically more informed than
other tools. Finally, we carried out user tests with
special focus on practical application. These indi-
cate that the majority of users were able to solve
the tasks intuitively and time efficiently for each of
the scenarios.

We have successfully shown that the current ver-
sion of COAST allows practitioners to generate
enhanced texts as reading materials for their teach-
ing. Being able to save annotation templates and
texts has proven to be an especially useful func-
tionality to easily generate new reading materials
within the application with little time effort. Fur-
thermore, COAST features a novel crowd-sourcing
approach to overcome the pressing issue of limited
resources and data sparsity. This is particularly rel-
evant for languages other than English. Currently,
our tool illustrates this for the German language.
However, the entire framework was designed to be
easily extended for any other language for which

sufficient resources are available.
Our consultation with prospective users also

yielded a series of practical suggestions to opti-
mize user experience further and to include more
features. In particular, we aim at including the fea-
tures discussed in Section 4.1. We also plan to re-
design COAST’s visual appearance. Furthermore,
we intend to elaborate on the current documen-
tation and to provide application-oriented feature
tutorials. To improve the reliability of our proposed
crowd-sourcing mechanism, we plan to address the
verification of user roles, i.e. expert and regular
users. In this regard, the need of further user type
customization shall be analysed and implemented
accordingly. Finally, we intend to carry out user
studies to compare COAST’s efficiency and effi-
cacy to state of the art tools that support syllable
enhancement in texts.

Our ultimate goal is to develop and include a
front-end for learners, the COAST App. This results
in a tutoring system offering reading and spelling
exercises optimized for mobile devices. The cur-
rent COAST Tool could be used by practitioners to
generate teaching materials to be shared with the
COAST App and, thus, to supply exercises directly
to their pupils.
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benmethode. Mildenberer Verlag.

Mildenberger Verlag. 2018. ABC der Tiere – Silben-
Generator für die Grundschule.

Kristina Moll and Karin Landerl. 2009. Double Disso-
ciation Between Reading and Spelling Deficits. Sci-
entific Studies of Reading, 13(5):359–382.

Richard K. Olson and Barbara W. Wise. 1992. Read-
ing on the computer with orthographic and speech
feedback. Reading and Writing, 4(2):107–144.

Matthias Rauterberg. 1996. Usability Engineering.
Morgan Kaufmann.

Luz Rello and Ricardo Baeza-Yates. 2017. How
to present more readable text for people with
dyslexia. Universal Access in the Information So-
ciety, 16(1):29–49.
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A Supplemental Material

A.1 Screenshots of COAST

Figure 5: COAST – View for text analysis and enhancement. Users can insert or edit text in the lower
text box. The preview of syllable enhancement is given in the upper box. On the left side, users can
edit settings regarding syllable annotation: boldness, colors of stressed and unstressed syllables (either
background or foreground), background color of words, font size, and spacing between syllables, words,
and lines.

Figure 6: COAST – Word-Popup. Popup with additional information that is invoked when a known word
is clicked in the text-view. At the moment, we offer information about syllabification, part of speech, and
lemma. Users can additionally manually change the syllabification or stress assignment of the selected
word and apply it to the preview.
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Figure 7: COAST – Verification-view of entries added by users unknown to the global database. Current
word is geschlossenen (ge-schlos-sen-en, closed). Users can edit stress assignment and syllabification on
the left side or agree to a user’s judgment or to automatically generated suggestions on the right side.

Scenario 2: Text Analysis and Enhancement 

1. Log in with your credentials. 

2. Go to “Text Analysis”. 

3. Insert the given text into the text box. 

4. Let the tool analyze the text. 

5. Clarify all unknown words. Unknown words are shaded in red. 

6. Play around with the annotation settings until the preview suits you. 

 

Scenario 3: Annotation and Enhancement Template 

1. Please try to rebuild the following annotation scheme by changing the 

annotation settings. 

 

2. Save your annotation settings as a template with the name „Template 1“. 

3. Now, please try to rebuild the following annotation scheme. 

 

4. Save your annotation settings as a template with the name „Template 2“. 

5. Now, switch between “Template 1” and “Template 2” back and forth. 

 
 

Scenario 5: Verification of User-Generated Entires 

1. Switch to “Verification”. 

2. Approve or edit five entries. 

 

Figure 8: User tests of scenario 2 (text analysis and enhancement), 3 (creation and use of annotation and
enhancement templates), and 5 (verification of user-generated entries).
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Abstract

Given that all users of a language can be
creative in their language usage, the overar-
ching goal of this work is to investigate is-
sues of variability and acceptability in writ-
ten text, for both non-native speakers (NNSs)
and native speakers (NSs). We control for
meaning by collecting a dataset of picture de-
scription task (PDT) responses from a number
of NSs and NNSs, and we define and anno-
tate a handful of features pertaining to form
and meaning, to capture the multi-dimensional
ways in which responses can vary and can
be acceptable. By examining the decisions
made in this corpus development, we high-
light the questions facing anyone working with
learner language properties like variability, ac-
ceptability and native-likeness. We find re-
liable inter-annotator agreement, though dis-
agreements point to difficult areas for estab-
lishing a link between form and meaning.

1 Introduction

The (written) data of second language learners
poses many challenges, whether it is being an-
alyzed for grammatical errors (Leacock et al.,
2014), for linguistic patterns (Kyle and Cross-
ley, 2015), for content analysis (Weigle, 2013), or
for interactions with intelligent computer-assisted
language learning (ICALL) systems (Amaral and
Meurers, 2007). One of the core issues in doing
anything with learner data is the inherent amount
of variability in how linguistic forms are used to
convey meaning (cf., e.g., Meurers and Dickinson,
2017). It may indeed seem like learners can use
an infinite variety of forms to express a particular
meaning; here we attempt to investigate how large
the problem of variability in one particular testing
context is for computational processing.

To investigate variability and the mappings be-
tween linguistic form and meaning, in this paper

we control for meaning by collecting a dataset
of picture description task (PDT) responses from
a number of NSs and NNSs, and we annotate a
handful of features, thereby capturing the multi-
faceted ways in which responses can vary and can
be acceptable or unacceptable. We call this the
SAILS Corpus, for Semantic Analysis of Image-
based Learner Sentences—our intended use. By
examining the decisions made in this corpus de-
velopment, we highlight the questions facing any-
one working with learner language properties such
as variability, acceptability and native-likeness.

Given the form-meaning aspect of variability,
we are interested in how variable linguistic be-
havior is for the same content, both within and
between NS and NNS groups, and the potential
use of NS responses to evaluate NNS responses.
There is a long-standing notion that systems pro-
cessing learner data would be wise to constrain
the data in some way (e.g., Heift and Schulze,
2007; Somasundaran et al., 2015), but we do not
know how much constraint is needed—or whether
we sacrifice the possibility of observing particu-
lar learner behavior for the sake of a constraint—
without knowing more about the ways in which
variation happens (cf. Bailey and Meurers, 2008).

The corpus presented here bears some similar-
ities to other task-based learner corpora. Meurers
et al. (2011) examined German learner responses
to short-answer reading comprehension questions.
A target answer was produced by an expert, and
annotators used this target to label the meaning
of responses as correct or incorrect, along with a
more detailed set of labels related to form, mean-
ing, and task appropriateness. In our own previ-
ous work (King and Dickinson, 2016, 2013), we
annotated a small set of PDT responses as correct
or incorrect, with incorrect responses further la-
beled as errors of form or meaning. Somasundaran
and Chodorow (2014) presented work on PDT re-
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sponses in which respondents used provided vo-
cabulary words. Responses were manually anno-
tated on a holistic four point scale, and a set of
five features (relating to meaning, relevance and
language use) were calculated based on statisti-
cal assumptions. Somasundaran et al. (2015) per-
formed a nearly identical analysis with transcribed
texts from a six-picture narration task, but neither
of these datasets is publicly available.

Our work reverses this mapping by providing
manually annotated features, which we hope will
be useful for mapping to holistic scores. For ex-
ample, a response may present the main content of
an item correctly but add imaginary details, while
another may address background information not
asked about in the prompt (see section 3). The ac-
ceptability of a response is thus taken as a function
of several interacting features, most of which re-
late the text to the known semantic content. Relat-
ing to known content is distinct from typical gram-
matical error correction (GEC) (Leacock et al.,
2014) and from more linguistically driven work
such as parsing (e.g., Cahill et al., 2014; Ragheb
and Dickinson, 2014), but providing the dimen-
sions of acceptability and elucidating how they are
applied provides insight for any enterprise desir-
ing to connect learner text with semantic content,
in addition to unpacking the sources of variation
and of difficulty in processing a range of learner
data.

In section 2 we outline the picture description
task (PDT) we use, designed with items that elicit
specific types of linguistic behavior. Section 3 out-
lines the annotation, tackling the five-dimensional
scheme; inter-anntotator agreement results are in
section 4. While agreement seems reliable, high-
lighting areas of disagreement showcases difficult
areas for establishing a link between form and
meaning (cf., e.g., Meurers and Dickinson, 2017).

2 Picture Description Task

2.1 PDT Stimuli

The PDT is built around 30 cartoon-like vector
graphics, or items. The images were modified
to remove any non-essential detail or background;
some examples are in Table 1. To factor out the in-
fluence of previous linguistic context, images are
devoid of any text or symbols, with the exceptions
of two images containing numerals, two with mu-
sic notes, and one with a question mark. Each im-
age depicts an ongoing or imminent action, per-

formed by a person or an animal. The images are
divided evenly into canonically intransitive, tran-
sitive and ditransitive actions.

Two main versions of the PDT were used.
In each version, the first half contains targeted
items, where questions take the form of What is
<subject> doing?, with the subject provided (e.g.,
the boy, the bird). The second half contains un-
targeted items, where the question is, What is
happening?. Collecting both versions allows one
to examine response variation with and without a
subject constraint, thereby informing approaches
to task design and automatic content assessment
(Foster and Tavakoli, 2009; Cho et al., 2013).
Roughly equal numbers of targeted and untargeted
responses were collected for each item.

Each half (targeted and untargeted) is intro-
duced with instructions, including an example
item with sample responses. The instructions ask
participants to focus on the main event depicted in
the image and for each response to be one com-
plete sentence. The PDT was presented as an
online survey, and all participants typed their re-
sponses. Participants were instructed not to use
any reference materials, but were permitted to use
browser-based spell checking.

2.2 Data Collection

A total of approximately 16,000 responses were
collected from 499 participants. Of these, 141
were NNSs, recruited from intermediate and ad-
vanced writing courses for English as a Second
Language students attending Indiana University.
Nearly 90% of these recruits were native speakers
of Mandarin Chinese, which could have important
implications for conclusions drawn from the cor-
pus. These participants performed the task in a
computer lab with the researchers present. They
were native speakers of Mandarin Chinese (125),
Korean (4), Burmese (3), Hindi (2), and one na-
tive speaker each of Arabic, Indonesian Bahasa,
German, Gujarati, Spanish, Thai and Vietnamese.

Of the 358 NS participants, 29 were person-
ally known by the researchers. Responses from
the remaining 329 NSs were purchased via an on-
line survey platform where participants earn cred-
its they can redeem for gift cards and prizes. Due
to length restrictions for purchased surveys, these
NSs each completed only half of the task, so their
data is equivalent to 164.5 full participants.

In previous similar work (King and Dickinson,
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What is the woman doing? [Intrans.] A1 A2
The woman is running. 1 1
She is wearing a red shirt. 0 0
Trying to run from her bad decisions 1 0

What is the woman doing? [Trans.] A1 A2
Holding a puppy & looks happy 1 1
She is happy with the dog. 0 0
The lady loves her dog. 1 0

What is the man doing? [Ditrans.] A1 A2
giving directions to a woman. 1 1
The man is reading a map. 0 0
The man is is telling her where to go 1 0

Table 1: Test sample items and example responses
with Core Event annotations from Annotators 1 and 2.

2013), NSs were found to produce less variation
than NNSs. Many NSs provided identical re-
sponses or ones very similar to the most canonical
way of expressing the main action. One purpose of
gathering the data is to be able to assess NNS re-
sponse content by comparing it against the NS re-
sponses; thus, NSs were asked to provide two non-
identical responses, in the hopes that this would
result in more examples of native-like responses

for the NNS responses to compare against.

Targeted Untargeted
Set NS NNS NS NNS
Intrans 0.628 0.381 0.782 0.492
Trans 0.752 0.655 0.859 0.779
Ditrans 0.835 0.817 0.942 0.936

Table 2: NS and NNS type-to-token ratios (TTR) for
complete responses (not words), for all the data.

To examine the degree of variation among the
NS and NNS groups in the current study, type-
to-token ratios (TTR) were calculated on the re-
sponse level (ignoring case and final punctuation)
for the entire set of items, shown in Table 2. For
each data point in the table, the corpus contains
roughly 150 NS responses and 70 NNS responses.
To control for this imbalance and its effect on the
likelihood of seeing new responses, the TTR was
calculated for each item based on a random sample
of 50 responses. Specifically, we randomly sam-
pled 50 responses, calculated the TTR, and aver-
aged them. The scores in in Table 2 show that,
in all cases, the NS set shows a greater degree of
response variation, meaning that asking for two re-
sponses is an effective way of collecting a broader
range of NS responses.

The ratios show the direct relationship between
the complexity of the event portrayed (represented
here as intransitive, transitive and ditransitive) and
the degree of variation elicited. In all cases, TTR
increases with this complexity. Interestingly, this
trend seems more pronounced in the NNS re-
sponses; in the targeted NNS responses, the TTRs
for intransitive and ditransitive items are 0.381 and
0.817, respectively, compared to 0.628 and 0.835
for NS responses. The ratios also show that in
all cases, variation is greater for untargeted items
than it is for targeted items. In other words, asking
about a particular subject in the prompt question
does constrain the variety of responses.

3 Annotation scheme

The data were annotated with the aim of provid-
ing information that would be useful for the auto-
matic assessment of NNS responses via compar-
ison with NS responses. The annotation scheme
was developed through an iterative process of an-
notation, discussion and revision, with input from
two annotators and multiple language profession-
als. The initial scheme was planned as a three-
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point scale, ranging from accurate and native-like
(2) to accurate but not native-like (1) to not accu-
rate (0). This proved problematic, however, as ac-
curacy and native-likeness could not be adequately
defined and applied to the data. For example, in
the middle picture of Table 1, it is not clear how
accurate or native-like She is happy with the dog
is. Grammatically, it is native-like, but it does not
seem like an appropriate answer to the question,
What is the woman doing?

To address the specifics of appropriate answers,
five binary features were eventually settled on,
with each feature having some relation to the orig-
inal concepts of accuracy and native-likeness. A
set of annotation guidelines were produced with
definitions, rules and examples for each feature.
For most features, the rules for targeted and un-
targeted items vary slightly; the untargeted rules
are generally less strict. The features and brief de-
scriptions are listed here and discussed further in
the following sections:

1. Core Event: Does the response capture the
core event depicted in the image? Core
events are not pre-defined but should be fairly
obvious given the nature of the images. The
response should link an appropriate subject to
the event. In the top picture of Table 1, The
woman is running clearly captures the core
event, while She is wearing a red shirt is ir-
relevant to the event happening.

2. Verifiability: Does the response contain only
information that is true and verifiable based
on the image? Inferences should not be spec-
ulations and are allowed only when neces-
sary and highly probable, as when describ-
ing a familial relationship between persons
depicted in the image. For example, in Ta-
ble 1, She is wearing a red shirt conveys in-
formation that is irrelevant to the core event
but is nonetheless recoverable from the image
(annotation=1), while Trying to run from her
bad decisions has information that cannot be
inferred from the picture.

3. Answerhood: Does the response make a
clear attempt to answer the question? This
generally requires a progressive verb. For tar-
geted items, the subject of the question, or an
appropriate pronoun, must be used as the sub-
ject of the response. For example, The dog

is happy is answering a question other than
What is the woman doing? (Table 1).

4. Interpretability: Does the response evoke a
clear mental image (even if different from the
item image)? Any required verb arguments
must be present and unambiguous. For ex-
ample, The map is hard to read is too vague
to generate a clear mental image (Table 1).

5. Grammaticality: Is the response free from
errors of spelling and grammar? In our data
set, this is a relatively straightforward feature
to annotate (see section 4).

Example annotations In Table 3, we see exam-
ple responses with all five features annotated, il-
lustrating each feature’s distinctiveness from the
others. For example, for He is eating food one can
generate a mental picture, e.g., of someone chew-
ing (interpretability=1), but the pizza is
important to the item image (core event=0).
As another example, He may get fat eating pizza
seems to be addressing a question about the con-
sequences of the eating action (answerhood=0)
and talks about hypotheticals not in the picture
(verifiability=0). Teasing apart these an-
notations is the focus of the next section.

4 Agreement

Two annotators participated in the annotation.
Both are native speakers of (US) English, and each
has several years of language teaching experience
with both children and adult learners. Annotator 1
(A1) annotated the complete corpus. Annotator 2
(A2) annotated only the development set and the
test set, data subsets described next.

Three items were used as a development set
for creating and revising the annotation scheme.
These items were also used as examples in the
guidelines. They represent one intransitive, one
transitive and one ditransitive item. Both anno-
tators annotated portions of the development set
multiple times throughout the process, discussing
and adjudicating disagreeing annotations before
moving on to the test set, which was completed
without consultation between the annotators.

The test set parallels the development set and
consists of one intransitive, one transitive and one
ditransitive item; it is shown in Table 1. Agree-
ment and Cohen’s kappa scores are given in Ta-
ble 4, broken down by different criteria. We will
now walk through these results.
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What is the boy doing? C V A I G
He is eating food. 0 1 1 1 1
eatting. 0 1 1 1 0
The child is about to eat
pizza.

1 1 0 1 1

He may get fat eating
pizza.

1 0 0 1 1

What is happening? C V A I G
Child is eating pizza. 1 1 1 1 0
Tommy is eating pizza. 1 0 1 1 1
The boy’s eating his fa-
vorite food.

0 0 1 0 1

Pizza is this boy’s fa-
vorite food.

0 0 0 0 1

Table 3: Targeted and untargeted sample responses
from the development set transitive item, shown with
adjudicated annotations for the five features: core event
(C), verifiability (V), answerhood (A), interpretability
(I) and grammaticality (G).

4.1 Transitivity

Comparing the intransitive, transitive and ditran-
sitive items reveals an association between agree-
ment and item complexity. The highest raw agree-
ment and Cohen’s kappa scores are found with the
intransitive item (97.8%, κ = 0.910) and the low-
est with the ditransitive (92.4%, κ = 0.764).

This is as expected, as ditransitive sentences are
longer and have more verbal arguments, making
for more opportunities for responses to vary (see
Table 2), and thus more opportunities for anno-
tators to disagree on a response. This trend also
matches annotator feedback: both ranked the di-
transitive item as the most difficult to annotate
overall, and the intransitive as the easiest.

4.2 Targeting

Grouping the annotations into targeted and untar-
geted sets, the raw agreement scores are compara-

ble (94.9% vs. 95.2%). However, despite a greater
degree of response variation, the untargeted group
has a higher kappa score (0.872 vs. 0.823). When
asked to compare the annotations, A2 noted that
targeted responses require more concentration and
closer consultation of the guidelines. For exam-
ple, answerhood does not allow for targeted
responses to modify the subject provided in the
question in any way, whereas in answering What
is happening?, the respondent is free to speak of
characters in the pictures in many different ways.
Both A1 and A2 thus describe the annotation of
untargeted items as less restrictive.

4.3 Features

Grouped by feature, the annotations all show raw
agreement scores above 91% and Cohen’s kappa
scores above 0.74 (Table 4). For future use of this
corpus in content assessment, these kappa scores
are comfortably above the 0.67 suggested as a
baseline for meaningful, reliable agreement (Lan-
dis and Koch, 1977; Artstein and Poesio, 2008).
We discuss each feature in turn, highlighting dif-
ficulties in coming to an agreement, as such dis-
agreements illustrate some sources of variability.

Core event Isolating whether the main content
of the picture is being described or not, the core
event feature is the most relevant of the five for
content assessment. All five features are skewed
toward yes annotations, but with an average yes
rate of 72.5%, core event is the least skewed; i.e.,
more responses receive a no annotation for core
event than for any other feature.
Core event has the second lowest inter-

annotator agreement kappa score, at 0.808. This
is somewhat lower than expected, as the pre-
adjudication development set score was 0.889.
This appears to be largely attributable to the diffi-
culty of the ditransitive item, challenging for both
participants and annotators (section 4.1).

The main issue in this case has to do with the
amount of specificity required to be the core event.
The development set item depicts a man deliver-
ing a package to a woman, and most responses de-
scribe this as such a transaction, using give, deliver
or receive. The test set item shows a man giving
directions to a woman (Table 1), and this resulted
in a greater degree of variation. Many (particu-
larly NNS) responses portray this not as a canon-
ical giving directions event but as pointing, help-
ing a lost person or reading a map, with A2 more
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Set Total A1Yes A2Yes AvgYes Chance Agree Kappa
Intransitive 2155 0.863 0.855 0.859 0.758 0.978 0.910
Transitive 2155 0.780 0.774 0.777 0.653 0.949 0.853
Ditransitive 2155 0.812 0.786 0.799 0.678 0.924 0.764
Targeted 3390 0.829 0.818 0.824 0.709 0.949 0.823
Untargeted 3075 0.806 0.790 0.798 0.678 0.952 0.872
Core Event 1293 0.733 0.717 0.725 0.601 0.923 0.808
Verifiability 1293 0.845 0.817 0.831 0.719 0.968 0.884
Answerhood 1293 0.834 0.831 0.833 0.721 0.982 0.936
Interpretability 1293 0.818 0.787 0.802 0.682 0.919 0.744
Grammaticality 1293 0.861 0.872 0.866 0.768 0.960 0.827

Table 4: Agreement scores broken down by different properties of the test set: total annotations (Total), yes anno-
tations for Annotator 1 and 2 (A1Yes, A2Yes), average yes annotations (AvgYes), total expected chance agreement
for yeses and nos (Chance), actual raw agreement (Agree) and Cohen’s kappa (Kappa).

likely to accept these less specific descriptions.
Similarly, but to a lesser extent, the transitive

item, which shows a woman hugging a dog (Ta-
ble 1), resulted in disagreements where A2 ac-
cepts the word pet as the object, but A1 rejects
such responses as too vague. Despite the accept-
able scores for core event agreement, the fact
that many disagreements hinge on particular word
choice or annotators having minor differences in
interpretation of the event suggest that greater
agreement could be achieved by providing anno-
tators with suggestions about the acceptable con-
tent for each response. In other words: by more
clearly determining the desired level of specificity
of a response—for the verb or its arguments—
agreement could be higher. The desired speci-
ficity may vary in accordance with the intended
use of the annotations; in the current annotations,
the standard discussed between annotators and in
the guidelines included pragmatic considerations
like naturalness, native-likeness and effort.

Verifiability On the flipside of the question of
whether the core semantic content is expressed is
the question of whether any extraneous content is
added, or any content used in a way which can-
not be verified from the picture. The average yes
rate for verifiability is 83.1%, making it
the third most skewed feature.

The raw agreement score is 96.8%, and the
kappa score is 0.884. By both measures,
this is the second highest agreement score, af-
ter answerhood. Of 42 disagreements for
verifiability, annotators agree that at least
eight are avoidable. Of these, five involve the in-

correct use of plurals. For example, A1 accepted A
man is pointing the way for the women, when the
image shows only one woman, but the guidelines
reject such responses. Two other errors stem from
inaccuracy, with respondents referring to a dog in
the illustration as a cat. Each annotator incorrectly
accepted one such response. One disagreement
involved the misspelling of a crucial object: The
woman is holding the pat. It is unclear whether
pet or cat was intended. This should render the
response unverifiable, but A1 accepted it.

The remaining disagreements are attributable
to different opinions about inferences, with A2
being, in general, more strict. For the ditransi-
tive item, for example, both annotators accept re-
sponses that refer to the woman as a hiker, but only
A1 accepts responses where the man and woman
are collectively referred to as hikers. For the in-
transitive item depicting a woman running, A1 ac-
cepts multiple responses that refer to this as a race,
as well as responses that infer the runner’s motiva-
tion (fitness, leisure, etc.).

Answerhood Capturing the semantic content of
the picture isn’t the only criterion for determin-
ing the quality of a response; the answerhood
feature was added largely as a way to identify re-
sponses that simply do not follow the instructions.
Such responses tend to be: i. responses that do
not directly answer the given question, perhaps by
reframing the perspective so that it seems like a
different question was asked; ii. responses that are
gibberish or very low-effort and entered only so
the participant can proceed to the next item; or iii.
“troll” responses that attempt to be funny or ob-
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scene at the cost of attempting a direct answer.
The majority of participants do attempt to fol-

low the instructions and answer the question, how-
ever, and it is unsurprising that this feature skews
strongly toward yes annotations and results in the
highest raw agreement (98.2%) and kappa (0.936)
scores among the five features.

Of 23 disagreements, seven stem from one an-
notator failing to enforce the requirement that a
targeted response subject be either an appropriate
pronoun or the exact subject given in the question,
without adjectives, relative clauses or other modi-
fiers. Given the question What is the woman do-
ing?, for example, the responses The lady is run-
ning and The woman who in pink is running were
incorrectly accepted by one annotator. While this
criterion may seem strict, this subject-identity rule
separates the task of identifying an attempt to an-
swer the question from the task of verifying infor-
mation (see verifiability above).

Another ten disagreements involve responses
lacking a progressive verb, generally required as
an indication that the response refers to the spe-
cific action in the image and does not merely de-
scribe a state or a general truth (cf., e.g., The
woman is running vs. The woman runs). An-
notator fatigue thus accounts for the majority of
answerhood disagreements.

Interpretability The average yes rate for
interpretability is 0.802; only core
event is less skewed: responses were thus
also more likely to be unacceptable. The raw
agreement score is 91.9% and kappa is 0.744, the
lowest scores among the five features. This was
anticipated, because interpretability is
perhaps the most difficult to define, leaving room
for annotators’ personal judgments. Annotators
must decide whether a given response evokes a
clear mental image, regardless of how well that
mental image matches the PDT image. In this
way, responses such as The man is working which
may be completely verifiable may still fall
short, in that the man could be picking fruit,
building a bridge, and so forth.

The guidelines place some restrictions on what
it means to be a clear mental image. To begin with,
if one were to illustrate the response, the result
would be a complete, representational, canonical
image. It would not be necessary to guess at major
elements, like subjects or objects. All necessary
semantic arguments would be identifiable from the

sentence and thus not obscured or out of the frame
in the mental image. Vague language should be
avoided, but human gender does not need to be
specified, especially when a non-gendered word
like doctor or teacher is natural.

Consider a response like A woman is receiving
a package. By these criteria, the response is an-
notated as 0 because the person or entity deliver-
ing the package is not specified, and an illustrator
would need to either guess or compose the image
with the deliverer oddly out of the frame. A man
is delivering a package, on the other hand, would
be accepted. An illustrator could simply show a
delivery person carrying a package, as an indirect
object would not be necessary for the verb deliver.

Among the 105 annotator disagreements, fa-
tigue accounts for roughly 30; this is difficult to
determine precisely because annotators expressed
difficulty in identifying a single root cause for
many disagreements. Those that are clearly at-
tributable to annotator error tend to involve re-
sponses with some internal inconsistency, as with
subject-verb disagreements, where the number of
the subject is uninterpretable. Among true dis-
agreements, the level of specificity is often the
point of contention, as with core event. For
example, A1 accepted several transitive item re-
sponses with the verb love, as in The woman loves
her dog (Table 1). A2 explained that these are too
vague to illustrate as an action; A1 disagreed, and
this seems to indicate differing judgments regard-
ing the use of love as a dynamic verb.

Grammaticality The grammaticality fea-
ture is the most heavily skewed one, with an aver-
age yes rate of 86.6%. As the only non-semantic
annotation, this is perhaps not surprising.

Grammaticality has a raw agreement score of
96.0% and a kappa of 0.827. Among 52 dis-
agreements, annotators concurred in discussion
that 19 involve an avoidable annotator error. These
are primarily responses with typos, misspellings,
subject-verb disagreement and bare nouns, all re-
jected by the annotation rules. Such cases are
likely attributable to annotator fatigue.

The remainder reflect an unavoidable level of
disagreement. Many of these stem from differing
interpretations of bare nouns as either errors or as
acceptable mass nouns, as in The man is giving di-
rection to the tourist. In several cases, annotators
disagree over prepositions, which are known to be
a common source of disagreement and pose spe-
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cial challenges in the context of learner language
(Tetreault and Chodorow, 2008a,b). For example,
annotators could not agree on the grammaticality
of the prepositions in The girl is asking for help to
the man and The girl is hugging with her cat.

4.4 NS & NNS responses
Agreement scores were also calculated separately
for NS and NNS responses, as shown in Table 5.
Comparing the average rate of yes annotations
shows that the NNSs outperform the NSs by be-
tween roughly 8% and 12% on all features ex-
cept grammaticality. It is not surprising that
NSs outperform NNSs on this feature (90.2% to
79.3%), but to account for their superior perfor-
mance on the other features, one must consider
the fact that the NNSs were recruited from ESL
courses and performed the task with peers and re-
searchers present. The NNSs were more likely to
make a good faith effort than the NSs, the major-
ity of whom performed the task anonymously and
remotely. Furthermore, with twice as many re-
sponses to provide for each item for NSs, fatigue
and boredom may have been a contributing factor.

AvgYes Kappa
Set NS NNS NS NNS
Core 0.686 0.805 0.819 0.767
Verif 0.807 0.882 0.904 0.819
Answer 0.800 0.899 0.928 0.961
Interp 0.764 0.881 0.752 0.697
Gramm 0.902 0.793 0.786 0.863

Table 5: NS and NNS test set responses: average yes
annotations (AvgYes) and Cohen’s kappa (Kappa).

Raw agreement scores are high among both
groups, ranging from 91% to 99.3% (not shown).
Notably, for core event, verifiability
and interpretability, kappa scores are
higher for NS responses than for NNS ones; i.e.,
annotators agree more on NS responses for these
features. It may be no coincidence that these
three features are the most closely tied to mean-
ing, while answerhood gets at pragmatics and
grammaticality focuses on form correctness.

The lower kappa score for NS answerhood
is also attributable to task effects, as a second re-
sponse (as required of NSs) is more likely to be
off topic or in bad faith. For grammaticality,
kappas for annotator agreement are higher for
NNS responses. A relatively low rate of expected

(chance) agreement contributes to this fact. Addi-
tionally, annotators note that many grammar prob-
lems with NNS responses are obvious (e.g., The
man who in yellow is showing the way to a girl,
see Table 1), but the few grammar problems in NS
data are mostly typos and more easily overlooked
due to fatigue (e.g., The man is giving ditections).

5 Conclusion

The SAILS corpus presented here was developed
with specific research in mind, but also in the
hopes that it may be used to address a broad
range of questions. We have demonstrated here a
set of binary features that were successfully im-
plemented with reliable levels of inter-annotator
agreement. These features were defined with an
eye toward content analysis and ICALL, but we
believe the annotations and raw responses could
find uses in question answering, dialogs, prag-
matic modeling, visual references and other chal-
lenges in natural language processing. The feature
set could also be expanded to better suit other pur-
poses, and the task could easily be extended to in-
clude new items. Guidelines, task materials and
annotation tools are included with the corpus.1

A number of lessons have been learned in this
process, and as we intend this work to be ex-
tendable, a few suggestions are in order. The
inclusion of any symbols or numerals should be
avoided as they resulted in response complica-
tions; some participants gave clever “meta” re-
sponses (She’s breathing in music notes, rather
than She’s singing), and others focused on the
symbols rather than the abstract concepts they rep-
resent (The teacher is teaching ‘2 + 2 = 4’, rather
than The teacher is teaching math). The compar-
ison of crowdsourced NS data with the data of
known NS participants and the NNS student data
makes it clear that motivations and task environ-
ment can affect the quality of responses.

Additionally, more clearly defining acceptable
core events could lessen the ambiguity for
annotators. While we intend the NS responses col-
lected here to be useful for comparing with NNS
responses and addressing related research ques-
tions, for specific applications like language test-
ing, the use of expert annotators and constructed
reference materials or gold standards may be
more appropriate (Somasundaran and Chodorow,
2014).

1https://github.com/sailscorpus/sails
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Abstract

Classroom discussions in English Language
Arts have a positive effect on students’ read-
ing, writing, and reasoning skills. Although
prior work has largely focused on teacher
talk and student-teacher interactions, we fo-
cus on three theoretically-motivated aspects
of high-quality student talk: argumentation,
specificity, and knowledge domain. We intro-
duce an annotation scheme, then show that the
scheme can be used to produce reliable annota-
tions and that the annotations are predictive of
discussion quality. We also highlight opportu-
nities provided by our scheme for educational
and natural language processing research.

1 Introduction

Current research, theory, and policy surround-
ing K-12 instruction in the United States high-
light the role of student-centered disciplinary dis-
cussions (i.e. discussions related to a specific
academic discipline or school subject such as
physics or English Language Arts) in instruc-
tional quality and student learning opportunities
(Danielson, 2011; Grossman et al., 2014). Such
student-centered discussions – often called “dia-
logic” or “inquiry-based” – are widely viewed as
the most effective instructional approach for dis-
ciplinary understanding, problem-solving, and lit-
eracy (Elizabeth et al., 2012; Engle and Conant,
2002; Murphy et al., 2009). In English Language
Arts (ELA) classrooms, student-centered discus-
sions about literature have a positive impact on
the development of students’ reasoning, writing,
and reading skills (Applebee et al., 2003; Reznit-
skaya and Gregory, 2013). However, most stud-
ies have focused on the role of teachers and their
talk (Bloome et al., 2005; Elizabeth et al., 2012;
Michaels et al., 2008) rather than on the aspects of
student talk that contribute to discussion quality.

Additionally, studies of student-centered dis-
cussions rarely use the same coding schemes,
making it difficult to generalize across studies
(Elizabeth et al., 2012; Soter et al., 2008). This
limitation is partly due to the time-intensive work
required to analyze discourse data through quali-
tative methods such as ethnography and discourse
analysis. Thus, qualitative case studies have gen-
erated compelling theories about the specific fea-
tures of student talk that lead to high-quality dis-
cussions, but few findings can be generalized and
leveraged to influence instructional improvements
across ELA classrooms.

As a first step towards developing an automated
system for detecting the features of student talk
that lead to high quality discussions, we propose
a new annotation scheme for student talk during
ELA “text-based” discussions - that is, discussions
that center on a text or piece of literature (e.g.,
book, play, or speech). The annotation scheme
was developed to capture three aspects of class-
room talk that are theorized in the literature as im-
portant to discussion quality and learning oppor-
tunities: argumentation (the process of systemat-
ically reasoning in support of an idea), specificity
(the quality of belonging or relating uniquely to
a particular subject), and knowledge domain (area
of expertise represented in the content of the talk).
We demonstrate the reliability and validity of our
scheme via an annotation study of five transcripts
of classroom discussion.

2 Related Work

One discourse feature used to assess the quality
of discussions is students’ argument moves: their
claims about the text, their sharing of textual evi-
dence for claims, and their warranting or reason-
ing to support the claims (Reznitskaya et al., 2009;
Toulmin, 1958). Many researchers view student
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reasoning as of primary importance, particularly
when the reasoning is elaborated and highly infer-
ential (Kim, 2014). In Natural Language Process-
ing (NLP), most educationally-oriented argumen-
tation research has focused on corpora of student
persuasive essays (Ghosh et al., 2016; Klebanov
et al., 2016; Persing and Ng, 2016; Wachsmuth
et al., 2016; Stab and Gurevych, 2017; Nguyen
and Litman, 2018). We instead focus on multi-
party spoken discussion transcripts from class-
rooms. A second key difference consists in the
inclusion of the warrant label in our scheme, as it
is important to understand how students explicitly
use reasoning to connect evidence to claims.

Educational studies suggest that discussion
quality is also influenced by the specificity of stu-
dent talk (Chisholm and Godley, 2011; Sohmer
et al., 2009). Chisholm and Godley found that
as specificity increased, the quality of students’
claims and reasoning also increased. Previous
NLP research has studied specificity in the con-
text of professionally written newspaper articles
(Li and Nenkova, 2015; Li et al., 2016; Louis and
Nenkova, 2011, 2012). While the annotation in-
structions used in these studies work well for gen-
eral purpose corpora, specificity in text-based dis-
cussions also needs to capture particular relations
between discussions and texts. Furthermore, since
the concept of a sentence is not clearly defined in
speech, we annotate argumentative discourse units
rather than sentences (see Section 3).

The knowledge domain of student talk may also
matter, that is, whether the talk focuses on dis-
ciplinary knowledge or lived experiences. Some
research suggests that disciplinary learning oppor-
tunities are maximized when students draw on ev-
idence and reasoning that are commonly accepted
in the discipline (Resnick and Schantz, 2015), al-
though some studies suggest that evidence or rea-
soning from lived experiences increases discus-
sion quality (Beach and Myers, 2001). Previ-
ous related work in NLP analyzed evidence type
for argumentative tweets (Addawood and Bashir,
2016). Although the categories of evidence type
are different, their definition of evidence type is
in line with our definition of knowledge domain.
However, our research is distinct from this re-
search in its application domain (i.e. social me-
dia vs. education) and in analyzing knowledge do-
main for all argumentative components, not only
those containing claims.

3 Annotation Scheme

Our annotation scheme1 uses argument moves as
the unit of analysis. We define an argument
move as an utterance, or part of an utterance, that
contains an argumentative discourse unit (ADU)
(Peldszus and Stede, 2013). Like Peldszus and
Stede (2015), in this paper we use transcripts al-
ready segmented into argument moves and focus
on the steps following segmentation, i.e., label-
ing argumentation, specificity, and knowledge do-
main. Table 1 shows a section of a transcribed
classroom discussion along with labels assigned
by a human annotator following segmentation.

3.1 Argumentation

The argumentation scheme is based on (Lee, 2006)
and consists of a simplified set of labels derived
from Toulmin’s (1958) model: (i) Claim: an ar-
guable statement that presents a particular inter-
pretation of a text or topic. (ii) Evidence: facts,
documentation, text reference, or testimony used
to support or justify a claim. (iii) Warrant: rea-
sons explaining how a specific evidence instance
supports a specific claim. Our scheme specifies
that warrants must come after claim and evidence,
since by definition warrants cannot exist without
them.

The first three moves in Table 1 show a natural
expression of an argument: a student first claims
that Willy’s wife is only trying to protect him, then
provides a reference as evidence by mentioning
something she said to her kids at the end of the
book, and finally explains how not caring about
her kids ties the evidence to the initial claim. The
second group shows the same argument progres-
sion, with evidence given as a direct quote.

3.2 Specificity

Specificity annotations are based on (Chisholm
and Godley, 2011) and have the goal of captur-
ing text-related characteristics expressed in stu-
dent talk. Specificity labels are directly related to
four distinct elements for an argument move: (1)
it is specific to one (or a few) character or scene;
(2) it makes significant qualifications or elabora-
tions; (3) it uses content-specific vocabulary (e.g.
quotes from the text); (4) it provides a chain of
reasons. Our annotation scheme for specificity in-
cludes three labels along a linear scale: (i) Low:

1The coding manual is in the supplemental material.

111



Move Stu Argument Move Argument Specificity Domain
23 S1 She’s like really just protecting Willy from

everything.
claim medium disciplinary

24 S1 Like at the end of the book remember how
she was telling the kids to leave and never
come back.

evidence medium disciplinary

25 S1 Like she’s not even caring about them, she’s
caring about Willy.

warrant medium disciplinary

41 S2 It’s like she’s concerned with him trying to
[inaudible] and he’s concerned with trying
to make her happy, you know? So he feels
like he’s failing when he’s not making her
happy like

claim high disciplinary

42 S2 ”Let’s bring your mother some good news” evidence high disciplinary
43 S2 but she knew that, there wasn’t any good

news, so she wanted to act happy so he
wouldn’t be in pain.

warrant high disciplinary

55 S3 Some people they just ask for a job is just
like, some money.

evidence low experiential

Table 1: Examples of argument moves and their respective annotations from a discussion of the book Death of a
Salesman. As shown by the argument move numbers, boxes for students S1, S2, and S3 indicate separate, non
contiguous excerpts of the discussion.

statement that does not contain any of these ele-
ments. (ii) Medium: statement that accomplishes
one of these elements. (iii) High: statement that
clearly accomplishes at least two specificity ele-
ments. Even though we do not explicitly use la-
bels for the four specificity elements, we found
that explicitly breaking down specificity into mul-
tiple components helped increase reliability when
training annotators.

The first three argument moves in Table 1 all
contain the first element, as they refer to select
characters in the book. However, no content-
specific vocabulary, clear chain of reasoning, or
significant qualifications are provided; therefore
all three moves are labeled as medium specificity.
The fourth move, however, accomplishes the first
and fourth specificity elements, and is labeled as
high specificity. The fifth move is also labeled
high specificity since it is specific to one char-
acter/scene, and provides a direct quote from the
text. The last move is labeled as low specificity as
it reflects an overgeneralization about all humans.

3.3 Knowledge Domain

The possible labels for knowledge domain are: (i)
Disciplinary: the statement is grounded in knowl-

edge gathered from a text (either the one under
discussion or others), such as a quote or a descrip-
tion of a character/event. (ii) Experiential: the
statement is drawn from human experience, such
as what the speaker has experienced or thinks that
other humans have experienced.

In Table 1 the first six argument moves are
labeled as disciplinary, since the moves reflect
knowledge from the text currently being dis-
cussed. The last move, however, draws from a stu-
dent’s experience or perceived knowledge about
the real world.

4 Reliability and Validity Analyses

We carried out a reliability study for the proposed
scheme using two pairs of expert annotators, P1
and P2. The annotators were trained by coding one
transcript at a time and discussing disagreements.
Five text-based discussions were used for testing
reliability after training: pair P1 annotated discus-
sions of The Bluest Eye, Death of a Salesman,
and Macbeth, while pair P2 annotated two sepa-
rate discussions of Ain’t I a Woman. 250 argument
moves (discussed by over 40 students and consist-
ing of over 8200 words) were annotated. Inter-
rater reliability was assessed using Cohen’s kappa:

112



Moves
Argumen-

tation
(kappa)

Specificity
(qwkappa)

Domain
(kappa)

169 0.729 0.874 0.980
81 0.725 0.930 1

Table 2: Inter-rater reliability for pairs P1 and P2.

Argumentation evidence warrant claim
evidence 25 5 0
warrant 6 92 12

claim 0 2 27
Specificity low medium high

low 59 5 3
medium 5 25 2

high 1 6 63
Knowledge
Domain

discipl-
inary

experi-
ential

disciplinary 138 1
experiential 0 30

Table 3: Confusion matrices for argumentation, speci-
ficity, and knowledge domain, for annotator pair P1.

unweighted for argumentation and knowledge do-
main, but quadratic-weighted for specificity given
its ordered labels.

Table 2 shows that kappa for argumentation
ranges from 0.61− 0.8, which generally indicates
substantial agreement (McHugh, 2012). Kappa
values for specificity and knowledge domain are
in the 0.81− 1 range which generally indicates al-
most perfect agreement (McHugh, 2012). These
results show that our proposed annotation scheme
can be used to produce reliable annotations of
classroom discussion with respect to argumenta-
tion, specificity, and knowledge domain.

Table 3 shows confusion matrices2 for annota-
tor pair P1 (we observed similar trends for P2).
The argumentation section of the table shows that
the largest number of disagreements happens be-
tween the claim and warrant labels. One reason
may be related to the constraint we impose on war-
rants - they require the existence of a claim and
evidence. If a student tries to provide a warrant
for a claim that happened much earlier in the dis-
cussion, the annotators might interpret the warrant
as new claim. The specificity section shows rel-
atively few low-high label disagreements as com-

2The class distributions for argumentation and specificity
labels vary significantly across transcripts, as can be seen in
(Lugini and Litman, 2017) and (Godley and Olshefski, 2017).

pared to low-med and med-high. This is also re-
flected in the quadratic-weighted kappa as low-
high disagreements will carry a larger penalty (un-
weighted kappa is 0.797). The main reasons for
disagreements over specificity labels come from
two of the four specificity elements discussed in
Section 3.2: whether an argument move is related
to one character or scene, and whether it provides
a chain of reasons. With respect to the first of these
two elements we observed disagreements in argu-
ment moves containing pronouns with an ambigu-
ous reference. Of particular note is the pronoun it.
If we consider the argument move “I mean even
if you know you have a hatred towards a standard
or whatever, you still don’t kill it”, the pronoun it
clearly refers to something within the move (i.e.
the standard) that the student themselves men-
tioned. In contrast, for argument moves such as “It
did happen” it might not be clear to what previous
move the pronoun refers, therefore creating con-
fusion on whether this specificity element is ac-
complished. Regarding specificity element (4) we
found that it was easier to determine the presence
of a chain of reasons when discourse connectives
(e.g. because, therefore) were present in the ar-
gument move. The absence of explicit discourse
connectives in an argument move might drive an-
notators to disagree on the presence/absence of a
chain of reasons, which is likely to result in a dif-
ferent specificity label. Additionally, annotators
found that shorter turns at talk proved harder to an-
notate for specificity. Finally, as we can see from
the third section in the table, knowledge domain
has the lowest disagreements with only one.

We also (Godley and Olshefski, 2017) explored
the validity of our coding scheme by comparing
our annotations of student talk to English Ed-
ucation experts’ evaluations (quadratic-weighted
kappa of 0.544) of the discussion’s quality. Us-
ing stepwise regressions, we found that the best
model of discussion quality (R-squared of 0.432)
included all three of our coding dimensions: argu-
mentation, specificity, and knowledge domain.

5 Opportunities and Challenges

Our annotation scheme introduces opportunities
for the educational community to conduct futher
research on the relationship between features of
student talk, student learning, and discussion qual-
ity. Although Chisholm and Godley (2011) and we
found relations between our coding constructs and
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discussion quality, these were small-scale studies
based on manual annotations. Once automated
classifiers are developed, such relations between
talk and learning can be examined at scale. Also,
automatic labeling via a standard coding scheme
can support the generalization of findings across
studies, and potentially lead to automated tools for
teachers and students.

The proposed annotation scheme also intro-
duces NLP opportunities and challenges. Exist-
ing systems for classifying specificity and argu-
mentation have largely been designed to analyze
written text rather than spoken discussions. This
is (at least in part) due to a lack of publicly avail-
able corpora and schemes for annotating argumen-
tation and specificity in spoken discussions. The
development of an annotation scheme explicitly
designed for this problem is the first step towards
collecting and annotating corpora that can be used
by the NLP community to advance the field in
this particular area. Furthermore, in text-based
discussions, NLP methods need to tightly couple
the discussion with contextual information (i.e.,
the text under discussion). For example, an argu-
ment move from one of the discussions mentioned
in Section 4 stated “She’s saying like free like, I
don’t have to be, I don’t have to be this salesman’s
wife anymore, your know? I don’t have to play
this role anymore.” The use of the term salesman
shows the presence of specificity element (3) (see
Section 3.2) because the text under discussion is
indeed Death of a Salesman. If the students were
discussing another text, the mention of the term
salesman would not indicate one of the specificity
elements, therefore lowering the specificity rating.
Thus, using existing systems is unlikely to yield
good performance. In fact, we previously (Lug-
ini and Litman, 2017) showed that while using
an off-the-shelf system for predicting specificity
in newspaper articles resulted in low performance
when applied to classroom discussions, exploiting
characteristics of our data could significantly im-
prove performance. We have similarly evaluated
the performance of two existing argument min-
ing systems (Nguyen and Litman, 2018; Niculae
et al., 2017) on the transcripts described in Sec-
tion 4. We noticed that since the two systems were
trained to classify only claims and premises, they
were never able to correctly predict warrants in our
transcripts. Additionally, both systems classified
the overwhelming majority of moves as premise,

resulting in negative kappa in some cases. Using
our scheme to create a corpus of classroom dis-
cussion data manually annotated for argumenta-
tion, specificity, and knowledge domain will sup-
port the development of more robust NLP predic-
tion systems.

6 Conclusions

In this work we proposed a new annotation scheme
for three theoretically-motivated features of stu-
dent talk in classroom discussion: argumentation,
specificity, and knowledge domain. We demon-
strated usage of the scheme by presenting an an-
notated excerpt of a classroom discussion. We
demonstrated that the scheme can be annotated
with high reliability and reported on scheme va-
lidity. Finally, we discussed some possible ap-
plications and challenges posed by the proposed
annotation scheme for both the educational and
NLP communities. We plan to extend our anno-
tation scheme to label information about collabo-
rative relations between different argument moves,
and release a corpus annotated with the extended
scheme.
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Abstract

While dialog systems have been widely de-
ployed for computer-assisted language learn-
ing (CALL) and formative assessment systems
in recent years, relatively limited work has
been done with respect to the psychometrics
and validity of these technologies in evaluat-
ing and providing feedback regarding student
learning and conversational ability. This paper
formulates a Markov decision process based
measurement model, and applies it to text chat
data collected from crowdsourced native and
non-native English language speakers interact-
ing with an automated dialog agent. We inves-
tigate how well the model measures speaker
conversational ability, and find that it effec-
tively captures the differences in how native
and non-native speakers of English accom-
plish the dialog task. Such models could have
important implications for CALL systems of
the future that effectively combine dialog man-
agement with measurement of learner conver-
sational ability in real-time.

1 Introduction
Advances in multimodal dialog technologies have
helped improve the state of the art in interactive
computer-assisted language learning (CALL) and edu-
cational assessment applications in recent years. How-
ever, while much progress has been made with respect
to the technology infrastructure and automated pro-
cessing required in such dialog applications, relatively
less work has carefully investigated the efficacy and
validity of such assessment instruments, for instance,
how well they measure students’ capabilities. In other
words, there is relatively little investigation into the
psychometrics of such CALL applications and dialog-
based assessments1.

1Psychometrics is the field of study concerned with the
theory and technique of psychological measurement, which
includes the measurement of knowledge, abilities, attitudes,
and personality traits. Psychometricians use a specialized set
of statistical tools to create scientifically valid “standardized”
assessments of various behaviors. Typically, a test is consid-

Interactive tasks such as multi-turn conversations
have had limited use as standardized assessments due
in part to the difficulty of evaluating these perfor-
mances. When such assessment tasks are used, the con-
versational performance is scored primarily using hu-
man raters (take for instance, the IELTS exam2). Ma-
chine scoring of complex task performances has made
substantial progress, especially is the domain of written
essays (Shermis, 2014), but has been limited by path
complexity in interactive performances such as dialog
(Graesser et al., 2005).

While technical language use, (e.g. grammar or pro-
nunciation) might be scorable at the word or phrase
grain size, pragmatic conversational ability can only be
judged in the context of the conversation history, per-
sonal goals, and interpersonal dynamics. In a conversa-
tional task, for example, the “correctness” of single ut-
terances cannot be scored independently as their func-
tion, and therefore their value, depends upon the cur-
rent state of the dialog. An utterance at one stage of the
conversation might be of high value while the same ut-
terance at a different point would be detrimental. Each
utterance must be evaluated based on the speaker’s con-
versational goals, what they have already accomplished
in the conversation, and what sequence of interactions
might bring them closer to their goal.

Such data is unsuitable to model with traditional psy-
chometric models that assume conditionally indepen-
dent performance data, such as either classical test the-
ory or item response theory (De Boeck and Wilson,
2004), requiring a more structured and dynamic model
(Mislevy et al., 2002). It is this modeling gap that
we attempt to bridge in this paper using Markov De-
cision Process (or MDP)-based measurement modeling
(LaMar, 2018). To our knowledge, this is the first at-
tempt at developing a psychometric model for dialog
data that explicitly accounts for temporal dependencies
in the observed data stream.

ered to have been standardized if data have been collected on
large numbers of subjects using a set of structured rules for
administration and scoring. These data are used to determine
the mean score and the standard deviation, which the psycho-
metrician then uses to benchmark the performance of those
being tested. For more details, see Association et al. (1999)
or Weiss and Zureich (2008).

2https://www.ielts.org/
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While the field does need more research into psycho-
metrics and validity of dialog-based summative assess-
ments, there has been substantial work by the learn-
ing and formative assessment community in examin-
ing learning gains/progressions and modeling cognitive
strategies in conversational tutoring applications (see
for example Person et al., 2001; VanLehn et al., 2002;
Heffernan and Koedinger, 2002; Michael et al., 2003;
Pon-Barry et al., 2006; Rus et al., 2013). Researchers
have also examined how one can perform adaptive di-
alog management to personalize the instruction to in-
dividual participants over the course of the interac-
tion (Forbes-Riley and Litman, 2011; Vail and Boyer,
2014). This includes using learning progressions, nat-
ural language processing and affective computing to
adaptively selecting appropriate tasks for the learner to
work on, but also adapting the scaffolding while the
learner is working on a tasks (Rus et al., 2013).

Such research has important implications for dialog
system design as well. Particularly for CALL applica-
tions, it is important to integrate formative assessment
of student ability into the dialog management process,
in order to better adapt instruction to student needs,
both in terms of the level of instruction (obtained in
real time through measurement models) as well as the
content and dialog path (decided by the dialog man-
ager). We envision that future statistical dialog systems
could combine statistical dialog management achieved
using Partially Observable Markov Decision Processes
or POMDPs (see for instance Young, 2006; Williams
and Young, 2007; Young et al., 2010) in tandem with
statistical measurement (using POMDP-based models)
in order to develop more effective conversational lan-
guage learning applications.

Our work also directly relates to user modeling in di-
alog systems. While there is plenty of theoretical work
on such models (see for example, Kobsa, 1990; Kass,
2012), implemented statistical versions of user models
typically estimate the probability of a particular user
response given a candidate system response or a inter-
action history thereof (e.g., Eckert et al., 1997; Levin
et al., 2000; Horvitz and Paek, 2001; Pietquin, 2005;
Kim et al., 2008). However, the difference in our case
is that in order to serve as a measurement model of stu-
dent performance, our MDP represents the cognitive
model of an ideal automated interlocutor. Given a spec-
ified set of model parameters, the MDP model can gen-
erate action (or response) probabilities for every pos-
sible conversational state, depending on a learner/user-
specific latent ‘conversational ability’ parameter which
needs to be estimated for each user. Note that for the
purposes of this paper, we will be broadly looking at
conversational ability (in achieving a certain goal), and
not necessarily technical English language proficiency.

The rest of the paper is organized as follows: Section
2 lays out the mathematical foundations of how MDP
models can be used to model learner ability, includ-
ing the equations for statistical parameter estimation.

Section 3 then describes the dialog infrastructure used
along with details regarding the conversational task and
crowdsourcing data collection, followed by the formu-
lation of the task-specific MDP for our use case in Sec-
tion 4. Section 5 analyzes the results of running the
model on our dataset and studies how well the model
differentiates between native and non-native speakers
(who are potential language learners) of English, with
example dialogs included for illustration purposes. Fi-
nally, we conclude with a discussion of the current state
of the art and outstanding issues for future research.

2 Markov Decision Process
Measurement Models

As an extension of inverse reinforcement learn-
ing, partially observable Markov Decision Processes
(POMDPs) have recently been used to represent a cog-
nitive model that describes both human decision mak-
ing and people’s ability to infer the goals and beliefs of
others. Baker et al. (2011) describe a “Bayesian theory
of mind” in which cognition is modeled as a POMDP.
They hypothesize that people act based on their beliefs,
modeled by the state space, action set, and transition
functions, and in accordance to their desires, which are
modeled by the reward structure. With this cognitive
framing, POMDPs can be used for measurement within
a goal-directed task by comparing actions selected by
human participants with the model’s predicted proba-
bility of those actions (LaMar, 2018). The model and
estimation algorithms will be described briefly below;
for full details can be found in LaMar (2018). Note
that in this work we utilize the more constrained MDP,
in which the problem state is assumed to be observable,
but extensions to full POMDP models are a natural next
step.

2.1 Mathematical Formulation
As a decision model, the MDP defines the probability
of selecting of an action a ∈ A given a specific state of
the task s ∈ S. This probability, p(a|s), is known as the
policy. Action selection occurs within the context of
a reward function r(s,a,s′), which specifies the imme-
diate reward for taking action a in state s and entering
state s′ and a transition model p(s′|s,a), which is the
probability of transitioning to a state s′ given that ac-
tion a was taken in state s. An additional parameter
γ ∈ [0,1], known as the discount parameter, represents
the relative value of future versus immediate rewards.
From this specification, one can calculate the Q func-
tion, which is the expected sum of discounted rewards
obtained by taking action a while in state s,

Q(s,a)=∑s′∈S p(s′|s,a)(r(s,a,s′)+ γ ∑a′∈A p(a′|s′)Q(s′,a′)) .
(1)

Note that ∑a′∈A p(a′|s′)Q(s′,a′) is the expected value
of the next state, marginalized over the possible next
actions. Thus the quantity inside the large parentheses
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is the sum of the immediate reward and the discounted
value of the future state. The expectation of this sum
is then taken over all possible states s′ that might result
from action a in state s. The Q function is recursive, as
the value of a state is defined using the Q function it-
self, but can be calculated using dynamic programming
(Howard, 1960).

When MDPs are used in the context of artificial
agents, they generally employ an optimal policy which
selects the action that maximized Q in each state. To
model human performance, however, optimal decision
making is not assumed. Instead a Bolzmann policy is
used (Baker et al., 2009),

p(a|s) ∝ eβQ(s,a), (2)

where β ∈ [0,∞) represents the decision maker’s abil-
ity to choose actions that will result in higher total re-
wards. As β increases, the probability choosing an op-
timal action increases. When β goes to zero, actions
are selected uniformly at random from the action set.

2.2 MDPs for Measurement and Inference
Researchers have recently extended the MDP frame-
work to study the quality of inferences that can be made
about student/learner cognition based on records of ac-
tion; for instance, to model learner goals and beliefs
(Rafferty et al., 2015; Baker et al., 2009), to model in-
quiry strategies (LaMar et al., 2017), and to model stu-
dent decision making ability (LaMar, 2018). Using the
Boltzmann policy (Eq. 2), the MDP model can be seen
as a generative latent-trait model provided that the la-
tent traits of interest can be formulated as parameters of
the model. While elements of the reward function and
the transition model can be parameterized for inference
about the decision maker’s goals and beliefs, here we
focus on the capability parameter β j, a person-specific
Boltzmann parameter, indicating a person’s capability
to optimally solve the given problem. The formulation
of the Q function remains as in Equation 1, except that
we note explicitly the dependency upon the capability
parameter β j. The conditional probability of student j
selecting action a when in state s now becomes

p(a|s,β j) =
exp(β jQ(s,a|β j))

∑a′∈A exp(β jQ(s,a′|β j))
. (3)

If the reward and transition parameters are fixed to ob-
jectively correct values, the Q function acts as a scoring
function, determining the relative value of the actions
available in each state. The β j parameter is then simi-
lar to a traditional ability parameter in IRT, measuring
the extent to which the highest valued action is taken at
each decision point.

2.3 Parameter Estimation
The observed data for student j consist of a sequence
of state-action pairs,

O j = {(s1 j,a1 j),(s2 j,a2 j), . . .(sN j j,aN j j)}, (4)

where N j is the total number of actions taken by the
student. Each pair indicates a state and the action taken
in that state.

The Markov property applies to this model, allow-
ing us to take each action to be conditionally indepen-
dent, conditioned upon student capability and the sys-
tem state in which the action was taken. Thus the prob-
ability of the observed data can be written as

p(O j|β j,µ,σ) =
Tj

∏
t=1

p(at j|st j,β j,µ,σ) (5)

=
Tj

∏
t=1

exp(Q(st j,at j|β j)β j)

∑a′∈A exp(Q(st j,a′|β j)β j)
.

where β j ∼ Lognormal(µ,σ2) (6)

where the optimal value of the person-specific ability
parameter, β̂ j, can be estimated by finding the value of
β j that maximizes this likelihood:

β̂ j = argmax
β j

p(O j|β j,µ,σ) (7)

To estimate the population parameters of the log-
normal distribution3, µ and σ , we use marginal
maximum likelihood (MML), marginalizing over the
person-specific parameter distributions. The person-
specific β j can be estimated either using maximum a-
posteriori (MAP) or maximum likelihood estimation
(MLE) methods. With smaller population sizes the
MLE estimation has been found to be more robust and
is used for this study. Both the MML and MLE es-
timations are performed using a two-phase numerical
optimization with a global optimization algorithm fol-
lowed by a local optimization algorithm, both drawn
from the nlopt library. Gaussian quadrature is used for
the approximation of the integrals and the Q-function
is approximated using policy iteration methods.

3 Dialog Data
3.1 Dialog System
We use an open-source dialog system4 to develop a
text-based chatbot application. But note that this work
is not limited to or dependent on the dialog system be-
ing used. Indeed, there are multiple academic (Olym-
pus (Bohus et al., 2007), Alex (Jurčı́ček et al., 2014),
Virtual Human Toolkit (Hartholt et al., 2013), Open-
Dial5, etc.) and industrial (Voxeo6, Alexa 7, etc.) im-
plementations of dialog systems, any of which can be

3We chose to model β j using the Lognormal distribution
as it has a non-negative range and has been used to describe
growth patterns in nature. Moreover, person-specific “abil-
ity” can be argued to be the result of a growth process (mul-
tiplicative rather than additive).

4Link to software anonymized.
5http://www.opendial-toolkit.net
6https://voxeo.com/prophecy/
7https://developer.amazon.com/alexa
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Figure 1: Example webpage screenshot of the text dialog interface that participants might see for the task described in this
paper.

used, but many of these often use special architectures,
interfaces, and languages paying relatively less atten-
tion to existing W3C and other industry standards (see
Ramanarayanan et al. (2017) for more details). We
however choose to use the Anonymous cloud-based di-
alog system for its standards-compliance, modularity
and flexibility in developing both text- and speech-
based applications. In this study we will limit ourselves
to text-based dialog for simplicity.

3.2 Conversational item design
This study leverages a conversational practice task de-
veloped for English language learners, where subjects
are asked to pose as a customer services representative
at a pizza restaurant, and field an order from an au-
tomated customer (played by the dialog system). See
Figure 1 for a screenshot of the web-based dialog inter-
face that participants interacted with. Participants are
instructed that their primary goal is to sell a pizza while
ensuring that they collect all information necessary to
complete the order (such as the name of the customer,
his address if delivery is requested, etc.). They are fur-
ther instructed that if they manage to sell the customer
mushroom toppings, they will be awarded a bonus for
task performance. We used regular expressions to per-
form the natural language understanding. Figure 2 de-
picts the dialog flow of the conversational item. Recall
that for the purposes of this paper, the target of mea-
surement is the student’s ability to navigate conversa-
tional conventions and achieve the pre-specified task
goal (to maximize the pizza sale) through conversation
with the automated customer, and not their technical
language skills.

3.3 Crowdsourcing data collection
We used Amazon Mechanical Turk for our crowdsourc-
ing data collection experiments. Crowdsourcing has
been used in the past for the assessment of dialog sys-
tems as well as for collection of dialog interactions (see

for instance (McGraw et al., 2010; Rayner et al., 2011;
Jurcıcek et al., 2011; Ramanarayanan et al., 2016)). In
addition to interacting with the text chatbot interface
to complete the conversational task, workers were re-
quested to fill out a 2-3 minute survey regarding dif-
ferent aspects of the interaction, such as their over-
all experience, how engaged they felt while interact-
ing with the system, how well the system understood
them, and basic demographic information. Particularly
relevant for this study are callers’ self-reported first lan-
guage, and their ratings of system performance, defined
as a qualitative measure of how the system performed
as per caller expectations and whether the system re-
sponses were appropriate. In all we collected and ana-
lyzed dialogs from 390 participants, 54% of which self-
reported as native English language speakers and 70%
of which were male, primarily in the 20–40 age range.
See Tables 3–7 for example dialogs.

4 MDP Model for the Pizza Dialog Task

Table 1: The action set and transition function for the
MDP PizzaOrder cognitive model.

Action Prob Customer ...
RequestToppings 0.6 requests cheese pizza
RequestToppings 0.4 requests mushroom pizza
SuggestMushroom 0.4 requests cheese pizza
SuggestMushroom 0.6 requests mushroom pizza
AskDelivery 0.5 wants delivery
AskDelivery 0.5 wants take-out
AskName 1.0 gives name
AskSize 1.0 orders large pizza
AskAddress 1.0 gives address
AskPhone 1.0 gives phone number
SayOther 1.0 no effect
EndConversation 1.0 hangs up
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Figure 2: Workflow design of the pizza restaurant-based conversational task deployed and analyzed in this paper. The dialog
flow employs a slot-filling structure, where the customer service representative has to ask the automated customer multiple
questions in order to fill slots on an order form.

Table 2: The reward table for the simple Pizza Order
task

Reward Type Value Trigger
PizzaOrdered 3 end-of-call and got

all needed info
Mushrooms 1 end-of-call and Piz-

zaOrdered + mush-
rooms ordered

CompleteInfo 0.5 end-of-call and also
got phone #

AngryCustomers -0.3 any action while cus-
tomer is annoyed

TimeIsMoney -0.2 any action

To serve as a measurement model for student perfor-
mance, the MDP must represent the cognitive model of
an ideal pizza shop representative. The full MDP cog-
nitive model consists of a set of actions, a state space,
the transition functions, and the reward structure. In Ta-
ble 1 the action set is listed in the left column, while the
transition function is partially illustrated by the proba-
bility of effects from each action. The state space is

defined by a set of state variables which includes in-
formation slot boolean variables such as gotSize, go-
tAddress, and gotCustomerName. For order informa-
tion which might affect the choice of future actions,
we model the possible values along with a value for
“unknown.” For example, the wantsMushroom variable
has three discrete values, 0 for unknown, -1 for “does
not want mushrooms,” and 1 for “wants mushrooms;”
wantsDelivery is coded similarly. The possibility of
customer annoyance (isAnnoyed), which was ommitted
from Table 1 for clarity, adds complexity to the dialog
task. The cognitive model assumes that every time the
customer is asked a question that they have already an-
swered they have a .5 probability of becoming annoyed.
This means that while pestering the customer to order
mushrooms might result in an mushroom pizza order,
it also might result in an annoyed customer. Annoyed
customers do not buy pizzas. The final isSold state
variable gets set to 1 only if all the required informa-
tion has been gathered:name, topping-preference, size,
delivery-or-takeout, and address (in the case of deliv-
ery) and the customer is not annoyed. Note that the
model is intended to reflect the thinking of a competent
participant engaging with that task and thus includes
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stochastic transitions based on “likely” outcomes from
different conversational moves. For example, in the test
task the customer will always ask for delivery, however
the cognitive model for the pizza salesperson gives the
probability of the customer wanting delivery as .5, as
the representative does not know whether the customer
will want delivery until they ask.

The rewards are defined based on actions taken and
values of the state variables. Table 2 shows the five
reward or cost conditions used for this model. The
biggest reward comes from completing the call with a
pizza ordered, for a reward of 3 points. An additional
point is awarded if the pizza order includes mush-
rooms and an additional half point is given for col-
lecting the not-required, but nice-to-have phone num-
ber of the customer. When customers get annoyed, the
whole conversation gets unpleasant causing a cost of
0.3 points (equivalently a reward of -0.3) for every ac-
tion taken while the customer is annoyed. Finally, each
and every action costs 0.2 points. This “time cost” is
essential for motivating efficiency in action planning.

Given this specification, the PizzaOrder MDP can
generate action probabilities for every possible conver-
sational state, dependent upon the β j parameter, which
we take to be conversational ability as demonstrated by
the task.

5 Analyses and Observations

Table 3: Example dialog from a native Hindi speaker
(log(β ) =−2.75).

Speaker Dialog
Human Hello, Welcome to Tony’s Pizza Shop,

How may I help you today?
System Hi! I’d like to order a large pizza.
Human Of course. May I know your name please?
System My name’s Mike Anderson.
Human Sure sir, We have a special on mushroom

pizza this week, would you be interested in
that?

System Just cheese, please.
Human Is that a large or an extra large? A large

cheese pizza is $14, andd an extra large is
$16.

System Just cheese, please.
Human Large cheese pizzza.
System Just cheese, please.
Human the pizza will be ready in 30 minutes
System Alright, thanks! Goodbye!

We ran the MDP measurement model over the full
data set of 390 dialogs, estimating the person-specific
conversational ability (which, again, is their ability to
achieve the pre-specified task goal through conversa-
tion, and not their technical language skill) for each
dialog as β j. In our analyses we examine log(β j)
which should follow a more familiar normal distribu-

Table 4: Example dialog from a native Tamil speaker
(log(β ) =−1.26).

Speaker Dialog
Human hello
System Hi! I’d like to order a large pizza.
Human Are you want mushroom pizza?
System Just cheese, please.
Human Are you want large one?
System I’d like a large, please.
Human It will take 30 minutes to deliver.
System Alright, thanks! Goodbye!

Table 5: Example dialog from a native Dutch speaker
(log(β ) = 0.258).

Speaker Dialog
Human Hi, welcome to Tony’s Pizza Shop
System Hi! I’d like to order a large pizza.
Human Absolutely, what kind of pizza would you

like? We have a special on mushroom
pizza, where you can get a medium mush-
room pizza for just $1

System Just cheese, please.
Human A large cheese pizza is nearly 10 times as

expensive as a mushroom
System Okay, I’d like mushrooms on my pizza as

well.
Human Absolutely, would you like it delivered or

do you want to pick it up?
System Delivery, please.
Human And what’s your name and adress?
System My name’s Mike Anderson.
Human and your adress?
System I’m sorry, I didn’t catch that. Can you re-

peat that, please?
Human and your address?
System 23 Maple Street.
Human Ok, that will take 30min
System Alright, thanks! Goodbye!

tion. To evaluate the validity8 of the resulting esti-
mates, we analyzed them vis-a-vis their reported na-
tive language, with the expectation that native-English
speakers would generally have higher conversational
ability9. Recall that our sample included 209 native
English speakers, and 181 participants who reported a
non-English language as their native tongue.

We observed that participants who reported English
as their first language had average log(β j) estimates
0.31 logits higher than players who reported a non-
English language as their first language (t = 3.00,df =

8In other words, does this test actually measure what it
sets out to measure?

9Note that native language is not the best variable to use
to evaluate validity, merely something that might be a cor-
relate thereof. We used this in lieu of better evidence for
establishing validity. Future work will explicitly look into
measuring better correlates of validity.
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Table 6: Example dialog from a native Indonesian
speaker (log(β ) = 1.57).

Speaker Dialog
Human Hello, thanks for calling Tony’s Pizza.

How can I help you?
System Hi! I’d like to order a large pizza.
Human Would you like mushrooms on your pizza?
System Just cheese, please.
Human Will this be take out or delivery?
System Delivery, please.
Human May I have your address?
System 23 Maple Street.
Human And your phone number?
System My number’s 5550134.
Human And your name please.
System My name’s Mike Anderson.
Human Great, we will send the pizza over in 30

minutes.
System Alright, thanks! Goodbye!
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Figure 3: Estimated conversational ability by partici-
pant’s self-reported primary language.

374, p = 0.003). Figure 3 shows a boxplot of the esti-
mated log(β ) values grouped by native language.

We also compared the dialog-ability estimates to
participant-reported satisfaction ratings with respect to
the dialog system performance. Here we hypothesize
that participants who used phrases that the dialog en-
gine did not recognize would both be dissatisfied with
the performance of the system and have low estimated
conversational ability. In our sample, 254 participants
reported that the system performed well (4 or 5 on a 5-
point Likert scale), while 103 participants rated the sys-
tem at a 3 or lower. Players who rated that the system
performed well had an average log(β j) estimate 0.47
logits higher than those who rated the system poorly
(t = 3.64,df = 159.7, p < 0.001) (Figure 4), which
seems to conform with our hypothesis. However, note
that these system performance ratings are subjective
and might vary depending on the speaker sample and
specific conversational item under study.

While these results provide, as yet, only weak valid-
ity evidence for the measurement model, they do indi-
cate that the model is performing as expected. We also
examined the actual dialogs of different participants in-
teracting with the system in order to better understand
how the model of student dialog reflects actual student
performance. We have listed example dialogs of non-
native participants interacting with the system of dif-
ferent estimated dialog ability and self-reported system
performance rating. Note that these are presented as
is, without correcting for errors in spelling or grammar.
Table 3 shows an example dialog which was assigned a
low dialog ability rating (log(β j)) as well as a low sys-
tem performance rating. In this case, while the Hindi
speaker mentioned the deal on mushrooms, he asked
for the pizza size again even though the automated cus-
tomer had already given him that information. Per our
earlier model specification, this might have ‘annoyed’
the automated customer. Crucially, though, he failed
to ask the automated customer whether he wanted de-
livery or not, and subsequently his address, which re-
sulted in a low log(β j) score on the task overall. Table
4 shows an example where the automated customer did
not get annoyed, but it nonetheless shows clear gaps in
the non-native participant’s conversational competence
in achieving the goal of maximizing the sale. In con-
trast to these examples, the Indonesian speaker (Table
6) asked the automated customer for each of the requi-
site pieces of information to complete the task success-
fully resulting in a successful interaction that received
a high log(β j) score, despite the fact that he didn’t sell
the customer mushrooms. A native speaker of Dutch
(Table 5) who performed well on the task in general,
but was scored slightly lower (log(β j) = 0.258) did
persist in selling mushroom toppings to the automated
customer while asking for his name and address, but
incorrectly spelled the word ‘address’. However, the
participant caught this error in the next dialog turn, ul-
timately resulting in successful completion. Note that
there were also cases that received a high log(β j) score
with low system performance ratings, many of which
were due to system natural language understanding is-
sues. Going forward, we will aim to improve this as-
pect of the system to improve user experience and mod-
eling accuracy.

6 Discussion and Outlook

We have presented a Markov decision process-based
measurement model (MDP-MM) for the assessment of
of learners’ ability to complete a simple customer in-
teraction dialog task. We put forth a formal mathe-
matical description of the model including a maximum
likelihood based method to estimate the parameters of
the model given input data. On applying the model to
crowdsourced customer services dialog interactions at
a pizza restaurant, we observed that the model abil-
ity (log(β j)) estimate is able to differentiate between
native and non-native speakers of English and partic-
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Figure 4: Estimated conversational ability by par-
ticipant’s rating of the system’s performance, where
“Low” indicates a rating of 1, 2, or 3 and “High” in-
dicates a rating of 4 or 5 on the 5-point Likert scale.

ipant ratings of system performance in a statistically
significant manner. Note that the MDP-MM is partic-
ularly useful over traditional methods of measurement
when the dialogs increase in complexity and branching,
and the resulting paths cannot be easily enumerated for
scoring.

We plan to investigate several lines of research go-
ing forward. First, while we have shown the model’s
efficacy in capturing conversational ability of partici-
pants in successfully completing a given task to a cer-
tain extent, neither the degree of nativeness nor their
rating of system performance are ideal correlates to es-
tablish the validity of the model. A more appropriate
variable might be, for instance, an 3rd-party expert rat-
ing of their conversational ability (where experts could
be English language teachers, for instance). In addi-
tion, we hand-crafted a specific set of actions, transi-
tion probabilities and rewards for the model presented
in this paper based on our subjective expertise. Care-
ful selection of these parameters is important because
they directly influence model behavior. Future itera-
tions could benefit from a more scientifically objective
method of model specification. We will also need more
data from more conversational items and participants
to concretely establish the utility of the model and its
applicability to a wide variety of dialog use cases in a
statistically significant manner.

Second, while this paper has focused on conversa-
tional task ability, our longer term goal is to apply such
a model to the measurement of conversational language
proficiency. This will require modifications to both the
task (the goals, dialog flow design, natural language un-
derstanding and dialog management logic) as well as
the specific variables we measure (such as fluency, lan-
guage use, vocabulary and grammatical accuracy, prag-

matics and historical discourse context, among others).
Third, while the proposed model assumes that the

state of the system is known at every given point of
time for simplicity, relaxing this assumption is a natural
next step. In such a case, we would have to use a par-
tially observable extension of the MDP-MM model (or
a POMDP-MM) that explicitly models the uncertainty
in the observation process that estimates the state of the
system at every time step.

A fourth important future research direction, as men-
tioned in this paper’s introductory paragraphs, involves
the integration of statistical measurement of student
conversational ability with dialog management, espe-
cially for computer-assisted language learning (CALL)
or formative assessment applications. Such integration
would leverage the measurement of learner conversa-
tional ability and/or language proficiency into the dia-
log manager, allowing one to adapt the conversational
instruction flow both based on the content of what the
learner said, as well as his/her conversational ability. In
addition, popular statistical dialog management mod-
ules are based on POMDPs, which might allow for eas-
ier combination with the POMDP-based measurement
model into a unified model, given that both share the
underlying mathematical framework. For example, in
such a scenario, one could imagine that the user action
model, user goal model and dialog model in a POMDP-
based dialog manager (that estimate the user’s next ac-
tion and state, and the next dialog system state, respec-
tively, as described in Young, 2006) would now depend
(and be conditional) on the user’s conversational ability
and/or language proficiency estimate.

Finally, we also plan to evaluate model efficacy and
integrability into a full-blown spoken dialog scenario
(as opposed to text chat, as in this paper). In addi-
tion, the current paper uses simple regular expression-
based natural language understanding; incorporating
more accurate statistical natural language understand-
ing modules could further improve model performance
and estimation accuracy. Such improvements and the
early nature of the model notwithstanding, the relative
lack of previous work in measuring conversational abil-
ity in CALL dialogue and the results presented in this
paper speak to the necessity and potential of such mea-
surement models in developing more comprehensive
and effective CALL applications.
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Abstract

While immediate feedback on learner lan-
guage is often discussed in the Second Lan-
guage Acquisition literature (e.g., Mackey
2006), few systems used in real-life educa-
tional settings provide helpful, metalinguistic
feedback to learners.

In this paper, we present a novel approach
leveraging task information to generate the ex-
pected range of well-formed and ill-formed
variability in learner answers along with the
required diagnosis and feedback. We combine
this offline generation approach with an online
component that matches the actual student an-
swers against the pre-computed hypotheses.

The results obtained for a set of 33 thousand
answers of 7th grade German high school stu-
dents learning English show that the approach
successfully covers frequent answer patterns.
At the same time, paraphrases and meaning
errors require a more flexible alignment ap-
proach, for which we are planning to comple-
ment the method with the CoMiC approach
successfully used for the analysis of reading
comprehension answers (Meurers et al., 2011).

1 Introduction

In Second Language Acquisition research and
Foreign Language Teaching and Learning prac-
tice, the importance of individualized, immediate
feedback on learner production for learner pro-
ficiency development has long been emphasized
(e.g., Mackey 2006). In the classroom, the teacher
is generally the only source of reliable, accurate
feedback available to students, which poses a well-
known practical problem: in a class of 30 students,
with substantial individual differences warranting
individual feedback to students, it is highly chal-
lenging for a teacher to provide feedback in class
or, in a timely fashion, on homework.

∗ http://icall-research.de

Intelligent Language Tutoring Systems (ILTS)
are one possible means of addressing this prob-
lem. For form-focused feedback, ILTS have tradi-
tionally relied on online processing of learner lan-
guage (Heift and Schulze, 2007; Meurers, 2012).
They model ill-formed variation either explicitly
via so-called mal-rules (e.g., Schneider and Mc-
Coy 1998) or by allowing for violations in the lan-
guage system using a constraint relaxation mech-
anism (e.g., L’Haire and Faltin 2003).

One problem with such approaches is that they
do not take into account what the learner was try-
ing to do with the language they wrote, e.g., which
task or exercise they were trying to complete. Yet
the potential well-formed and ill-formed variabil-
ity exhibited by learner language can lead to vast
search spaces so that integrating top-down, task
information is particularly relevant for obtaining
valid interpretations of learner language (Meur-
ers, 2015; Meurers and Dickinson, 2017). Given
that incorrect feedback is highly problematic for
language learners, ensuring valid interpretations is
particularly important. Combining the bottom-up
analysis of learner data with top-down expecta-
tions, such as those that can be derived from an
exercise being completed, can also be relevant for
obtaining efficient processing.

In this paper, we present an approach that
pursues this idea of integrating task-based infor-
mation into the analysis of learner language by
combining offline hypothesis generation based on
the exercise with online answer analysis in order
to provide immediate and reliable form-focused
feedback. Basing our approach on curricular de-
mands and the exercise properties resulting from
these demands, we generate the space of well-
formed and ill-formed variability expected of the
learner answers, using the well-formed target an-
swers provided for the exercises as a starting point.
We thus avoid the problems introduced by directly
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analyzing potentially ill-formed learner language.
Since generation is done ahead of time, before
learners actually interact with the system, we also
avoid the performance bottleneck associated with
creating and exploring the full search space at run
time. The resulting system can be precise and fast
in providing feedback on the grammar concepts in
a curriculum underlying a given set of exercises.

The paper is organized as follows: Section 2
discusses relevant related work before section 3
introduces our system and section 4 provides an
overview on the data we elicit. In section 5,
we dive into the feedback architecture and ex-
plain both the offline and online component of the
mechanism in detail. Section 6 then provides both
a quantitative and a qualitative evaluation before
section 7 concludes the paper.

2 Related Work

Intelligent Language Tutoring Systems (ILTS)
proposed in the literature range from highly ambi-
tious conversation machines (e.g., DeSmedt 1995)
to more modest workbook-like approaches (e.g.,
Heift 2003; Nagata 2002; Amaral and Meurers
2011). However, as discussed by Heift and
Schulze (2007), the vast majority of the systems
are research prototypes that have never seen real-
life testing or use. We therefore limit our discus-
sion here primarily to practical systems that are in
use for foreign language learning.

In the domain of general-purpose tools, there
are a number of writing aids and gram-
mar checkers available, such as Grammarly
(http://grammarly.com) and LanguageTool (http:
//languagetool.org). They offer grammar and
spelling error correction for arbitrary English text
and are intended to assist (non-native) writers of
English in composing texts. Such general-purpose
systems do not have any information on what the
writer is trying to accomplish with the text. As a
result, while local grammatical problems such as
subject-verb agreement are well-within reach for
such tools, the identification of contextually inap-
propriate forms, such as wrong tense use in a nar-
rative, require task information.

One step further in the direction of task-
based language learning, one finds tools such as
duolingo (von Ahn, 2013). duolingo offers ex-
ercises for learners of various languages, mainly
based on translation into or from the target lan-
guage. Learners can input free-text answers

and obtain immediate feedback from the system.
However, while for certain phenomena the feed-
back is quite explicit and accurate (Settles and
Meeder, 2016, p. 1849), cases such as the one in
Figure 1 are not handled appropriately.

Figure 1: Problematic feedback in duolingo

The learner used the -ing-form of the verb to
remember in place of the simple present. Instead
of identifying the form and recognizing that the
lemma is the same as that in the expected an-
swer, duolingo responds with ‘You used the wrong
word’, which is misleading the learner to select an-
other word. For more appropriate feedback, more
metalinguistic information about the identified and
the expected form would be needed. However,
manually specifying such information quickly be-
comes infeasible even for relatively closed task
types, as shown by Nagata (2009, p. 563) in the
context of the Robo-Sensei system.

Laarmann-Quante (2016) proposes an approach
for the diagnosis of spelling errors in the writing
of German children that was independently devel-
oped but is conceptually similar to the perspective
we pursue in this paper. Instead of attempting to
process the erroneous forms directly, Laarmann-
Quante obtains phonological analyses for correct
spellings and uses rewrite rules that emulate typi-
cal misspellings to derive alternatives that can then
be matched against actual input. However, the ap-
proach is limited to spelling errors and relies heav-
ily on a model of German orthography. It does not
target other linguistic levels of analysis, such as
morphology and syntax, and the potential interac-
tion of well-formed and ill-formed variability at
the sentence level.

3 The Tutoring System

The feedback mechanism discussed in this arti-
cle is implemented as part of a web-based on-
line workbook FeedBook (Rudzewitz et al., 2017;
Meurers et al., 2018). The foreign language tutor-
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ing system is an adaptation of a paper workbook
for a 7th grade English textbook approved for use
in German high schools. The FeedBook provides
an interface for students to select and work on ex-
ercises. For exercises that aim at teaching gram-
mar topics, students receive automatic, immediate
feedback by the system informing them whether
their answer is correct (via a green check mark)
or why their answer is incorrect (via red color,
highlighting of the error span, and a metalinguistic
feedback message). The message is formulated as
scaffolding feedback, intended to guide the learner
towards the solution, without giving it away. The
process of entering an answer and receiving feed-
back can be repeated, incrementally leading the
student to the correct answer. If there are multiple
errors in a learner response, the system presents
the feedback one at a time.

Students can save and resume work, interact
with the system to receive automatic feedback and
revise their answers, and eventually submit their
final solutions to the teacher. In case the answers
are all correct in a selected exercise, the system
grades the submission automatically, requiring no
work by the teacher. For those answers that are
not correct with respect to a given target answer,
the teacher can manually annotate the with feed-
back parallel to the traditional process with a pa-
per workbook. Any such manual feedback is saved
in a feedback memory and suggested automati-
cally to the teacher in case the form occurs in an-
other learner response to this exercise. The sys-
tem provides students with immediate feedback in
circumstances where they would normally not re-
ceive it, or only after long delay needed for col-
lecting and manually marking up homework as-
signments, while at the same time relieving teach-
ers from very repetitive and time-consuming work.
The exercises are embedded in a full web applica-
tion with a messaging system for communication,
a profile management including e-mail settings,
tutorials for using the system, classroom man-
agement, and various functions orthogonal to the
NLP-related issues (cf. Rudzewitz et al., 2017).

4 Elicited Data

The FeedBook system is being used since October
2016 in several German secondary schools as part
of the regular 7th grade English curriculum. The
data analysis discussed here is based on a March
2018 snapshot of the data. We collected 6341 sub-

missions of complete exercises by 538 7th grade
students from whom we received written permis-
sion to use their data in pseudonymized form for
research.

From the total of 234 tasks implemented in the
system, in the current system version 111 pro-
vide the immediate feedback that is introduced
and evaluated in this paper. The feedback-enabled
tasks include 64 short answer tasks (usually one
sentence as input) and 47 fill-in-the-blanks tasks
(usually one word to one phrase as input).

The frequency distribution in Figure 2 shows
the number of submissions (y-axis) per task in
the system, ranked from most frequent to least
frequent (x-axis). Blue bars denote that the task
provides immediate feedback, and yellow bars in-
dicate that the system does not provide any au-
tomatic feedback (these are the tasks where the
teacher can manually provide feedback through
the system). The figure shows a tendency that
more submissions exist for tasks that provide im-
mediate feedback: out of the top 50 most worked
on tasks, 36 of them (72%) provide immediate
feedback. These 36 tasks are balanced between
17 fill-in-the-blanks and 19 short answer tasks.

Each submission for a feedback-enabled task
provides an interaction log that stores intermedi-
ate answers and the feedback that the system pro-
vided to each answer. In section 6, we use these
intermediate answers in an evaluation of the feed-
back approach, after introducing the architecture
in the next section.

5 Feedback Architecture

In this section, we describe the feedback mecha-
nism implemented as part of the tutoring system.
The main idea behind our approach is that identi-
fying the well-formed and ill-formed variability of
possible learner answers elicited by different tasks
is the key to providing precise feedback. Our feed-
back mechanism thus relies on well-formed tar-
get answers available for each task and generates
hypothesis about possible learner answers on the
basis of these target answers. This is a key dif-
ference to the use of traditional mal-rules, which
operate on learner language and thus need to an-
alyze the potentially ill-formed interlanguage of
students: instead of trying to model learner lan-
guage, we start from the standard, native language,
for which most computational linguistic models
have been developed.
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Figure 2: Frequency of submissions per task (blue = immediate feedback support, yellow = no automatic feedback).

The architecture allowing the system to provide
immediate feedback consists of two parts: an off-
line generation process of hypotheses modelling
possible well-formed and ill-formed learner an-
swers, and an online matching process that takes
the generated hypotheses and matches them in a
flexible manner with learner data.

5.1 Offline Hypothesis Generation
The automatic hypothesis generation mechanism
works in three steps: i) linguistically analyzing the
target answer of an exercise, ii) applying rules to
generate alternative forms, and iii) storing the gen-
erated forms together with an error diagnosis. In
the following, these steps are explained in detail.

As a first step, each target answer of an exercise
is analyzed with the help of different NLP tools in
order to build a rich linguistic representation as a
basis for all further analyses. Table 1 shows the
tools employed for analysis.

task tool
segmentation ClearNLP

(Choi and Palmer, 2012)
part-of-speech tagging ClearNLP
dependency parsing ClearNLP
lemmatization Morpha

(Minnen et al., 2001)
morphological analysis Sfst (Schmid, 2005)

Table 1: NLP tasks and tools

The analyses are encoded in a UIMA Common
Analysis Structure (CAS, Götz and Suhre, 2004).
A CAS is a source text with multiple layers of
annotations, such as a token annotation layer or
a dependency-tree annotation layer. By using a
DKPro wrapper (de Castilho and Gurevych, 2014)

around the UIMA annotators, we ensure flexibility
and interchangeability of the specific implementa-
tions of the NLP tools.

On the CAS representation of the analyses, we
run 40 custom UIMA annotators to explicitly an-
notate further linguistic properties such as com-
plex tenses or irregular comparative forms. The
annotators and the subsequently applied rules de-
scribed below are designed to cover all grammar
topics in the 7th grade English curriculum.

The CAS is then used as input to rules that
introduce changes modeling the space of well-
formed and ill-formed variability. Some rules in-
troduce changes that yield grammatical forms that
are not appropriate in this task context, for exam-
ple changing the tense of verbs. Other rules gen-
erate forms that are never grammatical in any con-
text, such as a regular past tense inflection applied
to the lemma of an irregular verb.

When introducing a change, the current CAS is
first cloned to yield a deep copy. Then this clone is
edited by changing the source text and all linguis-
tic analysis layers that refer to the source text. Fur-
thermore a diagnosis denoting both the type and
span of the change introduced as well as the cat-
egory of the original form is added. The diagno-
sis thus makes it possible to see what change has
been introduced related to which part of the data.
If a previous diagnosis was present, it is put into a
history list and replaced by the new diagnosis.

For rules generating well-formed alternatives,
such as tense changes or contraction expansions,
we run the NLP tools used for analyzing the ini-
tial CAS on the modified clone and then keep the
annotations inside the span that has changed in
the rule application. For ill-formed alternatives,
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we manually encode the linguistic analyses of the
changed forms. In any case, the result is a mini-
mally modified clone with an updated, full linguis-
tic analysis. This input-output symmetry makes it
possible to apply rules to the output of other rules.
This is necessary when chains of rules need to be
applied, such as first changing the tense and then
altering the verbal morphology of this tense’s re-
alization. Each rule is self-contained in that it en-
codes the conditions under which it applies and the
complete logic of the changes when applied.

For the purpose of yielding only desired chains
of rule applications and to avoid cycles where two
or more rules would add and remove the same
forms repeatedly, we group rules in so-called “rule
layers”. A rule layer is a sorted set of rules that
are applied in parallel and do not influence each
other. Each of the rules in a layer that is applica-
ble yields a minimally modified clone that serves
as input to the second layer of rules. By introduc-
ing a “self-copy rule” in each layer we ensure that
the original, unmodified target answer percolates
through all layers and each rule in a deeper layer
can be applied to the original answer as well as to
the modified clones.

The algorithm is inspired by graph search al-
gorithms, especially breadth-first graph search
(Moore, 1959). In our case, the nodes in the net-
work are CAS data structures with a rule appli-
cation history, and the edges in the graph are in-
stances of rule applications. An edge can only
be traversed if the conditions of applicability de-
fined in the corresponding rule are met. We thus
restrict the search space based on task informa-
tion, here: the linguistic analysis of the target an-
swer(s). The depth of the search tree corresponds
to our rule layers. Figure 3 illustrates the process
of generating target hypotheses from a target an-
swer by combining multiple layers of rule appli-
cations. Table 2 shows a small excerpt from the

target
answer

rule 1

rule 2

rule 3

. . .

rule i

layer 1 layer 2 layer m

rule 5

rule 6

rule 7

. . .

rule j

. . . rule 8

rule 9

rule 10

. . .

rule n

hypothesis 1

hypothesis 2

hypothesis 3

. . .

hypothesis q

Figure 3: Multi-layered hypotheses generation process

set of answers generated for a tense and and for
a comparative target answer. The table illustrates
that the output of any previous layer serves as in-
put to deeper layers. Every hypothesis generated
at any layer is saved to the data base.

target layer 1 layer 2 layer 3
are you doing are you doing are you doing are you doing

were you doing were you do was you do
have you been doing have you been do have you been dos
had you been doing had you been do had you been dos
will you do are you do will you dos
did you do . . . did you dos
. . . are you dos

was you doing
is you dos
is you doing
. . .

friendlier friendlier friendlier friendlier
more friendly more friendlier most friendlier
friendlyer more friendlyer most friendlyer
. . . friendliest

. . . friendlyest
. . .

Table 2: Examples for generated answer hypotheses

5.2 From Diagnoses to Feedback Messages
To connect error diagnoses with concrete feed-
back, a language teacher inspected the data we
had collected during one year of system use in
schools and compiled a list of most common er-
ror types made by students with respect to five ar-
eas of grammar topics in the curriculum: tenses,
comparatives, gerunds, relative clauses, reflex-
ive pronouns. The teacher then formulated er-
ror templates for these error types, which spec-
ify precisely what linguistic information needs to
be present and the (parameterized) feedback mes-
sage to be generated. To ensure that the conditions
under which a teacher would provide a particular
feedback and the formulation of the feedback is as
close as possible to the real-life educational set-
tings in schools, our project team includes teach-
ers with experience teaching 7th grade English in
German high schools, who reduced their teaching
load to take on this research project.

Figure 4 shows an example template listing the

Target form: SIMPLE PAST
Diagnosed form: SIMPLE PRESENT
Side conditions: IF-CLAUSE
Feedback message: “With conditional

clauses (type 2), we
use the simple past in
the if-clause, not the
simple present.”

Figure 4: Example error template
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required target and diagnosed forms as well as
necessary side condition along with the resulting
feedback message.

Every error diagnosis generated by the system
as described above is associated with the most spe-
cific compatible feedback template prior to saving
a diagnosis in the data base. The system extracts
the diagnosis associated with the CAS and all its
side conditions, as, for example, signal words for
tense forms. For certain phenomena, such as tense
confusions, multiple templates exist with varying
degrees of specificity depending on the presence
of additional linguistic evidence, so that the tem-
plate providing the best match with the diagnosis
can be selected.

The resulting feedback provided by the system
for a typical tense error is illustrated in Figure 5.
The learner input will feel is not correct with re-
spect to the task context requiring present tense.
The will future form will feel was generated as one
of the target hypothesis for the correct target an-
swer feel. The student answer in Figure 5 can thus
be matched against this generated target hypothe-
sis and the error template associated with this form
is displayed as immediate feedback.

5.3 Flexible Online Matching

The generate-and-retrieve approach described
above works well for relatively constrained learner
input, as it occurs for example with fill-in-the-
blanks tasks. However, there are also more open
form-oriented tasks in the workbook, where learn-
ers have to enter full sentences to practice certain
forms, but the lexical material is constrained by
the task instruction. In these tasks, students often
use slight variations of our pre-computed hypothe-
ses, but make the same systematic errors. Con-
sider the minimal example of an agreement error,
as illustrated by the generated hypothesis he walk,
into which the learner has inserted an additional
adverb in he always walk. We tackle this issue by
allowing for partial matches of target hypotheses,
where the obligatory part of the hypothesis must
be matched, but an optional remainder can be var-
ied. In the example, both he and walk would be
obligatory to match, whereas always is optional.

Technically, the approach is realized via infor-
mation retrieval on stored target hypothesis forms.
We use Lucene (https://lucene.apache.org) for in-
dexing and retrieval, employing the same linguis-
tic pre-processing as in the hypothesis generation

step in order to ensure comparability of student an-
swers and target hypotheses. Given a list of hits
returned by Lucene, we compare the student in-
put to each of the hits and use the first hypothesis
where the student answer satisfies all of the match-
ing constraints.

Figure 6 shows an example from a task where
students need to enter the correct tenses in con-
ditional clauses. In the example input shown, the
student left out the word more that is part of the
correct answer, and also used pronouns instead of
proper names. But since this is not relevant for the
diagnosis of the first tense error here, we can still
show feedback based on the stored generated hy-
pothesis. Note that the second tense error, simple
present feels instead of would feel, is handled by
a subsequent feedback message once the student
submits the update answer. This is in line with
previous research on the effectiveness of feedback
showing that it is preferable to alert the student of
one problem at a time (cf., e.g., Heift 2003).

5.4 Individual Immediate Feedback

When students enter an answer into a field of a
feedback-enabled exercise, our system executes
the algorithm in Figure 7. Using a multi-fallback
strategy, the algorithm ensures that more com-
plex feedback retrieval is only tried when sim-
pler strategies (such as a direct match) have failed.
Since the student is expected to change their an-
swer upon receiving system feedback, the ap-
proach aims at efficiently guiding the student to
the correct answer in multiple interactive steps.

6 Evaluation

In this section, we describe an evaluation of the
feedback currently given by our system. In a real
end-to-end evaluation of a tutoring system, the
most interesting evaluation would be to assess the
learning gains for the students. We are currently
designing a randomized controlled field study for
just such an evaluation involving several classes in
the coming school year. At this point, however, we
can at least report offline evaluation metrics calcu-
lated on the student answer data that we collected
so far. We plan to make a more comprehensive
data set available for research after having con-
ducted the full-year intervention study.

Based on the elicited data introduced in sec-
tion 4, we selected all individual student answers
from the interaction logs of tasks with active, im-
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Figure 5: Feedback on tense error

Target answer (for reference):

Figure 6: Student answer including multiple errors with feedback based on a partial hypothesis match

if student input == target answer:
visualize this with green check mark
-> DONE

else:
retrieve direct hypothesis matches
if there are direct matches:

show associated feedback
else:

perform token-level Lucene query
if there are Lucene hits:

for every hypothesis:
if student answer matches criteria:
show associated feedback

else:
show default feedback

Figure 7: Feedback algorithm (simplified pseudo-code)

mediate feedback. However, since some of these
tasks have meaning-oriented goals (e.g., compre-
hension, translation), which we do not yet provide
feedback on, we excluded data from tasks where
the title clearly indicated such a goal (e.g., “Read-
ing: . . . ”). On the other end of the spectrum, we
excluded tasks where students only need to enter
single characters as part of words.

The remaining set of 33,589 individual student

answers (6,755 distinct types) was provided as in-
put to the feedback algorithm of Figure 7.

Note that this data set consists of the authen-
tic learner answers entered into the system at any
stage of development. So we run the current ver-
sion of the feedback algorithm on all the authentic
learner data to obtain a complete, current picture
of current system performance.

19,809 of the answers were identified as identi-
cal to the target answer after basic normalization
(upper/lower case, spaces, Unicode punctuation).

Since we do not have gold standard feedback
labels for the overall data set, and obtaining them
would be a time-consuming annotation task by it-
self, every student answer that diverges from the
target answer must be treated as potentially erro-
neous and in need of feedback. Note, however,
that this diverging set also includes well-formed
paraphrases, meaning errors, and form errors we
do not intend to provide specific, meta-linguistic
feedback on (e.g., spelling).
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6.1 Quantitative Results
Table 3 summarizes the results (TA = target an-
swer). We report both answer type counts and an-
swer token counts. For the answers differing from
the target answer (i.e., the ones the system pro-
vided feedback on), we also report the percentage
relative to the total number of answers differing
from the target forms.

# types # tokens
identical to TA 342 19,809
default feedback 5,717 10,297 74.72%
specific feedback 696 3,483 25.28%
total 6,755 33,589

Table 3: Quantitative evaluation results

For the majority of differing answers (74.72%)
the system provides default feedback, where a diff
with the target answer is shown to the student, as
exemplified by Figure 8. As the example illus-
trates and we will argue in section 6.2, default
feedback does not necessarily mean the system
missed a potentially relevant error, but can also
mean that the default feedback is appropriate or
the type of task does not lend itself well to form-
focused feedback.

In 25.28% of the differing answers, the sys-
tem was able to give specific, meta-linguistic feed-
back, with well-formed and ill-formed tense vari-
ation being by far the most productive error pat-
tern. Note that while 696 answer types with
specific feedback may seem small, they account
for roughly five times as many instances (3,483),
showing that it is well worth the effort to model
specific, typical error patterns. In comparison, the
10,297 default cases are distributed across 5,717
types, each occurring only about two times, sug-
gesting that there is a long tail of rarely occurring
error types that one may not want to model and
provide dedicated, meta-linguistic feedback for.

To further analyze this long tail, we calculated
the edit distance between the differing answer
types and their respective target answers, and in-
vestigated the percentage of specific feedback for
different edit distance ranges. We found that for
the range below the first edit distance tertile, the
percentage was at 30.8% and thus higher than
the average 25.28%. On the other hand, for the
range above the second tertile of edit distances,
the percentage of specific feedback is only at
16.6%. The middle range is close to the average, at

25.8%. This suggests that for answers with more
variation, including paraphrases and meaning er-
rors, an approach supporting meaning assessment
rather than just the form-focused analysis of well-
formed and ill-formed variability would be rele-
vant. As a result, we are in the process of in-
tegrating the alignment-based CoMiC approach
(Meurers, Ziai, Ott, and Bailey, 2011) originally
developed for meaning assessment of answers to
reading-comprehension questions.

6.2 Qualitative Analysis
Having discussed quantitative results, we now turn
to describing several illustrative cases in more de-
tail, using the task displayed in Figure 8.

Example (1) shows a case where the system cor-
rectly identifies the systematic problem exhibited
by the learner response.

(1) SA: My brother hates loseing in tennis
TA: My brother hates losing at tennis.
FB: If an infinitive ends in -e, we leave out

this -e with -ing-forms.

The learner may be unaware of the fact that
verbs ending in -e drop this suffix in the -ing form,
and since this is a systematic problem covered by
the generation mechanism described in section 5,
the system is able to inform the student about this
particular challenge to help overcome it. A longi-
tudinal learner model recording typical errors by
a user could further support the interpretation and
scaffolding of such phenomena.

As an example for default feedback that falls
short of pointing out the nature of the learner’s er-
ror, consider (2) where ‘SA’ is the student answer,
‘TA’ is the target answer and ‘FB’ is the system’s
feedback. The purpose of the exercise in (2) and
the following examples is to practice the use of the
gerund, as demonstrated by the target answer.

(2) SA: My brother’s hating it if he lose at tennis
TA: My brother hates losing at tennis.
FB: This is not what I am expecting – please

try again

Instead of using a gerund (‘losing’) in connec-
tion with the simple present (‘hates’), the learner
uses an if-clause together with the present progres-
sive (‘’s hating’). Additionally, there is an agree-
ment error in the finite verb of the if-clause (‘lose’
vs. ‘loses’). While the general feedback message
is not wrong or misleading, a message about the
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Figure 8: Default feedback example

missing gerund or the incorrect verb forms would
have been more helpful.

In (3), a learner has provided a different re-
sponse to the same exercise.

(3) SA: My brother hates at tennis.

TA: My brother hates losing at tennis.

FB: This is not what I am expecting – please
try again

Since there is only one error here and it is about
the omission of a word (‘losing’), the same default
feedback that was insufficient in (2) can in fact be
helpful enough to guide the student to include a
form of the expected word. In a future version,
we plan to to include rules targeting the absence
of specific grammatical forms, which in this case
would enable a more specific message.

7 Conclusion and Outlook

We presented a novel approach to the generation
of feedback for English grammar exercises. Build-
ing on task properties, we explicitly model the
grammar topics targeted by the relevant curricu-
lum (7th grade English) and use a multi-level gen-
eration approach to produce the expected range of
well-formed and ill-formed variation in student re-
sponses to the given tasks. The results of the off-
line generation process are then used at feedback
time in a flexible matching approach in order to ac-
count for additional variation in student responses.

Results suggest that the more frequent error pat-
terns are successfully covered by the system, as
indicated by the 1:5 ratio of types vs. tokens
for which specific feedback is given. In particu-
lar, tense-related problems were often diagnosed,
which teachers identified as the most challenging

grammar topic in the 7th grade curriculum. How-
ever, there is also a long tail of infrequent devia-
tions from target answers that do not seem to fall
into larger categories. For these, it will be neces-
sary to develop better fallback strategies and eval-
uate the subjective helpfulness ratings provided
by end users at feedback time. Since it is likely
that many of the answer deviations occur due to
meaning-related issues, our next step will be to in-
tegrate meaning error diagnosis into the system.
The availability of explicit target answers and the
need to diagnose meaning deviations or equiva-
lences between target and student answers sug-
gests that an alignment-based approach such as
CoMiC (Meurers et al., 2011) can be effective.

In connection with diagnosing meaning vs.
form errors, we also plan to include stronger task
modeling into the system. The more we know
about the pedagogical goals, the targeted forms,
and the range of expected variability, the better we
can top-down determine the best feedback strategy
before even analyzing a particular student answer.

Finally, we plan to include learner modeling by
taking the learners’ individual interaction histories
into account when providing feedback and for sug-
gesting the next tasks to tackle to provide more
practice where needed.
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Abstract

In this paper, we introduce NT2Lex, a novel
lexical resource for Dutch as a foreign lan-
guage (NT2) which includes frequency dis-
tributions of 17,743 words and expressions
attested in expert-written textbook texts and
readers graded along the scale of the Common
European Framework of Reference (CEFR).
In essence, the lexicon informs us about what
kind of vocabulary should be understood when
reading Dutch as a non-native reader at a par-
ticular proficiency level.

The main novelty of the resource with respect
to the previously developed CEFR-graded lex-
icons concerns the introduction of corpus-
based evidence for L2 word sense complexity
through the linkage to Open Dutch WordNet
(Postma et al., 2016). The resource thus con-
tains, on top of the lemmatised and part-of-
speech tagged lexical entries, a total of 11,999
unique word senses and 8,934 distinct synsets.

1 Introduction

In the recent years, a number of graded lexical re-
sources have been developed to further research
on first (L1) or second (L2) language complexity.
Such a graded lexicon can be defined as a lexical
database describing the graded frequency distribu-
tions of lexemes as they are attested in authentic
pedagogical material along the successive grade
levels of a particular language curriculum. The
graded lexicons that have been built on these learn-
ing scales therefore either specifically pertain to
the educational programme of (elementary) school
children (Lété et al., 2004) or to the curriculum of
foreign language learners (François et al., 2014).

As for the L2 language curriculum in particular,
one of the most widespread learning scales which
has been used to date is the Common European
Framework of Reference for Languages (Council
of Europe, 2001) or CEFR scale. The CEFR scale

is a general framework that aims to provide a com-
prehensive description of the types of (written or
spoken) discourse a learner at a particular profi-
ciency level1 should be able to understand or pro-
duce. Based on the CEFR scale and as part of the
CEFRLex2 project, a number of graded lexical re-
sources have been developed for French (FLELex,
François et al., 2014), Swedish (SVALex, François
et al., 2016; SweLLex, Volodina et al., 2016) and
English (EFLLex, Dürlich and François, 2018) as
a foreign language. These lexicons were compiled
from a corpus of L2 learning materials graded per
level of the CEFR scale. The materials either in-
clude reading activities in textbooks or simplified
readers (receptive graded lexicons; François et al.,
2014, 2016; Dürlich and François, 2018) or texts
written by learners (productive graded lexicons;
Volodina et al., 2016). As a result, they inform
us about what kind of vocabulary should be un-
derstood or produced when reading or writing in a
foreign language at a particular proficiency level.

The lexical resources cited above have also
found their purpose as components of NLP-driven
educational applications. Up to date, we have
seen some of the resources being integrated as fea-
tures of a complex word identification system for
French (Tack et al., 2016a,b), as components in
a readability-driven learning platform for Swedish
(Pilán et al., 2016a) or as part of an automated
essay grading system for Swedish as well (Pilán
et al., 2016b). It is therefore clear to say that the
scope of relevance of the graded lexical resources
goes well beyond their apparent usefulness to gain
didactic insights into the complexity of the L2 cur-
riculum.

1The CEFR scale includes six levels ranging from the ele-
mentary (A1/A2), to the intermediate (B1/B2) and advanced
(C1/C2) levels. See Council of Europe (2001) for more de-
tails on the specific learning objectives per level.

2http://cental.uclouvain.be/cefrlex/
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The principal aim of this paper is to augment the
CEFRLex project by introducing a novel graded
receptive lexicon for Dutch as a second or foreign
language (Nederlands tweede taal, NT2), viz. the
NT2Lex resource. Moreover, through the link-
age of NT2Lex to Open Dutch WordNet (ODWN)
(Postma et al., 2016), our additional objective is to
expand upon and to advance the current method-
ology by introducing the first lexicon with graded
frequency distributions for word senses.

The paper is structured as follows. The follow-
ing section (Section 2) presents a bird’s eye review
of the literature on L2 receptive vocabulary and on
the importance of measuring word sense complex-
ity. In the subsequent sections, we will describe
the revised methodology used to generate NT2Lex
(Section 3) and we will compare the resource to
the other CEFR-graded lexicons (Section 4). In
the last section (Section 5), we will analyse the
distribution of lexical entries in NT2Lex in light
of standard indices of lexical complexity.

2 Background

The construct of receptive vocabulary knowledge
has been an important factor when it comes to de-
termining successful reading comprehension in a
foreign language. We know that the input con-
veyed to foreign language learners through read-
ing or listening should be sufficiently comprehen-
sible not only for the message to be understood,
but also for subsequent implicit or incidental ac-
quisition to occur (Krashen, 1989). The notion of
breadth of vocabulary knowledge (or vocabulary
size) in particular plays an important role in pre-
dicting adequate comprehension of the L2 input.
For reading comprehension, we know that 98% of
the running words in the text should be known,
which amounts to a vocabulary size of 8,000 word
families (Laufer and Ravenhorst-Kalovski, 2010).
However, the extent of vocabulary size is also
heavily conditioned on the well-known variability
in the interlanguage. It is therefore vital to ob-
tain correct and relevant estimates of vocabulary
knowledge when defining the lexical adequacy of
a specific reading activity.

Various lexicon-based approaches have been
considered to estimate the vocabulary knowledge
that should be covered when learning or teaching
a foreign language.3 The first approach consists in

3For a more detailed overview on these lexicon-based ap-
proaches, we refer the reader to François et al. (2014).

measuring the vocabulary size based on frequency
bands attested in academic word lists drawn from
a reference corpus of the target language (Nation
and Waring, 1997). A second approach resides
in the use of L2-specific pedagogical vocabulary
lists, which can be either expert-written such as the
CEFR reference level descriptors (Marello, 2012;
Milton, 2010) or corpus-based such as the English
Vocabulary Profile (Capel, 2010, 2012). Finally,
the CEFRLex project proposes a third approach to
lexicon-driven evidence of vocabulary knowledge
through the use of graded and corpus-based recep-
tive lexicons (François et al., 2014).

An important aspect of vocabulary knowledge
that has mostly been overlooked in the lexicon-
based approaches concerns the distinction of word
senses. Yet, the importance of taking into account
form-meaning mappings has been well-evidenced
in L2 reading comprehension. Qian (1999), for in-
stance, hightlighted that in the interplay between
vocabulary size and reading comprehension, the
notion of depth of vocabulary knowledge also
plays a significant role. The essential requirements
for deep vocabulary knowledge include – besides
the surface-level (i.e. spelling and phonetics) and
morphological features – a thorough mastery of
the various semantic, collocational, discursive and
other contextual aspects of the word. Zooming in
on the first two aspects in particular, he observed
a significant addition of depth of vocabulary to ex-
plain the variability in comprehension scores.

The need to account for this semasiological
variation when estimating word difficulty can be
traced as far back as to Tharp (1939). Indeed,
Tharp highlighted the drawbacks of defining word
difficulty estimates by tallying the frequency of
occurrence of similar word forms that are inher-
ently polysemous. Subsequently, various studies
have sought to parameterise the extent of sema-
siological and onomasiological variation in text-
level readability assessment using polysemic, hy-
pernymic and other features based on WordNet
(Fellbaum, 1998), the most notable contribution
of which relates to Coh-Metrix (Graesser et al.,
2004). As for word-level readability assessment,
a number of studies on lexical simplification have
made advances in the ranking of the difficulty of
synonyms based on contextual factors (Jauhar and
Specia, 2012) or based on a lexical database of
synonyms ranked according to elementary grade
levels (Gala et al., 2013).
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level A1 A2 B1 B2 C1 total
# tokens 17,878 205,035 153,537 78,439 6,199 461,088
# readers 5 22 11 6 1 45
# documents 53 447 306 110 10 926

Table 1: Corpus statistics

3 Methodology

In view of the need for estimating word sense com-
plexity in L2 learning addressed hereabove, we
developed a graded lexical resource for learners
of Dutch L2 which includes lexical entries linked
to Open Dutch WordNet (ODWN) (Postma et al.,
2016). The methodology for compiling a graded
lexical resource can be found in Lété et al. (2004);
François et al. (2014). Here, we will briefly sum-
marise the method of estimating graded lexical en-
tries, focusing on the particularities for Dutch.

3.1 Data

We used a 461,088-token corpus of CEFR-graded
readers and textbooks for Dutch as a foreign lan-
guage, ranging from the A1 to the C1 levels and
with a mixture of writings in Netherlandic and
Belgian Dutch (Table 1).

Preprocessing Typographical and language er-
rors as well as other idiosyncracies observed in the
OCR-ised texts were manually corrected. Tonic
diacritics commonly used to indicate stress in writ-
ten Dutch (e.g. veel/véél, ‘many’) were also man-
ually removed, excluding the mandatory diaere-
ses (e.g. efficiënt, ‘efficient’) and accents in loan
words (e.g. café, ‘pub’). All texts were lemma-
tised and part-of-speech tagged and multi-word
units were automatically identified with the Frog
tagger (van den Bosch et al., 2007).

The tagged texts were then fed to a word-sense
disambiguation (WSD) tool4. The tool is based
on a one-vs.-rest SVM classifier trained on the
DutchSemCor (Vossen et al., 2012) and includes a
dictionary of 92,617 lexemes and 117,225 senses,
of which 52,430 (45%) seem to be matched to
ODWN synsets. To increase the tool’s coverage
with ODWN, we also included all monosemous
ODWN entries which were not included in the
tool. In total, 76% of all distinct lexical units (ad-
jectives, adverbs, nouns and verbs) were disam-
biguated for word senses.

4The tool was created by Rubén Izquierdo and is available
on http://github.com/cltl/svm_wsd.

3.2 Definition of Lexical Entries

To define the list of lexical entries which make up
the resource, we proceeded to some extra correc-
tion, simplification and filtering of the previously
tagged and word-sense disambiguated texts.

Lemmata We first ruled out all non-
alphanumeric entries such as punctuation
marks, Arabic numerals, as well as non-standard
word forms and abbreviations commonly found
in Dutch chatspeak. We also simplified similar
alphanumeric numbers (e.g. 4de, 5de, ‘4th, 5th’)
as belonging to the same lexical entry [digit]de.

We then resolved some specificities of the
Dutch compounding system. On the one hand, we
decided to split a number of compounds with an
optional parenthesised stem. For a lemma such
as (studie)keuze (‘(study) choice’) for instance,
we counted the occurrence as two separate lex-
emes: keuze (‘choice’) and studiekeuze (‘study
choice’). On the other hand, we also resolved the
omission of shared stems in a number of coordi-
nated compounds (e.g. binnenland vs. binnen- en
buitenland, ‘home and abroad’).5

Parts of speech The Frog part-of-speech tagger
is based on the CGN (Corpus Gesproken Neder-
lands) tagset (Van Eynde, 2004). The CGN tagset
is quite extensive in that it counts over 320 tags
and thus accounts for a number of detailed lexical
and morphological features. However, we found
it irrelevant to keep all of these precise features in
the resource. We therefore decided to simplify the
tagset to a set of 37 tags (Table 2). Consequently,
all other special symbols not covered by the tagset
were filtered from the resource.

We should note that the multi-word units
detected by Frog tagger were not tagged
with a specific part of speech, but with
a “multi-tag” part of speech (e.g. door en
door, VZ(fin) VG(neven) VZ(fin), ‘through and
through’). For all of these multi-word units, we
also subsequently transposed each one of the indi-
vidual tags according to our simplified tagset.

Word senses Finally, all lexical entries which
were disambiguated for word senses were thus
supplemented with a tuple of ODWN sense and

5To this end, automatic compound splitting was per-
formed using the publicly available rule-based compound
splitter for Dutch (http://ilps.science.uva.nl/
resources/compound-splitter-nl/)
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simplified tag part of speech # 37
N(soort/eigen) noun (common/proper) # 2
ADJ() adjective # 1
WW() verb # 1
TW(hoofd/rang) numeral (card./ord.) # 2
VNW(...) pronoun # 20
LID(bep/onbep) article (def./indef.) # 2
VZ(init/fin/versm) preposition (initial/final/fused) # 3
VG(neven/onder) conjunction (coord./subord.) # 2
BW() adverb # 1
TSW() interjection # 1
SPEC(deeleigen) part of proper noun # 1
LET() punctuation # 1

Table 2: List of simplified CGN tags.

corresponding synset ids (e.g. lezen-v-1, eng-30-
00625119-v, ‘to read’). The synset ids include
either the WordNet 3.0 offset (eng-30) or the
ODWN 1.0 offset (odwn-10) otherwise. How-
ever, we should note that not all WordNet and
ODWN synsets included in Open Dutch WordNet
have a corresponding lexical entry. We therefore
completed those entries with their corresponding
sense number (e.g. overduidelijk, obvious.a.01) in
NLTK’s Open Multilingual WordNet (Bird et al.,
2009). Finally, in the absence of an ODWN equiv-
alent to DutchSemCor, we decided to keep the
original sense id obtained through WSD for the
sake of completeness and for future compatibility
(e.g. overbodig, d a-415574, ‘superfluous’).

3.3 Lexical Frequencies and Weighting

After having defined the set of lexical entries,
we computed their graded frequency distributions
across the five CEFR levels attested in the corpus.
The following statistics were computed for each
lexical entry and per each level.

Raw frequency The frequency Fentry,level is sim-
ply computed as the number of times the entry oc-
curs in the level, which amounts to summing up
the vector f of the entry’s frequencies of occur-
rence f in document i for all d documents in that
level (see Table 1 on the preceding page).

Fentry,level = ∑ f =
d
∑

i=1
fi (3.3.1)

Dispersion and adjusted frequencies The ex-
clusive use of raw frequencies to observe lexical
distributions has been subjected to much debate
in corpus linguistics and especially when applied
to mining corpora to futher L2 research. Indeed,
Gries (2008) previously stated that the extent of

written language proficiency in learner corpora ap-
pears to be closely linked to the scope of lexical
dispersion: the more dispersed the use of a word,
the better it is mastered.

For written language comprehension on the
other hand, we could also state that the extent of
lexical dispersion in readers and textbooks gives
us a better view on what kind of vocabulary is
subject to being well-understood at a particular
proficiency level. As a consequence, the lexi-
cal frequencies we want to use to gain insights
in non-native language comprehension should be
adjusted to take into account lexical dispersion
as well. The following dispersion (Dentry,level)
and adjusted frequency indices (Uentry,level and
SFIentry,level) were computed following Carroll
et al. (1971). In the following formulae, Nlevel de-
notes the number of words in the level and ni de-
notes the number of words in document i of all
documents d in that level.

D =


ln(∑ f)−




d
∑

i=1
fi·ln( fi)

∑ f




 · 1

ln(d)
(3.3.2)

U =
106

Nlevel

[
F ·D+(1−D) ·

(
1

Nlevel

d

∑
i=1

fi ·ni

)]

(3.3.3)

SFI = 10 · [log10(U)+4] (3.3.4)

4 Resource Description

We compiled two separate versions of NT2Lex.
A first version contains only the lemmatised and
part-of-speech tagged entries (NT2Lex-CGN)
and is thus similar to the other graded lexicons
previously developed in the CEFRLex project
(cf. supra). The word-sense disambiguated en-
tries, on the other hand, have been added to
a second version of the resource (NT2Lex-
CGN+ODWN) (see Table 3 for an example). A
comparative overview of the number of entries
in both versions of NT2Lex and in the other re-
sources can be found in Table 5 on page 6. A more
detailed description of the resource is given here-
inbelow and in the following section.

NT2Lex-CGN The first version of NT2lex
counts 15,227 entries. The total number of en-
tries in the resource is therefore similar to the re-
sources developed for English and Swedish, al-
though slightly lower than for French. Not surpris-
ingly, the majority of the entries contain lexical
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lemma pos sense-id synset-id gloss U@A1 U@A2 U@B1 U@B2 U@C1 U@total
in zwang VZ(init) N(soort) in zwang-n-1 eng-30-14411884-n ‘in vogue’ - - - - 22 0
omgangstaal N(soort) omgangstaal-n-1 eng-30-07157123-n ‘vernacular’ - - - 26 - 3
pakken WW() pakken-v-1 odwn-10-101230891-v ‘grab’ 35 117 101 5 - 99
pakken WW() pakken-v-10 eng-30-01100145-v ‘defeat’ - 51 12 - - 28
zijn VNW(bez,det) - - ‘his’ 3,349 7,900 4,124 3,479 4,308 5,798
zijn WW() zijn-v-1 eng-30-02603699-v ‘exist’ 2,094 1,647 1,423 1,253 1,335 1,601

Table 3: Example of entries in NT2Lex-CGN+ODWN with their graded adjusted frequencies U . A
column with glosses was added for illustrative purposes.

words and the number of grammatical entries also
remains strongly comparable across all resources.

There is a striking difference however in the
number of multi-word entries that are included in
NT2Lex and in the other resources. Only 459 of
the entries are multi-word units, contrary to 2,038
for French and 1,450 for Swedish. The multi-word
units that are included in the resource mostly per-
tain to well-known named entities (e.g. Olympis-
che Spelen, ‘Olympic Games’) and other phrasal
verbs (e.g. voorzien van, ‘to provide’), adverbs
(e.g. om het even, ‘all the same’), etc.

This difference could be explained by the fact
that the majority of the compound words which
are multi-word units in other languages (such as
in French or English) are one-word units or ag-
glutinative compounds in Dutch (e.g. afvalverwi-
jderingsstructuur, ‘waste disposal structure’). We
observe that 4,431 (31%) of the single-word en-
tries in NT2Lex are in fact compounds. As for the
Swedish language, where the compounding sys-
tem is similar to Dutch, we could attribute this dis-
parity to the fact that different taggers were used to
detect multi-word units. Indeed, the recall and pre-
cision of multi-word identification depend heavily
on the assumptions made by the tagger to resolve
the sequential ambiguity, contrary to the aggluti-
native compounds, which do not need to be dis-
ambiguated in this case.

NT2Lex-CGN+ODWN The word-sense disam-
biguated version of NT2Lex counts 17,743 en-
tries in all, with an extra 2,516 lexical entries and
with 1,454 polysemous entries (with at least two
senses). Table 4 shows the distribution of pol-
ysemous entries across all levels. Although all
of these polysemous entries are lexical ones, we
should note that some multi-word entries have also
been disambiguated for word senses, but none of
them are polysemous. The most polysemous entry
in the resource is the entry pakken (verb, ‘to take
/ grab / defeat / hinder / etc.’) which has a total of
10 different senses attested in the resource.

A1 A2 B1 B2 C1 total
# entries 1,189 7,630 10,160 9,366 1,841 17,743
# senses 849 5,705 7,272 6,517 1,302 11,999
# polysemes 139 828 979 771 118 1,451
# synsets 658 4,450 5,465 4,936 1,046 8,934

Table 4: The number of word senses, polysemes
(entries with >1 sense) and unique synsets in
NT2Lex-CGN+ODWN

Figure 1: Screenshot of an online query in NT2Lex
for the verbs lezen (‘to read’) and begrijpen
(‘to understand’)

Table 4 also shows the number of unique con-
cepts (# synsets) included per level and in total.
We observe that the resource includes a high vari-
ety of concepts, with 8,934 distinct synsets out of
11,999 word senses.

Online query and annotation tools Both ver-
sions of the resource will be made available for
non-commercial use in the CEFRLex project.6

Similar to the previous resources, a number of
online tools will be made available for teachers
and/or researchers to query the lexical database
and to annotate a text using NT2Lex (Figure 1).

6http://cental.uclouvain.be/nt2lex/
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resource NT2Lex FLELex SVALex EFLLex
version CGN CGN+ODWN CRF / /

# entries 15,227 17,743 17,871 15,681 15,281
lexical 14,368 16,884 17,404 15,291 14,857

grammat. 400 400 467 390 424
multi-w. 459 459 2,038 1,450 3,852

levels # new (%) compound hapax >10 # new (%) hapax >10 # new (%) # new (%) # new (%)
A1 953 953 (1.00) 70 313 225 1,189 1,189 (1.00) 427 228 4,976 4,976 (1.00) 1,157 1,157 (1.00) 2,395 2,395 (1.00)
A2 6,220 5,383 (0.87) 1,224 2,482 1,231 7,630 6,580 (0.86) 3,073 1,386 6,995 3,516 (0.50) 3,327 2,432 (0.73) 4,205 2,478 (0.59)
B1 8,559 4,879 (0.57) 1,997 3,936 1,081 10,160 5,571 (0.55) 4,739 1,128 10,780 4,970 (0.46) 6,554 4,332 (0.66) 5,607 2,740 (0.49)
B2 8,172 3,641 (0.45) 1,861 4,362 638 9,366 3,998 (0.43) 5,092 619 7,349 1,653 (0.22) 8,728 4,553 (0.52) 8,228 3,935 (0.48)
C1 1,680 371 (0.22) 252 1,127 63 1,841 405 (0.22) 1,282 62 8,348 2,122 (0.25) 7,564 3,160 (0.41) 9,232 3,733 (0.40)
C2 - - - - - - - - - - - 7,433 634 (0.09) - - - - - -

Table 5: A comparative overview of NT2Lex and the other lexicons in terms of the number (#) of entries
per level (including new entries, compounds, hapaxes and entries with a frequency greater than 10), as
well as the number of lexical (adjectives, adverbs, nouns and verbs), grammatical and multi-word entries.
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Figure 2: Comparison of NT2Lex and Subtlex-NL
standardised frequencies

5 Analysis

In the next sections, we will compare the distri-
bution of lexical entries in NT2Lex in light of a
number of standard indices of lexical complex-
ity. We will only report statistics for the most
complete version of our resource, i.e. NT2Lex-
CGN+ODWN.

5.1 Frequency Effects

As a first means of analysis, we aim to examine
the coherence of the frequency distributions in the
resource with respect to the word frequency effect
in second language processing, which states that
words that are more frequent and more familiar are
more easily processed by a learner (Ellis, 2002).

Lexical frequency To compare the frequency
distributions in the resource, we use the stan-
dard frequency index (SFI, Formula 3.3.4), which
might be best suited to measure the desired effects:
a value of 100, 90, 80, ..., 40 on the standard scale
indicates that the entry respectively occurs once
every 100, 101, 102, ..., 106 entries, and so forth.

When comparing the standardised frequency
distributions with Subtlex-NL (Keuleers et al.,
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Figure 3: Zipfian effects for adjusted frequencies
(SFI), dispersions (D) and word lengths for all en-
tries in NT2Lex

2010), we observe a positive value for the Pearson
correlation coefficient (r = .69, p < .0017; Fig-
ure 2a). This shows us that even though the ad-
justed frequencies were estimated on a relatively
small corpus, they are still very much coherent
with the frequencies estimated for the same entries
on a reference corpus. Moreover, Figure 2b also
illustrates that the average of Subtlex-NL frequen-
cies also decreases per level, with the exception of
the C1 level. A possible reason for this is that the
C1 subcorpus is the most restricted in size due to
the limited availability of C1-level readers.

Dispersion and word familiarity Because of
lacking experimental data on actual word familiar-
ity in Dutch L2, we make a simplifying assump-
tion here and use our dispersion metric as a mea-
sure of theoretical word familiarity: the more the
word is dispersed across the L2 documents, the
more familiar it should be to a learner in general.

We observe from Figure 3 that this theoretical
word familiarity accounts for about 83% in the
distribution of the adjusted frequencies. In this
respect, we also observe an interesting split in

7For reasons of comparability with Subtlex, which does
not include frequencies for word senses, we report the corre-
lation coefficient for the non-WSD version of the resource.

142



0.00 0.25 0.50 0.75 1.00
dispersion

0.0

0.2

0.4

0.6

0.8

1.0

so
ph

is
tic

at
io

n

r2 = 0.34

(a) degree of lexical disper-
sion and lexical sophistication

A1 A2 B1 B2 C1 TOTAL
level

0.0

0.2

0.4

0.6

0.8

1.0

so
ph

is
tic

at
io

n

method
LS1
LS2

(b) lexical sophistication per
level based on Lu (2012)’s ra-
tios

Figure 4: The interplay between lexical dispersion
and lexical sophistication in NT2Lex

the normalised frequency distribution which orig-
inates from the way the adjusted frequencies were
computed (U ; Formula 3.3.3). When D > 0, the
influence of the raw frequency F increases be-
tween 40 < SFI < 100. Conversely, when D = 0,
the raw frequencies are not taken into account, but
are drawn from a weigthed (Gaussian) frequency
distribution (0< SFI < 40) instead.

Zipfian effects From these associations between
dispersion and standardised frequencies, we can
also observe a number of Zipfian effects. In-
deed, for all entries which have a non-zero disper-
sion (range 40 < SFI < 100), Zipf’s distribution
(Zipf, 1949) applies in the standard frequency in-
dex. Moreover, these frequencies are in turn nega-
tively correlated with word length: the shorter the
word, the more frequent (r =−.39; p< .001). We
take these results as a proof for the consistency of
the resource.

Lexical sophistication As a final note on the
issue of word frequency, we compare the lexi-
cal sophistication ratio of the entries with a ba-
sic word list8 of the 2,000 most frequent Dutch
words according to the Basiswoordenboek Neder-
lands (Kleijn and Nieuwberg, 1993).9 Figure 4a
shows that the more dispersed (and hence the more
familiar) the entry in the corpus, the least sophisti-
cated the entry is. Moreover, we also observe that
the proportion of sophisticated entries (i.e. that go
beyond the 2,000 most frequent words) increases
per level (Figure 4b), except for the C1 level where

8http://www.dikverhaar.nl/wp-content/
uploads/Basiswoordenlijst_2000_
frequente_meest_woorden.pdf

9We should note that 61 of the 2,000 basic word forms are
not attested in NT2Lex.
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Figure 5: Polysemy and synonymy in NT2Lex

fewer sophisticated words have been attested due
to the limitations highlighted earlier.

5.2 Semasio-onomasiological Indices
In addition to the word frequency effect of L2 vo-
cabulary learning, we also investigated the inter-
play of form-meaning mappings in the resource.

We observe on the one hand that the degree of
polysemy and synonymy attested in the resource
is strongly correlated to the degree of synonymy
and polysemy that is expected in the Open Dutch
WordNet (ODWN) (Figure 5). We can therefore
conclude that in addition to the correlation be-
tween the estimated frequencies and Subtlex-NL
(cf. supra), the word senses included in the re-
source are also consistent with the structure of a
general semantic network.

However, the lower extent of onomasiologi-
cal variation (i.e. meaning-to-form mappings) in
NT2Lex compared to ODWN synonymy (Fig-
ure 5b) might be indicative of the specialised na-
ture of the resource in that for a defined set of con-
cepts it includes a limited range of lexicalizations,
which are likely to be specific to the L2.

As for semasiological variation (i.e. form-to-
meaning mappings) in NT2Lex, we observe an in-
teresting decreasing trend in the degree of poly-
semy per level (Figure 5c). This highlights the fact
that the lexical stock of elementary L2 texts con-
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Figure 6: Psycholinguistic norms in NT2Lex

tains more ambiguous entries, which in turn tend
to be more easily processed (Millis and Bution,
1989). However, no other significant effects in
terms of synonymy, polysemy or hypernymy were
observed.

5.3 Psycholinguistic Norms

Finally, to investigate the interplay of different
psycholinguistic norms in the resource, we use
a lexical database of age of acquisition and con-
creteness norms for Dutch (Brysbaert et al., 2014).
Figure 6 shows the distribution of the norms per
each attested level in the resource.

Age of acquisition We observe that the vast ma-
jority of the lexical stock in the elementary levels
(i.e A1/A2) contain words which are acquired the
earliest by native speakers as well, approximately
around the age of five, whereas the entries in the
intermediate levels (i.e. B1/B2) levels are acquired
later, approximately between ages 5 and 10. More-
over, the more concrete the word, the earlier it is
acquired (Figure 7a), which is consistent with pre-
vious observations (Crossley et al., 2009). The
earlier the word is acquired, the more familiar it
is according to its dispersion in the resource (Fig-
ure 7b). As for the C1 level, we observe a simi-
lar trend, except for a smaller proportion of entries
that are acquired earlier as well (with a higher con-
centration around the age of 5), which might also
explain the higher average of Subtlex frequencies
and the lower degree of sophistication attested at
this level (cf. supra).

Concreteness As regards word concreteness,
we observe on the one hand that the highest lev-
els (i.e. B2/C1) contain a considerably higher pro-
portion of abstract (less concrete) words. This
observation highlights the fact that, even though
the C1 level includes some outliers on the level of
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lexical frequency and sophistication, the distribu-
tion of the concreteness norms at C1 are similar
to what is expected. The most basic levels, on the
other hand, contain a lower proportion of abstract
words, but the difference between the number of
concrete and abstract words appears to be propor-
tionally less clear-cut.

6 Conclusion

In this paper, we presented a new graded lexical
resource for Dutch as a foreign language (NT2)
based on the proficiency scale of the Common Eu-
ropean Framework of Reference (CEFR). Similar
to the previous CEFR-graded lexicons for French,
Swedish and English, the NT2Lex resource con-
tains graded frequency distributions per lexical en-
try which are estimated on L2 readers and text-
book texts targeting a specific level on the CEFR
scale. The novelty of the NT2Lex resource with
respect to the common methodology of generating
graded lexicons is concerned with the fact that the
lexical entries are disambiguated for word senses
and are also linked to WordNet synsets. We argued
that this linkage gives us a better insight into word
sense complexity in a foreign language.

We found that the estimated frequency and word
sense distributions are in line with what one ex-
pects to observe in the target language. More-
over, the distributions of lexical entries per level
in NT2Lex also appeared to be consistent with
previous findings in terms of lexical complex-
ity. As regards the features of lexical ambiguity,
age of acquisition and concreteness, we observed
that the lexical entries in the most basic levels of
the resource (i.e. A1/A2) are more polysemous
and acquired the earliest by non-native speakers,
whereas the lexical entries in the more advanced
levels (i.e. B2/C1) portray a significantly higher
degree of abstractness and are acquired at a later
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developmental stage.
We could thus conclude that the resource en-

ables us to get a better grasp on what kind of vo-
cabulary should be understood a priori when read-
ing Dutch as a foreign language at a particular pro-
ficiency level. Of course, we should highlight that
the assumptions that can be drawn are still lim-
ited in the sense that they are mainly based on
expert knowledge drawn from pedagogical texts.
Indeed, we lack extensive experimental data on
what vocabulary is effectively understood when
reading Dutch at a particular proficiency level and
by a specific learner depending on his/her char-
acteristics (e.g. native language, age, experience,
etc.). As a future perspective, we therefore aim
to contrast the knowledge we gained through the
resource with this kind of receptive learner data.
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Abstract

The Common European Framework of Ref-
erence (CEFR) guidelines describe language
proficiency of learners on a scale of 6 lev-
els. While the description of CEFR guide-
lines is generic across languages, the devel-
opment of automated proficiency classification
systems for different languages follow differ-
ent approaches. In this paper, we explore
universal CEFR classification using domain-
specific and domain-agnostic, theory-guided
as well as data-driven features. We report
the results of our preliminary experiments in
monolingual, cross-lingual, and multilingual
classification with three languages: German,
Czech, and Italian. Our results show that both
monolingual and multilingual models achieve
similar performance, and cross-lingual classi-
fication yields lower, but comparable results to
monolingual classification.

1 Introduction

Automated Essay Scoring (AES) refers to the
task of automatically grading student essays writ-
ten in response to some prompt. Different ap-
proaches for AES have been proposed in litera-
ture, where it is modeled as a regression, rank-
ing or a classification problem (cf. Yannakoudakis
et al., 2011; Taghipour and Ng, 2016; Pilán et al.,
2016). To our knowledge, all the previous work
described approaches that work with a single lan-
guage (mostly English). Feature representations
that can work for multiple languages and those that
support cross-lingual AES have not been explored.

At first thought, using an essay scoring model
developed for one language to test on another
language seems unacceptable. However, CEFR
guidelines are not developed for a specific lan-
guage. This leads us to hypothesize about a com-
mon model of “proficiency” that can work across
languages. The existence of such a model would

also be beneficial for quick prototyping of AES
systems for languages that do not have readily
available training data.

In this paper, we explore this hypothesis by ex-
ploring CEFR-classification for three languages-
German, Italian, and Czech, for which CEFR
graded data is publicly available. Apart from
constructing individual models using generic text
classification and AES specific features, we also
looked into cross-lingual (i.e., training a model on
one language and testing on another) and multi-
lingual classification approaches (i.e., building a
single classification model trained on all the three
languages at once).

Testing our universal CEFR hypothesis would
require a common feature representation across
languages. We developed such a representation,
by employing features based on part-of-speech
tags and dependency relations from the Univer-
sal Dependencies (UD)(Nivre et al., 2016) project
which provides treebanks for over 60 languages.1

Therefore, this approach can be easily extended to
other languages with available CEFR graded texts
and UD treebanks.

In short, the contributions of this paper are as
follows:

1. We study AES for multiple languages for the
first time using CEFR scale.

2. We explore, for the first time, the possibility
of a Universal CEFR classifier by training a
single model consisting of three languages.

3. We also report first results on cross-lingual
AES.

The rest of this paper is organized as follows:
Section 2 describes related work. Section 3 de-
scribes our data and methods. Section 4 discuss

1http://universaldependencies.org/
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our experiments and results in detail. Section 5
concludes the paper with pointers to future work.

2 Related Work

AES is a well studied research problem and AES
systems are used to automatically grade essays
in exams such as GRE R© and TOEFL R© (Attali
and Burstein, 2004). There is a considerable
amount of work that explored various aspects of
AES research such as: dataset development, fea-
ture engineering, multi-corpus studies and the role
of prompt and task information (Yannakoudakis
et al., 2011; Phandi et al., 2015; Zesch et al., 2015;
Alikaniotis et al., 2016; Taghipour and Ng, 2016;
Vajjala, 2018).

AES models developed for non-English lan-
guages, primarily using the CEFR scale (Hancke
2013 for German, Pilán et al. 2016 for Swedish,
Vajjala and Lõo 2014 for Estonian) employ sev-
eral language specific features and show their rel-
evance for the task. However, to the best of our
knowledge, there is no previous work on develop-
ing common models and feature representations
that work across languages. Against this back-
ground, we set out to address the question: “Is
there a universal model for language proficiency
classification?”

3 Approach

3.1 Dataset

To test our hypotheses, we need corpora graded
with CEFR scale for multiple languages. One
such multi-lingual corpus is the freely available
MERLIN (Boyd et al., 2014) corpus.2 This cor-
pus consists of 2286 manually graded texts writ-
ten by second language learners of German (DE),
Italian (IT), and Czech (CZ) as a part of written
examinations at authorized test institutions. The
aim of these examinations is to test the knowl-
edge of the learners on the CEFR scale which
consists of six categories – A1, A2, B1, B2, C1,
C2 – which indicate improving language abilities.
The writing tasks primarily consisted of writing
formal/informal letters/emails and essays. MER-
LIN corpus has a multi-dimensional annotation
of language proficiency covering aspects such as
grammatical accuracy, vocabulary range, socio-
linguistic awareness etc., and we used the “Over-
all CEFR rating” as the label for our experiments

2http://merlin-platform.eu/

in this paper. Other information provided about
the authors included- age, gender, and native lan-
guage, and information about the task such as
topic, and the CEFR level of the test itself. We
did not use these information in the experiments
reported in this paper. Further, we removed all
Language-CEFR Category combinations that had
less than 10 examples in the corpus (German had 5
examples for level C2 and Italian had 2 examples
for B2 which were removed from the data). We
also removed all the unrated texts from the origi-
nal corpus. The final corpus had 2266 documents
covering three languages, and Table 1 shows the
distribution of labels in the final corpus.

CEFR level DE IT CZ

A1 57 29 0
A2 306 381 188
B1 331 393 165
B2 293 0 81
C1 42 0 0

Total 1029 803 434

Table 1: Composition of MERLIN Corpus

3.2 Features
Our feature set consists of features that are com-
monly used in AES systems, as well as others that
can be generalized across languages. They are de-
scribed below:

1. Word and POS n-grams, which were com-
monly used in AES models in the past (Yan-
nakoudakis et al., 2011).

2. Task-specific word and character embeddings
trained through a softmax layer. Although
word embeddings were used in recent neu-
ral AES models(Alikaniotis et al., 2016), this
paper is the first to explore character embed-
dings as a cross-linguistic feature for AES
model.

3. Dependency n-grams where each unigram is
a triplet consisting of dependency relation,
POS tag of the dependent, POS tag of the
head. To our knowledge, these features were
not used in any of the previous work on AES.

4. Linguistic features specific to AES literature:

(a) Document length: The number of words
in a document which is a common fea-
ture used in AES literature.
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(b) Lexical richness features: Lu (2012) de-
scribed several lexical richness and lan-
guage proficiency for English, which
were used in previous AES systems
(Hancke, 2013). In this paper, we used
lexical density, lexical variation, and
lexical diversity features that are com-
monly used in the AES literature.

(c) Error features: Total number of errors
and total spelling errors are obtained
for German and Italian from an open-
source, rule based spelling and grammar
checker.3 To the best of our knowledge,
there is no existing tool for Czech gram-
mar check, and hence we did not extract
error features for Czech.

We will refer to these as domain features in
this paper.

We extracted all n-gram features where n ∈
[1, 5] and excluded those n-grams that appeared
less than 10 times in the corpus. All the POS
and dependency relation based features are ex-
tracted using the UDPipe parser (Straka et al.,
2016) trained on Universal Dependencies tree-
banks (Nivre et al., 2016).

Feature Combinations: In addition to the
above mentioned features, we also explored the
effectiveness of combining n-gram features with
domain features. The n-gram features are sparse
whereas the domain features are dense; there-
fore, we combined them by training a n-gram fea-
ture classifier and using the probability distribu-
tion over its cross-validated predictions with do-
main features to train the final classifier.

3.3 Classification and Evaluation

We compared logistic regression, random forests,
multi-layer perceptron, and support vector ma-
chines for experiments with non-embedding fea-
tures and Neural Network models trained on task-
specific embedding representations for other ex-
periments. Word embeddings for each language
were task-specific are trained only using the MER-
LIN corpus. The embeddings are stacked with a
softmax layer and trained with categorical cross-
entropy loss and Adadelta algorithm. We also ex-
perimented by training a softmax classifier with
character and word embeddings as input and found

3https://languagetool.org/

that the combined model does not perform as well
as a stand-alone word embeddings model.

Considering the space restrictions, we report
only the best performing systems in this paper.
Due to the unbalanced class distribution across
all the three languages in the data, we employed
weighted-F1 score to evaluate the performance of
our trained models. Weighted F1 is computed as
the weighted average of the F1 score for each la-
bel, taking label support (i.e., number of instances
for each label in the data) into account. For both
monolingual and multilingual settings, we report
results with 10-fold cross validation. For cross-
lingual evaluation, we report results on the test lan-
guage’s data.

All our neural network models are implemented
using Keras (Chollet et al., 2015) with Tensor-
Flow as the backend (Abadi et al., 2015) and other
models were implemented using scikit-learn (Pe-
dregosa et al., 2011; Buitinck et al., 2013).4

While it is also possible to model AES as a
regression task, we report classification results
which is common in CEFR classification tasks.
Our initial experiments with linear regression gave
Pearson and Spearman correlation in the range
of 0.7 − 0.9 with gold standard scores, which is
comparable with previous results on English AES
task obtained using regression models (Alikaniotis
et al., 2016).

4 Experiments and Results

For all the experiments, we considered a classifier
using only document length (number of words per
document) as the feature as the baseline. Unless
explicitly stated, all the reported results for non-
embedding features are based on Random Forest
classifier, which was the best performing classi-
fier in our experiments. Numbers with superscript
L indicate performance of results with a Logistic
Regression model.

4.1 Monolingual classification

Our classification results with different feature sets
for the three languages are summarized in table 2.

All feature representations perform better than
the document length baseline, resulting in close to
25% improvement in the macro F1 score in some
cases. All the three sets of n-gram features per-

4Relevant code, generated results and the parame-
ter settings are available at: https://github.com/
nishkalavallabhi/UniversalCEFRScoring
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Features DE IT CZ

Baseline 0.497 0.578L 0.587L

Word ngrams (1) 0.666 0.827 0.721
POS ngrams (2) 0.663 0.825 0.699
Dep. ngrams (3) 0.663 0.813 0.704
Domain features 0.533L 0.653L 0.663

(1) + Domain 0.686 0.837 0.734
(2) + Domain 0.686 0.816 0.709
(3) + Domain 0.682 0.806 0.712

Word embeddings 0.646 0.794 0.625

Table 2: Weighted F1 scores for Monolingual Clas-
sification

form comparably in the case of German and Ital-
ian. In the case of Czech, word n-grams turn out
be a better predictor of CEFR scale than syntactic
features. The domain features, by themselves, do
not perform well for any of the languages. How-
ever, concatenating the domain features with n-
gram features yield slightly better classification re-
sults. Word embeddings perform poorly for Czech
compared to other non-embedding features, and
come close to lexical and syntactic features in the
case of German and Italian. Whether using em-
beddings pre-trained on a larger corpus will give
us better scores is something that needs to be ex-
plored in future.

To our knowledge, Hancke (2013) is the only
comparable work which explored CEFR classi-
fication for German using the same dataset, but
with several language specific morphological and
syntactic features. Our results are comparable to
the reported results of Hancke (2013), although
we primarily rely on data-driven features. To our
knowledge, there are no existing results for Czech
and Italian.

German, which has a larger dataset, seems to
perform poorer than the other two languages. One
possible explanation for this could be that we are
dealing with a 5 class classification for German,
where as it is only a 3 class problem for Czech
and Italian. It is also possible that these feature
representations are not sufficient to model German
language proficiency labeling task. Further ex-
periments (and possibly with other existing CEFR
datasets) are needed to understand why the classi-
fication results differ between different languages.

4.2 Multilingual classification

In this setup, we combined all the language texts
and trained a single universal CEFR classifier. Ta-
ble 3 shows the results. For the non-neural mod-
els, we experimented with and without consider-
ing language information as a categorical feature.
The neural network model is a multitasking model
(Çöltekin and Rama, 2016) that consists of char-
acter and word embeddings as input. The model
learns to predict both the language of the text (lan-
guage identification) and the CEFR category si-
multaneously. The model is trained using categor-
ical cross-entropy and Adadelta algorithm. The ta-
ble shows results with and without language iden-
tification for neural models.

Features lang (-) lang (+)

Baseline 0.428L -
Word n-grams 0.721 0.719
POS n-grams 0.726 0.724
Dependency n-grams 0.703 0.693
Domain features 0.449L 0.471L

Word + Char embeddings 0.693 0.689

Table 3: Weighted F1 scores for multilingual
classification with models trained on combined
datasets.

We observe that the document length baseline
seems to perform poorer than monolingual models
in this case. Further, we can see that the average
result on monolingual model as close to the mul-
tilingual model in case of POS n-grams, depen-
dency n-grams, and embeddings. However, do-
main features clearly perform poorly compared to
monolingual case. While one could argue that the
better performance multilingual model over some
monolingual models is due to more training data,
this does not seem to be true for some feature
groups (baseline, domain features). One inference
we can draw is that some feature groups have sim-
ilarities in terms of proficiency categories assigned
for different languages, which lends support to our
hypothesis. Although we did not perform a quali-
tative language specific evaluation yet, the results
so far indicate that efforts to build such a universal
scoring model is a worthwhile effort.
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4.3 Cross-lingual classification

In this setup, we trained a CEFR model on one
language and tested it on others. We trained the
cross-lingual model only on German data since it
has examples for all categories in our corpus. Ta-
ble 4 summarizes our results. We did not train
with word n-grams and word embeddings here as
they are lexical and are language specific and are
not suitable for this scenario. Table 4 presents the
results of the experiments in this setup. The re-

Features Test:IT Test:CZ

Baseline 0.553L 0.487L

POS n-grams 0.758 0.649
Dependency n-grams 0.624 0.653
Domain features 0.63L 0.475

Table 4: Weighted F1 scores for cross-lingual clas-
sification model trained on German.

sults show a drop in performance when compared
to monolingual models, which is not surprising as
the feature weights are tuned to German syntactic
features. However, it is interesting to note that the
drop is less than 10% in both cases. In the case of
Italian, the domain features yield similar results
to monolingual results suggesting that there are
some possible universal patterns of language use
in the progression towards language proficiency.
All feature groups perform better than the docu-
ment length baseline for Italian, and domain fea-
tures perform poorer than the baseline for Czech.
The confusion matrices for these experiments (cf.
tables 5a and 5b) suggest that most of the misclas-
sification occurs only between adjacent levels of
proficiency.

The results of this experiment indicate that
while cross-lingual classification results in a drop
in performance, it still captures the proficiency
scale meaningfully. So, the next step in this di-
rection would be to explore better representations
of the data, and better modeling methods.

5 Conclusion

In this paper, we reported the results of first exper-
iments conducted with the aim of exploring a “uni-
versal CEFR classifier”. The results so far indicate
that cross-lingual and multilingual classifiers yield
comparable performance to individual language
models. These results provide some evidence for a

→ Pred A1 A2 B1 B2 C1

A1 5 24 0 0 0
A2 9 311 56 5 0
B1 1 70 279 44 0

(a) DE-Train:IT-Test setup with POS n-gram features

→ Pred A1 A2 B1 B2 C1

A2 0 129 57 2 0
B1 0 23 101 41 0
B2 0 5 25 51 0

(b) DE-Train:CZ-Test setup with Dependency features

Table 5: Confusion matrices for cross-lingual scor-
ing with Random Forests by training on German
data (DE-train).

universal notion of language proficiency and leave
open many questions which need to be explored
further in future. Our immediate future plans in-
clude a systematic exploration of feature represen-
tations which are meaningful for the AES context
while being portable across languages. Modeling
proficiency classification as a domain adaptation
problem (where the domain is another language),
and doing multi-task learning by considering other
annotation dimensions are other interesting direc-
tions to pursue in future. Considering that we have
publicly available CEFR graded corpora for other
languages such as Estonian, it would be interesting
to extend this approach to new languages. This
would enable us to investigate questions such as
the relationship between genetic/typological simi-
larities between languages and cross/multi-lingual
CEFR classification task in future.

When it comes to using such methods in real
world language testing applications, researchers
express concerns about the validity of the chosen
feature constructs, and bias and fairness in mod-
els. Some recent research (Madnani et al., 2017)
in this direction leaves us with some pointers to
incorporate these aspects in future research.
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Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete War-
den, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. 2015. TensorFlow: Large-
scale machine learning on heterogeneous systems.
Software available from tensorflow.org. https:
//www.tensorflow.org/.

Dimitrios Alikaniotis, Helen Yannakoudakis, and
Marek Rei. 2016. Automatic text scoring using
neural networks. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Berlin, Germany,
pages 715–725. http://www.aclweb.org/
anthology/P16-1068.

Yigal Attali and Jill Burstein. 2004. Automated essay
scoring with e-rater R© v. 2.0. ETS Research Report
Series 2004(2).

Adriane Boyd, Jirka Hana, Lionel Nicolas, Detmar
Meurers, Katrin Wisniewski, Andrea Abel, Karin
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Abstract

We present a neural recommendation model
for Chengyu, which is a special type of Chi-
nese idiom. Given a query, which is a sentence
with an empty slot where the Chengyu is taken
out, our model will recommend the Chengyu
candidate that best fits the slot context. The
main challenge lies in that the literal meaning
of a Chengyu is usually very different from
its figurative meaning. We propose a neural
approach to incorporate the definition of each
Chengyu as background knowledge. Experi-
ments on both Chengyu cloze test and coher-
ence checking in college entrance exams show
that our system achieves 89.5% accuracy on
cloze test and outperforms human experts who
attended competitive universities in China. We
will make all of our data sets and resources
publicly available as a new benchmark for re-
search purposes1.

1 Introduction

Chengyu (“成 语”, literal translation: “form
phrases”) is a special type of Chinese idiom, and
represents one of the most beautiful, fascinat-
ing and unique aspects of the Chinese language.
96% Chengyus consist of four characters each.
Chengyus were mainly created from ancient sto-
ries, literature and sayings which can be traced
back to thousands of years ago. Some exam-
ples are shown in Table 1. More than 7,000
Chengyus are still widely used in the modern
Chinese, Japanese, Korean and Vietnamese lan-
guages. Like idioms in other languages, us-
ing Chengyu appropriately makes communication
more compelling and engaging because they in-
troduce powerful imagery and figurative meanings
that differ from their literal meanings.

When learning Chinese phrases, Chengyus are
always the most difficult to understand and mem-

1https://github.com/bazingagin/chengyu data

orize. Second-language learners generally have a
love-hate relation with Chengyu and tend to avoid
it. A typical way to measure a Chinese learner’s
Chengyu knowledge is “Cloze Test”, in which the
learner is asked to supply the best Chengyu that
has been removed from a sentence. It’s consid-
ered as one of the most difficult problems in Chi-
nese college entrance language and literature ex-
ams, and has been the focus of several TV tal-
ent shows in China such as the Chinese Idiom
Congress by CCTV. This motivated us to develop
the first Chengyu recommendation system to as-
sist Chinese learners. Given a context sentence
(“query”) with a Chengyu removed, the system
will automatically recommend the best Chengyu
to fill in the blank.

The four characters in each Chengyu are of-
ten unintelligible without understanding the back-
ground story. For example, “沉鱼落雁 (literal
translation: sink fish fall swallow)” and “闭月羞
花 (literal translation: hide moon shame flower)”
were used to summarize four stories of the top four
beauties in ancient China: Xi Shi, Wang Zhao-
jun, Diao Chan and Yang Yuhuan. They were
being so beautiful that fish sank, birds fell from
the sky, the moon hid, and flowers were shamed.
As a result, we cannot compose the meaning of a
Chengyu only based on its four characters. More-
over, each Chengyu is highly succinct, compact
and synthetic. For example, “一日三秋 (literal
translation: one day three autums)” means greatly
missing someone so that one day feels as long as
three years. However, its key meaning “missing”
is not in this Chengyu.

To address these challenges, we create a new
Chengyu Cloze Test benchmark, which consists
of 108,987 query sentences and 7,395 target
Chengyus. Each Chengyu is associated with a def-
inition, which describes its general meanings and
scenarios where it occurs. Then we develop an
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Origin Query Recommended Chengyu and Its Definition

Historical Story

⽂学接受史上经常有这样的现象，某
些作品在它的那个时代曾经风⾏⼀
时，_____。 
Throughout history some literary works 
were extremely popular, so much so that 
____.

洛阳纸贵 (Luoyang's paper became expensive) 
原指西晋都城洛阳之纸，因⼤家争相传抄左思的作品《三都赋》，以⾄
⼀时供不应求，货缺⽽贵。⽐喻著作有价值，流传⼴。 
During the Western Jin Dynasty, people kept copying and propagating Zuosi's 
work “San Du Fu", which caused the supply of paper falling  short of demand. 
Now a metaphor to describe that some great work is valuable and widely 
disseminated.

Ancient 
Chinese 

Literature

三年的⾼中⽣活如____⼀般转瞬⽽
逝。 
The three years of high school life was 
like ____, time takes wings.

⽩驹过隙 (time passes quickly like a white pony's shadow across a 
crevice) 
《庄⼦》：“⼈⽣天地之间，若⽩驹之过隙，忽然⽽已。” 
Chuang Tzu said ``Human life between heaven and earth is like the white 
pony seen through a crack in the wall, it's just a moment.

Fable Proverb 
Saying

____，各显神通，预⽰着省楹联艺术
家协会成⽴后必将涌现出成千上万不
计其数的佳联妙对。 
____, each with their own special 
powers. This indicates that thousands of 
great couplets will emerge and decorate 
Shanjin beautifully. 

⼋仙过海 (Eight immortals cross the sea) 
相传⼋仙过海时不⽤⾈船，各有⼀套法术，后⽐喻各⾃拿出本领或办
法，互相竞赛。 
It's said that eight immortals crossed the sea without boats because each of 
them had special power. Now it's used to describe using one's unique skill to 
compete.

Foreign 
Literature

我们喜欢⽤经济去控制⼀个国家的命
脉,⽤信仰去控制⼀个种族,⽤利益让
别⼈为我们____。 
We like to use economy to control a 
country's faith, use belief to control a 
race and use profit to control others so 
they can ____ for us.

⽕中取栗 (pull chestnuts from the embers) 
出⾃⼗七世纪法国寓⾔诗⼈拉·封丹的寓⾔《猴⼦与猫》。⽐喻受⼈利⽤
去冒险，吃了苦头却得不到⼀点好处。 
From the 17 century French fabulist Jean de la Fontaine's "The Monkey and 
the Cat". Bertrand the monkey persuades Raton the cat to pull chestnuts from 
the embers amongst which they are roasting, promising him a share. As the cat 
scoops them from the fire one by one, burning his paw in the process, the 
monkey gobbles them up. It's used to describe a person used unwittingly or 
unwillingly by another to accomplish the other's own purpose with his own 
risk but gets nothing.

Metaphor

这篇⼩说情节完整⽣动，⼈物性格鲜
明，但____，个别语句还⽋推敲。 
This novel includes a complete and 
vivid plot, and the characters have 
distinct personalities. But it's like ____- 
some sentences need to be further 
polished.

⽩璧微瑕 (white jade with a little blemish) 
洁⽩的⽟上有些⼩斑点。⽐喻很好的⼈或物有些⼩缺点，美中不⾜。 
A flaw in a white jade. It's a metaphor for a good person or a good thing with 
a little defect.

Table 1: Chengyu Examples

attentive neural network architecture to select the
most appropriate Chengyu to fit in the slot context
of each query. We first encode query sentence and
Chengyu definitions using a bi-directional long
short-term memory (Bi-LSTM) network (Hochre-
iter and Schmidhuber, 1997). To better capture
the correlation between the query and the defini-
tion, we apply a soft attention to assign a weight
to each word in the query sentence, and predict a
matching score for each candidate Chengyu. Our
system significantly outperforms human learners
who attended top universities in China.

2 Related Work

Our Chengyu cloze test task is similar to read-
ing comprehension (Hermann et al., 2015; Cui
et al., 2016; Chen et al., 2016; Kadlec et al., 2016;
Seo et al., 2016). However, it’s more challeng-
ing because the context includes a sentence in-
stead of a paragraph, the Chengyu phrase itself
does not convey its figurative meaning, and there
are many more candidate answers. Very few Nat-
ural Language Processing techniques have been
applied to understand or recommend Chengyu.

Chung (2009) studied a subset of Chinese fig-
urative language, focusing on Chinese five el-
ements and body part terms. Limited efforts
have used Chengyu dictionaries to expand Chinese
emotion lexicon (Xu et al., 2010) and improve
Chinese word segmentation (Chan and Chong,
2008; Sun and Xu, 2011; Wang and Xu, 2017).
Chengyus differ from metaphors in other lan-
guages (Tsvetkov et al., 2014; Shutova, 2010) be-
cause they do not follow the grammatical structure
and syntax of the modern Chinese.

3 Approach

Figure 1 shows the overall architecture of our ap-
proach. For a query and the definition of a candi-
date Chengyu, we first apply a word segmentation
tool jieba2 to segment query and definition into
words, and apply a Bi-LSTM network to encode
each word with a contextual embedding. In order
to better capture the correlation between a query
and a Chengyu, we further compare the represen-
tations of the Chengyu definition and the contex-
tual embedding of each word in the query, and

2https://github.com/fxsjy/jieba
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Figure 1: Architecture Overview

take the weighted sum of the query word contex-
tual embeddings as input to a linear function to
determine the probability score of the candidate
Chengyu. Next we show the approach details.

Encoding Given a query q and a Chenyu defi-
nition dj from the target Chengyu database D =
{d1, d2, ..., dm}, we apply two Bi-LSTM net-
works to encode them separately. Each Bi-LSTM
network leverages long distance features from the
whole sentence to capture the context information
by using a memory cell (Hochreiter and Schmid-
huber, 1997). Each word in q and dj is assigned a
contextual embedding.

Attention To better capture the correlation be-
tween a query and each Chengyu definition, we
use an attention mechanism (Bahdanau et al.,
2014; Sutskever et al., 2014) to compare the se-
mantic relatedness of each word in the query sen-
tence with the meaning of each Chengyu defini-
tion.

Given the hidden states H = h0, h1, ..., hn of
the Bi-LSTM encoding the query sentence, where
hi denotes the concatenation of the hidden states
of word wi with forward and backward LSTMs,
the attention layer sum over hi with learnable
weight α: R =

∑n
i=1 αi · hi, where R is the

weighted sum vector representation of the query.
αi is a learnable weight which is computed by
αi =

exp(ei)∑n
i=1 exp(ei)

and ei = dT ·Wα ·hi, where Wα

is a parameter to capture the relevance between a
query and a definition flexibly (Chen et al., 2016).
dT is the last hidden hidden state of the Bi-LSTM
encoding the definition.

Training With the weighted sum vector repre-
sentation of the query R, we apply a softmax func-
tion to compute the probability of each candidate
Chengyu dj to be filled into the slot.

oi = WT
βR

pi =
exp(oi)∑m
j=1 exp(oj)

,

where Wβ maps the final representation of
the query into Rm, and m is the number of
classes. Then we optimize the log likelihood:
L =

∑m
j=1 yjlog(pj), where yj is 0 or 1 depend-

ing on if the truth is Chengyu dj or not.

Prediction For prediction, we take a query with
each Chengyu definition (q, dj), 1 ≤ j ≤ m as in-
put, and predict a probability matrix M ∈ Rm×m,
where m is the number of candidates. For exam-
ple, a choose-one-from-four task will have m =
4. The final predicted Chengyu dj is selected by
argmax(M[:, j]), 1 ≤ j ≤ m.

4 Experiments

4.1 Data and Setting

We crawled 108,987 sentences including 7,395
unique idioms from http://zaojv.com, and
the definitions of these idioms from http://
cy.5156edu.com. Training and test set con-
tain 108,432 and 555 sentences, and 7,071 and
508 Chengyus respectively. We use the whole
Chengyu dataset to train word embeddings. We
perform two tests: (1) cloze test: for each sen-
tence in the test set, we take out the ground-truth
Chengyu, and let the system select a Chengyu
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TYPE QUERY SYSTEM GROUND TRUTH ANALYSIS

Incorporating 
 Definition

这事已势不可遏，任何想阻挡他
的⼈都如____，简直是不⾃量
⼒。 
This event is unstoppable, anyone 
who tries to stop it will be like ____, 
almost not recognizing his/her own 
limited power.

蚍蜉撼树 
an ant shaking a 

tree, to describe one 
fails to recognize 

one’s limited power

蚍蜉撼树 
an ant shaking a 

tree, to describe one 
fails to recognize 

one’s limited power

The definition significantly enriches 
the semantic meanings of Chengyu 
itself. 蚍蜉撼树(an ant shaking a 
tree) is a metaphor to describe ⾃不
量⼒(fail to recognize one's own 
limited power).

Attention 
Mechanism

刘备思贤若渴，三请诸葛亮的故
事在我国可是____，⼈⼈皆知的
佳话。 
It's ____ well known by everyone in 
our country that Liu Bei was eager 
to recruit talents and invited Zhu 
Geliang three times.

家喻户晓 
well known by 
every family

家喻户晓 
well known by 
every family

By incorporating the attention 
mechanism, our approach can better 
capture the correlations between 
query context and Chengyu 
definition. our approach successfully 
selects 家喻户晓 (well known by 
every family) to fill in the slot since it 
shares similar semantic meanings 
with query context word 知 (known).

World 
Knowledge

村上春树____，29岁才写他的第
⼀部作品。 
Haruki Murakami ____, he was 
already at age 29 when he wrote his 
first works.

画龙点睛 
bring the painted 
dragon to life by 

putting in the pupils 
of its eyes

⼤器晚成 
takes a long time 

to make a great 
instrument

We need to know “age 29” is 
relatively late to produce the first 
works for a writer.

Discourse 
Coherence

⼈们⾯临灾难，不得不____，离
开他们⾃⼰的村落。 
When facing disasters, people had to 
____ and leave their own villages.

逍遥法外 
at large

背井离乡 
leave one’s 
hometown

Our system focused on the shared 
meaning  of escape/leave while 
ignored this Chengyu has a specific 
object “the arm of the law”.

Sentiment 
Analysis

多少⼈认为⼀个作家不仅能妙笔
⽣花，也是____的。 
Many people think that a writer can 
not only write like an angel but also 
____.

⼤⾔不惭 
brag shamelessly

⼜若悬河 
speak eloquently

⼤⾔不惭 (brag shamelessly) 
expresses very negative sentiment 
while ⼜若悬河 (speak eloquently) 
includes positive sentiment.

Negation 
Detection

你在他⾯前说那些话，实在是班
门弄斧，不知____。 
The words you said in front of him 
were really like showing off axe in 
front of Lu Ban, without knowing 
____. 

孤陋寡闻 
with very limited 
knowledge and 

scanty information

天⾼地厚 
high as heaven, 

deep as earth

Our system did not detect negation 
clues and thus failed to select the 
right Chengyu antonyms.

Grammatical 
Structure

写⽂章先要构思好，不要下笔千
⾔，____。 
We should think about the plot 
carefully before write an article, don't 
write down thousands of words, 
____.

词不达意 
the words fail to 

express the meaning

离题万⾥  
get away from the 
title ten thousands 

of miles

When multiple Chengyus appear in 
the same query sentence, they tend 
to follow the same grammatical 
structure.

Rhythm

爱是⼈性的美的⼒量，爱是爱你年
少时的____，更爱你年⽼时⽩发苍
苍。 
Love is the beauty of humanity. To 
love is to love your youthful vigor 
like ____ as well as your gray hair.

意⽓风发 
high-spirited and 

vigorous

桃之夭夭 
the peach trees in 

full blossom

Multiple chengyus tend to appear in 
rhythmical form. In this example, 
“苍苍”(pronunciation: Cāng Cāng) 
and “夭夭”(Yāo Yāo) are both 
reduplication with similar vowel 
pronunciations.

Correct Remaining Challenges

Table 2: Detailed Analysis on Correct Examples and Remaining Challenges

from four candidates consisting of the ground-
truth and three other randomly selected ones to fill
in the slot. (2) coherence checking in college en-
trance exam: we collected 14 problem sets from
(1998, 2000) China college entrance exam, where
each problem set consists of four sentences includ-
ing Chengyus. We let the system select the sen-
tence that contains the most appropriate Chengyu
that fits into the context in a coherent way. For
comparison with human, we asked two Chinese
native speakers (not system developers) who at-
tended top universities in China to perform the
same tests.

4.2 Results and Analysis

Cloze Test Coherence Checking in
College Entrance Exam

Human 70% 42.3%
System 89.5% 35.7%

Table 3: System and Human Accuracy Comparison

Table 3 shows our approach achieves compara-
ble performance as human experts. For 18% of
our system recommended Chengyus which don’t
exactly match the ground truth, they are also ac-
ceptable choices for the given query contexts.
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For example, our system output “白驹过隙(time
passes quickly like a white pony’s shadow across a
crevice)” and ground truth “光阴似箭(time flies)”
are near synonyms. Table 2 shows some correct
examples and the remaining challenges that re-
quire capabilities beyond lexical semantics.

5 Conclusions and Future Work

We created a new benchmark dataset for a new
task of Chengyu cloze test. We also proposed a
neural model which leverages the definitions of
Chengyu as background knowledge and outper-
forms human experts. In the future we will explore
collective inference to rank multiple Chengyus in
the same discourse simultaneously, and incorpo-
rate richer linguistic clues based on structures and
rhythms.
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Abstract

This paper presents the participation of the
LaSTUS/TALN team in the Complex Word
Identification (CWI) Shared Task 2018 in the
English monolingual track . The purpose of
the task was to determine if a word in a given
sentence can be judged as complex or not by
a certain target audience. For the English
track, task organizers provided a training and
a development datasets of 27,299 and 3,328
words respectively together with the sentence
in which each word occurs. The words were
judged as complex or not by 20 human evalu-
ators; ten of whom are natives. We submitted
two systems: one system modeled each word
to evaluate as a numeric vector populated with
a set of lexical, semantic and contextual fea-
tures while the other system relies on a word
embedding representation and a distance met-
ric. We trained two separate classifiers to au-
tomatically decide if each word is complex or
not. We submitted six runs, two for each of the
three subsets of the English monolingual CWI
track.

1 Introduction

Automatic identification of complex words is a
core component in several language-related ar-
eas of research, including Text Simplification
(Saggion, 2017), Lexical Simplification (Bott
et al., 2012), and Readability Assessment (Collins-
Thompson, 2014).

The Complex Word Identification (CWI)
Shared Task 2018 proposes a shared platform for
evaluating complex word identification systems
under four different tracks: English, Spanish
and German monolingual CWI in addition to a
multilingual French CWI track with only a test
set; the three previously mentioned languages can
be used as training for this specific track. The
task has two subtasks: binary classification task;
to determine if a word is complex or not, and a

probabilistic classification task; the probability of
how complex a word is.

In this paper we describe our work for the bi-
nary classification task under the English mono-
lingual CWI track in which task participants were
provided with a set of sentences to assess. For
each sentence, one or more words have been rated
as complex or not by 20 human evaluators (ten of
which were native speakers).

An example sentence from this dataset is:

A lieutenant who had defected was also killed
in the clashes.

In this sentence, the words ’lieutenant’ and ’de-
fected’ were classified as complex by at least one
out of the 20 evaluators, unlike e.g. ’killed’, which
did not received this label by any of them.

In our participation we cast the identification of
complex words as a binary classification problem
in which each word is evaluated as complex or
not, given the sentence in which it occurs. We
designed two systems, the first system modeled
each word by a set of lexical, semantic and contex-
tual features and evaluated distinct binary classifi-
cation algorithms. This system participated from
the (CWI) Shared Task 2016 at SemEval (Ronzano
et al., 2016) achieving very good performance.
The second system modeled each word with its
context through a word embedding representation.
Our approaches obtained reasonable performance
in general but not in comparison with the other
participating systems. For evaluation details, the
reader is referred to (Yimam et al., 2018).

In Section 2 we provide an overview of relevant
research related to Complex Word Identification.
Section 3 and 4 respectively introduce the CWI
Shared Task 2018 dataset and present the text anal-
ysis tools and resources we exploited to character-
ize complex words. In Section 5 we describe the
features we used to build our complex word clas-
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sifiers (they have been also reported in (Ronzano
et al., 2016)). In Section 6 we present and discuss
the performance of our Task 11 system. Finally, in
Section 7 we formulate our conclusions and out-
line future venues of research.

2 Related Work

The identification of complex words constitutes
a key aspect of Text Simplification (Saggion,
2017) and more specifically of Lexical Simplifi-
cation (Bott et al., 2012). It can be defined as
the problem of changing complex words by their
simpler synonyms taking into account the spe-
cific context in which each word is used. Sev-
eral techniques have been applied so far to iden-
tify complex words. In the context of the PSET
Project (Devlin and Tait, 1998), people with apha-
sia were the target of the first lexical simplifi-
cation system for English. The system relies
on a word difficulty assessment based on psy-
cholinguistic evidence (Quinlan, 1992) in order
to decide whether to simplify a word. Recent
work compared a corpora of original documents
(e.g. English Wikipedia) and their ’simplified’ ver-
sions (e.g. Simple English Wikipedia pages) to
prompt measures which can be used to compare
and rank ’quasi-synonymic’ word pairs (Yatskar
et al., 2010).

Besides lexical simplification, the identification
of complex words constitutes a core component
of readability assessment (Collins-Thompson,
2014), the problem of quantifying the readabil-
ity of a given text. The more complex words a
text has, the harder it becomes to read it. Lists
of easy words (Dale and Chall, 1948), word char-
acteristics (Kincaid et al., 1975; Gunning, 1952;
Mc Laughlin, 1969), or word use in context (e.g.
language models) (Si and Callan, 2001) are all
techniques or resources which have been used to
support the assessment of text readability: these
approaches could also be used to evaluate word
complexity.

The CWI Shared Task 2018 is a follow up of
the CWI shared task at SemEval 2016 - Task 11
1 reported by (Paetzold and Specia, 2016a) with
the complementary evaluation paper by (Zampieri
et al., 2017). 21 teams participated in the task
submitting the total of 42 systems. The results
concluded that word frequencies are the most re-
liable predictor of word complexity, also high-

1http://alt.qcri.org/semeval2016/task11/

lighted the effectiveness of Decision Trees and En-
semble methods for the task as well.

The best system by (Paetzold and Specia,
2016b) used a voting approach with threshold and
machine learning-based classifiers trained on mor-
phological, lexical, and semantic features. TALN
(Ronzano et al., 2016) used a Random Forest al-
gorithm over a set of lexical, morphological, se-
mantic and syntactic features.

3 Dataset

The organizers of CWI Shared Task 2018 released
a training set and a development set of 27,299
and 3,328 words respectively, together with the
sentence in which each word occurs. For each
word, the binary complexity judgments of 20 hu-
man evaluators were provided (complex word or
not complex word); ten of whom where native
speakers. Similarly, CWI 2018 task testing dataset
consisted of 4,252 words together with the sen-
tence in which each word occurs.

The datasets used in the shared task are de-
scribed in (Yimam et al., 2017b) and (Yimam
et al., 2017a) including the ones for the other
tracks in this task.

4 Resources and Tools

In order to identify complex words, we charac-
terize each word by means of a set of lexical,
semantic and contextual features, in addition to
Word2Vec representations. To this purpose, we
analyze both the word and the sentence in which
it occurs by means of the language resources and
text analysis tools described in what follows.

4.1 Language Resources
To put the word embedding system in use we uti-
lized a pre-trained word2vec model with 300 di-
mensions representing each vector in the vector
space 2. For the system using engineered fea-
tures, information about word frequency is impor-
tant. Therefore, in our complex word identifica-
tion approach we exploit the word frequency data
of two large corpora: (i) a 2014 English Wikipedia
Dump and (ii) the British National Corpus (Leech
and Rayson, 2014). We also use WordNet (Miller,
1995) to model semantic word features by relying
on word senses and synset relations (e.g. hyper-
nymy). Moreover, we use the Dale & Chall list of

2https://code.google.com/archive/p/
word2vec/
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3,000 simple words (Dale and Chall, 1948) in or-
der to incorporate the text readability dimension,
as this list contains words which 4th grade stu-
dents considered understandable.

4.2 Text Analysis Tools

We analyze the sentences in which a word to eval-
uate occurs by means of the Mate dependency
parser (Bohnet, 2010). As a result, we obtain a
lemmatized and Part-Of-Speech (POS) tagged ver-
sion of the sentence, along with its syntactic de-
pendencies. Both POS tags and dependency in-
formation are used to compute several features as
described in the following Section.

We also processed each sentence by the UKB
graph-based Word Sense Disambiguation algo-
rithm (Agirre and Soroa, 2009). Specifically,
we benefited from the UKB implementation in-
tegrated in the Freeling workbench (Padró and
Stanilovsky, 2012). In this way, we may disam-
biguate single or multiword expressions against
WordNet 3.0.

5 Method

In order to evaluate the complexity of a word, we
designed two systems, each system had different
word and sentence representations.

5.1 Word Embedding (WE) System

We utilized word embeddings and modeled each
sentence as a Word2Vec representation from a pre-
trained model of Google News with 300 dimen-
sions the binary classifier was trained on a set of
features.

The set of features is described in the remainder
of this Section:

5.1.1 Word and Context representation

Each sentence were handled by calculating the
centroid of dimensions of the context before the
target word, the target word and the context af-
ter the target word, generating a total of 900 fea-
tures in which each 300 dimensions represent one
of the three parts of the sentence. The context sur-
rounding the target word were handled by remov-
ing any stop words and only calculating the aver-
age of all the tokens that exists in the Google News
pre-trained model. Finally, in cases in which there
is no context before or after the word a 300 dimen-
sions of zeros were assigned.

5.1.2 Word and Context distance
We generated two extra features to represent the
distance between the target word and the context
before and after it respectively. The cosine simi-
larity was used to calculate the distance between
each pair of vectors in the vector space.

5.2 Lexical, Semantic and Contextual (LSC)
features System

We modeled each word as a numeric features
vector populated with a set of lexical, semantic
and contextual features. In the remainder of this
Section we describe the set of word features we
used, and motivate their relevance with respect to
the characterization of complex words. The ap-
proach taken is the same as followed in (Ronzano
et al., 2016) which we explain here for the sake of
completness. When presenting word features, we
group subsets of related features in the same sub-
section (Shallow features, Dependency Tree fea-
tures, etc.). It is important to note that some of the
word features presented are computed by consid-
ering, besides the target word, also context words
in a [−3, 3] window, where position 0 refers to the
target word. If the context word at a specific posi-
tion cannot be determined, the value of the related
feature is set to undefined.

5.2.1 Shallow Features
We exploited the following set of shallow word
features:

• Word length: the length of the target word
(number of characters).

• Position of the word: the position of the tar-
get word in the sentence. The value of this
feature is normalized in the interval [0, 1] by
dividing the the position of the target word in
the sentence by the length of the same sen-
tence (number of words). The position of the
first word of a sentence is 0.

• Words in sentence: the number of tokens in
the sentence.

5.2.2 Dependency Tree Features
The following set of features is derived by pro-
cessing the dependency tree of the sentences that
include the word to evaluate:

• Word depth in the dependency tree: we
considered the depth in the dependency tree
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of the target word (position equal to 0), the
three previous words and the three following
words.

• Parent word length: the length (number of
characters) of the parent of the current (tar-
get) word in the dependency tree.

5.2.3 Corpus-based Features
Word frequency data derived from the British Na-
tional Corpus and the 2014 English Wikipedia was
used to compute the following set of features:

• British National Corpus frequency: we
considered the BNC frequency3 of the target
word lemma (position equal to 0), the three
previous word lemmas and the three follow-
ing word lemmas.

• English Wikipedia frequency: we consid-
ered the 2014 English Wikipedia frequency
of the target word (position equal to 0), the
three previous words and the three following
words. Word frequencies are computed by to-
kenizing and lower-casing English Wikipedia
contents.

• Simple word list: a binary feature to point
out the presence of the target word in the Dale
& Chall list.

5.2.4 WordNet features
We used WordNet 3.0 to compute the following
features. Given a target word, we refer as target-
word-synsets the set of synsets that have the same
POS of the target word and include the target word
among their lexicalizations (all the senses of the
target word). Note that this set of features is com-
puted without relying on Word Sense Disambigua-
tion.

• Number of Synsets: the number of synsets
in target-word-synsets (i.e. number of senses
of the target word).

• Number of Senses: the sum of the number
of word senses (i.e. the number of lexicaliza-
tions) of each target-word-synset.

• Depth in the hypernym tree: the average
depth in the WordNet hypernym hierarchy
among all the target-word-synsets.

3http://ucrel.lancs.ac.uk/bncfreq/lists/1 1 all fullalpha.txt.Z

• Number of Lemmas: the average number
of synset lexicalizations among all the target-
word-synsets.

• Gloss length (WNGloss): the average length
of synset Glosses among all the target-word-
synsets, in terms of number of tokens.

• Number of relations (WNRelation): the av-
erage number of semantic relations among all
the target-word-synsets.

• Number of Distinct POSs (WNDistinct-
POS): the number of distinct POS repre-
sented by at least one target-word-synset.

• Part of Speech (WN POS - 4 features): for
each WordNet POS (POS equal to Noun,
Verb, Adjective and Adverb) we counted the
number of synsets with that POS among the
target-word-synsets, thus generating four fea-
tures.

5.2.5 WordNet and corpus frequency
features

The following set of features was computed by
combining WordNet data, the word frequencies
of the British National Corpus (BNC) and the re-
sults of the UKB WordNet-based Word Sense Dis-
ambiguation algorithm applied to the sentences
where complex words appear. Thanks to the UKB
algorithm, we identify the WordNet 3.0 synset that
characterizes the sense of each target word (WSD-
synset). Besides the target word, each WSD-synset
usually has other lexicalizations, i.e. other syn-
onyms. We retrieve the BNC frequency of all the
lexicalizations of the target-word-WSD-synset and
compute the following features:

• Percentage of lexicalizations with higher /
lower frequency than target word: the per-
centage of the lexicalizations of the WSD-
synset with a BNC frequency higher / lower
than the target word BNC frequency.

• Ratio of total lexicalizations’ frequencies
related to lexicalizations with higher /
lower frequency than target word: the ra-
tio between the sum of BNC frequencies of
the lexicalizations of the WSD-synset with a
frequency higher / lower than the target word
frequency and the sum of BNC frequencies
of all the lexicalizations of the WSD-synset.
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We also computed the previous set of 4 features
without relying on the results of the UKB Word
Sense Disambiguation algorithm: we considered
for each target word all the lexicalizations of all
the synsets that represent possible senses and have
the same POS of the same target word. Similarly
to the UKB based features.

With the total of 902 features for the word em-
bedding system and 60 features before applying
any filtering to the lexical, semantic and contextual
features System, we enabled the training and eval-
uation of distinct binary classification algorithms
tailored to determine whether a word is complex
or not. To this end, we relied on the Weka machine
learning framework (Witten and Frank, 2000).

6 Results

We evaluated the performance of five classifica-
tion algorithms: Support Vector Machine (with
linear and radial basis function kernels), Naı̈ve
Bayes, Logistic Regression, Random Tree and
Random Forest. We applied 10 fold-cross val-
idation over the training data, based on the ob-
tained reults we decided to build the classifiers
using Random Forest for both systems since they
performed best over the whole dataset. The results
of the Random Forest system in 10-fold cross val-
idation experiments over the training data can be
seen in Table 1.

Table 1: 10-fold cross validation over the training
datasets

System Dataset P R F

WE

News 0.810 0.811 0.810
WikiNews 0.741 0.742 0.736
Wikipedia 0.708 0.703 0.694

all 0.803 0.803 0.803

LSC

News 0.796 0.793 0.787
WikiNews 0.747 0.745 0.738
Wikipedia 0.769 0.768 0.766

all 0.785 0.783 0.778

Tables 2, 3 and 4 presents the top 3 systems
participating in the evaluation together with our
results. We have obtained mixed results: in the
English News our Word Embedding (WE) system
outperformed the system based on human engi-
neered features (LSC) – eleventh position in the
ranking. While the LSC system performed better
on WikiNews and Wikipedia, placing the team in
the tenth position in the ranking.

Table 2: Comparison with the top three teams for the
English News submissions

Team Accuracy
camb 0.8792
dirkdh 0.8721
TMU 0.8706
WE 0.8172
LSC 0.7785

Table 3: Comparison with the top three teams for the
English WikiNews submissions

Team Accuracy
camb 0.8430
ajason08 0.8368
nathansh 0.8329
LSC 0.7615
WE 0.7374

Table 4: Comparison with the top three teams for the
English Wikipedia submissions

Team Accuracy
camb 0.8115

nathansh 0.7966
andrei.butnaru 0.7920

LSC 0.7414
WE 0.6966

7 Conclusion

In conclusion, we tried to approach the problem
of identifying complex words at the CWI shared
task 2018 by designing two systems based on bi-
nary classifiers, one represents the context as word
embedding vectors and the other use a set of lex-
ical, semantic and contextual features. The WE
system performed better in the English News part
and the LSC system excelled for Wikinews and
Wikipedia. For future work we are planning on
better analyzing our set of features by applying
some feature selection methods e.g. info gain.
Afterwards, we will attempt deep-learning neural
networks to create our classifiers.
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Abstract
We approach the 2018 Shared Task on Com-
plex Word Identification by leveraging a cross-
lingual multitask learning approach. Our
method is highly language agnostic, as evi-
denced by the ability of our system to general-
ize across languages, including languages for
which we have no training data. In the shared
task, this is the case for French, for which our
system achieves the best performance. We fur-
ther provide a qualitative and quantitative anal-
ysis of which words pose problems for our sys-
tem.

1 Introduction

Complex word identification (CWI) is the task
of predicting whether a certain word might be
difficult for a reader to understand and is typi-
cally used as a first step in (lexical) simplification
pipelines (Shardlow, 2014; Paetzold and Specia,
2015, 2016a). This task has received significant
attention from the community over the past few
years, leading to two shared tasks and several other
publications (Shardlow, 2013a,b).

This paper presents our submission to the CWI
2018 shared task (Yimam et al., 2018), at the 13th
Workshop on Innovative Use of NLP for Build-
ing Educational Applications. This task includes
tracks targeting four languages: English, Spanish,
German and French. For each of these languages,
the task involves prediction of binary labels of
whether any of a range of annotators deemed some
word or phrase complex, or prediction of the ratio
of those who did. The task further differs from
previous approaches to CWI in extending the def-
inition of the target units from the word level to
multi-word expressions, such that annotations in
the training and test set spanned wider stretches of
text than single tokens.

Another difference from previous approaches to
CWI is that the data is annotated by a mixture of

native and non-native speakers, posing an interest-
ing challenge to reconcile the potentially different
complexity assessments of these groups.

One challenge in the CWI 2018 shared task is
the fact that one of the languages under consid-
eration (French) does not have any training data
available. We approach this problem by explor-
ing a combination of multitask learning and cross-
lingual learning. In doing so, we aim to answer the
following research questions:

RQ 1 How can multitask learning be applied to
the task of cross-lingual CWI?

RQ 2 How can complex words be identified in
languages which are not seen during training
time?

Our contributions also include a thorough quali-
tative and quantitative error analysis, which shows
that long and infrequent words are very likely to be
complex, but that non-complex words that display
these properties pose a challenge to our system.

2 Related work

2.1 Multitask Learning
Multitask learning (MTL) is the combined learn-
ing of several tasks in a single model (Caruana,
1997). This can be beneficial in a number of sce-
narios. Previous work has shown benefits, e.g., in
cases where one has tasks which are closely re-
lated to one another (Bjerva, 2017a,b), when one
task can help another escape a local minimum
(Bingel and Søgaard, 2017), and when one has
access to some unsupervised signal which can be
beneficial to the task at hand (Rei, 2017). A com-
mon approach to MTL is the application of hard
parameter sharing, in which some set of param-
eters in a model is shared between several tasks.
We contribute to previous work in MTL by us-
ing a hard parameter sharing approach in which
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we share intermediate layers between languages,
and use one output-layer per language, thus in
a sense seeing languages as tasks, similarly to
Bjerva (2017a).

2.2 Cross-lingual learning
Cross-lingual learning is the problem of training a
model on a given language, and applying it to an-
other (unseen) language. One common approach
is to apply cross-lingual word representations, al-
though this has the disadvantage that it tends to
place relatively high demands on availability of
parallel text. Another frequently used approach
in this context is to use machine translation (MT)
so as to obtain a monolingual training set (Tiede-
mann et al., 2014). However, this approach nec-
essarily increases the complexity of a system, as
a fully-fledged MT system needs to be incorpo-
rated in the pipeline. Furthermore, this approach
bypasses the problem of attempting to find meth-
ods or feature sets which can be successful across
languages. We therefore follow previous work by,
e.g. Bjerva and Östling (2017) in that we use hard
parameter sharing with language-agnostic input
representations. We build upon this by leverag-
ing language-specific resources which are widely
available, such as Wikipedia dumps, and WordNet
(see Section 5.

2.3 CWI
Automatic complex word identification has a rel-
atively short history as a research task, with first
publications including Shardlow (2013a,b)

A noticeable commonality of the highest-
scoring systems in the CWI 2016 shared task was
the use of ensemble methods, most notably ran-
dom forest classifiers, which drew on a range of
morphologic, semantic and psycholinguistic fea-
tures, among others (Paetzold and Specia, 2016b;
Ronzano et al., 2016).

Yimam et al. (2017) present first work on
CWI that considers languages other than English.
They release a German and a Spanish dataset and
present first CWI results for these languages. No-
tably, they also describe first cross-lingual experi-
ments, in which they train on some language and
test on another, i.e. without employing any of the
common strategies for cross-lingual learning that
we outline above.

Recently, Bingel et al. (2018) showed promising
results in predicting complex words from gaze pat-
terns of Danish children with reading difficulties,

Language Training Dev Test Complex

English 27,299 3,328 4,252 42.03%
Spanish 13,750 1,622 2,233 40.61%
German 6,151 795 959 39.21%
French – – 2,251 29.18%

Table 1: Data overview. The share of complex
words is computed across all data splits.

which opens up possibilities for personalized com-
plex word identification, but it is less certain how
well their method generalizes to other languages
or demographics.

3 Data

We use the data made available through the shared
task (Yimam et al., 2018). Each training instance
consists of a sentence, with a marked complex
phrase annotation, including the numbers of na-
tive and non-native annotators, and the fraction of
these who found the phrase to be complex. An
overview of the data is given in Table 1. The
number of entries which are considered complex
is quite skewed, and differs per language as French
has substantially fewer complex phrases than En-
glish. This is further illustrated in Figure 1.

In addition to the shared task data, we also use
external resources in our feature representations
(see Section 5).

4 Model

As outlined in Section 2, earlier work has shown
the aptitude of ensemble methods for CWI, espe-
cially such ensembles that feature random forests.
We further choose to address the problem in a
cross-lingual fashion, for which we deem multi-
task learning models particularly suitable.

Motivated by these observations, we devise an
ensemble that comprises a number of random
forests as well as feed-forward neural networks
with hard parameter sharing. The random forests
each consist of 100 trees that create splits based on
Gini impurity (Breiman, 2001). They do not im-
plement any form of explicit cross-lingual transfer
other than the reliance on language-agnostic fea-
tures, such that we simply train them on a single
language at a time, or on shuffled concatenations
of training data for several languages. We use
random forest classifiers for the binary task and
random-forest regressors for the probabilistic task.
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Figure 1: Histogram of numbers sentences (y-axis) which N annotators (x-axis) found to be complex.

Note that our random forests are single-task mod-
els, where we cannot define shared or language-
specific subparts. Instead, these are always trained
on data for the single test language.

The neural MTL models, in contrast, explic-
itly define parts pertaining to specific languages.
Concretely, for each language l, we define a func-
tion from a language-specific input layer to a hid-
den representation h0 that we share between lan-
guages:

h0 = tanh(x(l)W
(l)
in + b

(l)
in ) (1)

Here and in the following equations, W(·) and b(·)
consistently denote weight matrices and bias vec-
tors, respectively. W

(l)
in and b

(l)
in are the weights

and bias terms specific to input layer l, and the in-
put x(l) is a vector representation of the features
introduced in Sec. 5.

We then compute deeper hidden representa-
tions, such that the hidden layer at depth d is de-
fined as follows:

hd = tanh(hd−1Wd + bd) (2)

Finally, each language l defines its own output y(l).
This output is defined slightly differently for the

regression and classification models.

y(l)reg = hDW
(l)
out + b

(l)
out (3)

For the former, this is simply a linear transforma-
tion of the deepest hidden layer D. The classifica-
tion model adds a sigmoid activation to this:

y
(l)
clf = σ(hDW

(l)
out + b

(l)
out) (4)

4.1 MTL training

Since our multitask model defines several outputs,
but our data is only labeled with a single anno-
tation layer (i.e. for a single language or “task”),
we need a training strategy that does not require
true labels for all tasks. The way this is normally
approached is to iteratively optimize for tasks in
isolation, e.g. by deciding at random which lan-
guage we sample a batch of data from at every pass
of the forward-backward algorithm we use to train
the model.

We employ the above strategy and optimize the
regression model with a mean absolute error loss
function, as well as cross-entropy for the classi-
fication model. We monitor these losses on the
validation set as an early stopping criterion.
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4.2 Ensemble voting
The different neural and random-forest based
model that we train as devised above finally make
independent predictions for new examples. For the
regression models, we use the median prediction
across all systems for a given input to make the fi-
nal ensemble prediction. For the classifiers, how-
ever, we have an additional parameter t that we
optimize on a held-out development set. This is a
threshold indicating the fraction of classifiers that
need to cast a positive vote for us to finally accept
an example as complex. All neural and random
forest classifiers are weighted equally here, each
casting a single binary vote.

4.3 Language identification for cross-lingual
prediction

As we expect our system to be able to generate
predictions for unseen languages (for which we
have no explicit output layer), we implement a fur-
ther component in our neural model that we opti-
mize to predict the language of some input from
the set of available languages with explicit output
layers. This is an additional output layer of our
model, defined as a dense projection from the first
hidden layer followed by a sigmoid.

l = σ(h0Wlid + blid) (5)

During training, we then supply a ground truth lan-
guage identifier l̂ as a second target variable and
perform optimization under a cross-entropy loss
that we add to the CWI loss. At test time, for a
language without an explicit output layer, we first
predict the most similar language we saw during
training using Eq. 5 and then use the output layer
for that language to generate CWI predictions. An
alternative to this could be to generate predictions
from all CWI output layers and ensemble these,
possibly weighted, with weights inferred in a sim-
ilar fashion to language identification.

For the random forest models, which do not de-
fine language-specific output functions, we simply
concatenate training data from all available lan-
guages, leveraging the fact that our feature space
is language-independent.

5 Features

Our systems build on the same set of features
for all input languages, although some of these
are computed from language-specific resources.
This means that the distributions of values attained

for certain features may differ between languages,
which is the motivation for language-specific input
layers in our model. We further reduce language
idiosyncrasies by normalizing all features to the
[0, 1] range. The features are listed below.

Log-probability We compute unigram fre-
quencies for candidates as their log-probabilities
in language-specific Wikipedia dumps. For
multi-word targets, we use the sum of the
log-probabilities of the individual items. Log-
probabilities are computed using KenLM
(Heafield, 2011).

Character perplexity Based on the same
Wikipedia dumps as above, we compute charac-
ter perplexities over the candidate strings using a
smoothed 5-gram character-based language model
(again using KenLM).

Number of synsets As a measure of a tar-
get’s semantic ambiguity, we count the number
of synsets that include it. For this, we rely on
the language-specific WordNet resources for En-
glish (Fellbaum, 1998), Spanish (Gonzalez-Agirre
et al., 2012) and French (Sagot and Fišer, 2008).
For German, access to GermaNet (Hamp and
Feldweg, 1997) was harder to obtain, and we in-
stead automatically translate words from German
to English and use the English WordNet.1 In case
of a multi-word target, we take the mean number
of synsets across the individual words.

Hypernym chain As a measure of semantic
specificity, we further consider the length of the
hypernym chain of an item, i.e. the number of
hypernyms that can recursively be obtained for a
word. These are also obtained using WordNet, and
again we average over individual words in a target.

Inflectional complexity As a proxy for inflec-
tional complexity (i.e. the number of suffixes ap-
pended to a word stem), we measure the differ-
ence in length (character count) between the sur-
face form and the stem of a word. For this, we use
language-specific instances of the Snowball stem-
mer (Porter, 2001) as implemented in NLTK (Bird
and Loper, 2004).

Surface features As basic surface features, we
include the length of an item (in characters) and
whether it is all-lowercase.

1For the translations, we used a bilingual dictionary
(https://www.dict.cc/).
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Language MAE Rank ∆ (system) F1 Rank ∆ (system)

French 0.066 1 0.012 (TMU) 0.7595 1 0.013 (TMU)
German 0.075 2 -0.013 (TMU) 0.6621 5 -0.083 (TMU)
Spanish 0.079 3 -0.007 (TMU) 0.7458 5 -0.024 (TMU)

Table 2: Official performance figures of our method for all non-English tracks. The ∆ (system) column
indicates the difference in performance between our system and the best system in each track except for
ours. In accordance with the shared task report, classification performance is measured by macro F1

between the complex and non-complex class in the official results.

Bag-of-POS For each tag defined in the Univer-
sal Part-of-Speech project (Petrov et al., 2011), we
count the number of words in a candidate that be-
long to the respective class. We obtain POS tags
from spacy.2

Target-sentence similarity Motivated by the
conjecture that words or phrases are easier to
understand if they display higher semantic simi-
larity with their context, we compute the cosine
distances between averaged word embeddings
for the target word or phrase and the rest of
the containing sentence. To mitigate out-of-
vocabulary problems, we use pretrained subword
embeddings that we retrieve from the BPEemb
project (Heinzerling and Strube, 2017).

The data provided for the shared task further
includes information on how many of the annota-
tors are native and non-native speakers. While this
information is potentially helpful (assuming that
non-native speakers would have a stronger bias
for annotating as complex), we do not make use
of it, considering that access to such information
cannot be assumed in a real-world scenario.

6 Results

We present an overview of the results that our
method (as well as our best contender) achieved
in Table 2 and discuss results for the individual
languages below.3

6.1 French

Due to the lack of training data for this track, it
poses a challenging test for the ability of our mod-
els to generalize across languages. While the exact
performance figures are at least partly subject to
idiosyncrasies in the text samples and annotators,

2https://spacy.io/
3We did not submit solutions for the English track.

the results obtained here are a good benchmark of
of what we can achieve for languages for which
we do not even have validation data to monitor de-
velopment loss for early stopping.

As Table 2 shows, we achieve the best results
of all participating teams for French, both for the
classification and for the regression track. We
view this as evidence that our cross-lingual MTL
approach is an effective means to share knowledge
between different data sources and even different
languages.

6.2 German/Spanish

Our results for Spanish and German show that,
while we did not achieve the best results com-
pared to other participants, our method still per-
forms competitively. Especially for the regression
track, while not ranking first, the absolute perfor-
mance figures place us very close to the winning
systems. We see this as a validation of our ap-
proach, in particular under the consideration that a
gradual assessment of complexity is perhaps more
meaningful than a binary one, especially when the
definition of the latter makes no distinction be-
tween one or all out of 20 annotators judging an
item as difficult.

6.3 Analysis

Qualitative error analysis Table 3 exemplifies
some of the correct and incorrect predictions that
our system makes for the French test data. We
observe that the system picks up on the relatively
long targets listed as true positives. Note also that
the false positives are relatively long words, which
suggests that the system is deceived by this. The
targets listed as false negatives are shorter, but they
are examples of a (potentially unknown) named
entity and a relatively technical term, which might
pose difficulties to some readers. The words listed
as true negatives are correctly predicted by our
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True positives

Il marque néanmoins sa désapprobation en voyant des Juifs prier devant le mur des Lamentations;
Einstein commente qu’il s’agit de personnes collées au passé et faisant abstraction du présent.
Rimbaud a donné ses lettres de noblesse à un type de poème en prose distinct d’expériences plus
prosaı̈ques du type du “Spleen de Paris” de Baudelaire.

False negatives

Le pays des vallées d’Andorre entre la France et l’Espagne, sur le versant sud des Pyrénées, est
constitué par deux vallées principales: celle du Valira del Orient et celle du Valira del Nord dont les
eaux réunies forment le Valira.
Autres cultures permanentes, la lavande et le lavandin occupent plusieurs milliers d’hectares et four-
nissent plusieurs milliers d’emplois directs.

True negatives

Beaucoup d’ı̂les des Caraı̈bes (les Antilles) – par exemple, les Grandes Antilles et les Petites Antilles
– sont situées au-dessus de la plaque caraı̈be, une plaque tectonique avec une topographie diffuse.
Avec un fort penchant à l’hermétisme qu’il partage avec d’autres de ses quasi contemporains (Gérard
de Nerval, Stéphane Mallarmé, sinon Paul Verlaine parfois), Rimbaud a le génie des visions saisis-
santes qui semblent défier tout ordre de description du réel.

False positives

La construction de l’Atomium fut une prouesse technique.
La proportion des musulmans, tous sunnites, est inférieure à 1%.

Table 3: Example wins and losses of our model for French. Target words or phrases are marked in bold.

(a) Length in characters per error type (b) Log-probability per error type

Figure 2: Statistics of character length and language model log-probability for the French test set. The
darker-shaded boxes are complex words that we predicted correctly (TP) and incorrectly (FN), respec-
tively. The lighter-shaded boxes are non-complex words, predicted correctly (TN) and incorrectly (FP).
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Figure 3: Distributions of false negative predictions per complexity degree as measured by the fraction of
annotators that labeled items as complex in the French, German and Spanish test sets (left to right).

system as non-complex, possibly because of their
shortness.

Quantitative error analysis Investigating the
observations from the previous section in a more
quantitative fashion, Figure 2 presents distribu-
tions of two basic features across complex vs. non-
complex words, and correctly vs. wrongly pre-
dicted test set items for French. For item length,
we observe a clear pattern that complex words
tend to be significantly longer than non-complex
ones. Further, the longer they are, the easier it is
for our model to detect them as complex. Non-
complex words that are relatively long, however,
lead to incorrect predictions from our model.

A very similar pattern can be observed for
the log-probability of complex and non-complex
items. The former are assigned a much lower
probability by our language model, and particu-
larly unlikely words are very easy to detect as
complex. In turn, non-complex words with rel-
atively low probability pose a challenge for our
model.

False negatives per complexity degree We fur-
ther analyze the influence of the degree of com-
plexity on our model’s ability to detect complex
words. As stated in the Introduction, an item is
labeled as complex in the classification setting if
any of the annotators deemed it to be complex.
Effectively, no distinction is made in the classifi-
cation task between a “slightly complex” item that
was marked as such by just one out of ten anno-
tators, and one that was unanimously considered
complex.

A natural assumption is that our models would
more easily pick up on highly complex words and
predict false negatives mostly for items with low
complex annotation ratios. To verify this assump-
tion, we plot the total number of complex words

in the three non-English test sets against the false
negative predictions of our model, grouped by the
ratio of annotators who marked an item as com-
plex (Figure 3). The French and Spanish test
sets are somewhat inconclusive for our question as
they generally contain very few items with a com-
plexity ratio higher than 0.2. The German test set,
however, is more balanced, and in fact we observe
that items with a complexity ratio above 0.2 are
very reliably detected by our model, confirming
our hypothesis.

7 Discussion

We approached RQ 1 by using one output layer
per language, and sharing intermediate parame-
ters. This approach was successful, at least in
part due to our language-agnostic input represen-
tations, which allowed the model to learn similar
internal representations for each language. Sepa-
rate output-layers per language, in turn, allow for
the model to make language-specific accommoda-
tions. We approached RQ 2 by using language-
agnostic feature representations, and language-
specific output layers which were chosen during
test time for unseen languages. This approach al-
lowed our model to perform well on the unseen
language French, and in fact outperformed our re-
sults on other languages. This is, however, not
strictly a fair comparison as it is possible that the
French test set was somehow easier than the oth-
ers.

8 Conclusion

We tackled the 2018 Shared Task on CWI with a
cross-lingual approach via multitask learning. Our
system is highly language-agnostic, as evidenced
by our high performance on French, which was not
seen during training time. Our analysis confirms
that word length and frequency are good, cross-
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linguistic predictors of complexity. However, the
concrete relationships between these features and
complexity may differ between languages, which
is captured by our multitask learning approach.
Our approach is especially promising for the ap-
plication of CWI to unseen languages, as we do
not assume access to any target language training
data. Furthermore, this could even substantially
facilitate the creation of new CWI datasets, using
a bootstrapping or active learning approach.
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tronic Press, Linköpings universitet.

Johannes Bjerva and Robert Östling. 2017. Cross-
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Benoı̂t Sagot and Darja Fišer. 2008. Building a free
french wordnet from multilingual resources. In On-
toLex.

173



Matthew Shardlow. 2013a. A comparison of tech-
niques to automatically identify complex words. In
51st Annual Meeting of the Association for Compu-
tational Linguistics Proceedings of the Student Re-
search Workshop, pages 103–109.

Matthew Shardlow. 2013b. The cw corpus: A new re-
source for evaluating the identification of complex
words. In Proceedings of the Second Workshop on
Predicting and Improving Text Readability for Tar-
get Reader Populations, pages 69–77.

Matthew Shardlow. 2014. Out in the open: Finding
and categorising errors in the lexical simplification
pipeline. In LREC, pages 1583–1590.
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Abstract

In this paper, we present a kernel-based learn-
ing approach for the 2018 Complex Word
Identification (CWI) Shared Task. Our ap-
proach is based on combining multiple low-
level features, such as character n-grams, with
high-level semantic features that are either au-
tomatically learned using word embeddings
or extracted from a lexical knowledge base,
namely WordNet. After feature extraction, we
employ a kernel method for the learning phase.
The feature matrix is first transformed into a
normalized kernel matrix. For the binary clas-
sification task (simple versus complex), we
employ Support Vector Machines. For the re-
gression task, in which we have to predict the
complexity level of a word (a word is more
complex if it is labeled as complex by more
annotators), we employ ν-Support Vector Re-
gression. We applied our approach only on
the three English data sets containing docu-
ments from Wikipedia, WikiNews and News
domains. Our best result during the com-
petition was the third place on the English
Wikipedia data set. However, in this paper, we
also report better post-competition results.

1 Introduction

A key role in reading comprehension by non-
native speakers is played by lexical complexity.
To date, researchers in the Natural Language Pro-
cessing (NLP) community have developed sev-
eral systems to simply texts for non-native speak-
ers (Petersen and Ostendorf, 2007) as well as na-
tive speakers with reading disabilities (Rello et al.,
2013) or low literacy levels (Specia, 2010). The
first task that needs to be addressed by text sim-
plification methods is to identify which words are
likely to be considered complex. The complex
word identification (CWI) task raised a lot of at-
tention in the NLP community, as it has been ad-
dressed as a stand-alone task by some researchers

(Davoodi et al., 2017). More recently, researchers
even organized shared tasks on CWI (Paetzold and
Specia, 2016a; Yimam et al., 2018). The goal of
the 2018 CWI Shared Task (Yimam et al., 2018)
is to predict which words can be difficult for a
non-native speaker, based on annotations collected
from a mixture of native and non-native speak-
ers. Although the task features a multilingual data
set, we participated only in the English monolin-
gual track, due to time constraints. In this paper,
we describe the approach of our team, UnibucK-
ernel, for the English monolingual track of the
2018 CWI Shared Task (Yimam et al., 2018). We
present results for both classification (predicting if
a word is simple or complex) and regression (pre-
dicting the complexity level of a word) tasks. Our
approach is based on a standard machine learn-
ing pipeline that consists of two phases: (i) fea-
ture extraction and (ii) classification/regression.
In the first phase, we combine multiple low-level
features, such as character n-grams, with high-
level semantic features that are either automati-
cally learned using word embeddings (Mikolov
et al., 2013) or extracted from a lexical knowledge
base, namely WordNet (Miller, 1995; Fellbaum,
1998). After feature extraction, we employ a ker-
nel method for the learning phase. The feature
matrix is first transformed into a normalized ker-
nel matrix, using either the inner product between
pairs of samples (computed by the linear kernel
function) or an exponential transformation of the
inner product (computed by the Gaussian kernel
function). For the binary classification task, we
employ Support Vector Machines (SVM) (Cortes
and Vapnik, 1995), while for the regression task,
we employ ν-Support Vector Regression (SVR)
(Chang and Lin, 2002). We applied our approach
only on the three English monolingual data sets
containing documents from Wikipedia, WikiNews
and News domains. Our best result during the
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competition was the third place on the English
Wikipedia data set. Nonetheless, in this paper, we
also report better post-competition results.

The rest of this paper is organized as follows.
Related work on complex word identification is
presented in Section 2. Our method is presented
in Section 3. Our experiments and results are pre-
sented in Section 4. Finally, we draw our conclu-
sions and discuss future work in Section 5.

2 Related Work

Although text simplification methods have been
proposed since more than a couple of years ago
(Petersen and Ostendorf, 2007), complex word
identification has not been studied as a stand-
alone task until recently (Shardlow, 2013), with
the first shared task on CWI organized in 2016
(Paetzold and Specia, 2016a). With some excep-
tions (Davoodi et al., 2017), most of the related
works are actually the system description papers
of the 2016 CWI Shared Task participants. Among
the top 10 participants, the most popular classifier
is Random Forest (Brooke et al., 2016; Mukherjee
et al., 2016; Ronzano et al., 2016; Zampieri et al.,
2016), while the most common type of features
are lexical and semantic features (Brooke et al.,
2016; Mukherjee et al., 2016; Paetzold and Specia,
2016b; Quijada and Medero, 2016; Ronzano et al.,
2016). Some works used Naive Bayes (Mukherjee
et al., 2016) or SVM (Zampieri et al., 2016) along
with the Random Forest classifier, while others
used different classification methods altogether,
e.g. Decision Trees (Quijada and Medero, 2016),
Nearest Centroid (Palakurthi and Mamidi, 2016)
or Maximum Entropy (Konkol, 2016). Along with
the lexical and semantic features, many have used
morphological (Mukherjee et al., 2016; Paetzold
and Specia, 2016b; Palakurthi and Mamidi, 2016;
Ronzano et al., 2016) and syntactic (Mukherjee
et al., 2016; Quijada and Medero, 2016; Ronzano
et al., 2016) features.

Paetzold and Specia (2016b) proposed two en-
semble methods by applying either hard voting
or soft voting on machine learning classifiers
trained on morphological, lexical, and seman-
tic features. Their systems ranked on the first
and the second places in the 2016 CWI Shared
Task. Ronzano et al. (2016) employed Random
Forests based on lexical, morphological, semantic
and syntactic features, ranking on the third place
in the 2016 CWI Shared Task. Konkol (2016)

trained Maximum Entropy classifiers on word oc-
currence counts in Wikipedia documents, ranking
on the fourth place, after Ronzano et al. (2016).
Wróbel (2016) ranked on fifth place using a sim-
ple rule-based approach that considers one feature,
namely the number of documents from Simple En-
glish Wikipedia in which the target word occurs.
Mukherjee et al. (2016) employed the Random
Forest and the Naive Bayes classifiers based on
semantic, lexicon-based, morphological and syn-
tactic features. Their Naive Bayes system ranked
on the sixth place in the 2016 CWI Shared Task.
After the 2016 CWI Shared Task, Zampieri et al.
(2017) combined the submitted systems using an
ensemble method based on plurality voting. They
also proposed an oracle ensemble that provides a
theoretical upper bound of the performance. The
oracle selects the correct label for a given word if
at least one of the participants predicted the cor-
rect label. The results reported by Zampieri et al.
(2017) indicate that there is a significant perfor-
mance gap to be filled by automatic systems.

Compared to the related works, we propose the
use of some novel semantic features. One set of
features is inspired by the work of Butnaru et al.
(2017) in word sense disambiguation, while an-
other set of features is inspired by the spatial pyra-
mid approach (Lazebnik et al., 2006), commonly
used in computer vision to improve the perfor-
mance of the bag-of-visual-words model (Ionescu
et al., 2013; Ionescu and Popescu, 2015).

3 Method

The method that we employ for identifying com-
plex words is based on a series of features ex-
tracted from the word itself as well as the context
in which the word is used. Upon having the fea-
tures extracted, we compute a kernel matrix using
one of two standard kernel functions, namely the
linear kernel or the Gaussian kernel. We then ap-
ply either the SVM classifier to identify if a word
is complex or not, or the ν-SVR predictor to de-
termine the complexity level of a word.

3.1 Feature Extraction

As stated before, we extract features from both the
target word and the context in which the word ap-
pears. Form the target word, we quantify a series
of features based on its characters. More specifi-
cally, we count the number of characters, vowels
and constants, as well as the percentage of vow-

176



els and constants from the total number of char-
acters in the word. Along with these features, we
also quantify the number of consecutively repeat-
ing characters, e.g. double consonants. For ex-
ample, in the word “innovation”, we can find the
double consonant “nn”. We also extract n-grams
of 1, 2, 3 and 4 characters, based on the intuition
that some complex words tend to be formed of a
different set of n-grams than simple words. For
instance, the complex word “cognizant” is formed
of rare 3-grams, e.g. “ogn” or “niz”, compared to
its commonly-used synonym “aware”, which con-
tains 3-grams that we can easily find in other sim-
ple words, e.g. “war” or “are”.

Other features extracted from the target word
are the part-of-speech and the number of senses
listed in the WordNet knowledge base (Miller,
1995; Fellbaum, 1998), for the respective word.
If the complex word is actually composed of mul-
tiple words, i.e. it is a multi-word expression, we
generate the features for each word in the target
and sum the corresponding values to obtain the
features for the target multi-word expression.

In the NLP community, word embeddings (Ben-
gio et al., 2003; Karlen et al., 2008) are used in
many tasks, and became more popular due to the
word2vec (Mikolov et al., 2013) framework. Word
embeddings methods have the capacity to build a
vectorial representation of words by assigning a
low-dimensional real-valued vector to each word,
with the property that semantically related words
are projected in the same vicinity of the generated
space. Word embeddings are in fact a learned rep-
resentation of words where each dimension repre-
sents a hidden feature of the word (Turian et al.,
2010). We devise additional features for the CWI
task with the help of pre-trained word embeddings
provided by word2vec (Mikolov et al., 2013). The
first set of features based on word embeddings
takes into account the word’s context. More pre-
cisely, we record the minimum, the maximum and
the mean value of the cosine similarity between
the target word and each other word from the sen-
tence in which the target word occurs. The intu-
ition for using this set of features is that a word
can be complex if it is semantically different from
the other context words, and this difference should
be reflected in the embedding space. Having the
same goal in mind, namely to identify if the tar-
get word is an outlier with respect to the other
words in the sentence, we employ a simple ap-

Figure 1: A set of word vectors represented in a 2D
space generated by applying PCA on 300-dimensional
word embeddings.

proach to compute sense embeddings using the se-
mantic relations between WordNet synsets. We
note that this approach was previously used for
unsupervised word sense disambiguation in (But-
naru et al., 2017). To compute the sense embed-
ding for a word sense, we first build a disambigua-
tion vocabulary or sense bag. Based on WordNet,
we form the sense bag for a given synset by col-
lecting the words found in the gloss of the synset
(examples included) as well as the words found
in the glosses of semantically related synsets. The
semantic relations are chosen based on the part-of-
speech of the target word, as described in (Butnaru
et al., 2017). To derive the sense embedding, we
embed the collected words in an embedding space
and compute the median of the resulted word vec-
tors. For each sense embedding of the target word,
we compute the cosine similarity with each and
every sense embedding computed for each other
word in the sentence, in order to find the mini-
mum, the maximum and the mean value.

Using pre-trained word embeddings provided
by the GloVe framework (Pennington et al., 2014),
we further managed to define a set of useful fea-
tures based on the location of the target word in the
embedding space. In this last set of features, we
first process the word vectors in order to reduce
the dimensionality of the vector space from 300
components to only 2 components, by applying
Principal Component Analysis (PCA) (Hotelling,
1933). Figure 1 illustrates a couple of semanti-
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Figure 2: A grid of 4 × 4 applied on the 2D embed-
ding space. For example, the word “valedictorian” is
located in bin number 15. Consequently, the corre-
sponding one-hot vector contains a non-zero value at
index 15.

cally related words, that are projected in the same
area of the 2-dimensional (2D) embedding space
generated by PCA. In the newly generated space,
we apply a grid to divide the space into multiple
and equal regions, named bins. This process is
inspired by the spatial pyramids (Lazebnik et al.,
2006) used in computer vision to recover spatial
information in the bag-of-visual-words (Ionescu
et al., 2013; Ionescu and Popescu, 2015). After
we determine the bins, we index the bins and en-
code the index of the bin that contains the target
word as a one-hot vector. Various grid sizes could
provide a more specific or a more general location
of a word in the generated space. For this reason,
we use multiple grid sizes starting from coarse di-
visions such as 2 × 2, 4 × 4, and 8 × 8, to fine
divisions such as 16×16 and 32×32. In Figure 2,
we show an example with a 4× 4 grid that divides
the space illustrated in Figure1 into 16 bins, and
the word “valedictorian” is found in bin number
15. The corresponding one-hot vector, containing
a single non-zero value at index 15, is also illus-
trated in Figure 2. The thought process for using
this one-hot representation is that complex words
tend to reside alone in the semantic space gener-
ated by the word embedding framework.

We would like to point out that each and ev-

ery type of features described in this section has
a positive influence on the overall accuracy of our
framework.

3.2 Kernel Representation
Kernel-based learning algorithms work by embed-
ding the data into a Hilbert space and by searching
for linear relations in that space, using a learning
algorithm. The embedding is performed implic-
itly, that is by specifying the inner product be-
tween each pair of points rather than by giving
their coordinates explicitly. The power of ker-
nel methods (Ionescu and Popescu, 2016; Shawe-
Taylor and Cristianini, 2004) lies in the implicit
use of a Reproducing Kernel Hilbert Space in-
duced by a positive semi-definite kernel function.
Despite the fact that the mathematical meaning of
a kernel is the inner product in a Hilbert space,
another interpretation of a kernel is the pairwise
similarity between samples.

The kernel function offers to the kernel methods
the power to naturally handle input data that is not
in the form of numerical vectors, such as strings,
images, or even video and audio files. The kernel
function captures the intuitive notion of similar-
ity between objects in a specific domain and can
be any function defined on the respective domain
that is symmetric and positive definite. In our ap-
proach, we experiment with two commonly-used
kernel functions, namely the linear kernel and the
Radial Basis Function (RBF) kernel. The linear
kernel is easily obtained by computing the inner
product of two feature vectors x and z:

k(x, z) = 〈x, z〉,

where 〈·, ·〉 denotes the inner product. In a similar
manner, the RBF kernel (also known as the Gaus-
sian kernel) between two feature vectors x and z
can be computed as follows:

k(x, z) = exp

(
−1− 〈x, z〉

2σ2

)
.

In the experiments, we replace 1/(2σ2) with a
constant value r, and tune the parameter r instead
of σ.

A technique that improves machine learning
performance for many applications is data nor-
malization. Because the range of raw data can
have significant variation, the objective functions
optimized by the classifiers will not work prop-
erly without normalization. The normalization
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step gives to each feature an approximately equal
contribution to the similarity between two sam-
ples. The normalization of a pairwise kernel ma-
trix K containing similarities between samples is
obtained by dividing each component to the square
root of the product of the two corresponding diag-
onal elements:

K̂ij =
Kij√
Kii ·Kjj

.

3.3 Classification and Regression
In the case of binary classification problems,
kernel-based learning algorithms look for a dis-
criminant function, a function that assigns +1 to
examples that belong to one class and −1 to ex-
amples that belong to the other class. This func-
tion will be a linear function in the Hilbert space,
which means it will have the form:

f(x) = sign(〈w, x〉+ b),

for some weight vector w and some bias term b.
The kernel can be employed whenever the weight
vector can be expressed as a linear combination of

the training points,
n∑

i=1
αi xi, implying that f can

be expressed as follows:

f(x) = sign

(
n∑

i=1

αi k(xi, x) + b

)
,

where n is the number of training samples and k
is a kernel function.

Various kernel methods differ in the way they
find the vector w (or equivalently the dual vector
α). Support Vector Machines (Cortes and Vap-
nik, 1995) try to find the vector w that defines the
hyperplane that maximally separates the images
(outcomes of the embedding map) in the Hilbert
space of the training examples belonging to the
two classes. Mathematically, the SVM classifier
chooses the weights w and the bias term b that sat-
isfy the following optimization criterion:

min
w,b

1

n

n∑

i=1

[1− yi(〈w, φ(xi)〉+ b)]+ + ν||w||2,

where yi is the label (+1/−1) of the training exam-
ple xi, ν is a regularization parameter and [x]+ =
max{x, 0}. We use the SVM classifier for the
binary classification of words into simple versus
complex classes. On the other hand, we employ

Data Set Train Validation Test
English News 14002 1764 2095
English WikiNews 7746 870 1287
English Wikipedia 5551 694 870

Table 1: A summary with the number of samples in
each data set of the English monolingual track of the
2018 CWI Shared Task.

ν-Support Vector Regression (ν-SVR) in order to
predict the complexity level of a word (a word
is more complex if it is labeled as complex by
more annotators). The ν-Support Vector Machines
(Chang and Lin, 2002) can handle both classifi-
cation and regression. The model introduces a
new parameter ν, that can be used to control the
amount of support vectors in the resulting model.
The parameter ν is introduced directly into the op-
timization problem formulation and it is estimated
automatically during training.

4 Experiments

4.1 Data Sets

The data sets used in the English monolingual
track of the 2018 CWI Shared Task (Yimam et al.,
2018) are described in (Yimam et al., 2017). Each
data set covers one of three distinct genres (News,
WikiNews and Wikipedia), and the samples are
annotated by both native and non-native English
speakers. Table 1 presents the number of samples
in the training, the validation (development) and
the test sets, for each of the three genres.

4.2 Classification Results

Parameter Tuning. For the classification task, we
used the SVM implementation provided by Lib-
SVM (Chang and Lin, 2011). The parameters
that require tuning are the parameter r of the RBF
kernel and the regularization parameter C of the
SVM. We tune these parameters using grid search
on each of the three validation sets included in
the data sets prepared for the English monolin-
gual track. For the parameter r, we select values
from the set {0.5, 1.0, 1.5, 2.0}. For the regular-
ization parameter C we choose values from the
set {10−1, 100, 101, 102}. Interestingly, we obtain
the best results with the same parameter choices
on all three validation sets. The optimal parameter
choices are C = 101 and r = 1.0. We use these
parameters in all our subsequent classification ex-
periments.
Results. Our results for the classification task on
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Data Set Kernel Accuracy F1-score Competition Rank Post-Competition Rank
English News linear 0.8653 0.8547 0.8111∗ 12 6
English News RBF 0.8678 0.8594 0.8178∗ 10 5
English WikiNews linear 0.8205 0.8151 0.7786∗ 10 5
English WikiNews RBF 0.8252 0.8201 0.8127∗ 5 4
English Wikipedia linear 0.7874 0.7873 0.7804∗ 6 4
English Wikipedia RBF 0.7920∗ 0.7919∗ 0.7919∗ 3 3

Table 2: Classification results on the three data sets of the English monolingual track of the 2018 CWI Shared
Task. The methods are evaluated in terms of the classification accuracy and the F1-score. The results marked with
an asterisk are obtained during the competition. The other results are obtained after the competition.

Data Set Kernel Mean Absolute Error Post-Competition Rank
English News linear 0.0573 4
English News RBF 0.0492 1
English WikiNews linear 0.0724 4
English WikiNews RBF 0.0667 1
English Wikipedia linear 0.0846 4
English Wikipedia RBF 0.0805 2

Table 3: Regression results on the three data sets of the English monolingual track of the 2018 CWI Shared Task.
The methods are evaluated in terms of the mean absolute error (MAE). The reported results are obtained after the
competition.

the three data sets included in the English mono-
lingual track are presented in Table 2. We would
like to note that, before the competition ended, we
observed a bug in the code that was used in most
of our submissions. In the feature extraction stage,
the code produced NaN (not a number) values for
some features. In order to make the submissions in
time, we had to eliminate the samples containing
NaN values in the feature vector. Consequently,
most of our results during the competition were
lower than expected. However, we managed to fix
this bug and recompute the features in time to re-
submit new results, but only for the RBF kernel
on the English Wikipedia data set. The rest of the
results presented in Table 2 are produced after the
bug fixing and after the submission deadline. Nev-
ertheless, for a fair comparison with the other sys-
tems, we include our F1-scores and rankings dur-
ing the competition as well as the post-competition
F1-scores and rankings.

The results reported in Table 2 indicate that the
RBF kernel is more suitable for the CWI task than
the linear kernel. Our best F1-score on the English
News data set is 0.8594, which is nearly 1.4%
lower than the top scoring system, which attained
0.8736 during the competition. On the English
WikiNews data set, our best F1-score (0.8201) is
once again about 2% lower than the top scoring
system, which obtained 0.8400 during the com-
petition. On the English Wikipedia data set, our
best F1-score is 0.7919. With this score, we

ranked as the third team on the English Wikipedia
data set. Two systems performed better on En-
glish Wikipedia, one that reached the top F1-score
of 0.8115 and one that reached the second-best
scored of 0.7965. Overall, our system performed
quite well, but it can surely benefit from the addi-
tion of more features.

4.3 Regression Results

Although we did not submit results for the regres-
sion task, we present post-competition regression
results in this section.
Parameter Tuning. For the regression task, the
parameters that require tuning are the parameter r
of the RBF kernel and the ν-SVR parameters C
and ν. As in the classification task, we tune these
parameters using grid search on the validation sets
provided with the three data sets included in the
English monolingual track. For the parameter r,
we select values from the set {0.5, 1.0, 1.5, 2.0}.
For the regularization parameter C we choose val-
ues from the set {10−1, 100, 101, 102}. The pre-
liminary results on the validation sets indicate the
best parameter choices for each data set. For the
English News data set, we obtained the best val-
idation results using C = 101 and r = 1.5. For
the English WikiNews and English Wikipedia data
sets, we obtained the best validation results using
C = 100 and r = 1.5. For the parameter ν, we
leave the default value of 0.5 provided by LibSVM
(Chang and Lin, 2011).
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Results. The regression results on the three data
sets included in the English monolingual track are
presented in Table 3. The systems are evaluated
in terms of the mean absolute error (MAE). As
in the classification task, we can observe that the
RBF kernel provides generally better results than
the linear kernel. On two data sets, English News
and English WikiNews, we obtain better MAE val-
ues than all the systems that participated in the
competition. Indeed, the best MAE on English
News reported during the competition is 0.0510,
and we obtain a smaller MAE (0.0492) using the
RBF kernel. Similarly, with a MAE of 0.0667
for the RBF kernel, we surpass the top system
on English WikiNews, which attained a MAE of
0.0674 during the competition. On the third data
set, English Wikipedia, we attain the second-best
score (0.0805), after the top system, that obtained
a MAE of 0.0739 during the competition. Com-
pared to the classification task, we report better
post-competition rankings in the regression task.
This could be explained by two factors. First of
all, the number of participants in the regression
task was considerably lower. Second of all, we be-
lieve that ν-SVR is a very good regressor which is
not commonly used, surpassing alternative regres-
sion methods in other tasks as well, e.g. image
difficulty prediction (Ionescu et al., 2016).

5 Conclusion

In this paper, we described the system developed
by our team, UnibucKernel, for the 2018 CWI
Shared Task. The system is based on extract-
ing lexical, syntatic and semantic features and on
training a kernel method for the prediction (clas-
sification and regression) tasks. We participated
only in the English monolingual track. Our best
result during the competition was the third place
on the English Wikipedia data set. In this paper,
we also reported better post-competition results.

In this work, we treated each English data set
independently, due to the memory constraints of
our machine. Nevertheless, we believe that join-
ing the training sets provided in the English News,
the English WikiNews and the English Wikipedia
data sets into a single and larger training set can
provide better performance, as the model’s gener-
alization capacity could improve by learning from
an extended set of samples. We leave this idea
for future work. Another direction that could be
explored in future work is the addition of more

features, as our current feature set is definitely far
from being exhaustive.
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Abstract
This paper presents the winning systems we
submitted to the Complex Word Identifica-
tion Shared Task 2018. We describe our
best performing systems’ implementations and
discuss our key findings from this research.
Our best-performing systems achieve an F1

score of 0.8736 on the NEWS, 0.8400 on the
WIKINEWS and 0.8115 on the WIKIPEDIA
test sets in the monolingual English binary
classification track, and a mean absolute er-
ror of 0.0558 on the NEWS, 0.0674 on the
WIKINEWS and 0.0739 on the WIKIPEDIA
test sets in the probabilistic track.

1 Introduction

Poor reading comprehension often caused by the
presence of complex technical terms can have se-
rious practical consequences (Dubay, 2004). Al-
though proper text simplification requires a wide
range of transformations, it has been shown that
application of lexical simplification (LS) tech-
niques alone improves reader understanding and
information retention (Leroy et al., 2013). Com-
plex Word Identification (CWI) is concerned
with automated identification of words that might
present challenge for the target readers and should
thus be simplified (Shardlow, 2013a). Early stud-
ies on LS (Carroll et al., 1999; Devlin and Tait,
1998) do not consider CWI as part of the simplifi-
cation pipeline, but recent studies argue that sim-
plification systems benefit from applying CWI as
the first step in the LS pipeline (Shardlow, 2014;
Paetzold and Specia, 2016b). Inadequate identifi-
cation of complex words in text might result in an
overly difficult text if many potential candidates
are missed, or in meaning distortion if many sim-
ple words are falsely identified as complex.

CWI can not only be used as a component of
LS systems, but also as a stand-alone applica-
tion within intelligent tutoring systems for second

language learners or in reading devices for peo-
ple with low literacy skills. For instance, Nation
(2006) shows that at least 95% of text should be
familiar to the reader in order for them to under-
stand the content. A CWI system can help iden-
tify the unfamiliar words and provide readers with
their definitions even when simpler alternatives are
not available. This has the potential to help a wide
variety of target reader groups, including general
readers of technical texts (Feng, 2008).

Following the SemEval 2016 shared task (Paet-
zold and Specia, 2016c), the Shared Task 2018
frames CWI as the process of identifying words
that are difficult for a given target population (for
example, non-native speakers of English) based on
the annotation from a sample of that target popu-
lation (Yimam et al., 2018). We overview the re-
lated work in the field in Section 2 and discuss the
CWI shared task framework in Section 3. We have
participated in the binary and probabilistic classifi-
cation tasks in the monolingual English track, and
scored first in the binary setting on all three data
sources, as well as on two out of three data sources
in the probabilistic setting. Section 4 presents
the implementation details of our systems includ-
ing features and methods used. In Section 5 we
present the results obtained with our systems, and
discuss the key findings. Finally, we outline future
directions for this research in Section 6.

2 Related Work

The earliest studies that address CWI as an in-
dependent task are related to the medical do-
main: Zeng et al. (2005) predict medical term fa-
miliarity based on term occurrence, and show that
individualised assessment is possible if the models
consider readers’ demographics. Elhadad (2006),
in addition to corpus frequency, consider using fa-
miliarity features from the MRC Psycholinguistic
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Database (Wilson, 1988) and the number of senses
from WordNet (Fellbaum, 2005). Zeng-Treitler
et al. (2008) improve on the previous methods us-
ing contextual information.

Some previous approaches to LS consider all
words as potentially complex and try to simplify
every word (Devlin and Tait, 1998; Thomas and
Anderson, 2012; Bott et al., 2012). This has a
number of undesirable effects, including radical
changes in the original meaning and the depen-
dence of the simplification process on the avail-
ability of alternatives. For instance, the results
of Horn et al. (2014) show that such an approach
is unable to find a simpler alternative for one third
of the complex words in their dataset. Another
type of approach introduces a threshold that is typ-
ically based on the word frequency (Zeng et al.,
2005; Elhadad, 2006; Biran et al., 2011). Until re-
cently (Shardlow, 2013b), the lack of shared data
to compare different approaches to CWI has been
one of the bottlenecks for this task.

The CW corpus of Shardlow (2013b) is based
on the edit histories in Simple Wikipedia, and in-
cludes only the sentences where a single word is
simplified. Paetzold and Specia (2016c) find that
as much as 51.9% of the words in this corpus
are annotated as complex by at least one of their
annotators and conclude that non-native speakers
of English might still find the simplified version
of Wikipedia challenging. The quality of Sim-
ple Wikipedia and its usefulness for simplification
research has been challenged before in Xu et al.
(2015). Further experiments in Shardlow (2013a)
show that a more resource-intensive threshold-
based approach does not perform significantly dif-
ferently on this dataset to a more naı̈ve technique
of simplifying everything, while an SVM classifier
performs better in terms of precision but does so
at the cost of a much lower recall. These findings
inspired further research into classification-based
approaches to CWI (Paetzold and Specia, 2016c).

The SemEval 2016 shared task on CWI com-
bines the data from the CW corpus of Shard-
low (2013b), the LexMTurk corpus of Horn
et al. (2014) and the Simple Wikipedia corpus
of Kauchak (2013), all of which rely on Simple
Wikipedia data. A set of 400 non-native speak-
ers annotated the content words in the data as
simple or complex. The information about anno-
tator’s age, native language (L1), education and
level of language proficiency has been collected,

but has not been used in the task. The final
dataset has a bias towards annotation provided by
the non-native speakers of upper levels of lan-
guage proficiency and, potentially as a result of
that, only about 11% of word types (and 3% of
word tokens) are annotated as complex (Paetzold
and Specia, 2016c). The results of the shared
task show that simpler features based on word fre-
quency (Konkol, 2016; Wróbel, 2016; Zampieri
et al., 2016) and word presence in certain lexi-
cons (Mukherjee et al., 2016; Wróbel, 2016), work
best. A number of systems performing best in
terms of G-score used various ensemble-based ap-
proaches (Paetzold and Specia, 2016d; Ronzano
et al., 2016; Mukherjee et al., 2016; Zampieri
et al., 2016). The systems that performed best
in terms of F-score used threshold-based ap-
proaches (Wróbel, 2016; Malmasi et al., 2016) and
frequency features (Malmasi and Zampieri, 2016).

In their analysis of the SemEval 2016 shared
task, Zampieri et al. (2017), similarly to Paetzold
and Specia (2016c), show that an ensemble of all
systems does not outperform the best system or an
ensemble of a few best-performing systems. The
use of an oracle of the 3 best-performing systems
sets the upper bound at 0.60 F-score for the iden-
tification of complex words and at 0.98 F-score
for the identification of simple words. They also
show that the systems more reliably identify those
complex words that are annotated as such by the
majority of human annotators, arguing that lexi-
cal complexity should be seen as a continuum on
a spectrum rather than a binary value.

3 CWI Shared Task 2018 Setup

The CWI shared task uses the data from Yimam
et al. (2017b), and approaches CWI from two per-
spectives: under the binary (bin) view, a word
can be either complex or simple, and in the prob-
abilistic (prob) setting a word receives a score in
the range of [0.0, 1.0] reflecting the proportion of
annotators that consider the word complex. In this
section, we briefly overview the CWI shared task
2018 framework, discuss the data and the annota-
tion, and analyse the challenges the CWI systems
are presented with in this task.

3.1 Data

Unlike the previous datasets that rely on the use of
Wikipedia and Simple Wikipedia, the CWIG3G2
dataset of Yimam et al. (2017a) uses texts of 3
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different genres: professionally written news ar-
ticles (NEWS), amateurishly written news arti-
cles (WIKINEWS), and WIKIPEDIA articles. The
dataset includes annotation for content words as
well as for phrases. The annotation for the English
data is collected from both native and non-native
speakers of English. Table 1 presents the statis-
tics on the number of words (w) and phrases (ph)
in the training (train), development (dev) and test
subsets of the News (NEWS), WikiNews (WINS)
and Wikipedia (WIKI) datasets.

Data Train Dev Test
NEWS (w) 11, 949 1, 502 1, 813
NEWS (ph) 2, 053 262 282

WINS (w) 6, 780 776 1, 138
WINS (ph) 966 94 149

WIKI (w) 4, 833 606 750
WIKI (ph) 718 88 120

TOTAL 27, 299 3, 328 4, 252

Table 1: Number of instances

3.2 Annotation
The annotation was performed using the Amazon
Mechanical Turk platform. The set of annotators
comprised 10 native and 10 non-native speakers
of English. They were presented with text para-
graphs and were asked to select up to 10 lexical
items that they found complex. The lexical items
included content words (e.g., nouns, verbs, adjec-
tives and adverbs) and phrases up to 50 characters
in length. Additional information about the an-
notators, such as their language proficiency, was
collected but was not used in the task.

By allowing the annotators to select phrases as
well as individual words, Yimam et al. (2017a)
created a more practically useful dataset. By pre-
senting the annotators with whole paragraphs, they
replicated a realistic scenario in which words are
interpreted in context. By not preselecting target
lexical items, they avoided introducing the bias
into the annotation, although it may be argued
that the limit of 10 lexical items per paragraph re-
stricted the selection options. Finally, since the
annotations are provided by both native and non-
native speakers, this allows Yimam et al. (2017a)
to explore to what extent the needs of non-native
speakers can be estimated based on the needs of a
wider target population. The analysis in Yimam
et al. (2017a) shows that there are quantitative
differences between the annotation provided by

the native and non-native speakers, and between
the three genres. Further experiments show that
the system trained on native speakers’ annotations
performs better than the system trained on non-
native speakers’ annotations, both on native and
non-native data. Yimam et al. (2017a) also note
that the inter-annotator agreement between native
speakers is higher than between non-native speak-
ers, which might be due to the fact that, unlike
non-native annotators, native speakers share L1
and are of relatively similar language proficiency
level. At the same time, these results suggest that
the annotation provided by the native speakers can
be used to predict the simplification needs of the
non-native speakers as well.

The shared task relies on two types of annota-
tion: under the bin setting that words and phrases
are annotated as complex (label 1) if at least one of
the 20 annotators annotated them as such, and sim-
ple (label 0) otherwise; and under the prob set-
ting that words and phrases receive a label in the
range between [0.0, ..., 1.0], with a step of 0.05,
reflecting the proportion of annotators who found
the lexical item complex.

Table 2 presents the distribution of simple and
complex words in the dataset. We present the label
break-down in terms of label percentages across
the genres (NEWS, WINS, WIKI) and subsets of
data (tr for training, dev for development, and ts
for test sets). Due to space limitations, for the
prob setting we present only the percentage of
cases annotated as simple (0bin = 0.0prob), anno-
tated as complex by a single annotator (0.05prob)
and by all 20 annotators (1.0prob).

Data 0bin 1bin 0.05prob 1.0prob
NEWStr 60.41 39.59 13.52 0.39
NEWSdev 60.54 39.46 13.83 0.28
NEWSts 61.72 38.28 12.70 0.29

WINStr 58.48 41.52 16.25 0.17
WINSdev 59.43 40.57 14.25 0.11
WINSts 57.58 42.42 16.71 0.16

WIKItr 55.07 44.93 16.66 0.52
WIKIdev 51.15 48.85 19.31 0.14
WIKIts 49.54 50.46 18.62 0.23

Table 2: Annotation labels break-down (%)

These figures demonstrate that: (1) there is a
quantitative difference in the annotation across the
three genres, with NEWS being the easier to under-
stand for the annotators (38.28% to 39.59% com-
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plex words) and WIKI being the most complex
(44.93% to 50.46% complex words), which sug-
gests that systems might perform better if trained
and tested within the same genre; (2) the distri-
bution of complex and simple words across train-
ing, development and test subsets is consistent for
NEWS and WINS with a difference in label dis-
tribution of no more than 2.5% – this suggests
that the systems for these two genres might gener-
alise better than the one for WIKIPEDIA; (3) about
1/3 of the complex word annotation comes from
a single annotator finding a word complex, while
the cases where all 20 annotators agree that the
word is complex comprise less than 1% in all sub-
sets. Furthermore, we have identified the follow-
ing challenges presented by the dataset:

Context-specific annotation: Since the lexical
items were presented to the annotators in a vari-
ety of contexts, the item might have received dif-
ferent annotation depending on the context. Be-
tween 3% and 10% of lexical items in the binary
setting received different annotation, and in the
probabilistic setting a number of words received
a wide range of labels: e.g. the labels for observa-
tory range from 0.0 to 0.95, and for tragedy from
0.0 to 1.0. There are several possible reasons for
this effect:

• surrounding context might help or impede
understanding of a target word;

• the word might be used in a rare sense;

• the data might show a sequential bias ef-
fect (Mathur et al., 2017).

Consider the following example from the WIKI

training set:

(1) Beethoven’s Symphony0.6 No.7,
Bruckner’s Symphony0.1 No.6 and
Mendelssohn’s Symphony0.0 No.4
comprise a nearly complete list of sym-
phonies0.3 in this key in the Romantic
era.

The first occurrence of the word symphony is an-
notated as complex by 12 annotators, the second
one by 2 while the third one is not considered
complex by any annotators. This might suggest
that (1) by the third occurrence of the same word
the annotators perceive the word as familiar, (2)
some of them found it unnecessary to annotate a
word multiple times, (3) given the restriction of
10 complex items per paragraph they prioritised

other words. The annotation of symphonies illus-
trates that the annotators might find different mor-
phological forms of the same word challenging.

Phrase annotation: The annotators were al-
lowed to select phrases of up to 50 characters in
length. At the same time, the component words
within the phrase might have been annotated as
complex independently by other annotators. This
results in cases like (2), where the phrase complex-
ity is a derivative of the component word complex-
ities, as well as (3) where the phrase annotation is
independent of the component words:

(2) future0.05 ∪ generations0.25 = future gen-
erations0.15

(3) traditional0.2 ∪ connection0.0 ∪ coun-
try0.05 6= traditional connection to that
country0.0

Annotation of proper nouns : Proper nouns
received a variety of labels: e.g., from 0.0 to 0.45
for Eurozone, 0.0 to 0.05 for Barack, 0.05 to 0.3
for Brexit, and from 0.0 to 0.05 or 0.1 for a num-
ber of geographical locations like Copenhagen,
Estonia, Hungary, Warsaw, etc. The annotation
in such cases depends more on world knowledge
than on the properties of the words per se.

3.3 Evaluation

The systems in the bin setting are evaluated us-
ing F-score. The systems in the prob setting are
evaluated using mean absolute error (MAE) which
estimates the average difference between the val-
ues in the gold standard and values predicted by
the system across all test instances.

4 CAMB systems

This section describes the implementation details
of the CAMB machine learning framework applied
to the shared task data sets.

4.1 Features

The set of features employed in our experiments
are based on the insights from the CWI shared
task 2016 (Paetzold and Specia, 2016d). In ad-
dition, we incorporate (1) the number of words
grammatically related to the target one, (2) a
range of psycholinguistic features from the MRC
Psycholinguistic Database (Wilson, 1988), (3)
CEFR levels (Council of Europe, 2011) extracted
from the Cambridge Advanced Learner Dictionary
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(CALD),1 and (4) the use of Google N-gram word
frequencies sourced using the Datamuse API.2

4.1.1 Word N-gram and POS
The target word and its syntactic class are repre-
sented as matrices of token counts. For words,
the token counts represent the whole vocabulary as
well as character-based bi-grams contained within
the words (N -gram). The part of speech tags
(POS) each correspond to a value within the ma-
trix. The syntactic class of the word is obtained
by performing part of speech tagging on all sen-
tences containing target words using the NLPCore
pipeline (Manning et al., 2014).

4.1.2 Lexical Features
These features are based on the lexical information
about the target word and include:

• Word length (Len): the number of characters
in the word.

• Number of syllables (Syll): the syllable count
for the target word, collected using the Data-
muse API.

• WordNet Features: number of senses (Syn),
number of hypernyms (Hyper) and hy-
ponyms (Hypo) for the word’s lemma from
WordNet (Fellbaum, 2005).

4.1.3 Dependency Parse Relations
The data was parsed using the NLPCore pipeline,
and the number of dependency relations for the
target word are extracted and used as a feature
(DepNum).

4.1.4 Lexicon-Based Features
All but the the last in the following list of features
are binary features indicating the presence of the
word within a lexicon. CALD returns a CEFR
level of the target word on the scale [1, 6]:

• SubIMDB: a list produced using the
SubIMDB corpus (Paetzold and Specia,
2016a). The word frequency in the subtitles
from the ’Movies and Series for Children’
section is calculated, and the top 1, 000
words are included in this list.

• Simple Wikipedia (SimpWiki): a list of the
top 6, 368 words contained in the Simple
Wikipedia (Coster and Kauchak, 2011).

1Publicly available through http://www.
englishprofile.org/wordlists

2https://www.datamuse.com/api/

• Ogden’s Basic English: a list of 1, 000 words
from Ogden’s Basic English list (Ogden,
1968).

• Cambridge Advanced Learners Dictionary
(CALD): the entries contained in the Cam-
bridge Advanced Learner’s Dictionary with
their CEFR levels.

4.1.5 Word Frequency
The frequency of the target word (Freq) is esti-
mated using the Google dataset of syntactic n-
grams (Goldberg and Orwant, 2013).

4.1.6 MCR Features
We extract the psycholinguistic features of the
target words from the MCR Psycholinguistic
Database (Wilson, 1988). As the coverage of this
database is relatively low, if a target word is not in
the dataset we use a null value.

• Word familiarity rating (FAM) in the range of
[100, 700] is based on a combination of 3 sets
of familiarity norms: Pavio (unpublished),
Toglia and Battig (1978) and Gilhooly and
Logie (1980).

• Number of phonemes (NPHN)

• Thorndike-Lorge written frequency (TLFRQ)
– the frequency of occurrence derived from
Thorndike and Lorge (1944).

• Imageability rating (IMG), representing the
ease of associating the word with an image,
is derived from the same combination of sets
as the familiarity rating.

• Concreteness rating (CNC) represents the de-
gree to which the concept denoted by a word
refers to a perceivable entity based on the
norms of Gilhooly and Logie (1980).

• The number of categories (KFCAT), samples
(KFSMP) and written frequency (KFFRQ)
are derived from Kučera and Francis (1967).

• Age of acquisition (AOA) is based on the
norms of Gilhooly and Logie (1980), multi-
plied by 100 to produce a number in the range
of [100, 700] (min 125, max 697, mean 405,
SD 120).

4.2 Method

Below we outline how the features are incorpo-
rated into the machine learning frameworks for the
classification and regression tasks. We use distinct
approaches to model word and phrase complexity.
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4.2.1 Binary Classification Approach
As a wide range of heterogeneous features are em-
ployed by both the classification and regression
systems, a feature union pipeline is applied. We
use the sklearn machine learning framework.3

The numerical features are normalized using a
Standard Scaler, which subtracts the mean and
scales the data to unit variance. Text-based fea-
tures are represented as a matrix of token counts
using a Count Vectorizer component.

Experiments on the development set confirm
the findings of Paetzold and Specia (2016c) that
the best performing classification algorithms for
this task are ensemble-based techniques. Of
these, the boosting classifier AdaBoost with
5000 estimators achieves the highest results, fol-
lowed by the bootstrap aggregation classifier
Random Forest. For the WIKIPEDIA and
NEWS datasets, the best performance is attained
using AdaBoost. However for the WIKINEWS

an ensemble voting classifier that combines both
the AdaBoost and Random Forest classifiers with
equal weightings gives the highest F-Score.

4.2.2 Experimental Setup
Feature Selection
The effectiveness of features varies according to
the data set classified. For the WIKINEWS and
NEWS all aforementioned features are integrated
into the systems. The feature set for WIKIPEDIA

does not include MCR psycholinguistic features.

Training Data
The performance of the classifier also varies ac-
cording to the genre of data used for training.
The WIKIPEDIA and WIKINEWS are best classi-
fied when all available training data are used (i.e.,
NEWS, WIKINEWS and WIKIPEDIA combined),
whereas the best results are achieved on the NEWS

when the system is trained using the NEWS dataset
only.

4.2.3 Probabilistic Classification Approach
The probabilistic setting uses the same set of
features as the binary classification algorithms.
We use the Linear Regression algorithm,
and the lowest MAE values are achieved with
the following settings: we use all features and
all training data for the NEWS, all but MRC
psycholinguistic features and all training data
for the WIKINEWS, and a combination of the

3http://scikit-learn.org/stable/

WIKIPEDIA and WIKINEWS training data and
all but MRC psycholinguistic features for the
WIKIPEDIA.

Since the gold standard labels for the probabilis-
tic classification tasks lie in the range of [0.0, 1.0]
with a step of 0.05 reflecting the proportion of an-
notators, we round the classifier’s prediction to the
nearest value on this scale.

4.2.4 Phrase Complexity Prediction
Table 1 shows that there are a non-negligible
amount of phrases in the data. We implement three
binary classification approaches and one proba-
bilistic classification approach to predict phrase
complexity.

Binary Classification Techniques
• CW presence: Each word within the phrase

is first classified using our word-based CW
classifier. If the total number of complex
words is above a pre-defined threshold then
the phrase is marked as complex.

• N-gram classifier: The frequency of n-grams
contained within phrases is obtained from
the Corpus of Contemporary American En-
glish (Davies, 2009). An AdaBoost classifier
is first trained using these frequencies as fea-
tures, and then applied to classify new phrase
instances.

• Greedy approach: The greedy baseline ap-
proach simply labels all phrases as complex.

Probabilistic Classification Techniques
For the probabilistic setting, we first apply our
word-based CW regression classifier, and then de-
rive the phrase complexity label as the mean of
the complexity values within the phrase. Note that
this technique helps us correctly predict the phrase
complexity for cases similar to example (2) from
Section 3, but not for cases similar to example (3).

5 Results

In this Section, we present and discuss the results
obtained with the CAMB systems. The systems
submitted to the shared task scored first in the bi-
nary classification English track on all three text
genres, first on the WIKINEWS and WIKIPEDIA

test sets and third on the NEWS test set in the
probabilistic classification English track. Table 3
presents the results, with those that scored first in
the shared task marked in bold.
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5.1 Test Set Results

Binary Probabilistic
(F-Score) (MAE)

NEWS 0.8736 0.0558
WINS 0.8400 0.0674
WIKI 0.8115 0.0739

Table 3: Test set results

The final test files across all genres contain a to-
tal of 3, 701 words and 551 phrases. Words are
classified using the tailored approaches according
to the dataset genre. In the shared task submis-
sion, phrases are independently classified using
the greedy approach (see Section 4).

5.2 Analysis
Per-Genre Performance
Classification performance as well as feature rel-
evance varies across the datasets. In the binary
setting, the highest performance is obtained on
the NEWS data when the system is trained on the
NEWS data only. In the probabilistic setting, the
system performs best on the NEWS data as well.
Table 2 suggests that NEWS contains the lowest
number of complex words, and Table 4 shows
the total number of words, the number of unique
words and the percentage of unique words within
each genre.

NEWS WINS WIKI

Total 13, 461 7, 559 5, 439
Unique 3, 376 3, 334 3, 157
% 25.08 44.10 58.44

Table 4: Unique words distribution

Table 4 suggests that the NEWS dataset contains
the lowest number of unique words, which might
be the effect of more restricted vocabulary used
in professional news. As a result, the classifier is
likely to have multiple exposure to the same word
(albeit in different contexts) during training. At
the same time, WIKIPEDIA with its 58.44% has
the highest ratio of unique words, which might be
due to the fact that it covers a very broad range
of subjects. Note, that WIKIPEDIA is both more
challenging for human annotators (highest per-
centage of complex words in Table 2) and the clas-
sifiers (lowest results in both settings in Table 3).
This might explain why the classifiers benefit from
training on multiple data sources in this case.

Our CWI systems are context-independent,
which means that a word or a phrase receives the
same complexity label regardless of a particular
context of use. E.g., all three occurrences of the
word Symphony in the example (1) from Section
3 would receive the same complexity label from
our system. This limitation is the biggest source
of error for the NEWS dataset (88.94% of the mis-
classified words in the NEWS test set have multi-
ple labels in the data) and the WIKINEWS dataset
(61.31%), while the proportion of such cases in the
WIKIPEDIA data is lower (52.78%) which might
also be due to the higher ratio of unique words in
the WIKIPEDIA data.

Phrase Classification Results

The CAMB submission to the shared task applies
a simple greedy approach to the phrase classifi-
cation. We run experiments with more informed
approaches overviewed in Section 4 and evaluate
whether these approaches improve performance.
Table 5 presents the results obtained with the dif-
ferent approaches to the phrase classification in the
binary setting. The results of the system submitted
to the shared task are marked in bold.

Data Acc P R F-Score
CW pres. 0.6987 0.8049 0.8231 0.8139
N -gram 0.8004 0.8015 0.9977 0.8889
Greedy 0.8004 0.8004 1.000 0.8891

Table 5: Binary classification results for the phrase
classification in the test set

The results suggest that the more linguistically in-
formed n-gram classifier is capable of achieving
results similar to the baseline greedy approach that
simply labels all phrases as complex. To test how
it would score in the shared task, we re-run the
experiments using the n-gram based phrase classi-
fier, and report the results in Table 6.

Data Acc P R F-Score
NEWS 0.8535 0.7778 0.8641 0.8479
WINS 0.8423 0.8046 0.8297 0.8392
WIKI 0.8081 0.8254 0.7859 0.8080

Table 6: Test set results using n-gram phrase classifier

We note a drop of 3.13% for the F-score on the
NEWS dataset, although the difference in the F-
score on the other two datasets is less than 1%.
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Features NEWS WINS WIKI

N -grams 0.792 0.789 0.754
POS 0.033 0.035 0.046
Freq 0.029 0.029 0.043
Syn 0.020 0.027 0.013
FAM 0.016 0.008 0.019
Syll 0.013 0.021 0.018
KFSMP 0.012 0.010 0.008
SimpWiki 0.010 0.011 0.005
TLFRQ 0.010 0.009 0.011
CNC 0.009 0.010 0.009

Table 7: Gini coefficient for feature contribution

Individual Feature Contribution
We analyse the contribution of individual features
to the classification framework. Table 7 reports
the Gini coefficient for the top 10 informative fea-
tures across different datasets. The Gini coeffi-
cient is defined as the total decrease in node im-
purity, weighted by the probability of reaching
that node, averaged over all trees of the ensemble
(Breiman, 2015).

We also note that the combination of all fea-
tures achieves best results on the NEWS and
WIKINEWS data sets, but the results on the
WIKIPEDIA data decrease when the MCR Psy-
cholinguistic Database features are included. We
have noted above that one of the reasons for lower
performance on the WIKIPEDIA data is due to the
more diverse vocabulary. In addition to that, we
note that the MCR Psycholinguistic Database con-
tains values for 150, 837 words, but some mea-
sures provide much lower coverage (see Table 8).

Measure Coverage
(words)

AOA 3, 503
CNC 8, 228
IMG 9, 240
FAM 9, 392
TLFRQ 25, 308
KFCAT/SMP/FRQ 29, 778
NPHN 38, 438

Table 8: Number of feature instances covered by the
MCR Database

As the WIKIPEDIA dataset has the largest propor-
tion of unique words, it is likely that these features
do not improve the classification accuracy due to
their sparsity.

Performance Across Parts of Speech

Table 9 reports the results achieved by the binary
classification algorithm on the different parts of
speech in the test files. We include only content
words in our analysis.

Data Size Acc P R F
Total Test 3, 701 0.86 0.82 0.79 0.85
Nouns 2, 427 0.86 0.80 0.76 0.84
Verbs 718 0.84 0.83 0.81 0.84
Adjectives 435 0.88 0.86 0.86 0.87
Adverbs 111 0.91 0.89 0.92 0.91

Table 9: POS Classification Metrics

We note that nouns represent the largest proportion
of all test items, while showing the lowest preci-
sion and recall. We hypothesise that one of the
reasons for that might be the dependence of the
noun annotation on the context and the context-
independent nature of our classifiers. In addition,
as we note in Section 3, the complexity of proper
nouns largely depends on the world knowledge
and is harder to model with a machine learning
approach: 12.56% of misclassified instances in
the NEWS data, 22.02% in the WIKINEWS and
22.92% in the WIKPEDIA are proper nouns.

6 Conclusion

In this paper, we have presented the implementa-
tion of the CAMB systems submitted to the CWI
Shared Task 2018, and discussed the key chal-
lenges for the systems. Our systems scored first on
three text genres in the binary classification track,
and on two out of three genres in the probabilistic
track. Further analysis of the performance identi-
fies future directions for this research.

First of all, our systems are implemented in a
context-independent way, while the context of use
clearly affects the perception of word complex-
ity. Future research will look into the ways to in-
clude contextual features into the machine learn-
ing framework. In addition, future work should
investigate how phrase complexity is derived from
individual word complexity scores.

Secondly, we believe that the notion of word
complexity is dependent on a number of demo-
graphic factors such as one’s level of education,
L1 and level of language competence. These fac-
tors should be included both at the data annotation
step and at the CW detection step.
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Abstract

We introduce the TMU systems for the com-
plex word identification (CWI) shared task
2018. TMU systems use random forest clas-
sifiers and regressors whose features are the
number of characters and words and the fre-
quency of target words in various corpora. Our
simple systems performed best on 5 of the 12
tracks. Ablation analysis confirmed the use-
fulness of a learner corpus for a CWI task.

1 Introduction

Lexical simplification (Paetzold and Specia,
2017) is one of the approaches for text simplifica-
tion (Shardlow, 2014), which facilitates children
and language learners ’reading comprehension.
Lexical simplification comprises the following
steps:

1. Complex word identification

2. Substitution generation

3. Substitution selection

4. Substitution ranking

In this study, we work on complex word identifica-
tion (CWI) (Shardlow, 2013), a subtask of lexical
simplification.

Previous studies (Specia et al., 2012;
Paetzold and Specia, 2016a) concluded that
the most effective way to estimate word difficulty
is to count the word frequency in a corpus. How-
ever, they counted the word frequency in corpora
written by native speakers, such as Wikipedia.
Language learners tend to use simple words as
compared to native speakers. Therefore, we
expect the word frequency in the learner corpus to
be a useful feature for CWI.

Our CWI system considers the word frequency
in a learner corpus as well as in corpora writ-
ten by native speakers. We use the Lang-8 cor-
pus1 (Mizumoto et al., 2011), a learner corpus that
can be used on a large-scale in many languages.

2 CWI Shared Task 2018

In CWI shared tasks, systems predict whether
words in a given context are complex or non-
complex for a non-native speaker. The first
CWI shared task (Paetzold and Specia, 2016a;
Zampieri et al., 2017) contained only English data
designed for non-native English speakers. Totally,
20 annotators were assigned to each instance in
the training set. However, in the test set, only
one annotator was assigned to each instance. By
contrast, the CWI shared task 2018 (Yimam et al.,
2018) used a multilingual dataset (Yimam et al.,
2017a,b) having all instances annotated by mul-
tiple annotators. This shared task was divided into
two tasks (binary and probabilistic classification)
and the following four tracks:

• English monolingual CWI

• Spanish monolingual CWI

• German monolingual CWI

• Multilingual CWI with a French test set

The English dataset contained a mixture of pro-
fessionally written news, non-professionally writ-
ten news (WikiNews), and Wikipedia articles.
Datasets for languages excluding English were
from Wikipedia articles. Tables 1 and 2 display
the dataset and the number of instances, respec-
tively.

1http://lang-8.com/
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Sentence Target Label Probability
According to Goodyear, a neighbor heard gun shots. shots 0 0.00
According to Goodyear, a neighbor heard gun shots. according to 1 0.05
A lieutenant who had defected was also killed in the clashes. defected 1 0.45
A bad part of the investigation is we may not get the why. investigation 1 0.95

Table 1: Example instances of the English dataset.

Dataset Train Dev Test
English (News) 14,002 1,764 2,095
English (WikiNews) 7,746 870 1,287
English (Wikipedia) 5,551 694 870
Spanish (Wikipedia) 13,750 1,622 2,233
German (Wikipedia) 6,151 795 959
French (Wikipedia) 0 0 2,251

Table 2: Number of instances.

2.1 Binary Classification Task
Labels in the binary classification task were as-
signed as follows:

0: simple word (none of the annotators marked
the word as difficult)

1: complex word (at least one annotator marked
the word as difficult)

We evaluated the systems using the macro-
averaged F1-score.

2.2 Probabilistic Classification Task
Labels in the probabilistic classification task were
assigned as the proportion of annotators identify-
ing the target as complex. Systems were evaluated
using the MAE (mean absolute error).

3 TMU Systems

According to previous studies (Specia et al., 2012;
Paetzold and Specia, 2016a), we estimated the
word difficulty by counting word frequency.

3.1 Classifiers
We used random forest classifiers and random for-
est regressors for binary classification tasks and
probabilistic classification tasks, respectively. We
examined all combinations of the following hyper-
parameters2:

• n estimators: {10, 50, 100, 500, 1000}
• max depth: {5, 10, 15, 20, ∞}
• min samples leaf: {1, 5, 10, 15, 20}
2http://scikit-learn.org/

Feature
1 Number of characters
2 Number of words
3 Frequency of target in the Wikipedia corpus
4 Frequency of target in the WikiNews corpus
5 Frequency of target in the Lang-8 corpus
6 Probability of target in the Wikipedia corpus
7 Probability of target in the WikiNews corpus
8 Probability of target in the Lang-8 corpus

Table 3: Our features.

Wikipedia WikiNews Lang-8
English 94,872,197 325,038 3,261,441
Spanish 20,197,778 107,289 185,677
German 44,280,830 145,326 160,110
French 26,224,666 135,845 181,004

Table 4: Number of sentences.

3.2 Features
Table 3 shows all the features used by our systems.

First, we used the heuristics that the longer
words are more complex to understand as the first
feature. For example, Flesch reading ease (Flesch,
1948), frequently used in research on text simpli-
fication, uses this heuristics.

Second, as shown in Table 1, the target includes
words and phrases. As long phrases tend to be
less frequent, we used the number of words as the
second feature.

Others features (3-8) are based on the frequency
of targets in a corpus. We counted frequencies
from texts written by native speakers and language
learners. Language learners are more likely to use
simple words than native speakers. Therefore, we
expected word frequency in the learner corpus to
be a useful feature for CWI. As a text written by
native speakers, we counted the frequency from
Wikipedia and WikiNews. By contrast, as a text
written by language learners, we counted the fre-
quency from the Lang-8 corpus (Mizumoto et al.,
2011). The Lang-8 corpus contains texts before
and after corrections written by learners and na-
tive speakers, respectively. We use the former.
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News Wikipedia WikiNews Spanish German French
.874 Camb .812 Camb .840 Camb .770 TMU .745 TMU .760 CoastalCPH
.864 ITEC .797 NILC .831 NLP-CIC .767 NLP-CIC .743 SB@GU .747 TMU
.864 NILC .792 UnibucKernel .828 NILC .764 ITEC .693 hu-berlin .627 SB@GU
.863 TMU .783 SB@GU .816 CFILT-IITB .746 CoastalCPH .662 CoastalCPH .574 hu-berlin
.855 NLP-CIC .782 ITEC .813 UnibucKernel .728 SB@GU .555 Gillin Inc.
.848 CFILT IITB .776 CFILT IITB .811 ITEC .708 hu-berlin
.833 SB@GU .772 NLP-CIC .803 SB@GU .680 Gillin Inc.
.826 hu-berlin .762 TMU .787 TMU
.824 Gillin Inc. .745 hu-berlin .766 hu-berlin
.818 UnibucKernel .740 LaSTUS .749 LaSTUS
.810 LaSTUS .721 CoastalCPH .732 Gillin Inc.

.660 Gillin Inc.

Table 5: Performance on the binary classification task. Systems are ranked by their macro-averaged F1-score.

News Wikipedia WikiNews Spanish German French
.051 TMU .074 Camb .067 Camb .072 TMU .061 TMU .066 CoastalCPH
.054 ITEC .081 ITEC .070 TMU .073 ITEC .075 CoastalCPH .078 TMU
.056 Camb .082 NILC .071 ITEC .079 CoastalCPH .191 Gillin Inc.
.059 NILC .093 TMU .073 NILC .251 Gillin Inc.
.153 SB@GU .176 SB@GU .165 SB@GU
.281 Gillin Inc. .316 Gillin Inc. .289 Gillin Inc.

Table 6: Performance on the probabilistic classification task. Systems are ranked by their MAE score.

3.3 Experimental Settings

The dump data of Wikipedia and WikiNews on
December 01, 2017, were downloaded and divided
into sentences using WikiExtractor3 and NLTK4.
All corpora (Train / Dev / Test and Wikipedia /
WikiNews / Lang-8) were tokenized and lower-
cased in the script of the statistical machine trans-
lation tool Moses5 (Koehn et al., 2007). Table 4
displays the number of sentences in each corpus.

4 Results

Tables 5 and 6 present the official evaluation re-
sults. In Table 5, systems are ranked by their
macro-averaged F1-score for the binary classifi-
cation task. TMU systems ranked first in Span-
ish and German, and second in French. In Ta-
ble 6, systems are ranked by their MAE score for
the probabilistic classification task. TMU systems
ranked first in Spanish, German, and English news
track and second in English WikiNews track.

4.1 Ablation Analysis of Freq. and Proba.

Frequency and probability are similar features. Ta-
ble 7 indicates that although the probability fea-
tures are more important than the frequency fea-
tures, systems can yield better performance by

3https://github.com/attardi/wikiextractor/
4http://www.nltk.org/
5https://github.com/moses-smt/mosesdecoder

considering both features.

4.2 Ablation Analysis of Corpora

We examined which corpus provides important
features. Table 8 shows the most important fea-
tures obtained from the Lang-8 corpus. Remark-
ably, the largest Wikipedia corpus does not con-
tribute significantly to performance.

5 Related Work

Although our systems (random forest with
length and frequency of the target word)
are simple, they achieve competitive re-
sults. In the first CWI shared task 2016,
numerous systems (Brooke et al., 2016;
Davoodi and Kosseim, 2016; Mukherjee et al.,
2016; Zampieri et al., 2016; Ronzano et al.,
2016) used random forest classifiers. The
length (Wróbel, 2016; Paetzold and Specia,
2016b; Malmasi and Zampieri, 2016;
Malmasi et al., 2016; Zampieri et al., 2016;
Ronzano et al., 2016; Palakurthi and Mamidi,
2016; Quijada and Medero, 2016; Konkol,
2016) and frequency (Wróbel, 2016;
Paetzold and Specia, 2016b; Brooke et al.,
2016; Zampieri et al., 2016; Ronzano et al.,
2016; Palakurthi and Mamidi, 2016;
Quijada and Medero, 2016; Konkol, 2016;
Kauchak, 2016) of the target word were the basic
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News Wikipedia WikiNews Spanish German French Average
Binary Classification Task (macro-averaged F1)
All Features 0.863 0.762 0.787 0.770 0.745 0.747 0.779
w/o Frequency 0.864 0.770 0.798 0.774 0.742 0.693 0.774
w/o Probability 0.860 0.767 0.803 0.779 0.753 0.663 0.771
Probabilistic Classification Task (MAE)
All Features 0.051 0.093 0.070 0.072 0.061 0.078 0.071
w/o Frequency 0.052 0.090 0.073 0.071 0.059 0.099 0.074
w/o Probability 0.051 0.094 0.070 0.072 0.061 0.111 0.077

Table 7: Ablation analysis of frequency and probability features.

News Wikipedia WikiNews Spanish German French Average
Binary Classification Task (macro-averaged F1)
All Features 0.863 0.762 0.787 0.770 0.745 0.747 0.779
w/o Wikipedia 0.860 0.741 0.790 0.758 0.757 0.748 0.776
w/o WikiNews 0.858 0.750 0.788 0.756 0.748 0.746 0.774
w/o Lang-8 0.859 0.764 0.786 0.743 0.752 0.735 0.773
Probabilistic Classification Task (MAE)
All Features 0.051 0.093 0.070 0.072 0.061 0.078 0.071
w/o Wikipedia 0.053 0.091 0.072 0.073 0.060 0.079 0.071
w/o WikiNews 0.051 0.092 0.070 0.073 0.061 0.075 0.070
w/o Lang-8 0.052 0.093 0.073 0.075 0.062 0.076 0.072

Table 8: Ablation analysis of corpora.

features of the CWI shared task 2016. These are
used as baselines, and a majority of the systems
use them as part of their features.

While previous works counted the word fre-
quency in corpora such as Wikipedia, which is
written by native speakers, we used corpora writ-
ten by language learners. As anticipated, the word
frequency in the learner corpus proved to be a vital
feature in the CWI task.

6 Conclusion

We explained the TMU systems for CWI shared
task 2018. Our systems performed best on 5 of the
12 tracks using only simple features.

Previous studies concluded that the most effec-
tive way to estimate word difficulty is to count the
word frequency in a corpus. However, it was not
clear what kind of corpus is useful for counting
word frequencies. We discussed the usefulness of
a learner corpus for the CWI task for the first time.
As anticipated, the word frequency counted from
the learner corpus worked better than that from the
in-domain corpus written by the native speakers
for the CWI task.
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Seid Muhie Yimam, Sanja Štajner, Martin Riedl, and
Chris Biemann. 2017b. Multilingual and Cross-
Lingual Complex Word Identification. In Proceed-
ings of the International Conference Recent Ad-
vances in Natural Language Processing, RANLP
2017, pages 813–822.

Marcos Zampieri, Shervin Malmasi, Gustavo Paetzold,
and Lucia Specia. 2017. Complex Word Identifi-
cation: Challenges in Data Annotation and System
Performance. In Proceedings of the 4th Workshop
on Natural Language Processing Techniques for Ed-
ucational Applications, pages 59–63.

Marcos Zampieri, Liling Tan, and Josef van Genabith.
2016. MacSaar at SemEval-2016 Task 11: Zipfian
and Character Features for ComplexWord Identifica-
tion. In Proceedings of the 10th International Work-
shop on Semantic Evaluation, pages 1001–1005.

199



Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 200–205
New Orleans, Louisiana, June 5, 2018. c©2018 Association for Computational Linguistics

The Whole is Greater than the Sum of its Parts: Towards the Effectiveness
of Voting Ensemble Classifiers for Complex Word Identification

Nikhil Wani†,?, Sandeep Mathias?, Jayashree Aanand Gajjam♣, Pushpak Bhattacharyya?

Center for Indian Language Technology
?Department of Computer Science and Engineering
♣Department of Humanities and Social Sciences
Indian Institute of Technology Bombay, India,

†nick.nikhilwani@gmail.com
?sam,pb{@cse.iitb.ac.in}, ♣jayashree aanand@iitb.ac.in

Abstract

In this paper, we present an effective sys-
tem using voting ensemble classifiers to detect
contextually complex words for non-native
English speakers. To make the final decision,
we channel a set of eight calibrated classifiers
based on lexical, size and vocabulary features
and train our model with annotated datasets
collected from a mixture of native and non-
native speakers. Thereafter, we test our system
on three datasets namely NEWS, WIKINEWS,
and WIKIPEDIA and report competitive re-
sults with an F1-Score ranging between 0.777
to 0.855 for each of the datasets. Our sys-
tem outperforms multiple other models and
falls within 0.042 to 0.026 percent of the best-
performing model’s score in the shared task.

1 Introduction

Complex Word Identification (CWI) is an essen-
tial sub-task for Lexical Simplification. Lexical
Simplification involves substituting a complicated
word in the text with a more straightforward syn-
onym. Figure 1 shows the pipeline for Lexical
Simplification systems. It is geared for target pop-
ulation like non-native speakers, second-language
learners, young learners, and people with language
disabilities (like Aphasia and Alexia), with the aim
of allowing them to comprehend the presented text
completely.

The goal of the shared task is as follows: Given
a target word (or phrase) and its context, we are
to computationally determine if the target word
is complex or not. Unlike the SemEval 2016
shared task, the target words here could have more
than one word (e.g., teenage girl), and the context
could stretch over multiple sentences.

The rest of the paper is organized as follows.
In Section 2, we mention related work in the
area of Complex Word Identification - in partic-
ular, the previous shared task at SemEval 2016

Figure 1: Lexical Simplification Pipeline

(Paetzold and Specia, 2016a). Section 3 describes
the dataset of NLP BEA’S CWI shared task at
NAACL 2018. In Section 4, we describe our
system, the features used, and our classification
methodology. Moving along we then report our
competitive results in Section 5 and discuss them
in Section 6. We conclude by recapitulating our
paper in Section 7 and identify future work that
will be done.

2 Related Work

In SemEval 2016, 21 teams participated in a
shared task on complex word identification (Paet-
zold and Specia, 2016a). The competition in-
volved finding out whether a given word in a sen-
tence was complex or not for a non-native speaker.
The dataset used was completely in English.

In this task, the winning team used a soft voting-
based approach from the outputs of 21 predic-
tors (either classifiers, threshold-based, or lexical)
(Paetzold and Specia, 2016b). This system was the
best system according to the G-Score - an eval-
uation metric designed specifically for this task
at SemEval 2016 (Paetzold and Specia, 2016a).
The system with the best F1-Score made use of
a threshold-based approach that marked a word as
complex if its frequency in Simple Wikipedia is
above a threshold (Wróbel, 2016).

Other systems at the SemEval 2016 shared
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Dataset Total Sents. Unique Sents.

NEWS-TRAIN 14002 1016
NEWS-TEST 2095 175

WIKINEWS-TRAIN 7746 652
WIKINEWS-TEST 1287 105

WIKIPEDIA-TRAIN 5551 387
WIKIPEDIA-TEST 870 61

Table 1: Description of the Dataset. The first column
gives the dataset. The next column gives the total num-
ber of sentences. The last column gives the number of
unique sentences.

task used SVM (Kuru, 2016; Choubey and Pa-
teria, 2016; S P et al., 2016; Zampieri et al.,
2016), Random Forest (Davoodi and Kosseim,
2016; Mukherjee et al., 2016; Zampieri et al.,
2016; Brooke et al., 2016; Ronzano et al., 2016),
Neural Networks (Bingel et al., 2016; Nat, 2016),
Decision Trees (Quijada and Medero, 2016;
Malmasi et al., 2016; Malmasi and Zampieri,
2016), Nearest Centroid classifier (Palakurthi and
Mamidi, 2016), Naive Bayes (Mukherjee et al.,
2016), threshold bagged classifiers (Kauchak,
2016) and Entropy classifiers (Konkol, 2016;
Martı́nez Martı́nez and Tan, 2016).

The features used in most of the systems were
common, such as length-based features (like target
word length), presence in a corpus (like presence
of the target word in Simple English Wikipedia),
PoS features of the target word, position features
(position of the target word in the sentence), etc.
However, a few of the systems used some in-
novative features. One of them was the MRC
Psycholinguistic database (Wilson, 1988) used by
Davoodi and Kosseim (2016). Another system by
Konkol (2016) used a single feature namely docu-
ment frequency of the word in Wikipedia, for clas-
sifying using a maximum entropy classifier.

3 Datasets

For this shared task (Yimam et al., 2018), we
used only the English monolingual dataset, which
made use of data from a number of sources, such
as News articles, WikiNews and Wikipedia arti-
cles. Table 3 shows details such as total sentences
and the number of unique sentences that we com-
puted across all the three datasets. The Wikipedia
dataset consisted of sentences from Wikipedia ar-
ticles. Likewise, the WIKINEWS dataset and the

NEWS dataset contained sentences from news ar-
ticles. However, the difference between the two is
that the articles in the NEWS dataset were writ-
ten by professional journalists, while lesser ex-
perienced writers wrote those in the WIKINEWS

dataset.
In a majority of instances, the target words were

just a single word. However, there were a few tar-
get words that were over a word long. Similarly, in
most cases, the context was only one sentence, ex-
cept for a few instances in which the context was
as long as 3 - 4 sentences. The training datasets
were annotated by 10 native and 10 non-native En-
glish speakers. Even if one amongst them found
the word to be difficult, it was annotated as com-
plex.

4 Methodology

In this section, we describe the experiment setup,
such as the features used and provide analysis for
their selection. This is followed by a detailed sys-
tem overview which explains the system’s archi-
tecture.

Figure 2: CWI System Architecture

4.1 Feature Sets

We investigated several intuitive properties of the
target word such as its relevant lexical attributes,
length properties and presence in certain word
lists.

201



4.1.1 Lexical Features
The following features were extracted using
WordNet (Fellbaum, 1998) for the target word:

• Degree of Polysemy (DP): Number of senses
of the target word in WordNet (Fellbaum,
1998). This is operationalized by counting
the number of Synsets of the target word in
WordNet. Words with larger WordNet Synset
sizes have several senses and were found to
be more unclear.

• Hyponym (Ho) and Hypernym (He) Tree
Depth (TD): These help in finding lexical
relations. To find the position of the word
in WordNet’s hierarchical tree, we consider
capturing its depth. General and simple
words tend to be at the top of the tree. By
computing the average depth among all the
target-word Synsets, we count the number of
Hyponyms and Hypernyms as a feature.

• Holonym Count (HC) and Meronym
Count (MC): An alternative way to traverse
Wordnet’s hierarchical tree is by consider-
ing the relationship of the target word to its
components (Meronyms) or to the things it
is contained in (Holonyms). Holonyms tend
to be more simple than meronyms because
meronyms are usually more specific, com-
pared to holonyms, as holonyms are a gen-
eralized word for a group of entities, while
meronyms refer to specific entities in that
group.

• Verb Entailments (VE): Verbs being action
words often contain entailment relationships.
For example, the act of roosting involves the
act of sitting, so roosting entails sitting. Tar-
get words on average with multiple entail-
ments were found to be relatively complex
since they tend to be visually more vivid
when trying to comprehend. Hence, the num-
ber of verb entailments of the target word was
also part of our feature set.

4.1.2 Other Features
In addition to the lexical features, we also make
use of size-based features and vocabulary-based
features. These features are defined in Table 3.

4.2 System Overview
These input features are converged to the follow-
ing eight calibrated classifiers, namely Random

Classifier Precision Recall F1-Score

Selected Classifiers

Random Forest 0.792 0.781 0.787
J48 Decision Tree 0.777 0.777 0.777
Logistic Model Tree 0.778 0.762 0.770
REP Tree 0.768 0.765 0.766
Random Tree 0.796 0.717 0.754
SVM 0.745 0.780 0.762
PART 0.715 0.793 0.752
JRip Rules Tree 0.754 0.737 0.745

Rejected Classifiers (F1 < 0.70)

Decision Table 0.739 0.652 0.693
Decision Stump 0.665 0.696 0.680
Hoeffding Tree 0.686 0.666 0.676
Logistic Regression 0.732 0.591 0.654
SMO 0.751 0.550 0.635
OneR 0.735 0.550 0.629
ZeroR 0.000 0.000 0.000

Table 2: Results of ten-fold cross-validation on the
training for each of the classifiers on the complex class
only. This was used to choose our top classifiers.

Forest, Random Tree, REP Tree, Logistic Model
Tree, J48 Decision Tree, JRip Rules Tree, PART,
and SVM, from a set of 16 classifiers (7 tree-based
classifiers, 5 rule-based classifiers, 1 Bayesian
classifier, 1 regression-based classifier, and 2 non-
linear classifiers).

SIZE-BASED FEATURES

Feature Definition (Number of)

Word Count (WC) Words in the target word
Word Length (WL) Letters in the target word
Vowels Count (VC) Vowels in the target word
Syllable Count (SC) Syllables in the target word

VOCABULARY-BASED FEATURES

Feature Definition (Word is in)

Ogden’s Basic Lexicons (OB) Ogden’s Basic Word List
Ogden’s Freq. Lexicons (OF) Ogden’s Frequent Word List
Barron’s Lexicons (BW) Barron’s GRE Word List

Table 3: Size-based and Vocabulary-based features that
we use.

These eight classifiers were chosen because
they gave the best results on 10-fold cross-
validation of the training set. We decided upon
these classifiers since each of them had an F1-
Score of the complex class in excess of 0.70. Ta-
ble 2 describes the selected and rejected classi-
fiers, along with their Precision, Recall and F1-
Score on ten-fold cross-validation of the train-
ing data. Since the majority class was the non-
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TEAM
DATASET

WIKINEWS WIKIPEDIA NEWS

camb 0.8430 0.8115 0.8792
ajason08 0.8368 0.7736 0.8625
nathansh 0.8329 0.7996 0.8706
nikhilwani 0.8213 0.7770 0.8554
dirkdh 0.8151 0.7816 0.8721
daalft 0.8050 0.7839 0.8391
TMU 0.7910 0.7621 0.8706
pom 0.7723 0.7460 0.8277
natgillin 0.7498 0.6690 0.8363

Table 4: F1-Score for each of the datasets for the top
10 teams on the corresponding test dataset. The high-
lighted row corresponds to our submission.

complex class, the ZeroR classifier has a Preci-
sion, Recall, and F1-Score of 0.

We use a hard voting approach to predict the
class of the target word. If more than 4 classi-
fiers classify the target word as either complex or
simple, we assign the majority label to that word.
In case of a 4-4 tie, (where 4 classifiers say the tar-
get word is complex and 4 say that it is simple),
we use a word-embedding based classifier to act
as a tie-breaker.

Figure 3: Feature significance observed by ranking
them from highest to lowest using Attribute Evaluation
based on Information Gain. The length of the bar cor-
responds to the actual Information Gain value.

For the word-embedding based classifier, we
use the GloVe pre-trained word embeddings (Pen-
nington et al., 2014). We first split the target into
its constituent words (in most cases, it is a single
word, but in a few cases, it is a phrase). We find
the most similar word to each of the constituent

words in the training set. If any of the given con-
stituent words were tagged as complex, we target
the target word as complex as well.

Out of 4252 test points to be classified, 173
times a tie occurred and the ensembled classiferes
were unable to make a call. This is almost 4.06%
of the predictions, which is significant in the larger
scheme of things and further refines the hard vot-
ing.

5 Results and Analysis

In this section we discuss the results as well as re-
flect on the significance of each of the features for
this task.

Table 4 gives the results of our experiments
on the test set. From the results, our system is
placed 4th in the WIKINEWS dataset, 5th in the
WIKIPEDIA dataset, and 6th in the NEWS dataset.

Figure 3 delineates important features and ranks
them according to their significance. Size based
features namely - Word Length, Vowels Count,
Syllable Count, Word Count were seen to consti-
tute the first four topmost features. Another useful
indicator of a complex word is its presence in Bar-
ron’s GRE Word List, a list filled with the vocabu-
lary level equivalent to a graduate college student.

6 Discussion

As it is evident from Tables 2 and 4, we see that
individual classifiers do not work as well as en-
sembling them together, which agrees with the ex-
pression “The whole is greater than the sum of
its parts”. Classifier Ensembling would further
prove to be an efficacy for contextual documents
similarity-based binary classification tasks (Kano-
jia et al., 2017) which rely heavily on lexical fea-
tures, as well as it should also potentially cross-
pollinate to benefit probabilistic touch classifica-
tion problems (Wani et al., 2017) where spatial and
contextual information has been proven to be piv-
otal.

7 Conclusion and Future Work

In this paper, we describe our participation to
NLP-BEA’S CWI 2018 Shared Task at NAACL
concerning Complex Word Identification. We
presented and evaluated our system across three
datasets and showed that Ensemble Classifiers
with hard and GloVe Voting are effective by means
of lexical, size and vocabulary features for identi-
fying complex words.
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As part of our future work, we plan to incor-
porate Parts of Speech (POS) tags, Named Entity
Recognition (NER) tag and word position features
to improve our existing effective system.
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Abstract

We present our submission to the 2018
Duolingo Shared Task on Second Language
Acquisition Modeling (SLAM). We focus on
evaluating a range of features for the task, in-
cluding user-derived measures, while examin-
ing how far we can get with a simple linear
classifier. Our analysis reveals that errors dif-
fer per exercise format, which motivates our
final and best-performing system: a task-wise
(per exercise-format) model.

1 Introduction

The shared task on Second Language Acquisi-
tion Modeling (SLAM) (Settles et al., 2018) con-
sisted of an error prediction task, i.e., determining
whether a language learner (user) made a token-
level mistake.1 Exploring if and how errors can
be predicted can provide insights into the learning
process and help pinpoint specific constructs that
challenge learners of different languages.

The design of each exercise and the time spent
on a particular task and language course, which
can be expected to influence the performance, are
included in the data. The learning context and
the learners’ background language skills, which
would also influence performance, are not known
or controlled for. In general, the courses are
structured to minimize errors, by providing fre-
quent repetition and only incrementing the diffi-
culty level by small steps. Taken together, this
makes the error prediction task a potentially hard
task due to a sparse target class and noisy data
from the unknown variable of user profiles, be-
sides the temporal dependency.

With data from three language courses, namely
English, Spanish and French, it is possible to ex-
plore generic and course-specific aspects of the
learning problem.

1Note: we have only access to an error’s corrected form.

2 Our Approach

With a focus on identifying meaningful feature
groups, we use the provided train and development
data to train and tune a logistic regression classi-
fier for each language track. We explore features
that describe static aspects of the exercise text, fea-
tures that take the source and target language into
account and features that describe the user-specific
course trajectory. Due to notable biases in the data,
we also experimented training separate classifiers
on various data splits, namely for the three distinct
exercise formats (listen, reverse tap, reverse trans-
late) and for different days of the course.

Below, we briefly describe the data before de-
tailing each group of features and proceeding to
describe the model and results.

2.1 Data

The data splits contain all the same users, and are
structured sequentially in time, over a period of 30
learner’s days. Roughly the first 80% are given as
training data, the next 10% are development data
and the last 10% were the held-out test data.

The dataset contains two time variables:

• days This is a user-relative “timestamp”
(the number of days they have been using
Duolingo to learn this language). Monotoni-
cally increasing, by user.

• time The number of seconds it took the user
to construct their response for the current ex-
ercise (aka“response time”). Note that this is
a measures for the entire response, not for any
particular word/token. Some ‘null’ values are
in the dataset due to logging issues.

The data further contains meta-data on the user
and the exercise type, besides automatically de-
rived POS tags and dependency trees:
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COURSE USERS TOKENS ERRORS

en-es 2,593 2,622,958 12%
– Listen – – 16%
– Rev. Tap – – 4%
– Rev. Transl. – – 14%

es-en 2,643 1,973,558 16%
– Listen – – 22%
– Rev. Tap – – 8%
– Rev. Transl. – – 21%

fr-en 1,213 926,657 15%
– Listen – – 16%
– Rev. Tap – – 6%
– Rev. Transl. – – 23%

Table 1: Training set sizes and error rates.

• format The task to be solved by the user.
One of listen, reverse tap and translate.

• user a B64 encoded, 8-digit, anonymized,
unique identifier for each user

• country country codes from which this user
has done exercises

• client - the student’s device platform (one of:
android, ios, or web)

• session - the session type (one of: lesson,
practice, or test; explanation below)

There were three tracks for learners of English,
Spanish, and French. In particular, en-es con-
sists of English learners (who already speak Span-
ish), es-en are Spanish learners (who already
speak English), and fr-en are French learners
(who already speak English). We participated in
all three. An overview of the data for the three
tracks, including number of users, tokens and av-
erage error rate is given in Table 1.

The distribution of four attributes of the text and
the users are shown in Figure 1. The low values
dominating both the token length distribution and
the dependency head index distribution reflect a
preference for simple sentences. The distribution
of the days since course start reveals how user ac-
tivity declines steeply. The users’ individual error
distributions reflects the proficiency spread.

2.2 Features
We have mostly limited ourselves to features that
could be calculated from the shared task data.

Figure 1: Distribution of token lengths, index of depen-
dency heads, days since course start and users’ individ-
ual proportion of errors. Based on first 200K tokens of
the en-es-track.

Each data instance in our dataset describes a word
and its context. For performance reasons, we ap-
ply binning to all features, given that many of them
are real-valued.

1. User, session and client: Non-linguistic data,
but also potential sources of error.

2. Task format: Whether a given data point
belongs to the listen, reverse tap or reverse
translate task format. Each task has a differ-
ent error prior (Table 1).

3. Word properties (base): Basic word prop-
erties, i.e., the word form and its stem. We
use the NLTK Snowball stemmers (Loper
and Bird, 2002) for the three languages at
hand. We add the word’s log frequency cal-
culated from Universal Dependencies (UD)
2.1 (Nivre et al., 2016).

4. Morphosyntax: We generate part-of-speech
(POS) derived features. For instance, the
POS of word at hand, the two POS bi-
grams in which it participates, and the POS
trigram centered around it. We also treat
the word’s morphological features as a set
of independent binary features such as gen-
der=Feminine, as well as the dependency la-
bel of the word, the POS tag of the head, and
the distance of head and modifier (in number
of tokens). We include sentence properties
like cumulative sentence length, and whether
the word is the last one in the sequence, to
give account for error propagation.
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5. Diacritics: Whether the word contains any
non-ASCII characters. We observed that
French and Spanish words with accents were
hard to type by English speakers, which mo-
tivated this feature.

6. Cognates and Character similarity
(Form): Whether the target token exists
in the source language. We calculate this
feature once for forms and one for stems. We
obtain our word lists for each language from
the respective UD data. Moreover, letter
sequences that are different across languages
can be a cause of errors for second language
learners. We model this difference by
calculating the Kullback-Leibler divergence
for the 2-3 grams character distributions of
the word (and the previous token) in the
source with respect to the target language.
We also use a measure of character overlap
with tokens in the source language.

7. Time properties: The time the exercise was
taken since the course start, binned by whole
days and by equal log-distance, also cumula-
tively. The log time taken for the exercise re-
sponse total and per token, both absolute and
cumulative.

8. User behavior: We calculate user-dependent
characteristics based on the whole training
dataset. For a certain word, we calculate
whether the user has seen it before, how
many times, how many days ago, whether it
was an error last, the user’s token-error rate,
and the days since the last error. When avail-
able, we calculate the features’ cumulative
variant.

9. Country: the list of countries in which the
user did exercises. Also, whether the coun-
try the user is in has the target language as
one of its official languages, motivated by the
intuition that exposure decreases error rate.

2.3 Model

We use Scikit-learn (Pedregosa et al., 2011) and
for computational reasons, we have limited our-
selves mostly to single linear classifiers instead of
ensemble, kernel or neural methods. Our final sys-
tem is a logistic regression classifier with L2 reg-
ularization, C = 0.2, balanced class-weights and

Figure 2: Results for training a single model on all data
versus data from later days onwards (fr-en dev set).

liblinear as solver. Our code is publicly available.2

We also approach each track separately, thus
have trained three separate models per language
pair, we however believe that creating one joint
model is an interesting research direction. More-
over, rather than using format as a feature in one
single model, we observed that the error rate prior
was strongly determined with the task format, and
thus we considered using separate format-wise
models, namely by dividing the data by task for-
mat, i.e., there is a separate model for English-
to-Spanish-Listen, and so on, trained on the task-
specific subset of data. At prediction time, the
corresponding classifier is applied to each test in-
stance.

3 Results

3.1 Results on dev set

During development, we observed that removing
the first day of every user’s data was helpful. We
claim that first-day errors have more to do with
the learning curve of the software, and less with
the language itself. Figure 2 illustrates this for
one language pair. Removing training instances
before day 1 slightly increases performance for
all languages. The diminishing data curve shows
a pretty flat performance when excluding earlier
learner days up to day 4.

3.2 Results on test set

Given the remark that the first day contained more
irregular errors, we exclude the first day from the
training data, and add the dev section, to train our
final classifier.

2https://github.com/bplank/slam-2018
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EN-ES ES-EN FR-EN
r team AUC F1 L r team AUC F1 L r team AUC F1 L

1 SanaLabs 0.86 0.56 0.30 1 SanaLabs 0.84 0.53 0.33 1 SanaLabs 0.86 0.57 0.33
9 Lambda 0.82 0.39 0.32 8 Lambda 0.80 0.34 0.35 8 Lambda 0.82 0.41 0.36
10 Grotoco 0.82 0.46 0.53 9 Grotoco 0.79 0.45 0.54 9 Grotoco 0.81 0.50 0.51
11 jilljenn 0.82 0.33 0.33 10 nihalnayak 0.79 0.34 0.36 10 nihalnayak 0.81 0.43 0.37
15 BL 0.77 0.19 0.36 14 BL 0.75 0.18 0.39 15 BL 0.77 0.28 0.40

Table 2: Results on test set. Rank (r), team name, F1, loss (L) for the three language pairs. The table shows the
best system (ranked 1), the baseline provided by the organizers (BL), and finally our system with the scores of the
immediate higher and lower in ranking for comparison.

We submitted a single system per track, and
a task-wise model. The single system, which
used all of the features, achieved on average
0.7754 AUROC across the three tasks, while our
task-wise model resulted in a considerably better
model, reaching 0.79079 AUROC. This supports
the hypothesis that errors (and features) are task-
specific. Overall, as summarized in Table 2, our
final task-wise submission ranked 10 (or 9th) in
each of the tracks, which is well above the the
SLAM baseline, but also shows that much remains
to be done (e.g., integrating forgetting, building
a single model for all languages, or integrating
dense feature representations).

While we did not further evaluate training more
specific task-wise models (with different features),
we provide a feature analysis in the next section
that could help improve the current model.

3.3 Feature analysis

Figure 3 shows examples of features that differ
in prevalence in each class split by task format,
both for the gold and predicted labels. Comparing
column-wise allows us to compare the feature dis-
tribution across languages while row-wise com-
parison allows us to inspect how similar the pre-
dicted and gold label distributions are.

The depicted values are calculated by first de-
termining the feature prevalence as the percentage
of data points in each class, where a given fea-
ture is ‘on’ and subtract the prevalence in one class
from the other. Only features with a difference in
prevalence of at least 5 percentage points and at
least 20% prevalence in at least one subgroup are
shown (i.e., the feature is active in a fifth or more
of at least one language/task-format/class combi-
nation)3. In feature groups where several subse-
quent bins fit these criteria, only the most skewed
bins were included for the purpose of illustration.

3This favors features that are active in the smaller positive
class, in particular in the easier reverse-tap task.

First we note that prevalence of features is dif-
ferent for the three tasks. For instance, client in-
formation as well as time binned features differ
per exercise format (listen, reverse tap and reverse
translate). Overall, one notable pattern is that the
predictions all match the gold splits distribution
in shape (row-wise comparison), but tend to split
the selected feature values more radically than the
gold. A clear example is the two leftmost client-
features with more extreme values in the left col-
umn of figures (predicted) than the right (gold).

A second notable pattern is that the feature dis-
tribution in the gold data (right-hand column) has
strong similarities across the three language pairs,
which is also reflected by the model output (left-
hand column). This indicates that training a sin-
gle joint model across languages could be fruitful,
which we did not consider due to time reasons.

en-es es-en fr-en
all features .8158 .7889 .8121

-user .7637 .7637 .7923
-user-session-client .7903 .7614 .7895
-base .8014 .7743 .8000
-pos .8158 .7889 .8121
-dep .8151 .7886 .8112
-form .8147 .7881 .8113
-time .8108 .7889 .8077
-uvocab .8097 .7829 .8053
-country .8157 .7890 .8121

Table 3: Feature ablation (AUROC) for task-wise
model (trained on all train data), results on dev sets.

4 Feature ablation and discussion

Table 3 presents ablation results of our final task-
wise model. What sticks out is that the lexical base
features (base), timing (time) and user-specific be-
havioral features (uvocab) are the most predictive.
Also knowing the type of session of the exercise
and the user’s client are very informative, as al-
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Figure 3: Difference in distribution of feature values in predictions (left-hand side) and in gold labels (right-hand
side) by course and task-format based on first 100.000 tokens of development data. Y-axis denotes percentage
points over-representation in the classes is-error (positive) or is-correct (negative).

ready found in our earlier analysis. The feature
with the least impact is the country information.
In fact, removing this feature does not drop per-
formance, rather, improves it by a tiny bit for the
Spanish learners. From the morpho-syntactic fea-
tures we found the POS n-grams and dependency
relations are the most helpful.

One key trait of our results is the much higher
loss when compared with the systems immediate
before and after in the ranking. We attribute this
much higher loss to having split the data across
task formats, which gives sharped distributions in-
stead of smoother ones. This argument is sup-
ported by a higher F1 than that of the surrounding
submissions, which indicates that our system is a
better 0–1 labeler than a probability estimator.

5 Conclusions

This paper describes the Grotoco contribution
to the Second Language Acquisition Modeling
shared task. We have presented our architecture,
based on format-wise classification models, and
lexical features, as well as user- and time-related
features. Training separate models per task turned
out to be highly beneficial. We found user-specific
and time-related features to be the most informa-
tive, beside lexical features and session meta-data.
We also found that the first experience with the
software to be a possible interference, as remov-
ing first-day day improved models consistently.
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Abstract

SLAM 2018 focuses on predicting a student’s
mistake while using the Duolingo applica-
tion. In this paper, we describe the sys-
tem we developed for this shared task. Our
system uses a logistic regression model to
predict the likelihood of a student making
a mistake while answering an exercise on
Duolingo in all three language tracks - En-
glish/Spanish (en/es), Spanish/English (es/en)
and French/English (fr/en). We conduct an ab-
lation study with several features during the
development of this system and discover that
context based features play a major role in
language acquisition modeling. Our model
beats Duolingo’s baseline scores in all three
language tracks (AUROC scores for en/es =
0.821, es/en = 0.790 and fr/en = 0.812). Our
work makes a case for providing favourable
textual context for students while learning sec-
ond language.

1 Introduction

The SLAM 2018 Shared Task is primarily cen-
tered around modeling second language acquisi-
tion (Settles et al., 2018) of non-native learners
of English, Spanish and French. In this shared
task, the principal tool used to assess learners is
via Duolingo, one of the world’s most popular on-
line learning platforms. The data provided as part
of the shared task is collected from the way thou-
sands of students performed in over 4 million exer-
cises during their first 30 days on Duolingo. This
data consists of annotations at a word level - that
indicate errors made by the user in a particular ex-
ercise. The task here is to predict mistakes that a
learner is likely to make in future, by building a
model from the training dataset given. Such a sys-
tem would thus be able to model the second lan-
guage acquisition capabilities of non-native learn-
ers of these languages.

In this paper, we present our attempt at mod-
elling second language acquisition, primarily by
considering context based features. Using these
features our system implements a logistic regres-
sion model based on the additive conjugate model
(Cen et al., 2008) that considers both the instance
level features and user’s latent ability, that results
in reasonably good performance across the three
languages being considered.

The rest of this paper is organized as follows.
Section 2 highlights some of the existing research
in modelling second language acquisition, that we
have considered while developing the system. In
Section 3, we discuss the features used in our
model. We then present our model along with a
few alternative approaches we considered (Section
4). An evaluation of our model on the Develop-
ment and Test datasets is described in Section 5.
Finally, scope for future work is discussed in sec-
tion 6 and we present our conclusions in Section
7.

2 Related work

The process of learning has been thoroughly stud-
ied over the years. The forgetting curve (Ebbing-
haus, 1885) has been central to these studies,
which posits that memory decays exponentially
with time. Research suggests that learning a con-
cept in spaced interval helps in long term reten-
tion.

Leitner (1972) proposed a strategy (called Leit-
ner’s system) which incorporates spaced learning
in flashcards. The system accounts for the stu-
dent’s performance and schedules the learning ses-
sions with the help of buckets. For instance, if the
student correctly answers the flashcard, it gets pro-
moted to a higher bucket, thereby more spacing is
provided between the learning sessions and if the
student incorrectly answers the flashcard, then it
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gets demoted to a lower bucket and thus reduces
the spacing. Duolingo also implements a variant
of the Leitner’s system by organizing the cards in
virtual buckets.

Apart from the Spacing Effect, there are other
theories that have been around for sometime. Ex-
periments by Roediger and Karpicke (2006) indi-
cate that repeated testing increases long term re-
tention. Nayak et al. (2017) developed a flashcard
based application which implements the testing ef-
fect. They also collect a range of attributes or data-
points (both implicit and explicit data points) from
the users.

Data collected from the users can be used for
language acquisition modeling. For instance,
Duolingo implements HLR (Settles and Meeder,
2016) to implement a trainable model for the for-
getting curve. With their model, they attempt to
predict the probability of a user correctly recalling
a word. In this shared task, the organizers have
released a similar dataset.

We posit that, the zone of proximal develop-
ment (Vygotsky and Cole, 1978) plays a crucial
role in language acquisition. The theory suggests
that, when a student is in her zone of proximal de-
velopment, providing appropriate assistance will
enable her to complete the task. In language learn-
ing, the task is to answer the target word or the ex-
ercise given the surrounding words or the context.
Therefore, in our work we focus on context based
features and explore its effect while answering an
exercise.

We use insights from recent works in L2 ac-
quisition from code-switched text as they have fo-
cused on learning from context. Labutov and Lip-
son (2014) carry out experiments to determine the
guessability of a word in code switched text. A
similar work by Knowles et al. (2016) discuss the
factors that can potentially affect the guessability
of a German word with English context. We ex-
tend these works to model acquisition in multiple
languages: English-Spanish, Spanish-English and
French-English. For modeling the language acqui-
sition, we make use of an additive conjugate model
(Cen et al., 2008), in which we account for both in-
stance level features such as token, part of speech,
etc as well as the user’s ability. We describe our
model in detail in the next sections.

3 Features

In this section, we describe the features we con-
sider in our experiments.

We start looking at the different attributes
present in the dataset. These features are selected
based on our intuition and past work. For simplic-
ity, we divide the features in 2 categories - baseline
features and context features.

3.1 Baseline Features
• Token (T) - We preprocess this feature by

converting the token to lowercase and store
the token as a categorical feature.

• Part-of-Speech (POS) - The dataset pro-
vides POS information for each token in Uni-
versal Dependency format. We use the same
POS information without any preprocessing
in our model.

• Morphological Features (M) - The dataset
provides a detailed list of morphological fea-
tures in Universal Dependency format. We
encode each of these features in a separate
hash bucket and use it in our model.

• Dependency Label (D) - The dataset pro-
vides dependency label for each token com-
puted using the language agnostic depen-
dency parser in Google’s Syntaxnet.

• User (U) - Each user (or student) in the
dataset is given a unique identifier. We use
this feature to capture the latent ability of the
user to answer the exercises.

• User + Format (UF) - Duolingo provides 3
formats in their dataset - reverse_tap,
reverse_translate and listen.
Each exercise can belong to one of the
formats. We use a combination of user
modelling and exercise format as our feature.
The intuition being that the performance of a
user depends on the format of the exercise.

• Session (S)- In the data, we find that there
are 3 types of sessions - lesson, practice and
test. We simply encode this information as a
feature for our model.

3.2 Context Features
As mentioned in related works section, we use
ideas from zone of proximal development and in-
troduce context based features which could assist
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the student in answering a particular instance in an
exercise. We use these context features for all the
3 formats. 1

• Previous-Current Token POS and
Current-Next Token POS (PCPOS,
CNPOS) - The user may implicitly learn
the structure of the language. Therefore,
we encode two features - Previous Token
POS and Current Token POS as one of the
features and Current Token POS and Next
Token POS as the other feature.

• Previous-Current and Next-Current To-
ken Metaphone (PCM, CNM) - We realize
that sounds or phonemes can play a vital role
in this task. Therefore, we make use of meta-
phones to represent the phonemes. Although,
we use this feature in all the three tracks, we
make use of English language rules to com-
pute the metaphones in other languages as
well. We encode the metaphonic combina-
tion of Previous Token and Current Token as
a feature in our model. We do the same with
Current Token and Next Token.

• Previous-Current Token and Current-
Next Token (PCT, CNT) - We use the com-
bination of Previous and Current instance to-
ken as a feature in our model. Likewise, we
use a combination of Current instance token
and Next instance token in the exercise as a
feature.

• First Token (FT) - We also investigate the
influence of First Token in each exercise. We
normalize the First Token by lowering the
case and then use it as a categorical feature.

4 Our Model

Recent works in the described in section 3 have
encouraged us to use a simple logistic regression
model. The equation of logistic regression is as
follows:

P (y | x) = 1

1 + exp(~w · ~f(x, y))
(1)

1Our experiments with the development set indicated that
Current-Next Token, Current-Next Token POS and Current-
Next Token Metaphone feature reduced the AUROC when
the format was listen. Therefore, in our model, we con-
sider the above mentioned features only when the format is
reverse tap or reverse translate.

where ~w is the weight vector and ~f(x, y) is the
sparse feature vector.

We use the same model in all three tracks of the
competition - English-Spanish, Spanish-English
and French-English.

For training the model, we make use of an L2
regularized Stochastic Gradient Descent algorithm
to minimize the error, thereby maximizing the
likelihood of a class. We also store feature counts
to reduce the learning rate of frequently occurring
features. Through trial and error, we adjusted the
learning rate and prior variance for the model.

Additionally, we also experimented with Hal
Daume’s MegaM tool2 through the NLTK inter-
face. The MegaM tool looks to maximize the log
likelihood of a class. Our initial results with this
approach did not seem as promising as the SGD
based logistic regression model. Therefore, we de-
cided to proceed with the former.

5 Evaluation

We experiment with the features mentioned in the
section 3 and evaluate the model on the develop-
ment data of all three languages. Our results in
all three languages were promising which encour-
aged us to make use of the same features with the
Test set as well.

5.1 Development

The results for our model with the development
set can be found in Table 1. Our results consis-
tently indicate that a context based approach for
language acquisition modeling gives good perfor-
mance.

5.2 Test

We use the development data as part of our train-
ing data while evaluating our model on the test
data. The results are found in Table 2. Our model
beats the Duolingo’s baseline model by a good
margin in all three language tracks.

We note that our baseline model with all the
context features gives best AUROC scores in two
tracks. However, there is small dip in the AU-
ROC in French-English track. As a future work,
it would be interesting to investigate further into
this decrease in performance.

2http://legacydirs.umiacs.umd.edu/
˜hal/megam/version0_3/
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Model en es es en fr en
Duolingo’s Baseline 0.773 0.746 0.771
Baseline 0.782 0.754 0.779
Baseline + (PCPOS, CNPOS) 0.801 0.776 0.794
Baseline + (PCPOS, CNPOS) + (PCM, CNM) 0.816 0.791 0.811
Baseline + (PCT, CNT) + (PCPOS, CNPOS) + (PCM, CNM) 0.820 0.792 0.813
Baseline + (PCT, CNT) + (PCPOS, CNPOS) + (PCM, CNM) + FT 0.820 0.792 0.812

Table 1: AUROC scores for our model in different language tracks on the development dataset

Model en es es en fr en
Duolingo’s Baseline 0.774 0.746 0.771
Baseline + (PCPOS, CNPOS) + (PCM, CNM) 0.817 0.788 0.810
Baseline + (PCT, CNT) + (PCPOS, CNPOS) + (PCM, CNM) 0.821 0.789 0.812
Baseline + (PCT, CNT) + (PCPOS, CNPOS) + (PCM, CNM) + FT 0.821 0.790 0.811

Table 2: AUROC scores for our model in different language tracks on the test dataset

6 Future Work

Recent works in language acquisition through
Code-Mixed text have suggested that providing fa-
vorable textual context for learners can be an ef-
fective strategy. We suggest that a similar strategy
would be useful in the Duolingo Application. We
would like to extend this line of thought to text
readability and text simplification. It would be
interesting to see if text simplification techniques
could simplify sentences with an intention of as-
sisting language learners to acquire new vocabu-
lary while balancing out the readability of the text.

In our work we show that sound based features
can play a vital role while learning. We use meta-
phones in our work to encode sound features in
our model. We would like see if a more expressive
method for encoding sound can be used to improve
the model’s performance. The data does not pro-
vide the translation of tokens in the user’s native
language. By computing the machine translation
of these tokens, one could check the effect of cog-
nateness of the word while answering the exercise.

7 Conclusion

In this paper, we show that a simple linear model
with context based features gives good perfor-
mance in modeling language acquisition. In our
work, we conduct the feature ablation study and
thoroughly evaluate the effect of these context
based features in this task. Additionally, we also
give direction for future work in text simplification
and readability.

Code

To facilitate research and reconstruction of
our approach, we have publicly released our
code: https://github.com/iampuntre/
slam18
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Abstract

Accurate prediction of students knowledge is
a fundamental building block of personalized
learning systems. Here, we propose a novel
ensemble model to predict student knowl-
edge gaps. Applying our approach to student
trace data from the online educational platform
Duolingo we achieved highest score on both
evaluation metrics for all three datasets in the
2018 Shared Task on Second Language Acqui-
sition Modeling. We describe our model and
discuss relevance of the task compared to how
it would be setup in a production environment
for personalized education.

1 Introduction

Understanding how students learn over time holds
the key to unlock the full potential of adaptive
learning. Indeed, personalizing the learning ex-
perience, so that educational content is recom-
mended based on individual need in real time,
promises to continuously stimulate motivation
and the learning process (Bauman and Tuzhilin,
2014a). Accurate detection of students’ knowl-
edge gaps is a fundamental building block of per-
sonalized learning systems (Bauman and Tuzhilin,
2014b) (Lindsey et al., 2014). A number of ap-
proaches exists for modeling student knowledge
and predicting student performance on future ex-
ercises including IRT (Lord, 1952), BKT (David
et al., 2016) and DKT (Piech et al., 2015). Here we
propose an ensemble approach to predict student
knowledge gaps which achieved highest score on
both evaluation metrics for all three datasets in
the 2018 Shared Task on Second Language Ac-
quisition Modeling (SLAM) (Settles et al., 2018).
We analyze in what cases our models’ predictions
could be improved and discuss the relevance of the
task setup for real-time delivery of personalized
content within an educational setting.

2 Data and Evaluation Setup

The 2018 Shared Task on SLAM provides student
trace data from users on the online educational
platform Duolingo (Settles et al., 2018). Three
different datasets are given representing users re-
sponses to exercises completed over the first 30
days of learning English, French and Spanish as
a second language. Common for all exercises is
that the user responds with a sentence in the lan-
guage learnt. Importantly, the raw input sentence
from the user is not available but instead the best
matching sentence among a set of correct answer
sentences. The prediction task is to predict the
word-level mistakes made by the user, given the
best matching sentence and a number of additional
features provided. The matching between user re-
sponse and correct sentence was derived by the
finite-state transducer method (Mohri, 1997).

All datasets were pre-partitioned into train-
ing, development and test subsets, where approx-
imately the last 10 % of the events for each user
is used for testing and the last 10 % of the remain-
ing events used for development . Target labels for
token level mistakes are provided for the training
and development set but not for the test set. Ag-
gregated metrics for the test set were obtained by
submitting predictions to an evaluation server pro-
vided by Duolingo. The performance for this bi-
nary classification task is measured by area under
the ROC curve (AUC) and F1-score.

Although the dataset provided represents real
user interactions on the Duolingo platform, the
model evaluation setup does not represent a realis-
tic scenario where the predictive modelling would
be used for personalizing the content presented to
a user. The reason for this is threefold: Firstly,
predictions are made given the best matching cor-
rect sentence which would not be known prior to
the user answering the question for questions that
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have multiple correct answers. Secondly, there
are a number of variables available at each point
in time which represent information from the fu-
ture creating a form of data leakage. Finally, the
fact that interactions from each student span all
data partitions means that we can always train
on the same users that the model is evaluated for
and hence there are never first time users, where
we would need to infer student mistakes solely
from sequential behaviour. To estimate predic-
tion performance in an educational production set-
ting where next-step recommendations must be in-
ferred from past observations, the evaluation pro-
cedure would have to be adjusted accordingly.

3 Method

To predict word-level mistakes we build an ensem-
ble model which combines the predictions from
a Gradient Boosted Decision Tree (GBDT) and a
recurrent neural network model (RNN). Our rea-
soning behind this approach lies in the observa-
tion that RNNs have been shown to achieve good
results for sequential prediction tasks (Piech et al.,
2015) whereas GBDTs have consistently achieved
state of the art results on various benchmarks for
tabular data (Li, 2012). Even though the data in
this case is fundamentally sequential, the number
of features and the fact that interactions for each
user are available during training make us expect
that both models will generate accurate predic-
tions. Details of our model implementations are
given below.

3.1 The Recurrent Neural Network

The recurrent neural network model that we use is
a generalisation of the model introduced by Piech
(2015), based on the popular LSTM architecture,
with the following key modifications:

• All available categorical and numerical fea-
tures are fed as input to the network and at
multiple input points in the graph of the net-
work (see A.1)

• The network operates on a word level, where
words from different sentences are concate-
nated to form a single sequence

• Information is propagated backward (as well
as forward) in time, making it possible to pre-
dict the correctness of a word given all the
surrounding words within the sentence

• Multiple ordinary- as well as recurrent lay-
ers are stacked, with the information from
each level cascaded through skip-connections
(Bishop, 1995) to form the final prediction

In model training, subsequences of up to 256
interactions are sampled from each user history
in the train dataset, and only the second half of
each subsequence is included in the loss function.
The binary target variable representing word-level
mistakes is expanded to a categorical variable and
set to unknown for the second half of each subse-
quence in order to match the evaluation setup.

Log loss of predictions for each subsequence
is minimised using adaptive moment estimation
(Kingma and Ba, 2014) with a batch size of
32. Regularisation with dropout (Srivastava et al.,
2014) and L2 regularisation (Schmidhuber, 2014)
is used for embeddings, recurrent and feed for-
ward layers. Data points are used once over
each of 80 epochs, and performance continuously
evaluated on 70 % of the dev data after each
epoch. The model with highest performance over
all epochs is then selected after training has fin-
ished. Finally, Gaussian Process Bandit Optimiza-
tion (Desautels et al., 2014) is used to tune the
hyperparameters learning rate, number of units
in each layer, dropout probability and L2 coeffi-
cients.

3.2 The Gradient Boosted Decision Tree

The decision tree model is built using the Light-
GBM framework (Ke et al., 2017) which imple-
ments a way of optimally partitioning categori-
cal features, leaf-wise tree growth, as well as his-
togram binning for continuous variables (Titov,
2018). In addition to the variables provided in the
student trace data we engineer a number of fea-
tures which we anticipate should have relevance
for predicting the word level mistakes

• How many times the current token has been
practiced

• Time since token was last seen

• Position index of token within the best
matching sentence

• The total number of tokens in the best match-
ing sentence

• Position index of exercise within session
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• Preceding token

• A unique identifier of the best matching sen-
tence as a proxy for exercise id

Optimal model parameters are learned through
a grid search by training the model on the training
set and evaluating on the development set to opti-
mize AUC. The optimal GBDT parameter settings
for each dataset can be found in the Supplemen-
tary Material A.2.

3.3 Ensemble Approach
The predictions generated by the recurrent neural
network model and the GBDT model are com-
bined through a weighted average. We train each
model using its optimal hyperparameter setting
on the train dataset and generate predictions on
the dev set. The optimal ensemble weights are
then found by varying the proportion of each
model prediction and choosing the weight combi-
nation which yields optimal AUC score (Figure 1).

Finally, the RNN and GBDT were trained using
their respective optimal hyperparameter settings
on the training and development datasets to gen-
erate predictions on the test sets. The individual
model test set predictions were then combined us-
ing the optimal ensemble weights to generate the
final test set predictions for task submission.

0.0 0.2 0.4 0.6 0.8 1.0
GBDT weighting factor

0.840

0.845

0.850

0.855

0.860
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Figure 1: Ensemble model performance as a func-
tion of the GBDT ensemble weight parameter for the
en es dataset. 0.0 is equivalent to using only the neu-
ral network model while 1.0 is equivalent to using only
GBDT.

4 Discussion

Our ensemble approach yielded superior predic-
tion performance on the test set compared to the
individual performances of the ensemble compo-
nents (Table 1). The F1 scores of our ensemble
are reported in Table 2. We note that although the
within-ensemble prediction correlations are high

(Table 3), the prediction diversity evidently suf-
fices for the ensemble combination to outperform
the underlying models. This suggests that the
RNN and the GBDT differ in performance on dif-
ferent word mistakes. Most likely, the temporal
dynamics modelled by the neural network model
complement the GBDT predictions enabling the
ensemble to generalise better to unseen user events
than its component parts. Notably, none of our in-
dividual models would have yielded first place in
the Shared Task.

Model fr_en es_en en_es
RNN 0.841 0.830 0.851
GBDT 0.853 0.836 0.856
Ensemble 0.857 0.838 0.861

Table 1: Model AUC scores on the test partition for all
datasets.

fr_en es_en en_es
Ensemble 0.573 0.530 0.561

Table 2: Model F1 scores on the test partition for all
datasets.

Data partition fr_en es_en en_es
dev 0.881 0.901 0.896
test 0.884 0.894 0.898

Table 3: Pearson correlations coefficients between the
GBDT and RNN predictions on the dev and test set for
all datasets.

4.1 Feature Importance
Given the predictive power of our model we can
use the model components to gain insight into
what features are most valuable when inferring
student mistake patterns. When ranking GBDT
features by information gain, we note that 4 out
of 5 features overlap between the three datasets
(Figure 4). The unique user identifier is ranked as
second on all datasets, suggesting that very often a
separate subtree can be built for each user. This
implies that generalisation to new users for the
GBDT model would result in performance degra-
dation.

4.2 Relevance for Real Time Prediction
Delivery

In the setup at hand we have a unique identifier
and most of the data available for each user dur-
ing model training. This means that for example
the GBDT can naturally build a subtree represent-
ing each individual user. For the model evaluation
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fr_en es_en en_es
token token token
user user user
format format format
exercise id exercise id exercise id
time token attempt time

Table 4: The top 5 GBDT model features by informa-
tion gain.

setup where there is no need to generalize to new
users this is not an issue. In a production setting
however, the model has to serve new users, which
would then have to be handled separately. Fre-
quent retraining of the model would also be nec-
essary to prevent performance degradation. This
means that the unique user identifier is typically
replaced by engineered features that represent the
user history. An alternative would be to apply state
based models such as Recurrent Neural Networks
which by default encode user history without com-
putational overhead or extra engineering effort.

4.3 Error Analysis
Although the predictive power of our model is
high, there are mistake patterns that our model is
not able to capture. The following sections cover
two ways of characterizing subsets of the data
where the model performs worse than on average.
These observations could potentially be used to
improve the overall model performance.

4.3.1 Performance Decay over Time
Due to the sequential partitioning of the training,
development and test subsets, the model does not
have information about each user’s mistakes for
the most recent events. In Figure 2 we note that
this lack of information results in a degradation
in performance as the predictions get further away
from the horizon of labeled data points. Effects
which drive this phenomenon include:

1. The data is non-stationary, i.e. the distribu-
tion it comes from varies over time

2. The model has seen less relevant information
about each user when the prediction is far
away from the label horizon

3. The model is overconfident far away from the
label horizon since it has never experienced
missing information on a user level during
training

We note that 3 would not be an issue if the
model setup did not include a unique user iden-
tifier, which would be desirable in a production
setting. For models that do include a unique user
identifier as a feature, one way to potentially over-
come this performance degradation would be to
systematically sample subsequences of the train-
ing dataset on a user level, train models separately
for each sample and then combine the models. In
this way each submodel should be less reliant on
the most recent exercise answers at any point in
time and thus generalise better to the evaluation
setup. This is in effect bagging with a sampling
strategy taking consecutive time steps into account
(Breiman, 1996). We did not attempt to apply this
error correction here but leave it for future work.
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Figure 2: Performance decays as instances further
away from the label horizon are considered. Log Loss
is computed considering only instances before a given
fraction of time, where time is normalized by the max-
imum time for each user. Here performance decay for
the en es dataset.

4.3.2 The Influence of Rare Words
We note that the 4% of instances with the least
common words contribute to 10% of the predic-
tion error measured in Log Loss, Figure 3. This
insight gives opportunity to increase prediction
performance. Although not attempted here, future
work includes building another ensemble compo-
nent specialized in predicting mistake patterns of
words not previously encountered.

In conclusion, we have developed an ensem-
ble approach to modeling knowledge gaps applied
here within a second language acquisition setting.
Albeit not evaluated in a realistic production envi-
ronment, our ensemble model achieves high pre-

220



0.3

0.4

0.5

Lo
g 

Lo
ss

0 500 1000 1500 2000
Considered tokens

0

200000

400000

C
ou

nt

Figure 3: Log loss is high when considering only the x
most rare tokens and low when considering all tokens
on the en es dev partition.

dictive performance and allows insights about stu-
dent mistake patterns. Thus our approach provides
a foundation for further research on knowledge ac-
quisition modeling applicable to any educational
domain.
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A Supplemental Material

A.1 The recurrent neural network model
design

Our neural network model desisgn is described be-
low:

1. For each word the network takes as input all
available categorical features, excluding mor-
phological features for each word. The exclu-
sion was motivated by the fact that predictive
ability added by morphological features was
low when evaluated by a decision tree model.

2. Preprocessed numerical features for days and
time are concatenated to an input vector.
(Preprocessing in this case means to normal-
ize to mean zero, variance 1, remove outliers
that are larger than 100, and concatenate the
value itself with the value exponentiated to
0.5 as well as 2.0)

3. The categories token, part of speech, format,
correct and exercise id (as described in 3.2),
are each mapped to an embedding vector of
length 15.

4. The above categorical features are further
combined with the feature correct by using
the cartesian product, and then mapping each
category to an embedding vector.

5. All categorical embeddings and numerical
features are concatenated together forming an
input vector.

6. The input vector is fed through a two layer
bidirectional recurrent neural network, where
the input to both of the layers are summed
with the output, forming a user state vector.

7. Another input vector is formed by concate-
nating categorical embeddings for the fea-
tures token, part of speech, format, depen-
dency label, dependency token, user id as
well as preprocessed numerical features.

8. The user state vector is then projected to two
scalars. This is done by dot multiplying it
with a vector of trainable variables, as well as
dot multiplying it with the second input vec-
tor from step 7. The second part accounts for
the original operation done by (Piech et al.,
2015).

9. We furthermore compute one scalar for each
categorical feature, that is specific for the cat-
egory of the feature, similar to a logistic re-
gression model.

10. Finally, the second input vector together with
all computed scalars are concatenated and fed
to a 3 layer feed forward neural network.

11. The sum of all scalar values and the output
of the feed forward network forms our logit,
which is fed through a sigmoid function out-
putting the probability of a token level mis-
take.

A.2 GBDT Hyperparameters

Model parameter fr en es en en es
num leaves 2400 2700 2400
n estimators 5744 2518 3203
learning rate 0.002 0.005 0.005
feature fraction 0.5 0.45 0.4
early stopping round 300 100 100

Table 5: Optimal GBDT parameters for all three
datasets.
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Abstract

Psychological research on learning and mem-
ory has tended to emphasize small-scale lab-
oratory studies. However, large datasets of
people using educational software provide op-
portunities to explore these issues from a
new perspective. In this paper we describe
our approach to the Duolingo Second Lan-
guage Acquisition Modeling (SLAM) com-
petition which was run in early 2018. We
used a well-known class of algorithms (gradi-
ent boosted decision trees), with features par-
tially informed by theories from the psycho-
logical literature. After detailing our mod-
eling approach and a number of supplemen-
tary simulations, we reflect on the degree to
which psychological theory aided the model,
and the potential for cognitive science and pre-
dictive modeling competitions to gain from
each other.

1 Introduction

Educational software that aims to teach people
new skills, languages, and academic subjects have
become increasingly popular. The wide-spread
deployment of these tools has created interest-
ing opportunities to study the process of learning
in large samples. The Duolingo shared task on
Second Lanugage Acquisition Modeling (SLAM)
was a competitive modeling challenge run in early
2018 (Settles et al., 2018). The challenge, orga-
nized by Duolingo1, a popular second language
learning app, was to use log data from thousands
of users completing millions of exercises to pre-
dict patterns of future translation mistakes in held-
out data. The data was divided into three sets cov-
ering Spanish speakers learning English (en es),
English speakers learning Spanish (es en), and
English speakers learning French (fr en). This
paper reports the approach used by our team,

1http://duolingo.com

which finished in third place for the en es data
set, second place for es en, and third place for
fr en.

Learning and memory has been a core focus of
psychological science for over 100 years. Most
of this work has sought to build explanatory the-
ories of human learning and memory using rela-
tively small-scale laboratory studies. Such studies
have identified a number of important and appar-
ently robust phenomena in memory including the
nature of the retention curve (Rubin and Wenzel,
1996), the advantage for spaced over massed prac-
tice (Ruth, 1928; Cepeda et al., 2006; Mozer et al.,
2009), the testing effect (Roediger and Karpicke,
2006), and retrieval-induced forgetting (Ander-
son et al., 1994). The advent of large datasets
such as the one provided in the Duolingo SLAM
challenge may offer a new perspective and ap-
proach which may prove complementary to lab-
oratory scale science (Griffiths, 2015; Goldstone
and Lupyan, 2016). First, the much larger sam-
ple sizes may help to better identify parameters
of psychological models. Second, datasets cover-
ing more naturalistic learning situations may allow
us to test the predictive accuracy of psychological
theories in a more generalizable fashion (Yarkoni
and Westfall, 2017).

Despite these promising opportunities, it re-
mains unclear how much of current psychologi-
cal theory might be important for tasks such as
the Duolingo SLAM challenge. In the field of ed-
ucation data mining, researchers trying to build
predictive models of student learning have typi-
cally relied on traditional, and interpretable, mod-
els and approaches that are rooted in cognitive
science (e.g., Atkinson, 1972b,a; Corbett and An-
derson, 1995; Pavlik and Anderson, 2008). How-
ever, a recent paper found that state-of-the-art re-
sults could be achieved using deep neural net-
works with little or no cognitive theory built in (so
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called “deep knowledge tracing”, Piech et al.,
2015). Khajah, Lindsey, & Mozer (2016) com-
pared deep knowledge tracing (DKT) to more
standard “Bayesian knowledge tracing” (BKT)
models and showed that it was possible to equate
the performance of the BKT model by additional
features and parameters that represent core aspects
of the psychology of learning and memory such as
forgetting and individual abilities (Khajah et al.,
2016). An ongoing debate remains in this com-
munity whether using flexible models with lots of
data can improve over more heavily structured,
theory-based models (Tang et al., 2016; Xiong
et al., 2016; Zhang et al., 2017).

For our approach to the SLAM competition, we
decided to use a generic and fairly flexible model
structure that we provided with hand-coded, psy-
chologically inspired features. We therefore posi-
tioned our entry to SLAM somewhat in between
the approaches mentioned above. Specifically, we
used gradient boosting decision trees (GBDT, Ke
et al., 2017) for the model structure, which is a
powerful classification algorithm that is known to
perform well across various kinds of data sets.
Like deep learning, GBDT can extract complex
interactions among features, but it has some ad-
vantages including faster training and easier inte-
gration of diverse inputs.

We then created a number of new
psychologically-grounded features for the
SLAM dataset covering aspects such as user per-
severance, learning processes, contextual factors,
and cognate similarity. After finding a model that
provided the best held-out performance on the test
data set, we conducted a number of “lesioning”
studies where we selectively removed features
from the model and re-estimated the parameters in
order to assess the contribution of particular types
of features. We begin by describing our overall
modeling approach, and then discuss some of the
lessons learned from our analysis.

2 Task Approach

We approached the task as a binary classification
problem over instances. Each instance was a sin-
gle word within a sentence of a translation exer-
cise and the classification problem was to predict
whether a user would translate the word correctly
or not. Our approach can be divided into two
components—constructing a set of features that is
informative about whether a user will answer an

instance correctly, and designing a model that can
achieve high performance using this feature set.

2.1 Feature Engineering

We used a variety of features, including features
directly present in the training data, features con-
structed using the training data, and features that
use information external to the training data. Ex-
cept where otherwise specified, categorical vari-
ables were one-hot encoded.

2.1.1 Exercise features
We encoded the exercise number, client, session,
format, and duration (i.e., number of seconds to
complete the exercise), as well as the time since
the user started using Duolingo for the first time.

2.1.2 Word features
Using spaCy2, we lemmatized each word to pro-
duce a root word. Both the root word token and the
original token were used as categorical features.
Due to their high cardinality, these features were
not one-hot encoded but were preserved in single
columns and handled in this form by the model (as
described below).

Along with the tokens themselves we encoded
each instance word’s part of speech, morphologi-
cal features, and dependency edge label. We no-
ticed that some words in the original dataset were
paired with the wrong morphological features,
particularly near where punctuation had been re-
moved from the sentence. To fix this, we re-
processed the data using Google SyntaxNet3.

We also encoded word length and several word
characteristics gleaned from external data sources.
Research in psychology has suggested certain
word features that play a role in how difficult a
word is to process, as measured by how long read-
ers look at the word as well as people’s perfor-
mance in lexical-decision and word-identification
tasks. Two such features that have somewhat inde-
pendent effects are word frequency (i.e., how often
does the word occur in natural language; Rayner,
1998) and age-of-acquisition (i.e., the age at which
children typically exhibit the word in their vo-
cabulary; Brysbaert and Cortese, 2011; Ferrand
et al., 2011). We therefore included a feature that
encoded the frequency of each word in the lan-
guage being acquired, calculated from Speer et al.

2https://spacy.io/
3https://github.com/ljm625/syntaxnet-rest-api
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(2017), and a feature that encoded the mean age-
of-acquisition (of the English word, in English
native speakers), derived from published age-of-
acquisition norms for 30,000 words (Kuperman
et al., 2012), which covered many of the words
present in the dataset. Additionally, words shar-
ing a common linguistic derivation (also called
“cognates”; e.g., “secretary” in English and “sec-
retario” in Spanish), are easier to learn than words
with dissimilar translations (De Groot and Keijzer,
2000). As an approximate measure of linguis-
tic similarity, we used the Levenshtein edit dis-
tance between the word tokens and their transla-
tions scaled by the length of the longer word. We
found translations using Google Translate4 and
calculated the Levenshtein distance to reflect the
letter-by-letter similarity of the word and its trans-
lation (Hyyrö, 2001).

2.1.3 User features
Just as we did for word tokens, we encoded the
user ID as a single-column, high-cardinality fea-
ture. We also calculated several other user-level
features that related to the “learning type” of a
user. In particular, we encoded features that might
be related to psychological constructs such as the
motivation and diligence of a user. These features
could help predict how users interact with old and
novel words they encounter.

As a proxy for motivation, we speculated that
more motivated users would complete more exer-
cises every time they decide to use the app. To es-
timate this, we grouped each user’s exercises into
“bursts.” Bursts were separated by at least an hour.
We used three concrete features about these bursts,
namely the mean and median number of exercises
within bursts as well as the total number of bursts
of a given user (to give the model a feature re-
lated to the uncertainty in the central tendency es-
timates).

As a proxy for diligence, we speculated that a
very diligent user might be using the app regu-
larly at the same time of day, perhaps following
a study schedule, compared to a less diligent user
whose schedule might vary more. The data set
did not provide a variable with the time of day,
which would have been an interesting feature on
its own. Instead, we were able to extract for each
exercise the time of day relative to the first time a
user had used the app, ranging from 0 to 1 (with

4https://cloud.google.com/translate/

0 indicating the same time, 0.25 indicating a rela-
tive shift by 6 hours, etc.). We then discretized this
variable into 20-minute bins and computed the en-
tropy of the empirical frequency distribution over
these bins. A lower entropy score indicated less
variability in the times of day a user started their
exercises.

The entropy score might also give an indication
for context effects on users’ memory. A user prac-
ticing exercises more regularly is more likely to be
in the same physical location when using the app,
which might result in better memory of previously
studied words (Godden and Baddeley, 1975).

2.1.4 Positional features
To account for the effects of surrounding words
on the difficulty of an instance, we created several
features related to the instance word’s context in
the exercise. These included the token of the pre-
vious word, the next word, and the instance word’s
root in the dependency tree, all stored in single
columns as with the instance token itself. We also
included the part of speech of each of these con-
text words as additional features. When there was
no previous word, next word, or dependency-tree
root word, a special None token or None part of
speech was used.

2.1.5 Temporal features
A user’s probability of succeeding on an instance
is likely related to their prior experience with that
instance. To capture this, we calculated several
features related to past experience.

First, we encoded the number of times the cur-
rent exercise’s exact sentence had been seen be-
fore by the user. This is informed by psycho-
logical research showing memory and perceptual
processing improvements for repeated contexts or
“chunks” (e.g., Chun and Phelps, 1999).

We also encoded a set of features recording
past experience with the particular instance word.
These features were encoded separately for the in-
stance token and for the instance root word created
by lemmatization. For each token (and root) we
tracked user performance through four weighted
error averages. At the user’s first encounter of the
token, each error term E starts at zero. After an
encounter with an instance of the token with label
L (0 for success, 1 for error), it is updated accord-
ing to the equation:

E ← E + α(L− E)
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where α determines the speed of error up-
dating. The four weighted error terms use
α = {.3, .1, .03, .01}, allowing both short-run and
long-run changes in a user’s error rate with a to-
ken to be tracked. Note that in cases where a to-
ken appears multiple times in an exercise, a sin-
gle update of the error features is conducted us-
ing the mean of the token labels. Along with the
error tracking features, for each token we calcu-
lated the number of labeled, unlabeled, and total
encounters; time since last labeled encounter and
last encounter; and whether the instance is the first
encounter with the token.

In the training data, all instances are labeled as
correct or incorrect, so the label for the previous
encounter is always available. In the test data, la-
bels are unavailable, so predictions must be made
using a mix of labeled and unlabeled past encoun-
ters. In particular, for a user’s test set with n ex-
ercises, each exercise will have between zero and
n− 1 preceding unlabeled exercises.

To generate training-set features that are com-
parable to test-set features, we selectively ignored
some labels when encoding temporal features on
the training set. Specifically, for each user we first
calculated the number of exercises n in their true
test set5. Then, when encoding the features for
each training instance, we selected a random inte-
ger r in the range [0, n−1], and ignored the labels
in the prior r exercises. That is, we encoded fea-
tures for the instance as though other instances in
those prior exercises were unlabeled, and ignored
updates to the error averages from those exercises.
The result of this process is that each instance in
the training set was encoded as though it were be-
tween one and n exercises into the test set.

2.2 Modeling

After generating all of the features for the train-
ing data, we trained GBDT models to minimize
log loss. GBDT works by iteratively building re-
gression trees, each of which seeks to minimize
the residual loss from prior trees. This allows it
to capture non-linear effects and high-order inter-
actions among features. We used the LightGBM6

implementation of GBDT (Ke et al., 2017).
For continuous-valued features, GBDT can split

a leaf at any point, creating different predicted val-
5If the size of the test set were not available, it could be

estimated based on the fact that it is approximately 5% of
each participant’s data.

6http://lightgbm.readthedocs.io/

ues above and below that threshold. For categories
that are one-hot encoded, it can split a leaf on any
of the category’s features. This means that for
a category with thousands of values, potentially
thousands of tree splits would be needed to capture
its relation to the target. Fortunately, LightGBM
implements an algorithm for partitioning the val-
ues of a categorical feature into two groups based
on their relevence to the current loss, and create a
single split to divide those groups (Fisher, 1958).
Thus, as alluded to above, high-cardinality fea-
tures like token and user ID were encoded as sin-
gle columns and handled as categories by Light-
GBM.

We trained a model for each of the three lan-
guage tracks of en es, es en, and fr en, and
also trained a model on the combined data from all
three tracks, adding an additional “language” fea-
ture. Following model training, we averaged the
predictions of each single-language model with
that of the all-language model to form our fi-
nal predictions. Informal experimentation showed
that model averaging provided a modest perfor-
mance boost, and that weighted averages did not
clearly outperform a simple average.

To tune model hyper-parameters and evaluate
the usefulness of features, we first trained the mod-
els on the train data set and evaluated them on
the dev data set. Details of the datasets and the
actual files are provided on the Harvard Dataverse
(Settles, 2018). Once the model structure was fi-
nalized, we trained on the combined train and
dev data and produced predictions for the test
data. The LightGBM hyperparameters used for
each model are listed in Table 1.

2.3 Performance

The AUROC of our final predictions was .8585
on en es, .8350 on es en, and .8540 on fr en.
For reference this placed us within .01 of the win-
ning entry for each problem (.8613 on en es,
.8383 on es en, and .8570 on fr en). Also
note that the Duolingo-provided baseline model
(L2-regularized regression trained with stochastic
gradient descent weighted by frequency) obtains
.7737 on en es, .7456 on es en, and .7707 on
fr en. We did not attempt to optimize F1 score,
the competition’s secondary evaluation metric.
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Parameter fr en en es es en all
num leaves 256 512 512 1024
learning rate .05 .05 .05 .05
min data in leaf 100 100 100 100
num boost rounds 750 650 600 750
cat smooth 200 200 200 200
feature fraction .7 .7 .7 .7
max cat threshold 32 32 32 64

Table 1: Parameters of final LightGBM models. See LightGBM documentation for more information; all other
parameters were left at their default values.
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Figure 1: Performance on dev of models trained on all train data, with different groups of lesioned features.
See main text for description of lesion groups

3 Feature Removal Experiments

To better understand which features or groups of
features were most important to our model’s pre-
dictions, we conducted a set of experiments in
which we lesioned (i.e., removed) a group of fea-
tures and re-trained the model on the train set,
evaluating performance on the dev set. For sim-
plicity, we ran each of the lesioned models on all
language data and report the average performance.
We did not run individual-language models as we
did for our primary model. The results of the le-
sion experiments are shown in Figure 1. The mod-
els are as follows.

none: All features are included.

user all: All user-level features, including the
user ID and other calculated features like en-
tropy and measures of exercise bursts, are re-
moved.

user id & user other: Only user ID or only the
calculated user features, respectively, are re-
moved.

word all: Token and token root IDs; previous,
next, and dependency-tree root word IDs; and

morphological, part of speech, and depen-
dency tree features are removed. This does
not include external features listed below.

word id & word other: Only word IDs or only
other word features, respectively, are re-
moved. word other does not include exter-
nal features listed below.

neighbors: Both word IDs and other word fea-
tures are removed, but only for the previous,
next, and dependency-tree root words. Infor-
mation about the present word is maintained.

external: External information about the word,
including corpus frequency, Levenshtein dis-
tance from translation, and age of acquisition,
are removed.

temporal: Temporal information, including num-
ber and timing of past encounters with the
word and error tracking information, is re-
moved.

Interestingly, we found that for both user-level
and word-level features, the bulk of the model’s
predictive power could be achieved using ID’s
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alone, represented as high-cardinality categorical
features. Removing other word features, such as
morphological features and part of speech, created
only a small degradation of performance. In the
case of users, removing features such as entropy
and average exercise burst length led to a tiny in-
crease of performance. In the case of both users
and words, though, we find that in the absence of
ID features the other features are helpful and lead
to better performance than removing all features.
We also found that removing all information about
neighboring words and the dependency-parse root
word degraded performance. This confirms that
word context matters, and suggests that users com-
monly make errors in word order, subject–verb
matching and other grammatical rules.

Our external word features—Levenshtein dis-
tance to translation, frequency, and age of
acquisition—provided a slight boost to model per-
formance, showing the benefit of considering what
makes a word hard to learn from a psychological
and linguistic perspective. Adding temporal fea-
tures about past encounters and errors helped the
models, but not as much as we expected. While
not included in the final model, we had also tried
augmenting the temporal feature set with more
features related to massing and spacing of encoun-
ters with a word, but found it did not improve per-
formance. This is perhaps not surprising given
how small the benefit of the existing temporal fea-
tures are in our model.

Though not plotted above, we also ran a model
lesioning exercise-level features including client,
session type, format, and exercise duration. This
model achieved an AUROC of .787, far lower than
any other lesion. This points to the fact that the
manner in which memory is assessed often affects
observed performance (e.g., the large literature in
psychology on the difference between recall and
recognition memory, Yonelinas, 2002).

4 Discussion

When approaching the Duolingo SLAM task, we
hoped to leverage psychological insights in build-
ing our model. We found that in some cases, such
as when using the word’s age-of-acquisition, this
was helpful. In general, though, our model gained
its power not from hand-crafted features but from
applying a powerful inference technique (gradi-
ent boosted decision trees) to raw input about user
IDs, word IDs, and exercise features.

There are multiple reasons for the limited appli-
cability of psychology to this competition. First,
computational psychological models are typically
designed based on small laboratory data sets,
which might limit their suitability for generating
highly accurate predictions in big data settings.
Because they are designed not for prediction but
for explanation, they tend to use a small number of
input variables and allow those variables to inter-
act in limited ways. In contrast, gradient boosted
decision trees, as well as other cutting-edge tech-
niques like deep learning can extract high-level in-
teractions among hundreds of features. While they
are highly opaque, require a lot of data, and are
not amenable to explanation, these models excel
at prediction.

Second, it is possible that our ability to use the-
ories of learning, including ideas about massed
and spaced practice, was disrupted by the fact that
the data may have been adaptively created using
these very principles (Settles and Meeder, 2016).
If Duolingo adaptively sequenced the spacing of
trials based on past errors, then the relationship
between future errors and past spacing may have
substantially differed from that found in the psy-
chological literature (Cepeda et al., 2006).

Finally, if the task had required broader gener-
alization, psychologically inspired features might
have performed more competitively. In the SLAM
task, there is a large amount of labeled training
data for every user and for most words. This al-
lows simple ID-based features to work because
the past history of a user will likely influence
their future performance. However, with ID-based
features there is no way to generalize to newly-
encountered users or words, which have an ID
that was not in the training set. The learned ID-
based knowledge is useless here because there is
no way to generalize from one unique ID to an-
other. Theory-driven features, in contrast, can of-
ten generalize to new settings because they capture
aspects that are shared across (subsets of) users,
words, or situations of the learning task. For ex-
ample, if we were asked to generalize to a com-
pletely new language such as German, many parts
of our model would falter but word frequency, age
of acquisition, and Levenshtein distance to first-
language translation would still likely prove to be
features which have high predictive utility.

In sum, we believe that the Duolingo SLAM
dataset and challenge provide interesting oppor-
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tunities for cognitive science and psychology.
Large-scale, predictive challenges like this one
might be used to identify features or variables that
are important for learning. Then, complementary
laboratory-scale studies can be conducted which
establish the causal status of such features through
controlled experimentation. Conversely, insights
from controlled experiments can be used to gener-
ate new features that aid predictive models on nat-
uralistic datasets (Griffiths, 2015; Goldstone and
Lupyan, 2016). This type of two-way interaction
could lead to long-run improvements in both sci-
entific explanation and real-world prediction.
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Abstract 

In this paper, we explore a variety of lin-
guistic and cognitive features to better un-
derstand second language acquisition in 
early users of the language learning app 
Duolingo. With these features, we trained 
a random forest classifier to predict errors 
in early learners of French, Spanish, and 
English. Of particular note was our finding 
that mean and variance in error for each 
user and token can be a memory efficient 
replacement for their respective dummy-
encoded categorical variables. At test, the-
se models improved over the baseline 
model with AUROC values of 0.803 for 
English, 0.823 for French, and 0.829 for 
Spanish.  

1 Introduction 

Learning a new language is often a challenging 
task for adults. However, there are many linguis-
tic and cognitive factors that can facilitate (or im-
pair) acquisition of a non-native language, rang-
ing from properties of the languages a learner al-
ready knows, to the methods and nature of study. 
Much work has sought to manipulate these fac-
tors in order to both further our understanding of 
the cognitive systems in play and facilitate learn-
ing. 

Here, we present a model that explores these 
factors to predict outcomes for three populations 
of language learners that use Duolingo, a language 
learning app that gamifies lessons for a wide vari-
ety of to-be-learned languages. We start by de-
scribing the various features we developed from 
the data before describing the random forest mod-
el used and the subsequent outcomes. 

2 Related Work 

Little work has been done building predictive 
models of adult language acquisition, but many 

studies have explored the linguistic factors that 
impact vocabulary learning in a non-native lan-
guage. Semantic properties of nouns, for example, 
have been found to impact word learning. Cog-
nates, or words that overlap in form and meaning 
in both languages (e.g. lemon in English and 
limón in Spanish), have been shown to be easier to 
learn (de Groot & Keijzer, 2000). The same study 
showed that words that are rated as more concrete 
(hat as opposed to liberty) are easier to learn. 
While perhaps more surprising than the cognate 
result, this effect is often explained by the fact that 
more concrete words create more perceptual con-
nections to their conceptual referents (it is easier 
to imagine a physical hat than the abstract concept 
of liberty), and it is therefore easier to connect 
new words to concepts via those connections. 

There are likewise many factors than can hin-
der word learning. For example, interlingual hom-
ographs, or words that share surface form but 
have different meanings (pan as something to fry 
on in English and bread in Spanish) are harder to 
process and may therefore also be harder to learn 
(Dijkstra, Timmermans & Schriefers, 2000). 

Beyond the linguistic particulars of individual 
words, the temporal dynamics of learning can 
powerfully moderate memory. One of the most 
well established results in cognitive psychology is 
that two repetitions of a to-be-learned item are 
best separated by some temporal gap, if the goal is 
long-term retention (Ebbinghaus 1885/1964, 
Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006; 
Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008; 
Donovan & Radosevich, 1999; T. D. Lee & 
Genovese, 1988). That is, given a fixed amount of 
available time to learn something, a learner is bet-
ter off distributing that time over multiple learning 
sessions than cramming it all into a single session. 
Further, the more time that is allowed to pass be-
fore a learner encounters a previously learned item 
again, the longer into the future the learner can 
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expect to retain that item (or equivalently, the 
greater the probability of successful retrieval of 
that item at a particular future time; but see 
Cepeda et al. 2008).  

Over a century of research has shown this spac-
ing effect to be robust across the human lifespan 
(e.g. Vander Linde, Morrongiello, & Rovee-
Collier, 1985; Ambridge, Theakston, Lieven, & 
Tomasello, 2006; Carpenter, 2009; Cepeda et al., 
2008; Balota, Duchek, & Paullin, 1989), over 
many varieties of learning tasks (Cepeda et al., 
2006; Donovan & Radosevich, 1999; T. D. Lee & 
Genovese, 1988), and perhaps most strikingly, for 
nearly every inter-repetition temporal gap that has 
been investigated, from seconds (Ebbinghaus, 
1964), to a range of days (e.g. Cepeda et al., 
2008), to years (Bahrick & Phelphs, 1987).  

Moreover, the advantage of spacing seems to 
be enhanced when combined with active retrieval 
from long-term memory (as compared to passive 
restudy), making it particularly well-suited to a 
microtesting-based learning platform like 
Duolingo (Carpenter & DeLosh, 2006; Cull, 
2000; Karpicke & Roediger, 2007; Landauer & 
Bjork, 1978; Rea & Modigliani, 1985). Crucially 
for our present purpose, a number of studies have 
examined the efficacy of spaced repetition specif-
ically in second language learning, where it seems 
to be effective at least for vocabulary, and perhaps 
for grammar as well, although further research is 
needed (for a review, see Ullman & Lovelett, 
2018). 

3 Data  

The data were collected in 2017 from Duolingo, 
as part of the NAACL HLT 2018 Shared Task on 
Second Language Acquisition Modeling (SLAM, 
Settles, Brust, Gustafson, Hagiwara & Madnani, 
2018). The data consisted of exercise and phrase 
level information for three populations of lan-
guage learners in their first 30 days of using the 
app: English-speaking learners of Spanish and 
French as well as Spanish-speaking learners of 
English. 

The data were split into a training set, which 
consisted of each user’s first 80% of sessions, a 
development set (for testing model generalization 
before the test phase) that contained the next 10% 
of each user’s data, and a test set that contained 
the final 10% of exercises for each user. The train-
ing data set consisted of 1,882,701 exercises in to-
tal (38.9% from learners of Spanish, 43.8% from 

learners of English and 17.3% from learners of 
French), while the development data contained 
255,383 exercises (45.3% from learners of Span-
ish, 37.6% learners of from English and 17.1% 
from learners of French), and the test set con-
tained 249,484 exercises (45.9% from learners of 
Spanish, 37.4% from learners of English and 
16.7% from learners of French). 

4 Features  

Our approach to modeling errors in second lan-
guage acquisition was driven primarily by two 
distinct bodies of research: linguistic effects in se-
cond language acquisition, and drivers of robust 
memory in general. As such we discuss each set of 
features separately. 

4.1 Linguistic features 
In this section, we describe the semantic and 
morpho-syntactic features added to the model. 
Values for tokens that were not in databases listed 
below were set to the mean of the feature.  

 
Word length. Orthographic and phonological 
length (orthoLength and phonLength respectively) 
are predictive of word difficulty, and longer writ-
ten or spoken words generally leave more room 
for potential errors (Baddeley, Thomon & Bu-
chanan, 1975). Phonological length was taken 
from the CLEARPOND database (Marian, 
Bartolotti, Chabal & Shook, 2012). 
Word neighbors. A greater number of ortho-
graphic and phonological neighbors (orthoNei and 
phonNei) for a given word in both the to-be-
learned and known languages might cause inter-
ference leading to errors. These data were also 
taken from the CLEARPOND database. 
Word Frequency. The log transformed frequency 
(logWordFreq) of the English, Spanish and French 
words to be learned were also included as predic-
tors, as well as the average log frequency of the 
phonological (logOrthoNeiFreq) and orthographic 
neighbors (logPhonNeiFreq) in the to-be-learned 
as well as known language. 
Edit Distance. Because cognate status impacts 
language learning, the Levenshtein distance be-
tween a given token and its translation to user lan-
guage (English for Spanish and French learners, 
and Spanish for English learners) was calculated 
by feeding single word translations through the 
Google Translate API and calculating edit distanc-
es between the translations. Cognates like lemon 
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and limón should have a short edit distance, while 
words like boy and niño will have relatively long-
er distances. 
Interlingual homographs. Additionally, the 
interlingual homograph status for each token 
(whether or not the token shares its surface form 
with a translation of a different token) were added 
for each language by using the Google Translate 
API. 
Morphological Complexity. As a proxy for how 
morphologically complex any given word is, the 
number of morphological features present in the 
given morphology columns were summed and 
treated as a proxy for morphological complexity 
(morphoComplexity). 
Concreteness. Mean and standard deviations for 
concreteness ratings were taken from Brysbaert, 
Warriner and Kuperman (2014) and added to the 
model. 

4.2   Memory features 
Repetition & Experience. Each instance (i.e., 
each token in each exercise for each user) was 
labeled with (1) the number of times the current 
user had encountered that token, up to and in-
cluding the current instance (nthOccurrence) and 
(2) the number of instances the user had seen in 
total, up to and including the current instance 
(userTrial).  
Spaced Repetition. The amount of time that 
elapses between successive repetitions of a given 
item strongly moderate memory for that item 
(see “Related Work”, above). As such, we ex-
tracted a number of spacing-related features. To 
measure the temporal lag, and to capture the 
power law relationship between time and forget-
ting, we calculated (separately for each user) the 
log(days) that had elapsed between: (1) each to-
ken and its previous occurrence (tokenLag1), (2) 
each token’s previous occurrence and its next 
most recent occurrence (tokenLag2), (3) each to-
ken’s stem (e.g. help, for helping) and its previ-
ous occurrence (stemLag1), (4) each token’s 
stem’s previous occurrence and its next most re-
cent occurrence (stemLag2), (5) each token’s 
combination of several morphological features 
(number, person, tense, verbform) and the previ-
ous occurrence of that particular combination 
(morphoLag1; to capture any possible spacing 
effect for verb conjugation skills) and (6) each 
token’s combination of those same morphologi-
cal features and their next most recent occur-
rence. Finally, (7) since some evidence suggests 
that the temporal gap between an item’s first and 

second occurrence is particularly important for 
retention (Karpicke & Roediger, 2007), we also 
labeled each instance with the log(days) that 
elapsed between the first and second occurrence 
of the token’s stem (lagTr1Tr2).  

4.3 Categorical Features 
Included in our classifier were a number of cate-
gorical features, each encoded as binary indicator 
variables distributed over a number of columns 
equal to the number of levels in the category.  
Importantly, our approach to modeling was con-
strained by limited computational power and 
memory, so we chose to include only categorical 
features with a relatively small number of levels, 
to reduce the dimensionality of the data.  Those 
features were: part of speech (pos; 16 levels), 
countries (94 levels), session (3 levels), format 
(3 levels), and all of the morphological features 
available for each language (46 levels for learn-
ers of Spanish, 17 levels for learners of English, 
and 10 levels for learners of French). Client was 
also included, though we treated iOS and An-
droid as equivalent, preserving only the distinc-
tion between web and mobile access to the 
Duolingo application (2 levels).  

Notably, the above listing omits two of the 
categorical features we considered of greatest po-
tential value in predicting early learner errors: 
user (223 levels for learners of Spanish, 179 lev-
els for learners of English, and 216 levels for 
learners of French; 618 total) and token (2116 
levels for learners of Spanish, 1615 in learners of 
English, 1682 in learners of French). Some users 
inevitably learn faster and make fewer errors 
than others, and some tokens are simply harder 
to learn on average. Instead of encoding these 
with dummy variables, we elected to replace the 
user feature with two continuous values, deter-
mined jointly by the user and the combination of 
the levels of the features format, session, and cli-
ent for each instance: (1) the mean and (2) the 
variance of the error rate for that user under that 
combination of feature levels (userMeanError, 
userVarError, respectively), for a total of three 
values for each user. Similarly, we replaced the 
token feature with (1) the mean and (2) the vari-
ance of the error rate for each combination of the 
features token, stem, format, and pos, creating 
four values per token. This approach allowed us 
to substantially reduce demands on computation-
al resources while simultaneously capturing 
much of the predictive power that fully encoding 
each user and token would have provided. The 
particular features used to create means within 
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user and token were chosen to maximize poten-
tial differences between accuracy in different 
modalities. Indeed, to foreshadow our results, 
these features each ranked among the most im-
portant for our random forest classifier. 

4.4 Interactions 
Several interactions between features were also 
coded into the model. Due to time constraints, on-
ly the following interactions were added: 
stemLag1 x stemLag2 and stemLag1 x stemLag2 
x lagTr1Tr2, to capture spacing effects, lagTr1Tr2 
x morphoComplexity and lagTr1Tr2 x 
morphoLag1 to capture lag differences between 
morphological features, format x prevFormat to 
capture possible task switching effects, and 
orthoNei x format and phonNei x format and for-
mat x client to capture differences due to listening 
vs. typing, and finally morphoComplexity x pos as 
any complexity effect may be stronger nouns and 
verbs than function words. 

5 Model 

In order to focus on feature engineering, ran-
dom forest techniques were chosen over gradient 
boosting, logistic regression or other classification 
techniques. The random forest classifier scales 
well to large datasets, is not particularly prone to 
overfitting problems, and requires less parameter 
tuning.  

Random forest classifiers combine the outputs 
of multiple decision tree classifiers with random 
features taken in each decision in order to gener-
ate one final prediction (Breiman, 2001). Each de-
cision-tree classifier split the data along some 
number of parameters (equal to the square root of 
the total number of features in this model) that fits 
a classifier. Each split of the data was again split 
along the other included parameters until the 
leaves of the tree contained only data points with 
the same label (i.e., only error or only no-error in-
stances). For each learner population, we generat-
ed 1000 decision trees to generate predictions. 
Out-of-bag errors were used to estimate errors in 
training.  

6 Results and Discussion  

Figure 1 shows the top 20 importance scores for 
each language (out of an across-language total of 
174 features or interactions). The importance  

 

Figure 1: Top 20 importance features grouped by to-
be-learned language. Error bars represent standard 
deviation of the importance of each feature across de-
cision trees. For categorical features, the importances 
of each level, and their variances (to generate stand 
deviations), were summed to calculate the overall im-
portance and variability in importance, respectively. 

score of a random forest model conveys the pre-
dictive power of a given feature relative to the 
other predictors. Color depicts which features 
were engineered and which were provided in the 
raw data. Full importance values, for each lan-
guage are listed in Appendix A, including the di-
rectionality of the relationship between each con-
tinuous feature and the error rate. For example, 
because userMeanError is higher on incorrect tri-
als than correct trials, the directionality is consid-
ered positive.  

The mean and variance in error rate for each 
user (userMeanError and userVarError) were the 
most important features, indicating that each us-
er’s history was strongly predictive of their per-
formance at test, and that the variability within 
each user was nearly as predictive as the differ-
ence between users. 

Countries, the third most important feature, 
may have ranked third in all three languages be-
cause the importance measure was calculated by 
summing over each feature level, possibly over-
stating the value of that feature in total. Never-
theless countries may represent user background 
information not given in the dataset including 
their previous language experience (as a Portu-
guese speaking user from Brazil may be learning 
Spanish via English, but would likely make dif-
ferent errors than an English monolingual from 
Canada).  

The next most important generated feature was 
the average time spent on each token within an 
exercise (timePerToken). This likely captures time 
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spent on each exercise better because it accounts 
for the length of the exercise at the token level. 

Next is userTrial, which was calculatedly simp-
ly as which learning instance a given user is on. 
This likely captures the experience a user accumu-
lates with the language and perhaps the app more 
generally. 

Next of note is the mean and variance in error 
rate for each token, showing that each token has 
some properties that capture difficulty. This is es-
pecially true for learners of French, as the im-
portance of tokenMeanError is ranked fourth in 
French as compared to eighth in both English and 
Spanish.  

The interaction between format and previous 
format shows that there is some cost associated 
with task switching, perhaps to a slightly higher 
degree in English and Spanish, as this feature did 
not quite rank among the top ten in French, but 
was surpassed in that language by the lag between 
the first two occurrences of a token’s stem.  

Finally, the various lag features that reflect re-
cent experience and many of their interactions 
comprise of the next most important features, in-
dicating that spacing effects are generally predic-
tive of errors of the overall model, the highest of 
these being the lag between the first two instances 
of a given token. This is an important and poten-
tially useful feature. A measure of this lag is easy 
to calculate and necessarily occurs early in learn-
ing, making it useful in predictions that are 
memory intensive and catered to particular users 
or tokens. 

Overall these features, and indeed many of the 
engineered features, improved the models over 
baseline, as seen in Table 1. This is particularly 
noteworthy considering user and token were re-
moved in our model (and replaced with user- and 
token-level error rates), but were included in the 
SLAM baseline provided with the data. Indeed, 
the mean and variance across users and tokens ac-
count for ~25% of the importance across all lan-
guages. Though the importance of these features 
aggregate error rates in the training data, the met-
rics did not differ considerably when evaluated 
with the development data (AUROC = .824, .818, 
and .802 for English, French and Spanish respec-
tively). This shows that aggregating is a feasible 
approach in cases where computational con-
straints prohibit the exact representation of im-
portant high dimensional categorical features. No-
tably, the within-user variability was an important  

 AUROC F1 Log-loss 
SLAM English .7730 .1899 .3580 

English .8286 .4242 .3191 
SLAM French .7707 .2814 .3952 

French .8228 .4416 .3561 
SLAM Spanish .7456 .1753 .3862 

Spanish .8027 .4353 .3571 
 
Table 1: Final model outcomes in all three metrics 
as compared to baseline. 
 
feature in our model, but would not automatically 
be captured by dummy-coding user and token IDs 
across hundreds or thousands of instances. Thus, 
substantial computational savings can be achieved 
using low dimensional summary statistics where 
significant CPU time and memory resources 
would be required.   

7 Future work 

Due to the time-limited nature of this shared mod-
eling task, considerable work remains to be done 
to both optimize the performance of this model 
and further understand the cognitive processes in-
volved in early language learning. 

To improve the model, we would first refine the 
relative importance of the current features, by per-
forming ablation tests and model comparisons; 
some of the current features play little to no role 
in improving model performance. Furthermore, 
many interactions in the current feature space,  

 
such as userMeanAcc x tokenMeanAcc, may be 
important predictors given each individual fea-
ture’s importance, and that each user’s previous 
language experience will impact the difficulty as-
sociated with any given token. The spacing effect 
might likewise interact with individual user and 
token related information. 

There is additionally much work to be done in 
quantifying the benefit of using user- and token-
level error rates as opposed to dummy-encoded 
variables. While these features are a memory and 
time sensitive solution, we have not yet explored 
how much model performance is affected by this 
change relative to a dummy-encoded solution, 
how much time is saved, and how much data is 
required to achieve this performance.  

Our approach focused on linguistic and cogni-
tive features that are known in their respective lit-
eratures to impact learning, and so the bulk of our 
efforts were devoted to feature engineering. Fu-
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ture work will therefore dedicate more resources 
to model development. While in the present work 
only a random forest ensemble classifier was used 
to generate predictions, logistic regression, deep 
learning, and/or other modeling approaches may 
better suit this particular learning task, and should 
be thoroughly explored.  

Finally, there are many more features than can 
be developed, including word embeddings of to-
kens and syntactic structure differences. Our work 
has scratched the surface of linguistic and cogni-
tive theory that might be applied to modeling lan-
guage learning, but the vast scientific literatures in 
those and other fields no doubt offer rich possibili-
ties for new features. The relative contribution of 
all of these features and their interactions to ma-
chine learning models of error production is likely 
to greatly expand our knowledge of early second 
language learning.   
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Appendix A. 

 
English French Spanish 

Feature Import. SD Rank Direc. Import. SD Rank Direc. Import. SD Rank Direc. 

Case 0.001 0.001 52           0.001 0.000 57   

client 0.004 0.001 44   0.005 0.001 41   0.005 0.001 38   

Concreteness (M) 0.007 0.001 31 + 0.011 0.004 26 - 0.010 0.001 25 + 

Concreteness (SD) 0.007 0.001 34 - 0.009 0.003 31 + 0.010 0.001 27 + 

countries 0.063 0.001 3   0.071 0.001 3   0.076 0.001 3   

days 0.058 0.001 5 + 0.050 0.001 6 + 0.058 0.001 4 + 

Definite 0.000 0.000 55   0.001 0.000 54   0.001 0.000 55   

Degree 0.001 0.000 53           0.000 0.000 61   

dependencyEdgeHead 0.011 0.001 22 - 0.011 0.001 25 + 0.012 0.001 21 - 

editDistance 0.007 0.001 32 - 0.010 0.003 29 - 0.010 0.001 26 + 

EngPhos 0.005 0.002 43 - 0.006 0.002 38 - 0.002 0.000 50 - 

Foreign                 0.000 0.000 63   

format 0.006 0.006 36   0.008 0.009 32   0.008 0.008 30   

format:client 0.010 0.006 24   0.012 0.009 22   0.012 0.007 22   

format:prevFormat 0.027 0.002 10   0.025 0.004 11   0.028 0.003 10   

Gender 0.000 0.000 54   0.004 0.001 47   0.004 0.000 42   

Homograph 0.002 0.001 49 - 0.002 0.001 51 - 0.002 0.001 49 - 

lagTr1Tr2 0.026 0.001 11 + 0.026 0.001 10 + 0.027 0.001 11 + 

lagTr1Tr2:morphoComplex 0.022 0.001 16 + 0.023 0.001 13 + 0.022 0.001 16 + 

logEngPhoNeiFreq 0.005 0.001 42 - 0.006 0.002 36 - 0.002 0.000 52 + 

logOrthoNeiFreq 0.007 0.001 35 - 0.007 0.002 33 - 0.005 0.001 39 - 

logPhonNeiFreq 0.006 0.001 37 - 0.006 0.001 37 - 0.005 0.001 40 - 

logWordFreq 0.008 0.002 28 - 0.009 0.003 30 - 0.005 0.001 35 - 

Mood 0.002 0.000 50   0.001 0.000 56   0.001 0.000 56   

morphoComplex 0.002 0.000 48 - 0.003 0.002 50 - 0.003 0.000 46 - 

morphoComplex:pos 0.006 0.001 38   0.007 0.002 35   0.006 0.001 33   

morphoLag1 0.008 0.000 30 + 0.005 0.000 42 + 0.005 0.000 36 + 

morphoLag1:morphoComplex 0.008 0.000 27 + 0.005 0.000 43 + 0.005 0.000 37 + 

morphoLag2 0.010 0.000 23 + 0.006 0.000 39 + 0.005 0.000 34 + 

nthOccurance 0.024 0.004 12 - 0.024 0.002 12 - 0.023 0.003 15 - 

Number 0.002 0.000 47   0.005 0.002 45   0.004 0.001 41   

NumType 0.000 0.000 56           0.000 0.000 59   

orthoLength 0.004 0.002 45 + 0.005 0.001 46 + 0.003 0.001 47 + 

OrthoNei 0.005 0.001 39 - 0.006 0.002 40 - 0.004 0.001 43 - 

OrthoNei:format 0.010 0.004 26   0.014 0.008 21   0.008 0.003 31   

Person 0.001 0.001 51 + 0.004 0.001 48   0.003 0.000 48   

phoLength 0.004 0.001 46 + 0.004 0.001 49 + 0.003 0.001 45 + 

PhonNei 0.005 0.001 41 - 0.005 0.002 44 - 0.003 0.000 44 - 

PhonNei:format 0.008 0.004 29   0.011 0.007 24   0.007 0.003 32   
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Polite                 0.000 0.000 64   

pos 0.007 0.001 33   0.012 0.004 23   0.009 0.000 29   

Poss                 0.000 0.000 58   

PrepCase                 0.000 0.000 60   

PronType         0.002 0.001 52   0.002 0.000 51   

Reflex                 0.000 0.000 62   

sentLength 0.013 0.001 20 + 0.014 0.001 20 + 0.013 0.001 20 + 

session 0.010 0.001 25   0.011 0.001 28   0.011 0.001 23   

stemLag1 0.023 0.001 13 + 0.023 0.001 14 + 0.025 0.001 12 + 

stemLag1:stemLag2 0.022 0.001 14 - 0.022 0.001 16 - 0.023 0.001 13 - 

stemLag1:stemLag2:lagTr1Tr2 0.018 0.002 17 + 0.020 0.001 17 + 0.017 0.001 18 - 

stemLag2 0.017 0.001 18 + 0.018 0.001 18 + 0.018 0.001 17 + 

Tense         0.001 0.000 55   0.001 0.000 54   

time 0.054 0.003 7 + 0.043 0.002 8 + 0.050 0.002 7 + 

timePerToken 0.062 0.005 4 + 0.048 0.002 7 + 0.056 0.003 6 + 

tokenIndex 0.012 0.001 21 + 0.011 0.001 27 + 0.011 0.001 24 + 

tokenLag1 0.022 0.001 15 + 0.023 0.002 15 + 0.023 0.002 14 + 

tokenLag2 0.016 0.001 19 + 0.017 0.001 19 + 0.017 0.001 19 + 

tokenMeanError 0.048 0.023 8 + 0.070 0.033 4 + 0.047 0.022 8 + 

tokenVarError 0.040 0.022 9 + 0.042 0.022 9 + 0.038 0.019 9 + 

userMeanError 0.102 0.016 1 + 0.083 0.016 1 + 0.098 0.016 1 + 

userTrial 0.058 0.001 6 + 0.050 0.002 5 + 0.058 0.001 5 + 

userVarError 0.090 0.015 2 + 0.074 0.015 2 + 0.086 0.015 2 + 

VerbForm         0.001 0.000 53   0.001 0.000 53   

wordLength 0.005 0.002 40 + 0.007 0.003 34 + 0.009 0.002 28 + 
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Abstract

Studies of writing revisions rarely focus on re-
vision quality. To address this issue, we in-
troduce a corpus of between-draft revisions of
student argumentative essays, annotated as to
whether each revision improves essay qual-
ity. We demonstrate a potential usage of our
annotations by developing a machine learn-
ing model to predict revision improvement.
With the goal of expanding training data, we
also extract revisions from a dataset edited
by expert proofreaders. Our results indi-
cate that blending expert and non-expert revi-
sions increases model performance, with ex-
pert data particularly important for predicting
low-quality revisions.

1 Introduction

Supporting student revision behavior is an impor-
tant area of writing-related natural language pro-
cessing (NLP) research. While revision is particu-
larly effective in response to detailed feedback by
an instructor (Paulus, 1999), human writing evalu-
ation is time-consuming. To help students improve
their writing skills, various writing assistant tools
have thus been developed (Eli Review, 2014; Tur-
nitin, 2014; Writing Mentor, 2016; Grammarly,
2016). While these tools offer instant feedback on
a particular writing draft, they typically fail to ex-
plicitly compare revisions between drafts.

Our long term goal is to build a system for sup-
porting students in revising argumentative essays,
where the system automatically compares multiple
drafts and provides useful feedback (e.g., inform-
ing students whether their revisions are improving
the essay). One step towards this goal is the devel-
opment of a machine-learning model to automati-
cally analyze revision improvement. Specifically,
given only two sentences - original and revised,
our current goal is to predict if a revised sentence
is better than the original.

In this paper, we focus on predicting revision
improvement using non-expert (i.e., student) writ-
ing data. We first introduce a corpus of paired
original and revised sentences that has been newly
annotated as to whether each revision made the
original sentence better or not. The revisions
are a subset of those in the freely available Ar-
gRewrite corpus (Zhang et al., 2017), with im-
provement annotated using standard rubric crite-
ria for evaluating student argumentative writing.
By adapting NLP features used in previous revi-
sion classification tasks, we then develop a pre-
diction model that outperforms baselines, even
though the size of our non-expert revision corpus
is small. Hence, we explore extracting paired re-
visions from an expert edited dataset to increase
training data. The expert revisions are a subset
of those in the freely available Automated Evalua-
tion of Scientific Writing (AESW) corpus (Dau-
daravicius et al., 2016). Our experiments show
that with proper sampling, combining expert and
non-expert revisions can improve prediction per-
formance, particularly for low-quality revisions.

2 Related Work

Prior NLP revision analysis work has developed
methods for identifying pairs of original and re-
vised textual units in both Wikipedia articles and
student essays, as well as for classifying such pairs
with respect to schemas of coarse (e.g., syntac-
tic versus semantic) and fine-grained (e.g., lexi-
cal vs. grammatical syntactic changes) revision
purposes (Bronner and Monz, 2012; Daxenberger
and Gurevych, 2012; Zhang and Litman, 2015;
Yang et al., 2017). For example, the ArgRewrite
corpus (Zhang et al., 2017) was introduced with
the goal to facilitate argumentative revision anal-
ysis and automatic revision purpose classifica-
tion. However, purpose classification does not ad-
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dress revision quality. For example, a spelling
change can both fix as well as introduce an er-
ror, while lexical changes can both enhance or
reduce fluency. On the other hand, while some
work has focused on correction detection in re-
vision (Dahlmeier and Ng, 2012; Xue and Hwa,
2014; Felice et al., 2016), such work has typi-
cally been limited to grammatical error detection.
The AESW shared task of identifying sentences
in need of correction (Daudaravicius et al., 2016)
goes beyond just grammatical errors, but the orig-
inal task does not compare multiple versions of
text, and also focuses on scientific writing.

In contrast, Tan and Lee (2014) created a dataset
of paired revised sentences in academic writing
annotated as to whether one sentence was stronger
or weaker than the other. Their work directly
sheds light on annotating sentence revision qual-
ity in terms of statement strength. However, their
corpus focuses on the abstracts and introductions
of ArXiv papers. Building on their annotation
methodology, we consider paired sentences as our
revision unit, but 1) annotate revision quality in
terms of argumentative writing criteria, 2) use a
corpus of revisions from non-expert student argu-
mentative essays, and 3) move beyond annotation
to automatic revision quality classification.

3 Corpora of Revised Sentence Pairs

3.1 Annotating ArgRewrite

The revisions that we annotated for improvement
in quality are a subset of the freely available Ar-
gRewrite revision corpus (Zhang et al., 2017)1.
This corpus was created by extracting revisions
from three drafts of argumentative essays written
by 60 non-expert writers in response to a prompt2.
Essay drafts were first manually aligned at the sen-
tence level based on semantic similarity. Non-
identical aligned sentences (e.g., modified, added
and deleted sentences) were then extracted as the
revisions. Our work uses only the 940 modifica-
tion revisions, as our annotation does not yet con-
sider a sentence’s context in its paragraph.

We annotated ArgRewrite revisions for im-
provement using the labels Better or NotBetter.
Better is used when the modification yields an im-
proved sentence from the perspective of argumen-
tative writing, while NotBetter is used when the
modification either makes the sentence worse or

1http://argrewrite.cs.pitt.edu
2Prompt shown in supplemental files.

does not have any significant effect. Binary label-
ing enables us to clearly determine a gold-standard
using majority voting with an odd number of an-
notators. Binary labels should also suffice for our
long term goal of triggering tutoring in a writing
assistant (e.g., when the label is NotBetter).

Inspired by Tan and Lee (2014), our annota-
tion instructions included explanatory guidelines
along with example annotated sentence pairs. The
guidelines were crafted to describe improvement
in terms of typical argumentative writing criteria.
We depend on annotators’ judgment for cases not
covered by the guidelines. According to the guide-
lines3, a revised sentence S2 is better than the
original sentence S1 when: (1) S2 provides more
information that strengthens the idea/major claim
in S1; (2) S2 provides more evidence/justification
for some aspects of S1; (3) S2 is more precise
than S1; (4) S2 is easier to understand compared
to S1 because it is fluent, well-structured, and has
no unnecessary words; and (5) S2 is grammati-
cally correct and has no spelling mistakes.

To provide context, annotators were told that the
data was taken from student argumentative essays
about electronic communications. We also let the
annotators know the identity of the original and
revised sentences (S1 and S2, respectively). Al-
though this may introduce an annotation bias, it
mimics feedback practice where instructors know
which are the original versus revised sentences.

We collected 7 labels along with explanatory
comments for each of the 940 revisions using
Amazon Mechanical Turk (AMT). Table 1 shows
examples (1, 2, and 3) of original and revised Ar-
gRewrite sentences with their majority-annotated
labels. The first revision clarifies a claim of the
essay, the second removes some information and
is less precise, while the third fixes a spelling mis-
take. As shown in Table 2, for all 940 revisions,
our annotation has slight agreement (Landis and
Koch, 1977) using Fleiss’s kappa (Fleiss, 1971).
If we only consider revisions where at least 5 out
of the 7 annotators chose the same label (majority
≥ 5), the kappa values increase to fair agreement,
0.263. Tan and Lee (2014) achieve fair agreement
(Fleiss’s kappa of 0.242) with 9 annotators label-
ing 500 sentence pairs for statement strength.

3The guidelines can be found in supplemental files.
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Original Sentence (S1) Revised Sentence (S2) Label
1 The world has experienced various changes

throughout its lifetime.
The world has been defined by its revolutions
- the most recent one being technological.

Better

2 Technology is changing the world, and in
particular the way we communicate.

Technology is changing the way we commu-
nicate.

NotBetter

3 ...Susan says by to Shelly on the 125th St... ...Susan says bye to Shelly on the 125th St... Better
4 This is numerically expensive but leads to

proper results.
This is numerically expensive, but leads to
proper results.

Better

5 Section 2 formulates and solves the balance
equations.

The balance equations are formulated and
solved in Section 2.

Better

Table 1: Example annotated revisions from ArgRewrite (1,2,3) and AESW (4,5). The label is calculated
using majority voting (out of 7 annotators) for ArgRewrite and using expert proofreading edits for AESW.

Data #Revisions #Better #NotBetter Fleiss’s Kappa (κ)
All 940(100%) 784(83.4%) 156(16.6%) 0.201(Slight)
Majority≥ 5 748(79.6%) 658(88.0%) 90(12.0%) 0.263(Fair)

Table 2: Number of revisions, number of Better and NotBetter, and Fleiss’s kappa (κ) per increasing
majority voting (out of 7 annotators). Percentage of revisions are shown in parenthesis.

3.2 Sampling AESW

The Automated Evaluation of Scientific Writing
(AESW) (Daudaravicius et al., 2016) shared task
was to predict whether a sentence needed edit-
ing or not. Professional proof-readers edited sen-
tences to correct issues ranging from grammati-
cal errors to stylistic problems, intuitively yield-
ing ‘Better’ sentences. Therefore, we can use the
AESW edit information to create an automatically
annotated corpus for revision improvement. In ad-
dition, by randomly flipping sentences we can in-
clude ‘NotBetter’ labels in the corpus.

The AESW dataset was created from different
scientific writing genres (e.g. Mathematics, As-
trophysics) with placeholders for anonymization.
We use two random samples of 5000 AESW re-
visions for the experiments in Section 5. “AESW
all” samples revisions from all scientific genres,
while “AESW plaintext” ignores sentences con-
taining placeholders (e.g. MATH, MATHDISP) to
make the data more similar to ArgRewrite. Table 1
shows two example (4 and 5) AESW revisions.

4 Features for Classification

We adapt many features from prior studies predict-
ing revision purposes (Adler et al., 2011; Javan-
mardi et al., 2011; Bronner and Monz, 2012; Dax-
enberger and Gurevych, 2013; Zhang and Litman,
2015; Remse et al., 2016) as well as introduce new
features tailored to predicting improvement.

Following prior work, we count each unigram
across, as well as unique to, S1 or S2 (Daxen-
berger and Gurevych, 2013; Zhang and Litman,
2015). However, we also count bigrams and tri-
grams to better capture introduced or deleted ar-
gumentative discourse units.

Another group of features are based on sentence
differences similar to those proposed in (Zhang
and Litman, 2015), e.g., difference in length, com-
mas, symbols, named entities, etc., as well as edit
distance. However, to capture improvement rather
than just difference, we also introduce asymmet-
ric distance metrics, e.g. Kullback-Leibler diver-
gence4. We also capture differences using BLEU5

score, motivated by its use in evaluating machine-
translated text quality.

Following Zhang and Litman (2015), we calcu-
late the count and difference of spelling and lan-
guage errors6, in our case to capture improvement
as a result of error corrections.

As stated in the annotation guidelines, one way
a revised sentence can be better is because it is
more precise or specific. Therefore, we introduce
the use of the Speciteller (Li and Nenkova, 2015)
tool to quantify the specificity of S1 and S2, and
take the specificity difference as a new feature.

Remse et al. (2016) used parse tree based fea-

4Using scipy.stats.entropy on sentence vectors.
5Using sentence bleu from nltk.translate.bleu score mod-

ule, with S1 as reference and S2 as hypothesis.
6Using python ‘language-check’ tool.
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Experiments Precision Recall F1
Majority baseline 0.417 0.500 0.454
AESW all 0.471* 0.470 0.468
AESW plaintext 0.511* 0.515 0.473
ArgRewrite 0.570* 0.534 0.525*
ArgRewrite + AESW all 0.497* 0.501 0.488*
ArgRewrite + AESW plaintext 0.574* 0.555* 0.551*

Table 3: 10-fold cross-validation performance. *
indicates significantly better than majority (p <
0.05). Bold indicates highest column value.

tures to capture the readability, coherence, and flu-
ency of a sentence. Inspired by them, we calcu-
late the difference in count of subordinate clauses
(SBAR), verb phrases (VP), noun phrases (NP),
and tree height in the parse trees7 of S1 and S2.

5 Experiments and Results

Our goal is to examine whether we can predict im-
provement for non-expert ArgRewrite revisions,
using AESW expert and/or ArgRewrite non-expert
revisions for training. Our experiments are struc-
tured to answer the following research questions:

Q1: Can we use only non-expert revisions to
train a model that outperforms a baseline?

Q2: Can we use only expert revisions to train a
model that outperforms a baseline?

Q3: Can we combine expert and non-expert
training revisions to improve model performance?

Our machine learning experiments use Random
Forest (RF) 8 from Python scikit-learn toolkit (Pe-
dregosa et al., 2011) with 10-fold cross validation.
Parameters were tuned using AESW development
data. Because of the ArgRewrite class imbal-
ance (Table 2, All row), we used SMOTE (Chawla
et al., 2002) oversampling for each training fold.
Feature selection was also performed on each
training fold. Average un-weighted precision, re-
call and F1 are reported and compared to majority-
class baselines.

To answer Q1, we train a model using only Ar-
gRewrite data. Table 3 shows that this model out-
performs the majority baseline, significantly so for
Precision and F1. Compared to all other mod-
els (Figure 1), this model can identify ‘Better’ re-
visions with the highest recall, and can identify
‘NotBetter’ revisions with the highest precision.
However, for our long-term goal of building an ef-
fective revision assistant tool, intuitively we will

7https://nlp.stanford.edu/software/lex-parser.shtml
8Random Forest outperformed Support Vector Machines.

Figure 1: Precision, Recall, and F1 by class label.

also need to identify ‘NotBetter’ revisions with
higher recall, which is very low for this model.

To answer Q2, we train only on AESW data but
test on the same ArgRewrite folds as above. For
both AESW revision samples (before and after re-
moving the placeholders), only Precision is sig-
nificantly better than the baseline. However, Fig-
ure 1 shows that AESW plaintext has significantly
higher (p < 0.05) Recall than any other model in
predicting ‘NotBetter’ revisions (which motivates
Q3 as a way to address the limitation noted in Q1).

To answer Q3, during each run of cross-
validation training we inject the AESW data in ad-
dition to the 90% ArgRewrite data, then test on
the remaining 10% as before. As can be seen
from Table 3, AESW plaintext combined with
ArgRewrite shows the best classification perfor-
mance using all three metrics. It also has improved
Recall for ‘NotBetter’ revisions compared to train-
ing only on ArgRewrite data. This result indicates
that selective extraction of revisions from AESW
data helps improve model performance, especially
when classifying low-quality revisions.

Finally, to understand feature utility, we com-
pute average feature importance in the 10-folds
for each experiment. Top important features in-
clude unigrams, trigrams, length difference, lan-
guage errors, edit distance, BLEU score, speci-
ficity difference, and parse-tree features. For ex-
ample, length difference scores in the top 5 for all
experiments. This is intuitive as the annotation
guidelines state that adding evidence can make
a better revision. Other features such as differ-
ences in language errors, specificity scores, and
BLEU scores show more importance when train-
ing on combined ArgRewrite and AESW data than
when training on only ArgRewrite. Surprisingly,
spelling error corrections show low importance.
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Original Sentence (S1) Revised Sentence (S2) Label Dis-
tribution

Sample Comments

A 1,000-word letter is considered long,
and takes days, if not weeks, to reach
the recipient.

A 1,000-word letter is considered long,
and takes days, if not weeks, to reach
the recipient, with risks of getting lost
along the way.

3 vs 4 NotBetter: S1 is clearer than S2 and the
’risks along the way’ could be included as
a second sentence to increase readability.
Better: S2 provides more information that
strengthens the idea/major claim in S1.

People can’t feel the atmosphere of the
conversation.

Also, people can’t feel the atmosphere
of the conversation.

3 vs 4 NotBetter: Either sentence is fine,
but sentence two is not any better.
Better: Assuming this sentence origi-
nally came from the context of a larger part
of text, I imagine the continuation included
here improves the flow of the original
context.

With respect to personal life, social
networking provides us opportunities
to interact with people from different
areas, such as Facebook and Twitter.

With respect to personal life, social
networkings provide us opportunities
to interact with people from different
areas, such as Facebook and Twitter.

1 vs 6 NotBetter: S2 includes incorrect grammar.
Better: S1 flows better than S2.

Table 4: Misclassified NotBetter revisions from ArgRewrite along with label distribution (#Better vs
#NotBetter) and sample annotator comments.

6 Discussion

Although AESW-plaintext helped classify Not-
Better revisions, performance is still low. Table 4
shows some example NotBetter revisions misclas-
sified as Better by most models. The first two ex-
amples were also difficult for humans to classify.

In the first example, one annotator for Better
(the minority label) points out that the revision
provides more information. We speculate that our
models might similarly rely too heavily on length
and classify longer sentences as Better, since as
noted above, length difference was a top 5 feature
in all experiments. In fact, for the best model (Ar-
gRewrite+AESW plaintext), the length difference
for predicted Better revisions was 4.81, while for
predicted NotBetter revisions it was −3.99.

In the second example, one of the annotators
who labeled the revision as Better noted that the
added word ‘Also’ indicates a larger context not
available to the annotators. This suggests that in-
cluding revision context could help improve both
annotation and classification performance.

The third revision was annotated as NotBetter
by 6 annotators. We looked into our features and
found that the ‘language-check’ tool in fact was
able to catch this grammatical mistake. Yet only
the model using just ArgRewrite for training was
able to correctly classify this revision, as all mod-
els using AESW data misclassified.

7 Conclusion and Future Work

We created a corpus of sentence-level student re-
visions annotated with labels regarding improve-

ment with respect to argumentative writing.9 We
used this corpus to build a machine learning model
for automatically identifying revision improve-
ment. We also demonstrated smart use of an exist-
ing corpus of expert edits to improve model per-
formance.

In the future, we would like to improve inter-
rater reliability by collecting expert annotations
rather than using crowdsourcing. We would also
like to examine how the accuracy of our feature
extraction algorithms impacted our feature utility
results. Finally, we would like to improve our use
of the AESW data, e.g., by automatically cluster-
ing revisions for more targeted sampling. Opti-
mizing how many AESW revisions to use and how
to balance labels in AESW sampling are also areas
for future research.
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Abstract
Since the end of the CoNLL-2014 shared task
on grammatical error correction (GEC), re-
search into language model (LM) based ap-
proaches to GEC has largely stagnated. In this
paper, we re-examine LMs in GEC and show
that it is entirely possible to build a simple sys-
tem that not only requires minimal annotated
data (∼1000 sentences), but is also fairly com-
petitive with several state-of-the-art systems.
This approach should be of particular interest
for languages where very little annotated train-
ing data exists, although we also hope to use it
as a baseline to motivate future research.

1 Introduction

In the CoNLL-2014 shared task on Grammatical
Error Correction (GEC) (Ng et al., 2014), the top
three teams all employed a combination of sta-
tistical machine translation (SMT) or classifier-
based approaches (Junczys-Dowmunt and Grund-
kiewicz, 2014; Felice et al., 2014; Rozovskaya
et al., 2014). These approaches have since come to
dominate the field, and a lot of recent research has
focused on fine-tuning SMT systems (Junczys-
Dowmunt and Grundkiewicz, 2016), reranking
SMT output (Hoang et al., 2016; Yuan et al.,
2016), combining SMT and classifier systems (Su-
santo et al., 2014; Rozovskaya and Roth, 2016),
and developing various neural architectures (Chol-
lampatt et al., 2016; Xie et al., 2016; Yuan and
Briscoe, 2016; Chollampatt and Ng, 2017; Sak-
aguchi et al., 2017; Yannakoudakis et al., 2017).

Despite coming a fairly competitive fourth in
the shared task however (Lee and Lee, 2014),
research into language model (LM) based ap-
proaches to GEC has largely stagnated. The main
aim of this paper is hence to re-examine language
modelling in the context of GEC and show that
it is still possible to achieve competitive results
even with very simple systems. In fact, a notable

strength of LM-based approaches is that they rely
on very little annotated data (purely for tuning pur-
poses), and so it is entirely possible to build a rea-
sonable correction system for any language given
enough native text. In contrast, this is simply not
possible with SMT and other popular approaches
which always require (lots of) labelled data.

2 Methodology

The core idea behind language modelling in GEC
is that low probability sequences are more likely
to contain grammatical errors than high probabil-
ity sequences. For example, *discuss about the
problem is expected to be a low probability se-
quence because it contains an error while discuss
the problem or talk about the problem are expected
to be higher probability sequences because they do
not contain errors. The goal of LM-based GEC is
hence to determine how to transform the former
into the latter based on LM probabilities.1

With this in mind, our approach is fundamen-
tally a simplification of the algorithm proposed by
Dahlmeier and Ng (2012a). It consists of 5 steps
and is illustrated in Table 1:

1. Calculate the normalised log probability of
an input sentence.

2. Build a confusion set, if any, for each token
in that sentence.

3. Re-score the sentence substituting each can-
didate in each confusion set.

4. Apply the single best correction that in-
creases the probability above a threshold.

5. Iterate steps 1-4.

One of the main contributions of this paper is
hence to re-evaluate the LM approach in relation
to the latest state-of-the-art systems on several
benchmark datasets.

1See Chelba et al. (2014) for more information about pop-
ular approaches to language modelling.

247



Step Sentence Probability
1 I am looking forway to see you soon . -2.71

2 and 3 I

was -2.67 look -2.91 forward -1.80 of -2.98 seeing -3.09

you

sooner -3.05

. -
be -3.09 looks -2.93 Norway -2.36 in -2.99 saw -3.25 soonest -3.20
are -3.10 looked -2.95 foray -2.70 ε -3.00 sees -3.39

. . . . . . . . . . . . . . .
4 I am looking forward to see you soon . -1.80
5 I am looking forward to seeing you soon . -1.65

Table 1: A step-by-step example of our approach as described in Section 2. All scores are log probabilities.

2.1 Sequence Probabilities

We evaluate hypothesis corrections in terms of
normalised log probabilities at the sentence level.
Normalisation by sentence length is necessary to
overcome the tendency for shorter sequences to
have higher probabilities than longer sequences.
Dahlmeier and Ng (2012a) similarly used nor-
malised log probabilities to evaluate hypotheses,
but did so as part of a more complex combination
of other features. In contrast, Lee and Lee (2014)
evaluated hypotheses in terms of sliding five word
windows (5-grams).

2.2 Confusion Sets

One of the defining characteristics of LM-based
GEC is that the approach does not necessarily
require annotated training data. For example,
spellcheckers and rules both formed key parts of
Dahlmeier and Ng’s and Lee and Lee’s systems.
While Lee and Lee ultimately did make use of an-
notated training data however, Dahlmeier and Ng
instead employed separate classifiers for articles,
prepositions and noun number errors trained only
on native text.

In this work, we focus on correcting the follow-
ing error types in English: non-words, morphol-
ogy, and articles and prepositions.2

Non-words: We use CyHunspell3 v1.2.1 with
the latest British English Hunspell dictionaries4 to
generate correction candidates for non-word er-
rors. Non-words include genuine misspellings,
such as [freind → friend], and inflectional errors,
such as [advices→ advice]. Although CyHunspell
is not a context sensitive spell checker, the pro-
posed corrections are evaluated in a context sensi-
tive manner by the language model.

2Note that targeting other error types may be more appro-
priate in other languages; e.g. Mandarin Chinese contains
very little morphology.

3https://pypi.python.org/pypi/
CyHunspell

4https://sourceforge.net/projects/
wordlist/files/speller/2017.08.24/

Morphology: Examples of morphological er-
rors include noun number [cat→ cats], verb tense
[eat → ate] and adjective form [big → bigger],
amongst others. To generate correction candi-
dates for morphological errors, we use an Auto-
matically Generated Inflection Database (AGID),5

which contains all the morphological forms of
many English words. The confusion set for a word
is hence derived from this database.

Articles and Prepositions: Since articles and
prepositions are closed class words, we defined
confusion sets for these error types manually.
Specifically, the article confusion set consists of
{ε, a, an, the}, while the preposition confusion set
consists of the top ten most frequent prepositions:
{ε, about, at, by, for, from, in, of, on, to, with}.
Both sets also contain a null character which rep-
resents a deletion.

Unlike Dahlmeier and Ng and Lee and Lee, we
do not yet handle missing words (∼20% of all er-
rors) because it is often difficult to know where to
insert them.

2.3 Iteration

The main reason to iteratively correct only one
word at a time is because errors sometimes inter-
act. For example, correcting [see→ seeing] in Ta-
ble 1 initially reduces the log probability of the
input sentence from -2.71 to -3.09. After correct-
ing [foray → forward] however, [see → seeing]
subsequently increases the probability of the sen-
tence from -1.80 to -1.65 in the second iteration.
Consequently, correcting the most serious errors
first, in terms of language model probability in-
crease, often helps facilitate the correction of less
serious errors later. Dahlmeier and Ng and Lee
and Lee both also used iterative correction strate-
gies in their systems, but did so as part of a beam
search or pipeline approach respectively.

5http://wordlist.aspell.net/other/
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Dataset Tokenizer Sents Coders Edits
CoNLL-2013 NLTK 1381 1 3404
CoNLL-2014 NLTK 1312 2 6104
FCE-dev spaCy 2371 1 4419
FCE-test spaCy 2805 1 5556
JFLEG-dev NLTK 754 4 10576
JFLEG-test NLTK 747 4 10082

Table 2: Various stats about the learner corpora we use.

3 Data and Resources

In all our experiments, we used a 5-gram language
model trained on the One Billion Word Bench-
mark dataset (Chelba et al., 2014) with KenLM
(Heafield, 2011). While a neural model would
likely result in better performance, efficient train-
ing on such a large amount of data is still an active
area of research (Grave et al., 2017).

Although LM-based GEC does not require an-
notated training data, a small amount of annotated
data is still required for development and testing.
We hence make use of several popular GEC cor-
pora, including: CoNLL-2013 and CoNLL-2014
(Ng et al., 2013, 2014), the public First Certificate
in English (FCE) (Yannakoudakis et al., 2011),
and JFLEG (Napoles et al., 2017).

Since the FCE was not originally released with
an official development set, we use the same split
as Rei and Yannakoudakis (2016),6 which we to-
kenize with spaCy7 v1.9.0. We also reprocess all
the datasets with the ERRor ANnotation Toolkit
(ERRANT) (Bryant et al., 2017) in an effort to
standardise them. This standardisation is espe-
cially important for JFLEG which is not explicitly
annotated and so otherwise cannot be evaluated in
terms of F-score. Note that results on CoNLL-
2014 and JFLEG are typically higher than on other
datasets because they contain more than one refer-
ence. See Table 2 for more information about each
of the development and test sets.

4 Tuning

The goal of tuning in our LM-based approach is
to determine a probability threshold that optimises
F0.5. For example, although the edit [am→ was]
in Table 1 increases the normalised sentence log
probability from -2.71 to -2.67, this is such a small
improvement that it is likely to be a false positive.
In order to minimise false positives, we hence set

6https://ilexir.co.uk/datasets/index.
html

7https://spacy.io/

0 2 4 6 8 10
0

10

20

30

40

50

60

Improvement Threshold (%)

E
R

R
A

N
T

F 0
.5

CoNLL-2013 FCE-dev JFLEG-dev

Figure 1: The effect of changing the sentence probabil-
ity improvement threshold (%) on ERRANT F0.5 for
each of the development sets.

a threshold such that a candidate correction must
improve the average token probability of the sen-
tence by at least X% before it is applied. Although
it may be unusual to use percentages in log space,
this is just one way to compare the difference be-
tween two sentences which we found worked well
in practice.

The results of this tuning are shown in Figure 1,
where we tried thresholds in the range of 0-10%
on three different development sets. It is notable
that the optimum threshold for CoNLL-2013 (2%)
is very different from that of FCE-dev (4%) and
JFLEG-dev (5%), which we suspect is because
each dataset has a different error type distribution.
For example, spelling errors make up just 0.3% of
all errors in CoNLL-2013, but closer to 10% in
FCE-dev and JFLEG-dev.

Finally, it should be noted that this threshold is
an approximation and it is certainly possible to op-
timise further. For example, in future, thresholds
could be set based on error types rather than glob-
ally.

5 Results and Discussion

Before evaluating performance on the test sets, a
final post-processing step changed the first alpha-
betical character of every sentence to upper case
if necessary. This improved the scores by about
0.3 F0.5 in CoNLL-2014 and FCE-test, but by over
5 F0.5 in JFLEG-test. This surprising result once
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ERRANT M2 Scorer
Test Set System P R F0.5 P R F0.5 GLEU

CoNLL-2014

Lee and Lee (2014) 30.60 20.95 28.02 34.51 21.73 30.88 59.50
AMU16SMT +LSTM - - - 58.79 30.63 49.66 68.26
CAMB16SMT +LSTM - - - 49.58 21.84 39.53 65.68
Our work 36.62 19.93 31.37 40.56 20.81 34.09 59.35

FCE-test
AMU16SMT + LSTM - - - 40.67 17.36 32.06 63.57
CAMB16SMT + LSTM - - - 65.03 32.45 54.15 70.72
Our work 41.92 13.62 29.61 44.78 14.12 31.22 60.04

JFLEG-test

AMU16SMT + LSTM - - - 60.68 22.65 45.43 42.65
CAMB16SMT + LSTM - - - 65.86 30.56 53.50 46.74
Sakaguchi et al. (2017) - - - 65.80 40.96 58.68 53.98
Our work 73.76 27.61 55.28 76.23 28.48 57.08 48.75

Table 3: Our LM-based approach is compared against several state-of-the-art results. AMU16SMT +LSTM and
CAMB16SMT +LSTM were both originally reported by Yannakoudakis et al. (2017), while Lee and Lee (2014) is
the system entered by POST in CoNLL-2014. Only our approach does not use annotated training data.

again shows that different test sets have very dif-
ferent error type distributions and that even the
simplest of correction strategies can significantly
affect results.

Our final scores are shown in Table 3 where
they are compared with several state-of-the-art
systems. Unfortunately, we cannot compare re-
sults with Dahlmeier and Ng (2012a) because this
system is neither publicly available nor has pre-
viously been evaluated on these test sets. Results
are reported in terms of M2 F0.5 (Dahlmeier and
Ng, 2012b), the de facto standard of GEC evalu-
ation; ERRANT F0.5 (Bryant et al., 2017), an im-
proved version of M2 which we used to develop
our system; and GLEU (Napoles et al., 2015), an
ngram-based metric designed to correlate with hu-
man judgements. Results for ERRANT are not
available in all cases because system output is not
available.

At this point, it is worth reiterating that our main
intention was not to necessarily improve upon the
state-of-the-art, but rather quantify the extent to
which a simple LM-based approach with mini-
mal annotated data could compete against a much
more sophisticated model trained on millions of
words of annotated text. This is especially rele-
vant for languages where annotated training data
may not be available.

With this in mind, we were firstly pleased to im-
prove upon the previous best LM-based approach
by Lee and Lee (2014) in the CoNLL-2014 shared
task. This is especially significant given we also
did so without any annotated training data (un-
like them). Although our system would still have
placed fourth overall, the gap between third and

fourth decreased from 3 F0.5 to less than 1 F0.5.
We were also surprised by the high perfor-

mance on JFLEG-test, where we not only outper-
formed two state-of-the-art systems, but also came
to within 2 F0.5 of the top system. This is espe-
cially surprising given our system only corrects
a limited number of error types (roughly 14 out
of the 55 in ERRANT8), and so can maximally
correct only 40-60% of all errors in each test set.
One possible explanation for this is that unlike
CoNLL-2014 and FCE-test, which were only cor-
rected with minimal edits, JFLEG was corrected
for fluency (Sakaguchi et al., 2016), and so it in-
tuitively makes sense that LM-based approaches
perform better with fluent references.

Although we did not perform as well on
CoNLL-2014 or FCE-test, most likely for the
same reason, we also note a large discrep-
ancy between state-of-the-art systems tuned
on different datasets. For example, while
AMU16SMT+LSTM tuned for CoNLL achieves
the highest result on CoNLL-2014 (49.66 F0.5),
its equivalent performance on FCE-test (32.06
F0.5) is only marginally better than our own
(31.22 F0.5). We observe a similar effect with
CAMB16SMT+LSTM tuned for the FCE, and so
are wary of approaches that might be overfitting to
their training corpora.

We make all our code and system output avail-
able online.9

8R:ADJ:FORM, R:DET, R:MORPH, R:NOUN:INFL,
R:NOUN:NUM, R:ORTH, R:PREP, R:SPELL,
R:VERB:FORM, R:VERB:INFL, R:VERB:SVA,
R:VERB:TENSE, U:DET, U:PREP

9https://github.com/chrisjbryant/
lmgec-lite
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6 Conclusion

In this paper, we have shown that a simple lan-
guage model approach to grammatical error cor-
rection with minimal annotated data can still be
competitive with the latest neural and machine
translation approaches that rely on large quantities
of annotated training data. This is especially sig-
nificant given that our system is also limited by the
range of error types it can correct. In the future,
we hope to improve our system by adding the ca-
pability to correct other error types, such as miss-
ing words, and also make use of neural language
modelling techniques.

We have demonstrated that LM-based GEC is
not only still a promising area of research, but one
that may be of particular interest to researchers
working on languages where annotated training
corpora are not yet available. We released all our
code and system output with this paper.
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Abstract
We present a novel rule-based system for au-
tomatic generation of factual questions from
sentences, using semantic role labeling (SRL)
as the main form of text analysis. The system
is capable of generating both wh-questions and
yes/no questions from the same semantic anal-
ysis. We present an extensive evaluation of the
system and compare it to a recent neural net-
work architecture for question generation. The
SRL-based system outperforms the neural sys-
tem in both average quality and variety of gen-
erated questions.

1 Introduction

Automatic generation of questions (AQG) is an
important and challenging research area in natural
language processing. AQG systems can be useful
for educational applications such as assessment of
reading comprehension, intelligent tutoring, dia-
logue agents, and instructional games. Most of the
research on AQG focuses on factoid questions –
questions that are generated from reading passages
and ask about information that is expressed in the
text itself (as opposed to, e.g., readers’ opinions of
the text or external knowledge related to the text).

Traditional architectures for AQG involve syn-
tactic and semantic analysis of text, with rule-
based and template-based modules for converting
linguistic analyses into questions. Many of these
systems employ semantic role labeling (SRL) as
an important analytic component (Mazidi and Ta-
rau, 2016; Huang and He, 2016). Recently, neural
network architectures have also been proposed for
the AQG task (Du et al., 2017; Serban et al., 2016).

In this paper we present an automatic question
generation system based on semantic role label-
ing. The system generates questions directly from
semantic analysis, without templates. Our system
includes two innovations. While previous SRL-
based AQG systems generated only wh-questions,

ours is the first reported system that also gener-
ates yes/no questions from SRL analysis. It is also
the first system that generates questions for copu-
lar sentences from their SRL analysis (both yes/no
and wh-questions).

To evaluate the performance of our system, we
compare the quality of its output with that of a
state-of-the-art neural network AQG system, over
the same set of texts. To the best of our knowl-
edge, ours is the first direct comparison of SRL-
based and neural AQG systems.

The rest of this paper is structured as follows.
Section 2 presents related work on AQG. Section
3 describes our SRL-based system and section 4
outlines the neural network AQG system. Section
5 describes the annotation study. Results are pre-
sented in section 6 and error analysis in section 7.

2 Related work

The bulk of research on automatic question gener-
ation from text takes one of two basic approaches:
transforming sentences into questions using var-
ious intermediate representations, or generating
questions from predefined templates, where the
appropriate template for each question is selected
based on analysis of the text. In both approaches,
the analysis of text plays a major role. Text analy-
sis is focused on primarily syntax-based methods
or more semantics-based methods.

Syntax-based methods apply a parser to deter-
mine the syntactic structure of a sentence, then
apply syntactic transformation rules and question
word placement (e.g., “where”). The earliest such
system was proposed by Wolfe (1976). Contem-
porary systems use constituent and dependency
parsing (Heilman and Smith, 2010a; Varga and
Ha, 2010; Kalady et al., 2010; Ali et al., 2010).
Yao et al. (2012) proposed a system based on
HPSG parsing with semantic analysis. A recent
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example of the syntax-based approach is the sys-
tem of Danon and Last (2017).

Semantics-based methods place greater empha-
sis on semantic analysis of texts, although they
typically also use some syntactic analysis. Huang
and He (2016) present an AQG system that uses
the Lexical Functional Grammar representation,
including syntactic and semantic layers. Araki et
al. (2016) present a study of AQG from richly an-
notated sources. Many AQG systems rely on se-
mantic role labeling as the main driver of linguis-
tic analysis (Rodrigues et al., 2016; Mazidi and
Tarau, 2016; Mazidi and Nielsen, 2015; Lindberg
et al., 2013; Mannem et al., 2010), or as a support-
ing subsystem (Huang and He, 2016).

With recent advances in neural networks, some
approaches forgo most linguistic analysis and train
neural networks to generate questions from se-
quences of word tokens (Du et al., 2017; Serban
et al., 2016). Using large quantities of paired texts
and human-generated questions and the encoder-
decoder neural network framework, these sys-
tems learn to map from sentences to questions
in a manner similar to neural machine transla-
tion approaches. Further detail on neural network
systems for question generation and the specific
benchmark system we use is provided in Section
4.

2.1 Common issues in AQG research

Most research on AQG systems needs to address
the following set of common issues: 1) content se-
lection; 2) target identification; 3) simplification;
4) question formulation, and 5) evaluation.

Content selection refers to picking sections of
the source text (typically single sentences) for
which questions should be generated, i.e. what
parts of the text are worth asking a question
about (Vanderwende, 2008). Prior research em-
braced the working assumption that content se-
lection should focus on the most important and
salient information in a text. Hence, some AQG
systems used automatic extractive summarization
for sentence selection (Becker et al., 2012; Agar-
wal and Mannem, 2011). Recently, Du and Cardie
(2017) described a neural architecture for the con-
tent selection task in AQG.

Target selection defines what exactly should be
asked about the selected content. For example,
given a sentence like The executive arrived at 5pm
in a black limousine, we could ask who arrived,

when, or in what kind of vehicle. Clearly, a vari-
ety of questions can be posed, and their selection
may heavily depend on the educational task, e.g.
assisting in reading comprehension (Gates, 2008),
writing literature reviews (Liu et al., 2012), learn-
ing online (Lindberg et al., 2013).

Simplification of text has two aspects. Texts
often use complex and long sentences, but ques-
tions are rarely very long. For a human reader,
shorter questions are easier to process. From the
perspective of AQG, simplification of the original
text is sometimes necessary for applying transfor-
mation or matching to predefined templates (Lind-
berg et al., 2013; Yao et al., 2012; Heilman and
Smith, 2010a).

Question formulation involves the actual pro-
cess of generating a question and producing the
final surface-form realization. Systems differ
widely in this respect. For factoid questions, syn-
tactic transformations or semantic analysis are of-
ten sufficient for question formulation. Template-
based methods allow asking questions that can go
beyond the explicit information in a text (Mazidi
and Tarau, 2016; Lindberg et al., 2013).

Evaluation of AQG systems is a complex task
in itself. Common criteria for sentence-based
questions are grammaticality (syntactic correct-
ness), relevance to the input sentence, the variety
of question types produced, and semantic appro-
priateness (Godwin and Piwek, 2016; Chali and
Golestanirad, 2016; Heilman and Smith, 2010b).
Lindberg et al. (2013) add the notion of learning
value (pedagogical usefulness) for question eval-
uation. However, the pedagogical value of ques-
tions is tightly related to the goals of the question
use (Mazidi and Nielsen, 2014).

3 SRL-based system

Our SRL-based AQG system uses a mostly stan-
dard NLP pipeline structure with the following
steps: 1) tokenization and sentence boundary de-
tection; 2) POS tagging; 3) detection of verbal
groups; 4) semantic role labeling; 5) postprocess-
ing; 6) question generation.

For POS-tagging we use OpenNLP.1 We use
the SENNA system (Collobert et al., 2011) for se-
mantic role labeling, similar to some previous re-
search in AQG (Mazidi and Nielsen, 2015; Lind-
berg et al., 2013).

1https://opennlp.apache.org
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Given a sentence, SENNA produces semantic
role labels according to the Propbank 1.0 specifi-
cations (Palmer et al., 2005). Verbs in a sentence
are considered as predicates. Semantic roles in-
clude the generalized core arguments of verbs –
labeled A0, A1, etc. – and a set of adjunct modi-
fiers. Table 1 provides an overview.

Label Role
A0 proto-agent

(often grammatical subject)
A1 proto-patient

(often grammatical object)
A2 instrument, attribute,

benefactive, amount, etc.
A3 start point or state
A4 end point or state
AM-LOC location
AM-DIR direction
AM-TMP time
AM-CAU cause
AM-PNC purpose
AM-MNR manner
AM-EXT extent
AM-DIS discourse
AM-ADV adverbial
AM-MOD modal verb
AM-NEG negation

Table 1: Semantic roles per PropBank 1.0 specification.

Detection of verbal groups. In an English lan-
guage clause, a verbal group consists of the main
lexical verb and its related modifiers – negation,
auxiliary verbs, and modals (Palmer, 1987). A
sentence with multiple clauses may have several
verbal groups. The verbal group does not in-
clude the semantic roles or their fillers, although
there is some overlap with the Propbank defini-
tions, since Propbank includes Modal and Nega-
tion as semantic arguments. Our question genera-
tion system includes a rule-based module for de-
tection and analysis of verbal groups in sentences.
The module uses POS and lexical patterns to iden-
tify verbal groups and analyze tense, grammatical
aspect, verb negation, modality, and grammatical
voice (passive/active). All of this information is
necessary for adequate formulation of questions.

Postprocessing. In the postprocessing step, we
correct several issues in the SRL output. The
SENNA system tends to assign the A1 role for
subjects instead of A0. For example, for John ar-

rived today, ‘John’ is assigned A1. This also often
happens for copula sentences, e.g. SENNA pro-
duces: [A1John] is [A1 a painter]. Since we want
to treat A1 assignments as direct objects, we auto-
matically remap A1 in objectless clauses to a spe-
cially devised category, A01, which, for question
generation, is treated the same as A0 arguments
(i.e., as grammatical subjects).

Another step in postprocessing is linking the
verbal group to the verb of the detected predicate.
In the presence of auxiliary verbs, SENNA pro-
duces multiple analyses for the same chunk of text,
and some of them are systematically incorrect. We
are able to correct this by utilizing the separately
detected verbal group. For example, for Joe has
sold his house, SENNA produces both [A0 Joe]
[Predicate has] [A1 sold his house] and [A0 Joe]
has [Predicate sold] [A1 his house] A verbal group
would indicate that ‘has’ is an auxiliary of ‘sold’,
and our system would pick up the second analysis.

3.1 Generating constituent questions
Constituent questions (CQ, a.k.a. wh-questions)
are the most common type of question in AQG re-
search. Semantic role labeling is a natural choice
for CQ generation, since SRL basically analyzes
a sentence into who did what to whom, how and
when. . . . Producing CQ from SRL involves three
main steps: a) focusing, b) producing the question
word(s), and c) formulating the question.

Focusing. To generate a question for a predi-
cate, we need to choose the focal argument – the
argument about which the question will be asked.
We create questions from all of the major argu-
ments, and also for the following adjunct argu-
ments:2 AM-TMP, AM-MNR, AM-CAU, AM-
LOC, AM-PNC, AM-DIR. The text of the chosen
focal argument becomes the expected answer to
the question.

Producing question words involves some in-
tricate decisions. There are at least three broad
issues: 1) selecting the appropriate question word
for the semantic argument, 2) deciding on What
vs. Who, and 3) handling prepositions.

Selecting the appropriate wh-word is aided by
the identity of the focused argument. Manner
(AM-MNR) invites How and location (AM-LOC)
invites Where. However, the situation is not quite
so simple. Consider, for example, semantic role

2Selecting question focus by semantic roles may be useful
for user customization. For example one may wish to focus
questions only on manner arguments, cause and purpose, etc.
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A4, which is often used for the ‘end point’ of com-
plex locative constructions. A sentence like They
can fly from here [A4 to any country], should gen-
erate a question with Where. However, a similar
construction in Antarctica doesn’t belong [A4 to
any country] should not produce a Where ques-
tion.

A major issue is deciding on whether to use
Who or What (for subject, direct object, and
some other cases). Currently we make a rule-
based decision, based on examining the POS of
the argument, presence of pronouns, a check in
a large gazetteer of first and last person names
(about 130K entries), and a lookup into a list of
person-denoting words derived from WordNet su-
persenses3 (Fellbaum, 1998) (e.g., king, senator,
etc.). If the argument is a whole phrase, a careful
analysis is required. For example, king of the land
is a Who, but a hat for a lady is a What.

The complexity of generating adequate question
words is well illustrated with the case of temporal
arguments. It is not the case that everything tagged
as AM-TMP can have a question with When gen-
erated for it. Essentially, an SRL designation of
AM-TMP is too general. It does not distinguish
between time points, durations, and sets (repeti-
tive temporal specifications). (For detailed tem-
poral nomenclature, see, for example, Verhagen et
al. (2010)). This is the minimal distinction that is
necessary for When-questions, as opposed to How
long and How often. As an illustration, consider
the following sentences:

1. [A0Peter] called [AM−TMP on Monday].

2. [A0Peter] called [AM−TMP for six hours].

3. [A0Peter] called [AM−TMP every day].

Their corresponding proper questions are: 1)
When did Peter call? (A: on Monday); 2) For how
long did Peter call? (A: for six hours); 3) How
often did Peter call? (A: every day).

Inspired by research on rule-based handling
of time-expressions (Chang and Manning, 2013;
Strotgen and Gertz, 2010), we designed a rule-
based algorithm for subclassification of temporal
expressions. Prepositions in time expressions are
major clues in this task. For example, ‘every’ and
‘each’ hint at How often, ‘for’ hints at Duration,

3Supersenses were also used for this pupose by prior
systems, e.g., Huang and He (2016), Heilman and Smith
(2010a).

while many other prepositions hint at a time point
(or time range) description, which is asked about
with When. Some prepositions of temporal ex-
pressions are retained to be used in the questions,
for example from/until Monday→ from/until
when?, for five minutes→ for how long?.

Prepositions are sometimes retained for the for-
mation of question word-sequences also for non-
temporal semantic arguments. For example The
bird sat on the branch → On what did the
bird sit?. The who/what distinction can ap-
pear in this context as well. For example: They
rely on him/it → On whom/what do they
rely?

For question formation we need to select and
rearrange the remaining arguments of the predi-
cate. While SRL is a type of semantic analy-
sis, for question formulation we need at least ap-
proximate grammatical information, such as the
subject and direct object of the clause. For ex-
ample, for [A0Danny] dropped [A1 the package],
with a focus on ‘the package’, we need to intro-
duce do-support: What did Danny drop?.
In the current implementation, we presume A0 ar-
guments are subjects and A1 arguments are direct
objects. Question formation also checks whether
the verbal group is in active or passive voice, to
adjust the placing of auxiliary verbs. Presently we
do not convert passive sentences into active-voice
questions.

3.2 Generating Yes/No questions

We generate a simple yes/no question (YNQ) for
every predicate that has a finite verb (thus exclud-
ing bare and to-infinitives, and gerunds). If a sen-
tence contains multiple predicates, we generate
multiple yes/no questions – one for each predicate.

First, the system selects from a clause all chunks
that are role-fillers for the current predicate. Next,
the sequential position of SRL arguments may
need to be rearranged. For yes/no questions, the
standard declarative word order (usually SOV) is
preserved. Do-support is provided when needed,
based on the analysis of the verbal group (con-
structions that do not require do-support include
copular, modals, and cases when an auxiliary
be/have/do is already present). Adjunct arguments
may be moved relative to the main verb (e.g. he
quickly ate→ did he eat quickly ?).

Positivize. For the current application, yes/no
questions are always posed in positive mode.
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The analyzed verbal group of the predicate will
have information about explicit negation of the
main verb, including contracted negation, such
as ‘didn’t’ and ‘couldn’t’. The question gener-
ation process then avoids transferring the nega-
tion into the question, but it also registers that
the correct answer is flipped from ‘yes/no’ to
‘no/yes’. For example, from Johnny didn’t know
the song, we derive Did Johnny know the
song? + Answer=‘no’. For the copula The
tea isn’t sweet enough, we derive Is the tea
sweet enough? + Answer=‘no’.

4 Neural network benchmark system

The neural network system we used for compari-
son during evaluation is the LSTM-based system
described by Du et al. (2017)4. The system is
trained on a large corpus of question-answer pairs
from Wikipedia. Given an input sentence, the sys-
tem generates a question based on the encoded
input and what the model has learned from the
training data about plausible question content and
form.

The network employs the encoder-decoder
framework. An encoder network encodes an input
sentence with a bidirectional LSTM. The network
uses the encoded sentence to initialize a decoder
network for question generation. The decoder
generates a question token-by-token. At each time
step t, the decoder employs a global bilinear atten-
tion mechanism (Luong et al., 2015) over the en-
coder representation, allowing the network to fo-
cus the encoded representation on tokens that are
more salient for that time step. The network gen-
erates the next token using the decoder’s state and
the attention-weighted encoding of the input at t.

We use the sentence-oriented model5 from Du
et al. (2017), where only the input sentence is en-
coded. We use their code without modification.

We trained the network on the preprocessed ver-
sion of the SQuAD dataset (Rajpurkar et al., 2016)
provided by Du et al. (2017). SQuAD consists
of 536 articles with more than 100,000 question-
answer pairs generated by crowd workers. The
corpus was processed with Stanford CoreNLP, and
question-answer pairs without any non-stop words
in common were filtered out. The model is trained
on 80% of the data split at the article level.

4https://github.com/xinyadu/nqg
5Du et al. (2017) also propose a paragraph-oriented

model.

The source vocabulary is 45,000 tokens and the
target vocabulary is 28,000 tokens. Pretrained
GloVe embeddings (Pennington et al., 2014) are
used to initialize the token representations and are
fixed during network training. The LSTM encoder
used 2 layers with 600 dimensions. The decoder
uses beam search with a beam size of 3. Of note,
in Du et al.’s implementation, generated questions
are post-processed by replacing any <UNK> to-
kens with the token from the input with the highest
attention score.

5 Evaluation study

We evaluate the SRL and neural network systems’
capacity to produce generally good questions, fo-
cusing only on question-generation capabilities.
In this respect, our evaluation study differs from
some previous studies in which the AQG system
was tasked with performing both content selection
(picking the ‘important’ sentences for which ques-
tions would be generated) and the question gener-
ation process itself. We believe that content selec-
tion depends very much on the goals of the educa-
tional task for which questions are generated, and
should be seen as a separate task. For a similar
perspective, see Rus et al. (2010).

Since our focus is on question generation for ed-
ucational applications, we selected five expository
texts. Three of the texts consist of several initial
paragraphs from Wikipedia articles6 and two are
complete short articles from an educational web-
site7. From those texts, we retained only declar-
ative sentences that have at least five words and
do not include conditional (if. . . then) clauses. Our
corpus consists of 171 sentences, with a maximum
sentence length of 50 tokens and an average of 17.

Both the neural and the SRL-based systems
were tasked with generating questions for each of
the 171 sentences.

The SRL-based system generated at least one
question for 165 sentences and failed to provide
an output for 6 sentences. Overall, the SRL-based
system generated 890 questions, with an average
of 5.4 questions per sentence. There are two rea-
sons for this abundance. First, the system attempts
to generate a yes/no question for each predicate in
each sentence. As a result, it generated 236 yes/no
questions. Next, the system attempts to generate
a constituent question for almost every argument

6Fox (animal), Helsinki (city), and Celsius (scientist).
7beyondpenguins.ehe.osu.edu/stories-for-students
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Sentence Generated Question Sys GR SEM REL
The Senate was relocated to Vaasa, Who remained in hiding
although some senators and officials in the capital? SRL 5 5 3
remained in hiding in the capital.
The Sun’s temperature is much What the Sun’s temperature SRL 2.5 2.5 2
too hot for anything alive. is for anything alive?
Deep below is a place called Did a place call SRL 4.5 1.5 2.5
the magma chamber. the magma chamber?
The particles from the Sun also Do the particles from the Sun SRL 5 5 3
carry an electric charge. carry an electric charge?
Dr. Philip Kyle is one of Who is one of the scientists NN 2 2 1.5
these scientists. that is one of the scientists?
But the real wonder is inside What is the real view NN 4.5 2 1
the volcano’s crater itself. of the planet?
Other foxes such as fennec foxes, What are some other animals NN 5 5 3
are not endangered. that are not endangered?

Table 2: Examples of sentences, generated questions and evaluation ratings (average of two raters).

of every predicate. If a sentence contains multi-
ple predicates, even more questions are generated.
The system generated 654 constituent questions.

The neural system generated one question for
each of 169 sentences (and failed for two sen-
tences). All questions generated by the system re-
semble constituent questions because the SQuAD
dataset does not contain yes/no questions. We
investigated whether it was possible to generate
more than one question per sentence by retrieving
hypotheses from the beam search, but the hypothe-
ses are not fully formed and are small variants of
the best question for each sentence.

5.1 Annotation

In total 1,060 questions were automatically gen-
erated for evaluation. The questions were anno-
tated by two annotators with expertise in linguis-
tic annotation of English Learning Arts materials
and student-produced writing. Each question was
rated on three scales: grammar, semantics and rel-
evance.

The grammar scale is a five-point scale:
5) grammatically well-formed; 4) mostly well-
formed, with slight problems; 3) has grammatical
problems; 2) seriously disfluent; 1) severely man-
gled. The five-point semantic scale was intended
to check to what extent the question ‘understood’
the semantics of the original sentence: 5) seman-
tically adequate; 4) mostly semantically adequate,
with slight problems; 3) has semantic problems;
2) serious misunderstanding of the original sen-

tence; 1) severely mangled and makes no sense.
The relevance scale was designed to check to what
extent the generated question is about information
that was conveyed in the original sentence. This
scale had just four levels: 3) is about the sentence;
2) goes beyond the information in the sentence;
1) veers away, is unrelated to the sentence; 0) too
mangled to make a reasonable judgment.

The annotators completed a training session
with 272 questions that were generated from a sep-
arate set of texts.

Upon completion of training, the annotators re-
ceived the 1060 questions of the main data set
(with corresponding sentences, and access to orig-
inal texts). Each annotator completed annotations
individually. We measured inter-annotator agree-
ment with Quadratically-weighted Kappa (QWK).
Agreement was high: grammar = 0.75, semantics
= 0.77, relevance = 0.488.

In our analysis we used the average ratings on
each question for each of the categories. In addi-
tion, for each question we also computed a total
rating, which is the sum of grammar, semantics,
and relevance ratings. Samples of sentences with
corresponding generated questions and ratings are
presented in Table 2.

8The low agreement on relevance stemmed from the ten-
dency of one of the annotators to lower the relevance rating
to 0 when a question was ‘mangled’.

259



6 Results

To estimate the quality of the various questions,
we compared the average ratings for three groups
of questions: yes/no and constituent questions
from the SRL-based system (SRL-YNQ and SRL-
CQ), and questions from the neural system (NN).
We conducted ANOVA analyses for each of the
three rating scales and for the total score (with
Bonferrroni adjustment for pairwise contrasts).
Results are presented in Table 3 and in Figure 1.

SRL-YNQ questions (n=236), are rated signif-
icantly higher than SRL-CQ (n=654), which, in
turn, are rated significantly higher than questions
from the neural system (n=169). All comparisons
are statistically significant (p < .001), except for
SRL-CQ vs. NN on grammar. In other words, the
neural system-generated questions achieved a sim-
ilar level of grammaticality judgment as the SRL
system’s constituent questions.

Scale SRL-YNQ SRL-CQ NN
Grammar 4.32 3.89 3.75
Semantics 4.34 3.79 2.61
Relevance 2.75 2.52 1.65
Total 11.41 10.20 8.01

Table 3: Average ratings for SRL system yes/no ques-
tions (SRL-YNQ), constituent questions (SRL-CQ),
and neural network questions (NN). Total is the sum
of grammar, semantics, and relevance.

We also looked at the 163 sentences that have
both a NN question and at least one SRL-CQ ques-
tion. We picked the best scoring SRL-CQ question
for each sentence (using total score values). The
mean rating of the best SRL-CQ question per sen-
tence is 12.2, while the mean rating of NN ques-
tions is 8.1. The difference is statistically sig-
nificant (t-test, p < .0001). Thus, if we had to
pick just one CQ question for each sentence, SRL-
based questions are on average much better than
NN-generated questions.

We also investigated to what extent the automat-
ically generated questions might be potentially us-
able in a learning context (e.g. for reading com-
prehension assessment). We consider a potentially
useful question to be one that has reasonably good
grammar (rating ≥ 4), is semantically sensible in
context (rating≥ 4) and is relevant to the informa-
tion conveyed in the text (rating ≥ 2). We opera-
tionalize these criteria with two measures. First,
we look at what proportion of questions have a

Figure 1: Average ratings and standard deviations for
automatically generated questions, by system and ques-
tion type. Note that score range is 1-5 for Grammar and
Semantics, 0-3 for Relevance and 2-13 for Total.

total rating ≥ 10. Among the SRL-YNQ ques-
tions, 81% are potentially useful, compared to
64% among SRL–CQ questions, and 29% among
questions generated by the neural network. Our
second, more stringent, measure is to require that
a question meet the criteria above on each of the
three scales, i.e. grammar ≥4, semantics ≥4, and
relevance ≥2. With this measure, the proportion
of potentially useful questions is 71% for SRL-
YNQ questions, 50% for SRL-CQ questions, and
15% for the neural network-generated questions.

7 Error analysis

We analyzed patterns of errors in SRL-based ques-
tions that received ratings below 4 on grammar and
semantics and below 2 on relevance.

Among the constituent questions generated by
the SRL-based system, we randomly sampled 30
questions. The most common reason for errors
(33%) was incorrect handling of longer and more
complicated sentences, including incorrect han-
dling of arguments in subordinate clauses. For ex-
ample, for the sentence Red foxes have been in-
troduced into Australia, which lacks similar car-
nivores. . . , one of the generated questions was
What lacks? This question misses the subject,
Australia, which only appears in the matrix clause.
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Incorrect handling of subordinate clauses is
also one of the common reasons for errors among
the SRL-based yes/no questions. For example,
for the sentence It’s a little like the sound waves
bats and dolphins use to find objects in the air
and water., the system generated Do bats
and dolphins use to find objects
in the air and water?. The proper
question should have been: Do bats...use
sound waves...to find...?. The nec-
essary direct object, sound waves, is outside
the reduced relative clause and was missed in
question generation.

7.1 Analysis of NN system errors

The patterns of ratings for errorful questions from
the neural system differed from the SRL sys-
tem. One pattern, of high grammaticality but
low semantic coherence and relevance (22.7%),
was attributable to strange substitutions of words
in the original sentence. For example, for
the sentence Greater Helsinki has eight univer-
sities and six technology parks, the generated
question was: How many universities
does greater Strasbourg have? An-
other common pattern was repetition of a
word or phrase in the question. For ex-
ample: What type of birds do birds
usually live? Word repetition caused poor
ratings on all scales. Another notable pattern
was high grammaticality but low semantic co-
herence and relevance. This pattern is some-
times characterized by word substitutions but
more generally a lack of analysis of the origi-
nal sentence. For example, for the sentence De-
spite the tumultuous first half of the 20th century,
Helsinki continued to develop steadily, the sys-
tem generated: When did the first half
of the 20th century occur?

We also analyzed a sample of sentences that
were rated highly across all categories. Many
of these sentences were simple declarative sen-
tences. For the most part, the network reused
words from the original sentence and created
grammatical questions. In a few instances, the
network gave hints of an ability to generalize lex-
ical items. For example, for the sentence, In
fact, as the inside walls of the igloo start to
melt, they come into contact with..., the gener-
ated question was: What do the walls of
the igloo begin to do?

8 Discussion

The SRL-based system generates a relatively high
percentage of questions that are potentially us-
able as-is in an application, achieving good ratings
for grammaticality, semantic coherence, and rele-
vance. The SRL system was able to generate par-
ticularly high quality yes/no questions, as demon-
strated by the strong scores from the human raters.
Another strength demonstrated by the SRL-based
system was the ability to systematically generate
multiple constituent questions by focusing on each
argument of a predicate in a clause.

The average quality of yes/no questions gener-
ated by the SRL system is significantly higher than
the average quality of the generated constituent
questions. The reason for this is mostly due to the
fact that, while both types of questions are gener-
ated based on the same SRL analysis, yes/no ques-
tions require less complicated processing for gen-
eration.

While the questions produced by the SRL sys-
tem show a promising level of quality, one area
where the system falters is in handling long and
complicated sentences, particularly those that in-
volve subordinated clauses.

Although we did not focus on augmenting the
neural network system for this study, our results
demonstrate that the basic neural architecture of
LSTM and attention already shows a surprising
ability to produce readable questions, as indicated
by reasonably high average grammaticality rat-
ings. At the same time, the neural system had dif-
ficulty producing semantically adequate and rele-
vant questions. These results point to the need for
improved semantic analysis in neural AQG sys-
tems.

9 Conclusions

In this work, we described a novel rule-based sys-
tem for automatic generation of factual questions
from sentences that leverages semantic role label-
ing for text analysis and is capable of generating
both wh-questions and yes/no questions from the
same semantic analysis. Both of these capabilities
are likely to prove useful in practical applications,
for example to limit generated questions to only
certain types of constituents or to generate ques-
tions of only certain forms. Another practical ad-
vantage of SRL-based AQG is that this approach
produces questions with corresponding answers.
This can be very useful for downstream applica-
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tions such as quiz generators or automated scoring
of responses.

We presented a detailed evaluation of the sys-
tem and compared it to a state-of-the-art neu-
ral network architecture for question generation.
The SRL-based system produced questions with
greater variety and higher average quality than the
neural system. In future work, we will explore
methods for combining the strengths of rule-based
and neural methods for text analysis and question
generation.
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Abstract

Technology is transforming Higher Education
learning and teaching. This paper reports on
a project to examine how and why automated
content analysis could be used to assess précis
writing by university students. We examine
the case of one hundred and twenty-two sum-
maries written by computer science freshmen.
The texts, which had been hand scored us-
ing a teacher-designed rubric, were autoscored
using the Natural Language Processing soft-
ware, PyrEval. Pearsons correlation coeffi-
cient and Spearman rank correlation were used
to analyze the relationship between the teacher
score and the PyrEval score for each sum-
mary. Three content models automatically
constructed by PyrEval from different sets of
human reference summaries led to consistent
correlations, showing that the approach is reli-
able. Also observed was that, in cases where
the focus of student assessment centers on
formative feedback, categorizing the PyrEval
scores by examining the average and standard
deviations could lead to novel interpretations
of their relationships. It is suggested that this
project has implications for the ways in which
automated content analysis could be used to
help university students improve their summa-
rization skills.

1 Situating Automated Content Analysis
in Higher Education

Our present concerns are about CS students hav-
ing difficulty summarizing or synthesizing texts
accurately. Instead of staying focused, some tend
to wander away from significant points in writ-
ten reports. There are also issues relating to CS
instructors wasting valuable time on badly writ-
ten reports, especially in cases when class sizes
are very large (with 150 to 250 students). This
often results in students not receiving meaning-
ful feedback that could help them to advance their

learning. Increasing the availability and quality of
timely feedback could significantly improve stu-
dents’ written-communication skills.

The focus of this study is to investigate how
PyrEval (Gao et al., 2018a), an existing summary
content analysis software tool, might be used to
automate the assessment of student summaries,
given a small set of reference summaries from
which to construct a content model. Scores from
an earlier implementation of automated pyramid
scoring were shown to have high Pearson correla-
tion of 0.83 with a main ideas rubric applied to 120
community college summaries (Passonneau et al.,
2016); on the same summaries PyrEval has even
higher correlation of 0.87. As such, the aim is not
to examine its correctness here; instead, we seek to
understand how it could be adapted for use within
Higher Education (HE). In particular, we are inter-
ested in exploring how PyrEval might be used for
formative, rather than summative, assessment of
student work. With this view, the discussions here
focus on PyrEval as a tool for helping students to
improve written assignments prior to submission,
thereby making the time instructors spend mark-
ing more beneficial.

Learning in HE, often described as con-
structivist, involves learners actively construct-
ing knowledge and meaning based on prior ex-
periences (Barr and Tagg, 1995; Bostock, 1998;
Brockbank and McGill, 2007; Tess, 2013). In this
approach, students create knowledge by connect-
ing what they already know to new subject con-
tent encountered in lectures, texts and discussions.
This shift in paradigm, from one where the learner
retrieves information from the instructors, has
prompted recently coined phrases such as, self-
directed learning (Hiemestra, 1994) and student-
centered learning (Lea et al., 2003). Unfortu-
nately, assessing students’ self-directed learning,
and providing formative feedback in this learning
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approach, has not developed as rapidly.

Feedback is intended to provide students with
information on their current state of learning and
performance, and is essential for elevating stu-
dents’ motivation and confidence (Hyland, 2000).
Rather than being an evaluation of performance
on assigned tasks, formative feedback provides in-
formation to help students scaffold their knowl-
edge and accelerate their learning (Sadler, 2010).
Therefore, formative assessment applications play
an important role by helping students take greater
control of their own learning, and moves them to-
wards becoming self-regulated learners.

Within HE, formative feedback is perceived as
information communicated to the students about
learning-oriented assignments (Race, 2001) such
as essays. This feedback can be oral or written,
and is often generated by the instructor. Provid-
ing feedback remains the responsibility of the in-
structor, and with much emphasis being placed on
evaluating student learning at the end of an in-
structional unit, instructor feedback is often lim-
ited. Some even use custom software, such as E-
rater R©, used by the Educational Testing Service
for automated scoring of essays, which provides a
holistic score rather than a narrative. Our present
concerns move beyond simply providing a score
to examine how and why PyrEval could be used
to provide formative feedback on students’ sum-
maries. It is distinctive in providing interpretable
scores that can be justified by automated identifi-
cation of important, unimportant and missing con-
tent (Passonneau et al., 2016). This study provides
a conceptualization for the next steps in the devel-
opment of the tool towards this end.

The next three sections present the following:
background to the study through a review of ex-
isting literature; a summarization task given to CS
students at a UK university along with a descrip-
tion of how it was assessed by the instructor, one
of the authors PyrEval, an automated tool to ana-
lyze content of summaries that depends on a refer-
ence set of four or more expert summaries.

Section 5 presents our experiments to com-
pare PyrEval scores of the students’ summaries
with scores assigned by the human scorer using a
rubric. The findings show that PyrEval scores cor-
relate moderately well with the rubric, but more
importantly, the analysis led to reconsideration of
scores for several summaries. Section 6 discusses
the benefits and limitations of the automated tool,

and our plans for future work.

2 Related Work

Summarization is an important pedagogical tool
for teaching reading and writing strategies
in elementary school (Kırmızı, 2009), middle
school (Graham and Perin, 2007), community col-
lege (Perin et al., 2013), as part of blended instruc-
tional methods at the college level (Yang, 2014),
and for English language learners (Babinski et al.,
2017). Instruction in summarization strategies
includes occasional forays into computer-based
training (Sung et al., 2008), including intelli-
gent tutoring systems that provide writing practice
(Proske et al., 2012)(Roscoe et al., 2015).

Recent work built regression models to pre-
dict scores based on several rubrics for summaries
from L2 business school students (Sladoljev Age-
jev and Šnajder, 2017). Features were automati-
cally derived from Coh-Metrix (McNamara et al.,
2014), BLEU scores (Papineni et al., 2002) and
ROUGE scores (Lin, 2004). In (Srihari et al.,
2008), OCR was used to digitize handwritten es-
says, which were then scored using various au-
tomated essay scoring methods, including latent
semantic analysis and a feature-based approach.
Essays are automatically scored in (Zupanc and
Bosni, 2017) after constructing an ontology from
model essays using information extraction and
logic reasoning. PyrEval constructs a content
model from a small set of reference summaries,
using latent semantic vectors to represent mean-
ings of phrases.

There has been recent interest in developing au-
tomated revision tools for students’ written work
but none have, hitherto, been reported in the lit-
erature. There is existing work on automated re-
vision of short answers for middle school science
writing (Tansomboon et al., 2017), and a corpus
on automated revision of argumentation (Zhang
et al., 2017). What is distinctive about our work is
the feasibility of providing automated feedback on
summary content, either for teachers or students,
which could ultimately lead to the development of
an automated revision tool.

3 Task and Educational Rubrics

3.1 The student setting and their task
At the start of this academic year, 159 CS students
were enrolled in Academic Skills and Team-based
Learning at Bakersview University (a pseudonym)
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Scoring rubric
Item Description of Idea

1 Dont take everything you read for granted. Always ask - says who? so what? what next?
2 Check if the references are accurate.
3 Check the authors’ qualifications and experience (academic and practice), and what qualifies them

to undertake this work. See if they have published any other works and if they have been cited by others.
4 If they have, it is worthwhile checking out some of those citations to see if they are positive or negative.
5 Check for evidence of how this information could have, or has, had an impact.
6 Ensure the data is provided to back up any arguments.
7 Understand how this information affects what you already know.
8 Check if there any consequences of this information that show the need for further research.
9 Critical thinking helps you identify potential strengths and weaknesses in the text.

10 Critical thinking helps you evaluate what you read and relate it to other information.

Figure 1: Scoring rubric for Critical Thinking task. Each of 10 items contributes 1 point.

in the UK. Bakersview is a non-selective uni-
versity with an agenda to widen participation in
higher education, and thus attracts students from a
variety of learning backgrounds. Academic Skills
and Team-based Learning is a core course taken
by all CS freshmen. It aims to develop in students
a range of written communication styles and ap-
proaches, and the critical reading skills, needed
for academic and professional work. The goal is
to give these students the opportunity to develop
proficiencies and attitudes necessary for success at
university and in employment.

The data being used for the present project came
from student submissions for one of the assign-
ments in the Academic Skills and Team-based
Learning course. First, the students were asked
to attend a workshop offered by the university’s
Library and Information Services. The focus of
the workshop was finding information and critical
thinking. Presentations and handouts were pro-
vided, and students were asked to make notes on
the material covered. Following the workshop,
they were asked to summarize, in no more than
200 words, what they learned during the workshop
about critical thinking and its importance in HE.

3.2 The rubric

One hundred and thirty-nine summaries were sub-
mitted. These were then scored by hand using a
rubric developed from the presentation given dur-
ing the workshop. The 10 main points identified
in the presentation were used as checkpoints in the
rubric, which is shown in Figure 1.

One point was assigned to each of the ideas
listed in the rubric; however, the interpretation
of what constituted an idea was open to the dis-
cretion of the instructor. Each student received
a score out of 10 for the assignment. A hand-
ful of student summaries did not meet the word-

count requirement, these were not included in the
anonymized samples for testing the autoscoring
software PyrEval. Thirteen summaries, which re-
ceived scores of 9 and 10, were used as reference
summaries to construct a content model for inter-
pretable scores, and the score justification.

4 System Description

PyrEval constructs a pyramid content model that
consists of sets of distinct summary content units
(SCUs) found in a set of N reference summaries
written by experts or more advanced students, for
4 ≤ N ≤ 6. In pyramid summary content eval-
uation, originally a manual annotation method,
an SCU is similar to a set of paraphrases, each
paraphrase drawn from a distinct reference sum-
mary (Nenkova et al., 2007). A given SCU can
be expressed in anywhere from 1 toN summaries,
so will consist of from 1 to N contributors from
distinct summaries. The number of contributors to
an SCU is an importance weight that is assigned to
ideas in a new summary being scored. The weights
of SCUs in a new summary are summed, and the
sum is normalized in different ways, as described
further below. A pyramid content model thus con-
sists of all the distinct ideas, or SCUs, in the refer-
ence summaries, along with their weights.

To construct the pyramid content model au-
tomatically, sentences are first decomposed into
distinct clausal or phrasal segments, then each
segment is converted to a dense vector represen-
tation using Weighted Text Matrix Factorization
(WTMF) (Guo et al., 2014). These semantic vec-
tors are then grouped into semantically similar sets
to form the SCUs, using a restricted set parti-
tion algorithm, EDUA, as noted below (Gao et al.,
2018b). A new summary is scored against this
content model by first segmenting the sentences
and vectorizing them, then matching them to the
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content model using a weighted set cover algo-
rithm (Sakai et al., 2003). The following sub-
sections describe the preprocessing (segmentation
and conversion to dense vectors), pyramid con-
struction, and scoring.

4.1 Preprocessing

The preprocessing step uses a sentence decom-
position parser we implemented to produce alter-
native covering segmentations of each sentence,
and WTMF (see above) to produce the dense vec-
tor representations. This is a pre-trained process
so as to make PyrEval a light-weight tool that
can be applied easily to new summarization tasks.
The decomposition parser output is derived from
constituency parsing and dependency parsing, us-
ing Stanford CoreNLP tools (Chen and Manning,
2014). The decomposition parser first locates ev-
ery tensed verb phrase (VP) in the constituency
parse, then uses the subject dependencies from the
dependency parser to find each VP subject. The
leftover words are reinserted into segments, ac-
cording to their positions in the original sentence.
We use WTMF to convert each segment into a vec-
tor representation for semantic similarity evalua-
tion. It has proved to have high accuracy in sen-
tence similarity tasks.

Sentence Decomposition Example
Critical thinking also means you must approach everything
you read with a certain level of scepticism and find out if the
points that are being made are backed up with evidence.

Segmentation 1
Segment 1 that are being made
Segment 2 you read with a certain level of scepticism
Segment 3 if the points are backed up with evidence
Segment 4 you must approach everything and find out
Segment 5 Critical thinking also means .

Segmentation 2
Segment 1 you Critical thinking also means you must

approach everything read with a certain
level of scepticism and find out if the,

Segment 2 points that are being made
Segment 3 points are backed up with evidence .

Figure 2: Sentence decomposition parser output show-
ing two alternative segmentations of the same sentence.
The full sentence is also considered as a default seg-
mentation.

4.2 Pyramid Construction

The core of PyrEval is an algorithm, Emergent
Discovery of Units of Attraction (EDUA), for allo-
cating segments into SCUs according to their se-
mantic similarity.

EDUA builds a graph G where vertices are seg-

ments and edges are semantic similarity above a
threshold tedge. Similarity values are distributed
differently for different sets of summaries, so we
define tedge in terms of a selected percentile over
the range of observed cosine values for a given set
of reference summaries; from past work through
grid-search on development sets we use tedge =
0.83. An SCU is a connected component of G
with at most N vertices, where the average edge
weight leads to a high quality pyramid. The qual-
ity of an individual SCU is the average similarity
(or attraction AC) of its edges. Given a connected
component C with k edges, AC is defined as:

AC =

∑
u,v∈C,u6=v

similarity(u, v)

k
(1)

The global attraction over the pyramid is given as:

AP = max
n∑

1

(
1

|Cn|

|Cn|∑

1

AC

)
(2)

where n here represents the number of reference
summaries, which in turn corresponds to the dif-
ferent sizes of SCUs in the pyramid.

EDUA’s objective is to find a set of connected
components (SCUs) that achieve the highest AP ,
while obeying the constraints that no two seg-
ments from the same reference summary can be
in the same SCU. We have developed two ver-
sions of the algorithm: EDUA-Complete (EDUA-
C) and EDUA-Greedy (EDUA-G). EDUA-C per-
forms a Depth First Search in the graph to find the
set of SCUs with maximum AP . EDUA-G takes
a greedy approach and imposes a constraint based
on the observation that SCU annotation follows a
Zipfian distribution (Nenkova et al., 2007): there
are a few SCUs that occur in every reference sum-
mary (maximum weight), more that occur in all
but one, and so on, with a long tail of SCUs that
occur in only one reference summary (minimum
weight). SCU weight forms a partition over the set
of SCUs. EDUA-G finds the SCUs with maximum
AC at each iteration n from N to 1, and allocates
them into equivalence class n until the capacity of
that class is full, then moves on to the next n. A
constraint on the relative size of the equivalence
classes requires them to adhere to a Zipfian dis-
tribution. Both EDUA variants perform equally
well on a machine summarization task (Gao et al.,
2018b). However, EDUA-C is computationally
expensive. Hence we conducted experiments us-
ing EDUA-G.
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Pair Pearson(P-v) Spearman(P-v) Pair Pearson(P-v) Spearman(P-v)
P1,R 46.47 (6.88e-08) 44.27 (3.28e-07) P1,P2 73.82 (9.09e-23) 73.50 (1.70e-22)
P2,R 49.18 (8.75e-09) 46.13 (8.893-08) P1,Pt 68.02 (2.69e-18) 68.63 (1.02e-18)
Pt,R 45.85 (1.39e-07) 44.77 (2.95e-07) P2,Pt 75.97 (9.67e-25) 77.33 (4.21e-26)

Table 1: Pearson correlation (ρ × 100) and Spearman rank correlation (rs × 100) of PyrEval scores with rubric R
(left columns), and with other PyrEval scores (right columns) given different pyramids. P-values are in parentheses.

4.3 Scoring

For matching segments from a summary to a
pyramid, PyrEval applies WMIN, a weighted in-
dependent set allocation algorithm (Sakai et al.,
2003). The scoring algorithm has proven its re-
liability to have good correlation with human an-
notation (Passonneau et al., 2016).

The input to WMIN consists of the vector
representations of all segmentations produced by
the decomposition parser for each sentence in a
new summary. Vertices in the WMIN graph are
matches between an SCU and a segment from
a new summary, weighted by the product of the
SCU weight and the mean cosine similarity of the
summary vector to the SCU vectors; we use 0.5 as
the similarity threshold (Passonneau et al., 2016).
The objective is to find an assignment of SCUs to
the new summary that produces the highest sum
of SCU weights. WMIN ensures that no SCU is
allocated more than once to a summary, and that
segments are not allocated from different segmen-
tations of the same sentence.

Four scores are reported by PyrEval: Raw score,
quality, coverage and comprehensive. Given a
student summary, the raw score is calculated by
the sum of all matched content units with their
weights. For the quality score, the raw sum is
normalized by the maximum sum that the pyramid
could assign to the same number of SCUs, using
each pyramid SCU no more than once. The cov-
erage score normalizes the raw score by the maxi-
mum sum the pyramid could assign given the aver-
age number of SCUs in a reference summary. The
comprehensive score is the average of the quality
and coverage scores.

5 Experiments and Results

5.1 Correlations with Teacher Scores

To see how PyrEval performs in an educational
context, we ran PyrEval on the student summaries
and compared the resulting scores to those as-
signed by the instructor. Five of the 136 sum-

maries had received a perfect score of 10 from the
instructor; eight additional summaries were nearly
as good, each with a score of 9. These, together
with a model summary written by the instructor,
were used in PyrEval to generate three different
pyramid content models as follows: P1 uses a ran-
dom selection of six of the thirteen highest-scoring
student summaries, and P2 uses the remaining
seven. Pt consists of the five student summaries
with perfect scores combined with the instructor’s
summary. The remaining 122 student summaries
are targets to PyrEval scoring.

As shown in Table 1, the highest Pearson cor-
relation between PyrEval scores and the instruc-
tor’s scores (Pn, R) is 49%, with an average of
47%. The highest Spearman rank correlation is
46%, with an average of 45%. Pyramid model Pt

does not show a significant advantage over P1 and
P2.

Figure 3: An SCU (SCU1, Wt=5) matched with one
rubric checkpoint (See textbox in the top). The SCU
format is: SCUindex, Weight, Segment. The seg-
ments with the same index belong to the same SCU.

5.2 Quality of Pyramid and Scoring

We examined the quality of pyramid content mod-
els built by PyrEval by comparing the 10 ideas in
the rubric with high-weighted SCUs from pyramid
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Pt, since it includes the instructor’s summary.

Figure 4: Two SCUs (SCU 5, SCU 6, Wt=4) conveying
the same meaning as a rubric checkpoint.

According to the rubric, a perfect score would
be 10. With six reference summaries in Pt, the
highest weight for an SCU is 6. The important
SCUs are those with weights in [n2 ,n]. There are
sixteen SCUs with weights greater than 2 gener-
ated by PyrEval. Table 2 shows the distribution

Weights 6 5 4 3
Number of SCUs 1 2 4 9

Table 2: Distribution of high-weighted SCUs.

of SCUs associated with different weights. The
highest score one could obtain by mentioning all
important ideas is 59.

Figure 5: 2 SCUs (SCU 2 and SCU 8) that are less
informative.

Next, we focus on comparing the SCUs to the
rubric. As seen in Figure 3, PyrEval generates
some SCUs that convey the same meaning as the
rubric. Figure 4 shows an example SCU from
pyramid Pt that corresponds to item 1 in the rubric
(cf. Figure 1).

Figure 6: The content in SCU 3 is not included in
rubric.

There are some cases when PyrEval produces
SCUs based on segments that are too short; these
SCUs are actually less informative. In Figure 5,
the content of SCU 2 serves as a object in sen-
tences: . . .a judgment should be made on if the
new information has affected what you know or
. . . and SCU 8 is used as transition in the original
statement.

We also identified one high-weight SCU not be-
ing matched with any checkpoints in rubric. See
Figure 6.

Figure 7: An scoring example. The first line of top
textbox indicates segment 3 from student summary
matched with content unit 1 in pyramid, with weight as
5. The second line is the text of student summary seg-
ment. The textbox in the bottom shows a matched con-
tent unit from pyramid model composed by 5 contribu-
tors, denoted as Contributor, . . ., Index, Content.

Finally, Figure 7 shows a match between a seg-
ment from a student summary and an SCU. The
content in this SCU also corresponds to check-
point 9 in rubric, as shown in Figure 3.

5.3 Revising the SCUs

The observations mentioned above lead us to ques-
tion whether some type of post-processing on the
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Removal Pearson (P-v) Spearman (P-v)
(2, 8) 49.37 (7.52e-09) 48.75 (1.24e-08)
(2, 3, 8) 53.39 (2.40e-10) 52.89 (3.80e-08)

Table 3: Pearson correlations and Spearman correlation
of PyrEval scores with teachers’ scores after removing
the problematic SCUs. SCUs (2, 8) are the uninforma-
tive SCUs; Adding SCU 3 includes an irrelevant SCU.

Below Above
Method Avg Avg Avg Total
H 21 76 25 122
P 27 75 20 122
Overlap 8 50 10 68

Table 4: Agreements between H - human using rubric,
and P - PyrEval

pyramid models would improve the correlation
scores. To test this supposition, we manually
removed the three uninformative high-weighted
SCUs identified above, and ran the scoring based
on the resulting adjusted pyramids.

Table 3 shows that both Pearson and Spearman
correlations are improved after removal of unin-
formative SCUs (49%), or both uninformative and
irrelevant SCUs (53%). These slight increases
suggest that post-processing, such as removing ir-
relevant and uninformative SCUs using entropy,
could help to improve the quality of a pyramid.

Figure 8: Confusion matrix of disagreements and
agreements between human using rubric and PyrEval.
Horizontal axis represents PyrEval and vertical axis
represents human evaluation.

We took another approach by binning the scores
into three ranges: below average, average and
above average. Table 4 presents two distributions
obtained from both the human and PyrEval scores
that are almost identical, and the agreements be-
tween two sets of scores. The human and PyrEval
scores identify 21 versus 27 student summaries
as below average, 25 versus 20 as above average.
There are 76 summaries marked as around average
by human and 75 by PyrEval. However, among
122 summaries, 68 of these (over 55%) overlap in
terms of where they fall in these newly defined cat-
egories. Both agreements and disagreements are
distributed as shown in Figure 8. In the extreme
disagreements, none of the summaries judged as
below average by human are evaluated as above
average by PyrEval. Additionally, only three sum-
maries PyrEval regards as below average are con-
sidered above average by human. PyrEval and ed-
ucators easily agree on summaries that fall within
the medium range, but tend to disagree on both
below average summaries and above summaries.

6 Potential Uses and Developments

The three different pyramids returned very simi-
lar Pearson and Spearman correlation coefficients.
Although they all indicated a moderately posi-
tive relationship between the human and PyrEval
scores, the similarity in their values led us to con-
sider a different approach for examining the rela-
tionships.

The above classification demonstrates how
PyrEval could be used accurately to distinguish
between good and bad student summaries. In
other words, it is highly unlikely that summaries
judged to be below average by a human scorer
would be regard as above average by PyrEval, and
vice versa. As such, the three groupings - be-
low average, average and above average - provide
scope for filtering submissions being uploaded to
an online repository as follows. Summaries in
Group C (below average) are rejected outright,
with feedback on what needs improving; those
in Group B (average) are accepted and scored by
PyrEval but, in addition, given some indication on
how the score could be improved; those in Group
A (above average) are accepted as ready to be hand
scored by the instructor.

What needs to be addressed next is the type of
feedback PyrEval might provide each summary,
and how. It is possible for the tool to list details of
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SCUs missing from the summary, thereby provid-
ing the opportunity for students to improve their
work. This would make Pyreval very effective as
a formative feedback tool, especially if the revised
summaries were then resubmitted and checked via
the same process. A future project could involve
devising a way to provide students with text-based
feedback, aimed at helping them address specific
areas of concern relating to missing content.

PyrEval’s potential for advancing student learn-
ing is not limited to helping students write better.
It could also be used in ways that significantly cut
down on the amount of marking instructors have to
do. Using the classification above could mean that
papers in Group A are hand scored by the instruc-
tor, with an assurance that such papers will in-
clude a high percentage of all of the ideas present
in the rubric. In certain situations, depending on
the assessment criteria, high quality submissions
might not need to be hand scored at all. Similarly,
those in Group C could be rejected outright, with
feedback on how to the text should be improved.
Those in Group B could be accepted with a warn-
ing about the maximum score attainable, say 70
percent. There could also be an opportunity for
the summary to be improved and resubmitted.

There is need to examine the three summaries
which the human scorer rated above average but
PyrEval classed as below average. Reading these
texts over, this time checking for clues that could
shed light on the discrepancies, revealed that the
human scorer was lenient in all three cases. The
reassessment showed that these papers were par-
ticularly well written (fluent), even though they
did not strictly meet the requirements of the as-
signment. Reading them might have brought some
relief to the human scorer; for example, following
a spate of poorly written summaries. It is therefore
possible that extra effort was made to match sec-
tions of these text to the checkpoints in the rubric,
albeit that these matches were not warranted. Hu-
man are susceptible to emotion and fatigue, which
can in turn affect their scoring behavior while au-
tomated scoring will be consistent.

7 Conclusion

The present research project extends current
knowledge about the uses of NLP in building ed-
ucational applications by discussing PyrEval as a
formative assessment tool. The discovery of a new
typology has enabled us to begin to understand

how student self-directed learning could be de-
veloped and, indeed, measured. This could have
a direct impact on the assessment practices and
policies within institutions and, ultimately, on in-
creasing retention and progression in university
courses.

A long-term goal is to develop a web-based ap-
plication, which uses PyrEval to provide forma-
tive assessment feedback on student summaries.
The ultimate aim is to extend the thematic scope
of the research to include other courses, particu-
larly STEM.
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Abstract 

There has been an increase in popularity of 

data-driven question answering systems 

given their recent success. This paper ex-

plores the possibility of building a tutorial 

question answering system for Java pro-

gramming from data sampled from a 

community-based question answering fo-

rum. This paper reports on the creation of 

a dataset that could support building such 

a tutorial question answering system and 

discusses the methodology to create the 

106,386 question strong dataset. We inves-

tigate how retrieval-based and generative 

models perform on the given dataset. The 

work also investigates the usefulness of 

using hybrid approaches such as combin-

ing retrieval-based and generative models. 

The results indicate that building data-

driven tutorial systems using community-

based question answering forums holds 

significant promise. 

1 Introduction 

Question answering in dialogue is a central con-

cern for designing the next generation of dialogue 

systems. Recent work has made great strides in 

generating dialogue, for example, with neural 

conversation models (Vinyals and Le, 2015), 

persona-based conversation models (Li et al., 

2014) and adversarial models (Li et al., 2017). 

Specifically, for responding to questions, infor-

mation-retrieval techniques have long been ex-

plored (Jeon et al., 2005; Ramos, 2003; Lowe et 

al., 2015). A critical open question is how to build 

data-driven systems for specific domains. A chal-

lenge that is faced by the community for such sys-

tems is the availability of data for those domains. 

Given that transfer learning has not yet been 

shown to yield good results (Mou et al., 2016), 

there has been investigation in the area of partially 

data-driven and hand-crafted systems (Williams et 

al., 2017). However, handcrafted systems face 

tremendous limitations in authoring. Data-driven 

dialogue systems, which derive their functionality 

from corpora, have the potential to eliminate this 

bottleneck.  

This work explores the possibility of building a 

data-driven question-answering system for Java 

programming. We leverage a promising source of 

data by drawing from community-based question 

answering forums of Stack Exchange. Forums 

typically also have sub-forums, such as Stack 

Overflow for programming questions and Ask 

Ubuntu for Ubuntu operating system related ques-

tions. Such community-based forums serve as ex-

cellent datasets for specific domains, such as pro-

gramming or IT support, that are otherwise not 

easily available to the general public. The promise 

of this data is further demonstrated by other work 

done using the Stack Exchange data: Campbell 

and Treude (2017) explore how to use semantic 

parsing to convert an English sentence or query 

into a code snippet, while Campos et al. (2016) 

investigate returning relevant question answer 

pairs for Swing, Boost and LINQ by using index-

ing techniques and building feature-based classifi-

ers. 

With technology becoming ubiquitous, having 

programming skills are highly sought after. In a 

University or MOOC setting, ‘Introduction to 

Programming’ courses typically have a large class 

size, and with a limited number of Teaching Assis-

tants, providing individual help becomes a diffi-

cult task. The work in this paper focuses on at-

tempting to assist in helping students learn Java 

programming with a data-driven tutorial question 

answering system.  

This work attempts to build the tutorial ques-

tion-answering system as both a retrieval-based 

question answering system (Ji et al., 2014) via the 
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Dual Encoder architecture (Medsker and Jain, 

2001; Bromley et al., 1994) and as a generative 

question answering system  (Ritter et al., 2011) 

via the Sequence-to-Sequence architecture 

(Sutsveker et al., 2014; Cho et al., 2014). The re-

trieval-based model answers the user’s question 

by predicting the most relevant answer from a set 

of predefined answers. In contrast to the retrieval-

based model, the generative model answers the 

user’s question by generating new answers based 

on the data on which the model was trained. Both 

of these approaches rely on building good seman-

tic representations of the input in the vector space 

using word embeddings (Mikolov et al., 2013; 

Mikolov et al., 2013).  

This work also explores the usefulness of a hy-

brid approach involving the combination of the re-

trieval-based and generative models. This paper 

thus represents the first work to explore deep 

learning techniques for data-driven tutorial dia-

logue for Java programming. 

2 Related Work 

Recently, there has been work using natural lan-

guage processing and machine learning tech-

niques within tools for programming support and 

computer science education. Zhang et al. (2016) 

explored using Deep Belief Networks to grade 

short-answer texts and showed that this approach 

outperformed conventional machine learning 

models. They also explored using student 

modeling and clustering based on engineered fea-

tures to predict the grades with reasonable suc-

cess. Wang et al. (2017) used a recurrent neural 

network to attempt to represent a student’s 

knowledge states for programming exercises and 

found that the model was able to successfully 

identify students with knowledge gaps and pro-

vide indications that assistance may be necessary.  

Work is also being done to build models from 

data that can generate their own answers to ques-

tions. Bengio et al. (2003) and Mikolov (2012) 

(Mikolov et al., 2010) were able to successfully 

construct a neural language model using recurrent 

neural networks, further reinforcing the prevailing 

conclusion that recurrent neural networks are the 

architecture of choice for this task. Sordoni et al. 

(2015) and Shang et al. (2015) were also able to 

model short conversations using a recurrent neural 

network. 

A critical turning point for generative models 

was when Sutskever et al. (2014) & Cho et al. 

(2014) introduced the sequence-to-sequence 

framework in the domain of machine translation. 

The authors proposed an architecture to convert 

one sequence to another sequence using recurrent 

neural networks as encoders and decoders. In-

spired by the previous success of recurrent neural 

networks and the sequence-to-sequence frame-

work, Vinyals and Le (2015) proposed applying 

this framework to conversational modeling, fram-

ing question answering as a machine translation 

problem. While Vinyals and Le (2015) showed 

that the model was able to give short, coherent an-

swers for queries in a variety of settings, they also 

mentioned limitations of the system: it is restricted 

to short answers and lacks a personality.  

In addition to generative systems, retrieval-

based systems have also shown success in the re-

cent past. Kannan et al. (2016) used semi-

supervised learning with an LSTM RNN along 

with semantic intent clustering to generate high-

quality responses for the Google Smart Reply sys-

tem. Lu et al. (2017) explored how to generate re-

sponses from a large answer space by using a dual 

encoder LSTM network and employing clustering 

to generate templates from their large answer set, 

reducing the answer set space for a customer sup-

port question answering system. Jeon et al. (2005) 

investigated how to find question similarity using 

word translation probabilities. Lowe et al. (2015) 

constructed a corpus of one million multi-turn dia-

logues from the Ask Ubuntu forum, then per-

formed experiments with retrieval-based models 

that demonstrated that a useful question answering 

system could be built using a dataset sampled 

from a community-based question answering fo-

rum. These techniques helped us gain insight on 

how to identify the most appropriate responses 

from a knowledge base. 

The work in this paper attempts to employ deep 

learning techniques to support computer science 

education by developing a programming support 

tool for Java Programming that provides automat-

ed tutorial question answering. The work builds 

upon recent work in retrieval-based and genera-

tive models to construct answers that combine the 

English language with the Java programming lan-

guage. 

3 Dataset 

Stack Exchange is a set of community-based 

question answering websites, with each website 

covering a specific topic. Stack Overflow deals 
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with programming questions and relies on self-

moderation through peer upvoting mechanisms. 

The user who posts the question can select the an-

swer that they deem most appropriate. In some 

cases, the original poster does not select an an-

swer, and in these cases the highest upvoted an-

swer could be considered the best answer. 

A typical Stack Overflow question can be seen 

in Figure 1. We see a title for the question at the 

top “Java String Declaration”, followed by a de-

scription, “What is the difference between ... per-

formance variation.” An important piece of in-

formation is the meta tags seen underneath the de-

scription. We see the meta tags of “java” and 

“string”, which describe on a high level to what 

the post is related. We see an upvote count to the 

left of the answer, a measure of how many other 

users agree with this answer. For the question in 

Figure 1, we see that there is an answer that has 

received the user’s accepted answer status as well 

as 29 upvotes by the community.  

Stack Exchange provides an anonymized data 

dump of all the user-contributed content, with the 

most recent version published on Dec 1, 2017. 

The data dump is in the format of a SQL database 

consisting of various components of the website 

represented in the form of SQL tables such as the 

Posts table, Users table, and Comments table. For 

the purposes of this work we consider only the 

Stack Overflow data and the Posts table. 

                                                      
1 https://stackoverflow.com/questions/3652369/ 

3.1 Working with the Stack Exchange Da-

tabase 

The Posts table contained about 38 million posts, 

i.e. all the post data on Stack Overflow as of the 

data dump publication date. Every question and 

answer posted on the website is part of the Posts 

table, with different identifiers to signify the type 

of Post and relationships between the Posts. The 

question-answer relationship was defined as fol-

lows: the original question had a post ID, and an-

swers corresponding to this question had the same 

post ID in their parentID column. 

3.2 Filtering Posts 

This work focuses on Java programming ques-

tions, which required us to narrow our search to 

Java-related questions from the Posts table. We 

first filtered to ignore questions containing the 

‘<code>’ tag in the ‘Body’ column, as our present 

goal is to answer general questions within a future 

tutorial system.  

In order to obtain posts related to Java, we used 

the Post table’s ‘Tags’ column, which contained 

meta tags related to the post, as seen in Figure 1. 

In order to ignore technology-specific questions 

such as a question about ‘Spring’ or ‘Hibernate’, 

we created a list of tags to ignore based on fre-

quency counts and prefixes (such as ‘google-api-

xx’ or ‘facebook-api-xx’). Once these filters were 

in place, we filtered to ignore all unanswered 

questions based on the ‘AnswerCount’ column in 

the Posts table. Another filtering step was to take 

all the answers that contained code snippets de-

fined by the <code> token and replace the tokens 

with ‘CODE_START’ and ‘CODE_END’ as la-

bels to mark the beginning and end of the code 

snippet. 

3.3 Dataset Statistics 

We collected all corresponding answers from our 

set of filtered questions to create an initial cor-

pus. This corpus contained 107,961 question-

description-answer triplets, of which 47,220 

questions did not have a ‘user accepted best an-

swer’. A statistical analysis based on a naive 

word split showed that there were outliers in the 

corpus, with very large maximum lengths of up 

to 10,000 words in an answer. We identified and 

removed the outliers in the corpus by removing 

the current largest sample and monitoring the av-

erage length of the corpus. We continued to re-

move the largest sample till we obtained a rela-

 

Figure 1: Sample Stack Overflow question1 
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tively stable average value. This outlier determi-

nation was performed for each sample type of 

question, description and answer separately. Ul-

timately, we removed questions longer than 19 

words, or whose descriptions were longer than 

125 words, or with answers longer than 175 

words.  

The questions, descriptions and answers in the 

dataset were then converted into a sequence of 

numbers using word indexing techniques, in order 

to be usable by a machine learning model. The 

word indexing techniques involved first tokeniz-

ing the sentences into word tokens by using an 

open-source tokenizer (Python NLTK).2 Each 

word was labelled with a unique index and stored 

as a key-value pair in a data structure. Secondly, 

the words in each sentence were replaced by the 

corresponding indexes using the data structure 

created above to obtain a sequence of numbers 

which corresponded to the original sentence. A to-

tal of 284, 827 words were obtained through to-

kenization and subsequently indexed in the data 

structure. 

To maintain the uniformity of sentence length, 

we ‘pre-pad’ the sequence with 0 before the origi-

nal sequence. Adding zeros at the start of the orig-

inal sequence (if required) allows the network to 

accept a fixed sequence length and the nature of 

the number zero also allows us to denote that the 

element in the sequence is an empty space. We 

‘pre-pad’ and thus structure the sequence with ac-

tual content towards the end of the sequence be-

cause a time-based neural network is more likely 

to ‘remember’ time steps towards the end of the 

sequence, as those would be stored in the more re-

cent memory which is captured by the network. 

The filtering of the sentences with length 

thresholds is important, as it is difficult to capture 

semantic representations for lengthy text using 

word embeddings. Setting these thresholds result-

ed in a reduced dataset of 106,386 questions. The 
                                                      
2 NLTK implementation: https://www.nltk.org/ 

statistics for the final dataset are shown in Table 1. 

We also make this dataset available for public use 

as a contribution of this paper.3 

4 Methods and Techniques 

With the future objective of building a data-driven 

tutorial question-answering system, we first ex-

plore three overarching approaches of retrieval-

based models, generative models, and hybrid 

models for Java programming-based tutorial ques-

tion answering.  

The challenges associated with this dataset are 

that unlike traditional question answering datasets, 

this dataset has three streams of inputs. Each 

stream has its own unique descriptors such as vo-

cabulary and length. The answers in the dataset 

contain interspersed English and Java, which 

could make building meaningful word vector rep-

resentations difficult. Long sentences are typically 

more difficult to represent in a vector space and 

this dataset contains longer typical sentences for 

the description and answer than those seen in pre-

vious work of Lowe et al. (2015) and Lu et al. 

(2017).  As a part of this work, we investigate 

which combinations of inputs from the dataset 

yield the most optimal results.  

4.1 Dual Encoder LSTM (Siamese network) 

The Siamese Network or Dual Encoder architec-

ture (Medsker and Jain, 2001; Bromley et al., 

1994) has shown success in the recent past to 

build a retrieval-based question answering system 

(Lowe et al., 2015; Lu et al., 2017).  

To use the dataset with the Dual Encoder archi-

tecture, we needed to perform some additional 

pre-processing. We first built a dataset containing 

the question along with its description and the cor-

responding correct answer, and we assigned a la-

bel of 1 to these samples. We then created a sam-

ple containing the incorrect answer for a given 

question and description pair. This was done by 

randomly choosing another answer from the rest 

of the answer set and assigning a label of 0 to 

these samples.  

Description & Answer Dual Encoder 

(DADE): This architecture consisted of a Dual 

Encoder Bidirectional LSTM network, where the 

first encoder encoded the description of the ques-

tion and the second encoder encoded the answer 

                                                      
3 https://cise.ufl.edu/research/learndialogue/data/java-

stackoverflow-QA-dec2017.zip 

Average Question Length 8.68013 

Average Description Length 71.45428 

Average Answer Length 87.54342 

Vocabulary Size 284,827 

Table 1: Final Dataset Statistics 
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statement. The large maximum sequence lengths 

influenced us to choose to use a Bidirectional 

LSTM (Schuster and Paliwal, 1997) as it allows 

the network to understand the context of a word 

with respect to both previous and next words and 

thus build better vector representations of the 

words. Each bidirectional encoder’s output was 

merged together to obtain a single 600-

dimensional output, and then this output was fed 

to a fully connected network of two layers, with 

the first layer containing 500 neurons and the sec-

ond layer containing 300 neurons. This was then 

run through a sigmoid activation function in order 

to obtain the result. 

This architecture used pre-trained GloVe word 

embeddings which were updated during the train-

ing phase. The LSTM cells contained 300 hidden 

units and 2 layers and optimized the binary cross-

entropy loss function.  

Question & Description Dual Encoder 

(QDDE): This architecture was similar to the De-

scription and Answer Dual Encoder in that it con-

sisted of a Dual Encoder LSTM network, where 

the first encoder encoded the question statement 

and the second encoder encoded the description 

statement. Each encoder’s outputs were merged 

together to obtain a single 300-dimensional output 

and then this output was run through a sigmoid 

activation function in order to obtain the result.  

Again, this architecture also used pre-trained 

GloVe word embeddings which were updated dur-

ing the training phase. The LSTM cells contained 

300 hidden units and a single layer and optimized 

the binary cross-entropy loss function.  

The rationale for this architecture was to build a 

dual encoder that would be able to predict a de-

scription given a question. We wanted to investi-

gate whether the dual encoder could learn rela-

tionships between smaller questions and longer 

descriptions. If we could successfully predict the 

description for a given question, it would allow us 

to leverage the similar lengths of the description 

and answer to obtain better results.  

4.2 Techniques to answer queries 

The aforementioned architectures were able to de-

termine answers for the given training, validation 

and testing sets, where the correct answers are 

predetermined. To extend our model’s use to the 

real world, we needed to define a different set of 

strategies to answer questions for which we do not 

know the predetermined answer. We explore our 

proposed strategies in the following section.  

Question Description Matching followed by 

Description Answer Matching: This approach 

attempted to find a similarity measure between a 

given user question and a description of the given 

  

Figure 2. Question Description Matching followed by Description Answer Matching 
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question via QDDE. The best matching descrip-

tion was then run against all the answers to deter-

mine the top 10 best possible answers, as seen in 

Figure 2. The intuition behind using this approach 

was that the description-answer dual encoder 

should provide better results as it used a bi-

directional LSTM network and both sequence 

lengths were approximately the same.  

4.3 Sequence-to-Sequence Models 

Sequence-to-Sequence models are generative 

models that, unlike their retrieval-based counter-

parts, do not rely on choosing from an existing set 

of answers but rather generate answers on their 

own. 

The preprocessing steps for the sequence-to-

sequence model were identical to the prepro-

cessing steps specified for the dual encoder mod-

el.  

Description to Answer Encoder - Decoder:  

This architecture used the description of a ques-

tion as the input to the encoder and attempted to 

match the actual answer to the question using the 

decoder. The intuition behind matching a de-

scription to the answer was that as the sequences 

are of almost equal length, this could then be 

framed as a machine translation problem, which 

has seen significant success with the sequence-

to-sequence model (Sutskever et al., 2014; Cho 

et al., 2014; Vinyals and Le, 2015).  

The encoder was a bidirectional recurrent neu-

ral network using LSTM cells. We chose bidirec-

tionality for better sentence vector representation, 

and LSTM cells for their ability to capture long-

term dependencies. The decoder is a standard re-

current neural network with LSTM cells.  

The LSTM cells contained 512 hidden units 

and 2 layers. We used a dropout (Srivastava et al, 

2014) probability of 0.2 and gradient normaliza-

tion (Pascanu et al., 2013) of 3.6. We used 15 

buckets, as the length of 175 (maximum answer 

length) would then be equally split into smaller 

chunks of size 12 increments. The Luong attention 

mechanism (Luong et al., 2015) was implemented 

in order to boost accuracy, as was beam search 

(Wiseman and Rush, 2016) of beam width 10 in 

order to obtain a better output for a given input. 

The vocabulary had to be reduced to 60,000 due 

to memory constraints.  

All the hyperparameters stated for the networks 

discussed above were determined by performing a 

 

Figure 3. Hybrid Architecture Combining Dual Encoder with Sequence-to-Sequence Model 
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grid search and cross-validating with the valida-

tion dataset. 

4.4 Hybrid architecture (Dual Encoder + 

Sequence-to-Sequence) 

In this work, we built a hybrid structure that com-

bined both the retrieval-based model of the dual 

encoder with the generative model of the se-

quence-to-sequence model. The intuition behind 

building this model was that a user typically asks 

questions with a length of fewer than 20 words 

and may not necessarily have enough of a descrip-

tion to fit the 125-word limit sufficiently. The pro-

posed architecture combats this issue by obtaining 

the user question and trying to find the most ap-

propriate description from a set of prefixed de-

scriptions, this is done by the question and de-

scription dual encoder mentioned earlier. The en-

tire workflow can be seen in Figure 3.  

We take the top 10 predicted descriptions and 

feed these descriptions as input to the description 

to answer sequence-to-sequence model.  

The Description to Answer model would result 

in 10 different generated answers and the answers 

were ranked based on the input descriptions rank-

ing. This architecture also lets us leverage the na-

ture of the dataset, in that it contains a question, a 

description and an answer as opposed to a tradi-

tional question-answer pair dataset. 

5 Experiments 

All the experiments performed as a part of this 

work were done on a desktop with the following 

specification i7 8-core CPU, 32GB RAM, and 

NVIDIA GTX 1070 8GB VRAM. 

The dataset of 106,386 was split into separate 

training, testing and validation sets. Given the 

large network sizes used in the experiments, there 

were a correspondingly large number of parame-

ters to be trained for each network, which in turn 

required a sufficiently large dataset to train on. 

Taking this into consideration we chose to not fol-

low the traditional 80-20 train-test split but rather 

maintain a large enough training set and use the 

rest of the data for testing and validation. The 

training set thus contained 100,000 questions and 

corresponding description and answers triplets, 

the test dataset contained 5,000 triplets and the 

validation set contained 1,386 triplets.  

For the dual encoder experiments, the training 

set size was 200,000 as we had to use both posi-

tive and negative samples while training. Whereas 

for the sequence-to-sequence model training we 

used only 100,000 description and answer pairs.  

5.1 Quantitative Analysis 

Dual Encoder: The recall@k metric works in 

conjunction with the group size. Given that we 

have a group size of 5, recall@1 tells us that if we 

had the option to choose 1 out of the 5 options, 

what is the probability that it would be correct. We 

take a look at Table 2, where the group size is 10 

and we compare another popular retrieval-based 

method, TF-IDF (Ramos, 2003), to our obtained 

results. TF-IDF has been outperformed by dual 

encoders for conversational models in the past 

(Lowe et al., 2015), but we see some interesting 

results for our dataset.  

We see that for DADE, TF-IDF is able to 

slightly outperform the dual encoder at the re-

call@1 scores, but the dual encoder outperforms 

TF-IDF for recall@2 and recall@5. We further 

see that QDDE is outperformed by TF-IDF in 

both recall@1 and recall@2, only for QDDE to do 

better in recall@5.  

We believe that we see this behavior because 

TF-IDF works based on word similarity and rates 

rare words between two documents as highly re-

lated (Ramos, 2003). Questions and descriptions 

containing common phrases are better perceived 

by TF-IDF than by the dual encoders. In addition, 

previous results like Lowe et al. (2015), worked 

on a corpus with an average word count of 10 

words where they showed that the dual encoder 

architecture significantly outperformed TF-IDF, 

whereas our work deals with much longer utter-

ances. In spite of long utterances, we see that the 

dual encoders do a comparable or better job than 

TF-IDF. 

Sequence-to-Sequence: We followed Google’s 

Neural Machine Translation tutorial (Luong et al., 

2017) to build our sequence-to-sequence models. 

Model Name recall@1 recall@2 recall@5 

DA TF-IDF 0.7837 0.8437 0.9137 

DADE 0.7052 0.8672 0.9798 

QA TF-IDF 0.9483 0.9685 0.9785 

QDDE 0.8542 0.951 0.9928 

Table 2. Testing recall@k for group size 10 
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An important point to note is that while traditional 

machine translations are judged based on BLEU 

score (Papineni et al., 2002) and perplexity, a con-

versational model cannot be judged on BLEU and 

hence we used perplexity as the primary measure 

of judgment  (Shao et al., 2017).  

Description to Answer Sequence-to-

Sequence Model: The perplexity for the dev set 

continued to decrease, thus we could assume no 

overfitting had occurred over the epochs of train-

ing this network. The dev and test perplexity 

scores were better than the previous model, with 

scores of 68.91 and 70.15 respectively, and this is 

also reflected in the coherent responses made by 

the model. 

5.2 Qualitative Analysis 

We chose a question which was neither part of the 

training, development nor test corpus to analyze 

the qualitative results. The reason these results are 

presented as qualitative is that since its part of nei-

ther of the corpus we do not have the actual ex-

pected response. The question that we chose is a 

fairly simple and straightforward question: 

“How can we create an integer array in java” 

We take a look at the responses given by the 

models in Table 3. As the models provide multiple 

answers, we have handpicked the answer that we 

thought was most relevant from the top 10. We 

have also cleaned the answer by referring the orig-

inal post on Stack Overflow for readability.  

The QDDE+DADE model produces a response 

that suggests using Java collections to achieve the 

same purpose of the array. The drawback here is 

that it diverges from the actual answer but is still 

relevant nonetheless. Another one of the top ten 

answers suggested looking at some of the Java 

documentation related to arrays. 

We now take a look at the responses generated 

by sequence-to-sequence models and the hybrid 

model. While the hybrid model suggests using an 

‘ArrayList’ instead of an array, it was able to form 

different codes for the condition of the ‘for’ loop 

in both the answers, suggesting that it may under-

stand a relationship between functions such as 

‘get’ and ‘add’ and the ‘for’ loop condition.  

It is also interesting to see the response gener-

ated by the Description to Answer sequence-to-

sequence model. We can analyze some of the 

aforementioned testing responses generated via 

the Description to Answer Sequence-to-Sequence 

model as can be seen in Table 4. 

By analyzing the generated responses for the 

samples above, we can see that the model has 

learned how to create new objects and has also 

learned what kind of commands are related to a 

given object, such as the date in Java needs 

simpledateformat class or that the file could need 

a file path. Perhaps the most notable was the crea-

                                                      
4 The sequence-to-sequence model does not include non-

word tokens such as ‘=’ or ‘{‘. These have been added for 

readability. 

Model:  Best Output: 

QDDE + 

DADE 
you can use an arraylist or a list of in-

tegers instead so that you can add items 

to the list as and when required also the 

list would then have only as many ele-

ments as the number of inputs syntax 

CODE_START List<Integer> = new 

ArrayList<Integer>() CODE_END to 

add elements to the list use 

CODE_START elements.add(new 

Item()) CODE_END to access mem-

bers of the list use CODE_START el-

ements.get(index) CODE_END 

Hybrid 

Model 

(Response 

#1) 

CODE_START 
public static void main (string args) 
 list<integer> list = new ar-

raylist<integer>  
for (int i = 0; i < list.size(); i++){ 
           system.out.println(list.get(i)); 
}  

CODE_END
4 

Actual output: code start list lt integer 

gt list new arraylist lt integer gt for int i 

0 i lt list size i system out println list 

get i code end 

Hybrid 

Model 

(Response 

#2) 

CODE_START 
public static void main(string args) { 
 list<integer> list = new ar-

raylist<integer>  
for (int i = 0; i < 10; i++){ 
           list.add(i); 
           system.out.println(list.get(i)); 
}  

CODE_END
3 

Actual output: code start public static 

void main string args list lt integer gt 

list new arraylist lt integer gt for int i 0 

i lt 10 i list add i system out println list 

get i code end 

Table 3. Top Responses for “how can we create 

an integer array in java” 
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tion of a coherent ‘for’ loop using the previously 

created object and referencing the appropriate 

method.  

We also see that the models are able to success-

fully combine the English language along with ja-

va code, starting answers with phrases such as 

“you can use...”, “i dont think there is a way...”, “i 

am not sure but try…” and so on. The models are 

also able to draw a clear line between code snip-

pets and English language and code start labels 

are mostly correctly completed with code end la-
                                                      
5 https://stackoverflow.com/questions/7631470 
6 https://stackoverflow.com/questions/40983790 
7 https://stackoverflow.com/questions/6390581 

bels. There have also been instances where Eng-

lish phrases such “you can also try” are used be-

tween two code snippets.  

While these examples have been sampled from 

a much larger set in which not all the responses 

are as appropriate, this still shows promise in us-

ing this architecture to build models that can ap-

propriately respond to a query by generating their 

own response. 

6 Conclusion 

This work has examined how we can leverage 

community-based question answering forums as a 

source of data to build a dataset specific to general 

Java-based programming questions. We have seen 

that retrieval-based models obtain high recall rates 

on the testing set but are restricted only to the an-

swer set available. On the other hand, generative 

models are able to successfully combine the 

English language along with Java code to make 

coherent responses at times, but the responses are 

small and do not completely answer the question. 

We found reasonable success with the hybrid 

model by combining the retrieval-based approach 

with the generative approach. The proposed ap-

proaches show promise in building a useful tutori-

al system based on the sampled dataset. These are 

the first steps made in that direction.  

This work could be furthered by investigating 

jointly training the hybrid model to improve de-

scription selection and answer generation. One 

could also frame this task as a machine compre-

hension task, where the entire answer set could be 

used as the context. Doing so would allow us to 

leverage the memory network architecture, which 

performs better at tasks involving storing long-

term memory. Finally, we could explore using ad-

versarial training, as it has seen success on con-

versational models in the recent past (Li et al., 

2017). 
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1 

Question: how to format a date in java 

 

Description: how can change this date for-

mat 2011 09 07...
5 

Generated 

Response: 
CODE_START 
simpledateformat sdf new 

simpledateformat yyyy mm dd 

hh mm ss …... 

 

2 

Question: java does not recognize a file 

when it begins with file 

 

Description: java says a file does not exist 

when it is a valid file path ...
6 

Generated 

Response: 
CODE_START 
file file new file path to file  
CODE_END 

 

3 

Question: how to track of other applica-

tion's memory and cpu usage by 

java coding 

 

Description: i want to show cpu and memory 

utilization of any application...
7 

Generated 

Response: 
you can take a look at the 

CODE_START java util con-

current CODE_END package 

http docs oracle com javase tu-

torial essential environment 

sysprop html 

 Table 4: Sample Sequence-to-Sequence Gen-

erated Responses from Test Set 
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Abstract

We investigate how machine learning mod-
els, specifically ranking models, can be used
to select useful distractors for multiple choice
questions. Our proposed models can learn to
select distractors that resemble those in ac-
tual exam questions, which is different from
most existing unsupervised ontology-based
and similarity-based methods. We empiri-
cally study feature-based and neural net (NN)
based ranking models with experiments on
the recently released SciQ dataset and our
MCQL dataset. Experimental results show
that feature-based ensemble learning methods
(random forest and LambdaMART) outper-
form both the NN-based method and unsuper-
vised baselines. These two datasets can also be
used as benchmarks for distractor generation.

1 Introduction

Multiple choice questions (MCQs) are widely
used as an assessment of students’ knowledge and
skills. A MCQ consists of three elements: (i) stem,
the question sentence; (ii) key, the correct answer;
(iii) distractors, alternative answers used to dis-
tract students from the correct answer. Among
all methods for creating good MCQs, finding rea-
sonable distractors is crucial and usually the most
time-consuming. We here investigate automatic
distractor generation (DG), i.e., generating dis-
tractors given the stem and the key to the ques-
tion. We focus on the case where distractors are
not limited to single words and can be phrases and
sentences.

Rather than generate trivial wrong answers, the
goal of DG is to generate plausible false an-
swers - good distractors. Specifically, a “good”
distractor should be at least semantically related
to the key (Goodrich, 1977), grammatically cor-
rect given the stem, and consistent with the se-
mantic context of the stem. Taking these cri-

terion into consideration, most existing methods
for DG are based on various similarity measures.
These include WordNet-based metrics (Mitkov
and Ha, 2003), embedding-based similarities (Guo
et al., 2016; Kumar et al., 2015; Jiang and Lee,
2017), n-gram co-occurrence likelihood (Hill and
Simha, 2016), phonetic and morphological simi-
larities (Pino and Eskenazi, 2009), structural simi-
larities in an ontology (Stasaski and Hearst, 2017),
a thesaurus (Sumita et al., 2005), context simi-
larity (Pino et al., 2008), context-sensitive infer-
ence (Zesch and Melamud, 2014), and syntactic
similarity (Chen et al., 2006). Then distractors are
selected from a candidate distractor set based on
a weighted combination of similarities, where the
weights are determined by heuristics.

In contrast to the above-mentioned similarity-
based methods, we apply learning-based ranking
models to select distractors that resemble those in
actual exam MCQs. Specifically, we propose two
types of models for DG: feature-based and NN-
based models. Our models are able to take existing
heuristics as features and learn from these ques-
tions a function beyond a simple linear combina-
tion. Learning to generate distractors has been pre-
viously explored in a few studies. Given a blanked
question, Sakaguchi et al. (2013) use a discrimi-
native model to predict distractors and Liang et al.
(2017) apply generative adversarial nets. They
view DG as a multi-class classification problem
and use answers as output labels while we use
them as input. Other related work (Welbl et al.,
2017) uses a random forest. However, with the re-
ported binary classification metrics, the quality of
the top generated distractors is not quantitatively
evaluated. Here we conduct a more comprehen-
sive study on various learning models and devise
ranking evaluation metrics for DG.

Machine learning of a robust model usually
requires large-scale training data. However, to
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the best of our knowledge, there is no bench-
mark dataset for DG, which makes it difficult
to directly compare methods. Prior methods
were evaluated on different question sets col-
lected from textbooks (Agarwal and Mannem,
2011), Wikipedia (Liang et al., 2017), ESL cor-
puses (Sakaguchi et al., 2013), etc. We propose
to evaluate DG methods with two datasets: the re-
cently released SciQ dataset (Welbl et al., 2017)
(13.7K MCQs) and the MCQL dataset (7.1K
MCQs) that we made. These two datasets can
be used as benchmarks for training and testing
DG models. Our experimental results show that
feature-based ensemble learning methods (random
forest and LambdaMART) outperform both the
NN-based method and unsupervised baselines for
DG.

2 Learning to Rank for Distractor
Generation

We solve DG as the following ranking problem:
Problem. Given a candidate distractor set D and
a MCQ datasetM = {(qi, ai, {di1, ..., dik})}Ni=1,
where qi is the question stem, ai is the key, Di =
{di1...dik} ⊆ D are the distractors associated with
qi and ai, find a point-wise ranking function r:
(qi, ai, d) → [0, 1] for d ∈ D, such that distrac-
tors in Di are ranked higher than those in D−Di.

This problem formulation is similar to “learning
to rank” (Liu et al., 2009) in information retrieval.
To learn the ranking function, we investigate two
types of models: feature-based models and NN-
based models.

2.1 Feature-based Models
2.1.1 Feature Description
Given a tuple (q, a, d), a feature-based model first
transforms it to a feature vector φ(q, a, d) ∈ Rd
with the function φ. We design the following fea-
tures for DG, resulting in a 26-dimension feature
vector:

• Emb Sim. Embedding similarity between q
and d and the similarity between a and d. We
use the average GloVe embedding (Penning-
ton et al., 2014) as the sentence embedding.
Embeddings have been shown to be effec-
tive for finding semantically similar distrac-
tors (Kumar et al., 2015; Guo et al., 2016).

• POS Sim. Jaccard similarity between a and
d’s POS tags. The intuition is that ditractors

might also be noun phrases if the key is a
noun phrase.

• ED. Edit distance between a and d. This mea-
sures the spelling similarity and is useful for
cases such as selecting “RNA” as a distractor
for “DNA”.

• Token Sim. Jaccard similarities between q
and d’s tokens, a and d’s tokens, and q and a’s
tokens. This feature is motivated by the ob-
servation that distractors might share tokens
with the key.

• Length. a and d’s character and token lengths
and the difference of lengths. This feature is
designed to explore whether distractors and
the key are similar in terms of lengths.

• Suffix. The absolute and relative length of a
and d’s longest common suffix. The key and
distractors often have common suffixes. For
example, “maltose”, “lactose”, and “suctose”
could be good distractors for “fructose”.

• Freq. Average word frequency in a and d.
Word frequency has been used as a proxy for
words’ difficulty levels (Coniam, 1997). This
feature is designed to select distractors with a
similar difficulty level as the key.

• Single. Singular/plural consistency of a and
d. This checks the consistency of singular vs.
plural usage, which will select grammatically
correct distractors given the stem.

• Num. Whether numbers appear in a and d.
This feature will cover cases where distrac-
tors and keys contain numbers, such as “90
degree”, “one year”, “2018”, etc.

• Wiki Sim. If a and d are Wikipedia en-
tities, we calculate their Wiki embedding
similarity. The embedding is trained us-
ing word2vec (Mikolov et al., 2013) on
Wikipedia data with each Wiki entity treated
as an individual token. This feature is a com-
plement to Emb Sim where sentence embed-
ding is a simple average of word embeddings.

2.1.2 Classifiers
We study the following three feature-based clas-
sifiers: (i) Logistic Regression: an efficient gen-
eralized linear classification model; (ii) Random
Forest (Breiman, 2001): an effective ensemble
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classification model; (iii) LambdaMART (Burges,
2010): a gradient boosted tree based learning-to-
rank model. To train these models, following pre-
vious notations, we use Di as positive examples
and sample fromD−Di to get negative examples.

2.2 NN-based Models
Based on the recently proposed method IR-
GAN (Wang et al., 2017), we propose an adver-
sarial training framework for DG. Our framework
consists of two components: a generator G and a
discriminatorD. G is a generative model that aims
to capture the conditional probability of generat-
ing distractors given stems and answers P (d|q, a).
D is a discriminative model that estimates the
probability that a distractor sample comes from the
real training data rather than G.

Assume that the discriminator is based on an ar-
bitrary scoring function fφ(d, q, a) ∈ R parame-
terized by φ, then the objective for D is to maxi-
mize the following log-likelihood:

max
φ

Ed∼Ptrue(d|q,a)[log(σ(fφ(d, q, a)))]

+ Ed∼Pθ(d|q,a)[log(1− σ(fφ(d, q, a)))] (1)

where σ is the sigmoid function. For the gen-
erator G, we choose another scoring function
fθ(d, q, a) ∈ R parameterized by θ, evaluate it on
every possible distractor di given a (q, a) pair, and
sample generated distractors based on the discrete
probability after applying softmax:

pθ(di|q, a) =
exp(τ · fθ(di, q, a))∑
j exp(τ · fθ(dj , q, a))

(2)

where τ is a temperature hyper-parameter.
In practice, since the total size of distractors is

large, it is very time-consuming to evaluate on ev-
ery possible di. Following the common practice
as in (Wang et al., 2017; Cai and Wang, 2018), we
uniformly sampleK candidate distractors for each
(q, a) pair and evaluate fθ on each di,∀i ∈ [1,K].
The objective for G is to “fool” D so that D mis-
classifies distractors generated by G as positive:

min
θ

Ed∼Pθ(d|q,a)[log(1− σ(fφ(d, q, a)))] (3)

The training procedure follows a two-player
minimax game, where D and G are alternatively
optimized towards their own objective.

The scoring function fφ and fθ can take arbi-
trary forms. IRGAN utilizes a convolutional neu-

Dataset |D| # MCQs # Train # Valid # Test Avg. # Dis

SciQ 22379 13679 11679 1000 1000 3
MCQL 16446 7116 5999 554 563 2.91

Table 1: Dataset Statistics.

ral network based model to obtain sentence em-
beddings and then calculates the cosine similari-
ties. However, such a method ignores the word-
level interactions, which is important for the DG
task. For example, if the stem asks “which physi-
cal unit”, good distractors should be units. There-
fore, we adopt the Decomposable Attention model
(DecompAtt) (Parikh et al., 2016) proposed for
Natural Language Inference to measure the simi-
larities between q and d. We also consider the sim-
ilarities between a and d. Since they are usually
short sequences, we simply use the cosine similar-
ity between summed word embeddings. As such,
the scoring function is defined as a linear combi-
nation of DecompAtt(d, q) and Cosine(d, a).

2.3 Cascaded Learning Framework

To make the ranking process more efficient and
effective, we propose a cascaded learning frame-
work, a multistage ensemble learning framework
that has been widely used for computer vision (Vi-
ola and Jones, 2001). We experiment with 2-
stage cascading, where the first stage ranker is a
simple model trained with part of the features in
Sec. 2.1.1 and the second stage ranker can be any
aforementioned ranking model. Such cascading
has two advantages: (i) The candidate size is sig-
nificantly reduced by the first stage ranker, which
allows the use of more expensive features and
complex models in the second stage; (ii) The sec-
ond stage ranker can learn from more challenging
negative examples since they are top predictions
from previous stage, which can make the learning
more effective.

3 Experiments

3.1 Datasets

We evaluate the proposed DG models on the fol-
lowing two datasets: (i) SciQ (Welbl et al., 2017):
crowdsourced 13.7K science MCQs covering bi-
ology, chemistry, earth science, and physics. The
questions span elementary level to college intro-
ductory level in the US. (ii) MCQL: 7.1K MCQs
crawled from the Web. Questions are about biol-
ogy, physics, and chemistry and at the Cambridge
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O level and college level.
For SciQ, we follow the original train/valid/test

splits. For MCQL, we randomly divide the dataset
into train/valid/test with an approximate ratio of
10:1:1. We convert the dataset to lowercase, filter
out the distractors such as “all of them”, “none of
them”, “both A and B”, and keep questions with
at least one distractor. We use all the keys and dis-
tractors in the dataset as candidate distractor set
D. Table 1 summarizes the statistics of the two
datasets after preprocessing. |D| is the number of
candidate distractors. # MCQs is the total num-
ber of MCQs. # Train/Valid/Test is the number of
questions in each split of the dataset. Avg. # Dis
is the average number of distractors per question.

3.2 Experiment Settings

We use Logistic Regression (LR) as the first stage
ranker. As for the second stage, we compare LR,
Random Forest (RF), LambdaMART (LM), and
the proposed NN-based model (NN). Specifically,
we set C to 1 for LR, use 500 trees for RF, and
500 rounds of boosting for LM. For first stage
training, the number of negative samples is set to
be equal to the number of distractors, which is
3 for most questions. And we sample 100 neg-
ative samples for second stage training. More
details can be found in the supplementary mate-
rial. In addition, we also study the following un-
supervised baselines that measure similarities be-
tween the key and distractors: (i) pointwise mutual
information (PMI) based on co-occurrences; (ii)
edit distance (ED), which measures the spelling
similarity; and (iii) GloVe embedding similarity
(Emb Sim). For evaluation, we report top re-
call (R@10), precision (P@1, P@3), mean aver-
age precision (MAP@10), normalized discounted
cumulative gain (NDCG@10), and mean recipro-
cal rank (MRR).

3.3 Experimental Results

First Stage Ranker The main goal of the first
stage ranker is to reduce the candidate size for the
later stage while achieving a relatively high re-
call. Figure 1 shows the Recall@K for the first
stage ranker on the two datasets. Validation set is
used for choosing topK predictions for later stage
training. We empirically set K to 2000 for SciQ
and 2500 for MCQL to get a recall of about 90%.

Distractor Ranking Results Table 2 lists the
ranking results for DG. From the table we observe
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Figure 1: Recall@K for the first stage ranker.

1st Stage
Ranker

2nd Stage
Ranker

R@10 P@1 P@3 MAP
@10

NDCG
@10

MRR

LR

PMI 11.0 2.1 3.1 3.6 6.8 8.8
ED 14.3 12.6 9.2 8.7 12.5 18.9
Emb Sim 19.3 9.3 9.0 9.6 14.2 17.5
LR 29.7 14.8 14.1 14.7 22.1 27.6
RF 44.1 36.8 27.0 28.4 38.0 49.2
LM 43.3 37.2 26.4 28.0 37.5 49.3
NN 24.6 11.7 11.7 11.6 23.1 25.7

RF — 41.4 31.2 23.7 25.0 34.4 44.0
LM — 39.1 26.5 22.6 22.9 31.8 40.4

(a) SciQ
1st Stage
Ranker

2nd Stage
Ranker

R@10 P@1 P@3 MAP
@10

NDCG
@10

MRR

LR

PMI 20.7 5.9 6.8 7.8 13.5 16.2
ED 32.1 34.6 23.6 23.7 30.5 42.8
Emb Sim 32.1 25.6 18.4 20.4 26.9 33.9
LR 42.9 29.3 24.5 26.6 35.1 42.2
RF 48.4 45.5 32.7 35.4 43.8 54.8
LM 49.4 42.8 31.5 34.5 43.4 53.6
NN 36.5 22.9 22.5 22.7 34.6 36.7

RF — 48.0 40.9 30.4 33.6 42.0 51.1
LM — 46.7 42.5 30.6 33.0 41.6 52.7

(b) MCQL

Table 2: Ranking results (%) for DG.

the following: (i) The proposed ranking mod-
els perform better than unsupervised similarity-
based methods (PMI, ED, and Emb Sim) most
of the time, which is expected since similarity-
based heuristics are used as features. (ii) Ensem-
ble models - RF and LM - have comparable perfor-
mance and are significantly better than other meth-
ods. These ensemble methods are more suitable
for capturing the nonlinear relation between the
proposed feature set and distractors. (iii) NN per-
forms worse than feature-based models. The main
reason is that NN is solely based on word embed-
dings. Although embedding similarity is the most
important feature, information provided by other
top features such as ED, Suffix, Freq is missing in
NN. Given the limited training examples (11.6K
for SciQ and 6K for MCQL), it is difficult to learn
a robust end-to-end NN-based model.
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# SciQ MCQL
1 Emb Sim (a, d) Emb Sim (a, d)
2 Freq d Token Sim (a, d)
3 Freq a ED
4 Wiki Sim Suffix
5 Emb Sim (q, d) Suffix / len(d)
6 Suffix Freq a
7 Suffix / len(d) Wiki Sim
8 Suffix / len(a) Freq d
9 Token Sim (a, d) Emb Sim (q, d)
10 ED Suffix / len(a)

Table 3: Top 10 important features.

Feature Analysis We conduct a feature analy-
sis to have more insights on the proposed feature
set. Feature importance is calculated by “mean de-
crease impurity” using RF. It is defined as the total
decrease in node impurity, weighted by the proba-
bility of reaching that node, averaged over all trees
of the ensemble. Table 3 lists the top 10 important
features for SciQ and MCQL datasets. We find
that: (i) the embedding similarity between a and
d is the most important feature, which shows em-
beddings are effective at capturing semantic rela-
tions between a and d. (ii) String similarities such
as Token Sim, ED, and Suffix are more important
in MCQL than those in SciQ. This is consistent
with the observation that ED has relatively good
performance as seen in Table 2b. (iii) The set of
top 10 features is the same for SciQ and MCQL,
regardless of order.

Effects of Cascaded Learning Since we choose
the top 2000 for SciQ and 2500 for MCQL from
first stage, the ranking candidate size is reduced by
91% for SciQ and 85% for MCQL, which makes
the second stage learning more efficient. To study
whether cascaded learning is effective, we exper-
iment with RF and LM without 2-stage learning,
as shown as the bottom two rows in Table 2. Here
we sample 100 negative samples for training mod-
els in order to make a fair comparison with other
methods using 2-stage learning. We can see that
the performance is better when cascaded learning
is applied.

4 Conclusion

We investigated DG as a ranking problem and
applied feature-based and NN-based supervised
ranking models to the task. Experiments with the
SciQ and the MCQL datasets empirically show
that ensemble learning models (random forest and
LambdaMART) outperform both the NN-based

method and unsupervised baselines. The MCQL
data is publicly available upon request. The two
datasets can be used as benchmarks for further DG
research. Future work will be to design a user in-
terface to implement the proposed models to help
teachers with DG and collect more user data for
model training.
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A Training and Implementation Details

Feature-based Models. We use the implemen-
tations of scikit-learn (Pedregosa et al., 2011) for
logistic regression and random forest experiments.
For LambdaMART experiments, we use the XG-
Boost library (Chen and Guestrin, 2016). For
both SCIQ and MCQL datasets we train with 500
rounds of boosting, step size shrinkage of 0.1,
maximum depth of 30, minimum child weight of
0.1 and minimum loss reduction of 1.0 for parti-
tion. For calculating Wiki Sim features, we use a
Wikipedia dump of Oct. 2016. Part of speech tags
are calculated with NLTK (Bird and Loper, 2004).

The logistic regression used for the first stage
ranker is based on features including: Emb Sim,
POS Sim, ED, Token Sim, Length, Suffix, and
Freq. Models for the second stage ranker is based
on all features described in Sec. 2.1.1.

NN-based Models. Our NN-based models are
implemented with TensorFlow (Abadi et al.,
2016). When training the generator, we first uni-
formly select K = 512 candidates and then sam-
ple 16 distractors according to Equation 2. The
temperature τ is set to 5. Our scoring functions are
based on Decomposable Attention Model (Parikh
et al., 2016). The word embeddings are initialized
using the pre-trained GloVe (Pennington et al.,
2014) (840B tokens), and the embedding size is
300. Our model is optimized using Adam algo-
rithm (Kingma and Ba, 2015) with a learning rate
of 1e-4 and a weight decay of 1e-6.

Since the sampling process in G is not differen-
tiable, the gradient-decent-based optimization in
the original GAN paper (Goodfellow et al., 2014)
is not directly applicable. To tackle this problem,
we use policy gradient based reinforcement learn-
ing as in IRGAN.
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Abstract

In this paper we present NLI-PT, the first Por-
tuguese dataset compiled for Native Language
Identification (NLI), the task of identifying
an author’s first language based on their sec-
ond language writing. The dataset includes
1,868 student essays written by learners of
European Portuguese, native speakers of the
following L1s: Chinese, English, Spanish,
German, Russian, French, Japanese, Italian,
Dutch, Tetum, Arabic, Polish, Korean, Roma-
nian, and Swedish. NLI-PT includes the origi-
nal student text and four different types of an-
notation: POS, fine-grained POS, constituency
parses, and dependency parses. NLI-PT can
be used not only in NLI but also in research
on several topics in the field of Second Lan-
guage Acquisition and educational NLP. We
discuss possible applications of this dataset
and present the results obtained for the first
lexical baseline system for Portuguese NLI.

1 Introduction

Several learner corpora have been compiled for
English, such as the International Corpus of
Learner English (Granger, 2003). The importance
of such resources has been increasingly recog-
nized across a variety of research areas, from Sec-
ond Language Acquisition to Natural Language
Processing. Recently, we have seen substantial
growth in this area and new corpora for languages
other than English have appeared. For Romance
languages, there are a several corpora and re-
sources for French1, Spanish (Lozano, 2010), and
Italian (Boyd et al., 2014).

Portuguese has also received attention in the
compilation of learner corpora. There are two
corpora compiled at the School of Arts and Hu-
manities of the University of Lisbon: the cor-

1https://uclouvain.be/en/research-
institutes/ilc/cecl/frida.html

pus Recolha de dados de Aprendizagem do Por-
tuguês Lı́ngua Estrangeira2 (hereafter, Leiria cor-
pus), with 470 texts and 70,500 tokens, and the
Learner Corpus of Portuguese as Second/Foreign
Language, COPLE23 (del Rı́o et al., 2016), with
1,058 texts and 201,921 tokens. The Corpus
de Produções Escritas de Aprendentes de PL2,
PEAPL24 compiled at the University of Coimbra,
contains 516 texts and 119,381 tokens. Finally, the
Corpus de Aquisição de L2, CAL25, compiled at
the New University of Lisbon, contains 1,380 texts
and 281,301 words, and it includes texts produced
by adults and children, as well as a spoken subset.

The aforementioned Portuguese learner corpora
contain very useful data for research, particularly
for Native Language Identification (NLI), a task
that has received much attention in recent years.
NLI is the task of determining the native language
(L1) of an author based on their second language
(L2) linguistic productions (Malmasi and Dras,
2017). NLI works by identifying language use
patterns that are common to groups of speakers
of the same native language. This process is un-
derpinned by the presupposition that an author’s
L1 disposes them towards certain language pro-
duction patterns in their L2, as influenced by their
mother tongue. A major motivation for NLI is
studying second language acquisition. NLI mod-
els can enable analysis of inter-L1 linguistic dif-
ferences, allowing us to study the language learn-
ing process and develop L1-specific pedagogical
methods and materials.

However, there are limitations to using exist-
ing Portuguese data for NLI. An important issue
is that the different corpora each contain data col-

2http://www.clul.ulisboa.pt/pt/24-recursos/350-recolha-
de-dados-de-ple

3http://alfclul.clul.ul.pt/teitok/learnercorpus
4http://teitok.iltec.pt/peapl2/
5http://cal2.clunl.edu.pt/
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lected from different L1 backgrounds in varying
amounts; they would need to be combined to have
sufficient data for an NLI study. Another chal-
lenge concerns the annotations as only two of the
corpora (PEAPL2 and COPLE2) are linguistically
annotated, and this is limited to POS tags. The dif-
ferent data formats used by each corpus presents
yet another challenge to their usage.

In this paper we present NLI-PT, a dataset col-
lected for Portuguese NLI. The dataset is made
freely available for research purposes.6 With the
goal of unifying learner data collected from var-
ious sources, listed in Section 3.1, we applied a
methodology which has been previously used for
the compilation of language variety corpora (Tan
et al., 2014). The data was converted to a uni-
fied data format and uniformly annotated at dif-
ferent linguistic levels as described in Section 3.2.
To the best of our knowledge, NLI-PT is the only
Portuguese dataset developed specifically for NLI,
this will open avenues for research in this area.

2 Related Work

NLI has attracted a lot of attention in recent years.
Due to the availability of suitable data, as dis-
cussed earlier, this attention has been particularly
focused on English. The most notable examples
are the two editions of the NLI shared task or-
ganized in 2013 (Tetreault et al., 2013) and 2017
(Malmasi et al., 2017).

Even though most NLI research has been car-
ried out on English data, an important research
trend in recent years has been the application of
NLI methods to other languages, as discussed in
Malmasi and Dras (2015). Recent NLI studies on
languages other than English include Arabic (Mal-
masi and Dras, 2014a) and Chinese (Malmasi and
Dras, 2014b; Wang et al., 2015). To the best of our
knowledge, no study has been published on Por-
tuguese and the NLI-PT dataset opens new possi-
bilities of research for Portuguese. In Section 4.1
we present the first simple baseline results for this
task.

Finally, as NLI-PT can be used in other applica-
tions besides NLI, it is important to point out that a
number of studies have been published on educa-
tional NLP applications for Portuguese and on the

6NLI-PT is available at:
http://www.clul.ulisboa.pt/en/resources-en/11-
resources/894-nli-pt-a-portuguese-native-language-
identification-dataset

compilation of learner language resources for Por-
tuguese. Examples of such studies include gram-
matical error correction (Martins et al., 1998), au-
tomated essay scoring (Elliot, 2003), academic
word lists (Baptista et al., 2010), and the learner
corpora presented in the previous section.

3 Corpus Description

3.1 Collection methodology

The data was collected from three different learner
corpora of Portuguese: (i) COPLE2; (ii) Leiria
corpus, and (iii) PEAPL27 as presented in Table 3.

COPLE2 LEIRIA PEAPL2 TOTAL
Texts 1,058 330 480 1,868
Tokens 201,921 57,358 121,138 380,417
Types 9,373 4,504 6,808 20,685
TTR 0.05 0.08 0.06 0.05

Table 1: Distribution of the dataset: Number of texts,
tokens, types, and type/token ratio (TTER) per source
corpus.

The three corpora contain written productions
from learners of Portuguese with different profi-
ciency levels and native languages (L1s). In the
dataset we included all the data in COPLE2 and
sections of PEAPL2 and Leiria corpus.

The main variable we used for text selection
was the presence of specific L1s. Since the three
corpora consider different L1s, we decided to use
the L1s present in the largest corpus, COPLE2,
as the reference. Therefore, we included in the
dataset texts corresponding to the following 15
L1s: Chinese, English, Spanish, German, Russian,
French, Japanese, Italian, Dutch, Tetum, Arabic,
Polish, Korean, Romanian, and Swedish. It was
the case that some of the L1s present in COPLE2
were not documented in the other corpora. The
number of texts from each L1 is presented in Ta-
ble 2.

Concerning the corpus design, there is some
variability among the sources we used. Leiria cor-
pus and PEAPL2 followed a similar approach for
data collection and show a close design. They
consider a close list of topics, called “stimulus”,
which belong to three general areas: (i) the in-
dividual; (ii) the society; (iii) the environment.

7In the near future we want to incorporate also data from
the CAL2 corpus.
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Figure 1: Topic distribution by number of texts. Each bar represents one of the 148 topics.

COPLE2 PEAPL2 LEIRIA TOTAL

Arabic 13 1 0 14
Chinese 323 32 0 355
Dutch 17 26 0 43
English 142 62 31 235
French 59 38 7 104
German 86 88 40 214
Italian 49 83 83 215
Japanese 52 15 0 67
Korean 9 9 48 66
Polish 31 28 12 71
Romanian 12 16 51 79
Russian 80 11 1 92
Spanish 147 68 56 271
Swedish 16 2 1 19
Tetum 22 1 0 23
Total 1,058 480 330 1,868

Table 2: Distribution by L1s and source corpora.

Those topics are presented to the students in or-
der to produce a written text. As a whole, texts
from PEAPL2 and Leiria represent 36 different
stimuli or topics in the dataset. In COPLE2 cor-
pus the written texts correspond to written exer-

cises done during Portuguese lessons, or to official
Portuguese proficiency tests. For this reason, the
topics considered in COPLE2 corpus are different
from the topics in Leiria and PEAPL2. The num-
ber of topics is also larger in COPLE2 corpus: 149
different topics. There is some overlap between
the different topics considered in COPLE2, that
is, some topics deal with the same subject. This
overlap allowed us to reorganize COPLE2 topics
in our dataset, reducing them to 112.

Number of topics
COPLE2 112
PEAPL2+Leiria 36
Total 148

Table 3: Number of different topics by source.

Due to the different distribution of topics in the
source corpora, the 148 topics in the dataset are
not represented uniformly. Three topics account
for a 48.7% of the total texts and, on the other
hand, a 72% of the topics are represented by 1-
10 texts (Figure 1). This variability affects also
text length. The longest text has 787 tokens and
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Figure 2: Histogram of document lengths, as measured by the number of tokens. The mean value is 204 with
standard deviation of 103.

the shortest has only 16 tokens. Most texts, how-
ever, range roughly from 150 to 250 tokens. To
better understand the distribution of texts in terms
of word length we plot a histogram of all texts with
their word length in bins of 10 (1-10 tokens, 11-20
tokens, 21-30 tokens and so on) (Figure 2).

The three corpora use the proficiency levels de-
fined in the Common European Framework of
Reference for Languages (CEFR), but they show
differences in the number of levels they consider.
There are five proficiency levels in COPLE2 and
PEAPL2: A1, A2, B1, B2, and C1. But there are
3 levels in Leiria corpus: A, B, and C. The num-
ber of texts included from each proficiency level is
presented in Table 4.

3.2 Preprocessing and annotation of texts

As demonstrated earlier, these learner corpora use
different formats. COPLE2 is mainly codified in
XML, although it gives the possibility of getting
the student version of the essay in TXT format.
PEAPL2 and Leiria corpus are compiled in TXT
format.8 In both corpora, the TXT files contain the
student version with special annotations from the

8Currently there is a XML version of PEAPL2, but this
version was not available when we compiled the dataset.

COPLE2 LEIRIA PEAPL2 TOTAL
A1 91 n/a 78 169
A2 414 n/a 89 503
A 505 203 167 875
B1 312 n/a 203 515
B2 202 n/a 70 272
B 514 89 273 876
C1 39 n/a 40 79
C 39 38 40 117

Table 4: Distribution by proficiency levels and by
source corpus.

transcription. For the NLI experiments we were
interested in a clean txt version of the students’
text, together with versions annotated at different
linguistics levels. Therefore, as a first step, we
removed all the annotations corresponding to the
transcription process in PEAPL2 and Leiria files.
As a second step, we proceeded to the linguistic
annotation of the texts using different NLP tools.

We annotated the dataset at two levels: Part of
Speech (POS) and syntax. We performed the an-
notation with freely available tools for the Por-
tuguese language. For POS we added a sim-
ple POS, that is, only type of word, and a fine-
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grained POS, which is the type of word plus its
morphological features. We used the LX Parser
(Silva et al., 2010), for the simple POS and
the Portuguese morphological module of Freeling
(Padró and Stanilovsky, 2012), for detailed POS.
Concerning syntactic annotations, we included
constituency and dependency annotations. For
constituency parsing, we used the LX Parser, and
for dependency, the DepPattern toolkit (Otero and
González, 2012).

4 Applications

NLI-PT was developed primarily for NLI, but it
can be used for other research purposes ranging
from second language acquisition to educational
NLP applications. Here are a few examples of ap-
plications in which the dataset can be used:

• Computer-aided Language Learning
(CALL): CALL software has been de-
veloped for Portuguese (Marujo et al., 2009).
Further improvements in these tools can take
advantage of the training material available
in NLI-PT for a number of purposes such as
L1-tailored exercise design.

• Grammatical error detection and correction:
as discussed in Zampieri and Tan (2014), a
known challenge in this task is acquiring suit-
able training data to account for the vari-
ation of errors present in non-native texts.
One of the strategies developed to cope with
this problem is to generate artificial train-
ing data (Felice and Yuan, 2014). Augment-
ing training data using a suitable annotated
dataset such as NLI-PT can improve the qual-
ity of existing grammatical error correction
systems for Portuguese.

• Spellchecking: Studies have shown that
general-purpose spell checkers target perfor-
mance errors but fail to address many com-
petence errors committed by language learn-
ers (Rimrott and Heift, 2005). To address this
shortcoming a number of spell checking tools
have been developed for language learners
(Ndiaye and Faltin, 2003). Suitable training
data is required o develop these tools. NLI-
PT is a suitable resource to train learner spell
checkers for Portuguese.

• L1 interference: one of the aspects of non-
native language production that can be stud-

ied using data-driven methods is the influ-
ence of L1 in non-native speakers production.
Its annotation and the number of second lan-
guages included in the dataset make NLI-PT
a perfect fit for such studies.

4.1 A Baseline for Portuguese NLI
To demonstrate the usefulness of the dataset we
present the first lexical baseline for Portuguese
NLI using a sub-set of NLI-PT. To the best of our
knowledge, no study has been published on Por-
tuguese NLI and our work fills this gap.

In this experiment we included the five L1s in
NLI-PT which contain the largest number of texts
in this sub-set and run a simple linear SVM (Fan
et al., 2008) classifier using a bag of words model
to identify the L1 of each text. The languages
included in this experiment were Chinese (355
texts), English (236 texts), German (214 texts),
Italian (216 texts), and Spanish (271 texts).

We evaluated the model using stratified 10-fold
cross-validation, achieving 70% accuracy. An im-
portant limitation of this experiment is that it does
not account for topic bias, an important issue in
NLI (Malmasi, 2016). This is due to the fact that
NLI-PT is not balanced by topic and the model
could be learning topic associations instead.9 In
future work we would like to carry out using syn-
tactic features such as function words, syntactic
relations and POS annotation.

5 Conclusion and Future Work

This paper presented NLI-PT, the first Portuguese
dataset compiled for NLI. NLI-PT contains 1,868
texts written by speakers of 15 L1s amounting to
over 380,000 tokens.

As discussed in Section 4, NLI-PT opens sev-
eral avenues for future research. It can be used
for different research purposes beyond NLI such
as grammatical error correction and CALL. An ex-
periment with the texts written by the speakers of
five L1s: Chinese, English, German, Italian, and
Spanish using a bag of words model achieved 70%
accuracy. We are currently experimenting with
different features taking advantage of the annota-
tion available in NLI-PT thus reducing topic bias
in classification.

In future work we would like to include more
texts in the dataset following the same methodol-
ogy and annotation.

9See Malmasi (2016, p. 23) for a detailed discussion.
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Schöne, Barbora Štindlová, and Chiara Vettori.
2014. The MERLIN corpus: Learner Language and
the CEFR. In Proceedings of LREC.

Scott Elliot. 2003. IntelliMetric: From here to valid-
ity. Automated essay scoring: A cross-disciplinary
perspective, pages 71–86.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A Library for Large Linear Classification. Journal
of Machine Learning Research, 9(Aug):1871–1874.

Mariano Felice and Zheng Yuan. 2014. Generating Ar-
tificial Errors for Grammatical Error Correction. In
Proceedings of the EACL Student Research Work-
shop.

Sylviane Granger. 2003. The international corpus of
learner english: A new resource for foreign language
learning and teaching and second language acquisi-
tion research. TESOL Quarterly, 37(3):538–546.
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Abstract
This paper describes the collection and compi-
lation of the OneStopEnglish corpus of texts
written at three reading levels, and demon-
strates its usefulness for through two applica-
tions - automatic readability assessment and
automatic text simplification. The corpus con-
sists of 189 texts, each in three versions (567 in
total). The corpus is now freely available un-
der a CC by-SA 4.0 license1 and we hope that
it would foster further research on the topics of
readability assessment and text simplification.

1 Introduction

Automatic Readability Assessment (ARA), the
task of assessing the reading difficulty of a text,
is a well-studied problem in computational lin-
guistics (cf. Collins-Thompson, 2014). A related
problem is Automatic Text Simplification (cf. Sid-
dharthan, 2014) which aims to generate simplified
texts from complex versions. While most of the re-
search on these problems focused on feature engi-
neering and modeling, there is very little reported
work about the creation of open access corpora
that supports this research.

Corpora used in ARA were primarily derived
from textbooks or news articles written for differ-
ent target audiences. In most of the cases, the texts
at different levels in these corpora are not compa-
rable versions of each other, which would not help
us develop fine-grained readability models which
can identify what parts of texts are difficult com-
pared to others, instead of having a single score
for the whole text. Corpora of parallel texts sim-
plified for different target reading levels can solve
this problem, and support better ARA models. On
the other hand, ATS systems by default need par-
allel corpora, and primarily relied on parallel sen-
tence pairs from Wikipedia-Simple Wikipedia for

1https://creativecommons.org/licenses/
by-sa/4.0/

training and evaluating the simplification models.
While the availability and suitability of this cor-
pus is definitely a positive aspect, the lack of addi-
tional corpora makes an evaluation of the general-
izability of simplification approaches difficult.

In this background, we created a corpus aligned
at text and sentence level, across three reading lev-
els (beginner, intermediate, advanced), targeting
English as Second Language (ESL) learners. To
our knowledge, this is the first such free corpus in
any language for readability assessment research.
While a sentence aligned corpus from the same
source was discussed in previous research, the cur-
rent corpus is larger, and cleaner. In addition to de-
scribing the corpus, we demonstrate the usefulness
of this corpus for automatic readability classifica-
tion and text simplification. The corpus is freely
available2. Its creation and relevance are described
in the sections that follow: Section 2 describes
other relevant corpus creation projects. Section 3
describes our corpus creation. Section 4 describes
some preliminary experiments with readability as-
sessment and text simplification using this corpus.
Section 5 concludes the paper with pointers to fu-
ture work.

2 Related Work

Washburne and Vogel (1926) and Vogel and Wash-
burne (1928) can be considered one of the early
works on corpora creation for readability research,
where they collected a corpus of 700 books an-
notated by children in terms of reading diffi-
culty. While there are other such efforts in the
past century, corpora from those early projects are
not available for current use. Contemporary ap-
proaches to readability assessment typically rely
on compiling large corpora from the Web. The
WeeklyReader magazine was used as a source

2https://zenodo.org/record/1219041
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for graded news texts in past ARA research (Pe-
tersen, 2007; Feng, 2010). Petersen and Osten-
dorf (2009) described a corpus of articles from
Encyclopedia Britannica, where each article had
a comparable ”Elementary Version”, which, how-
ever, is not freely available as far as we know. Va-
jjala and Meurers (2012) compiled WeeBit cor-
pus, combining WeeklyReader with BBC Bite-
Size, and this corpus was used in several ARA ap-
proaches in the past few years. (Vajjala and Meur-
ers, 2013) described a large corpus of age specific
TV program transcripts from BBC, and (Napoles
and Dredze, 2010) used a corpus of Wikipedia-
Simple Wikipedia articles. (Hancke et al., 2012;
Dell’Orletta et al., 2011; Gonzalez-Dios et al.,
2014), describe such web-based corpus compila-
tion efforts for German, Italian and Basque respec-
tively.

Textbooks from school curricula were also used
as training corpora for readability assessment
models in the past (e.g., Heilman et al. (2008) for
English, Berendes et al. (2017) for German, (Is-
lam et al., 2012) for Bangla). In all these cases,
the grade level of the text was decided based on
the target reader group (according to the web-
site/textbook) which was decided by either pub-
lishers or authors. Another way of creating such
corpora is through human annotations. DeLite
corpus Vor der Brück et al. (2008) for German le-
gal texts, and van Oosten and Hoste (2011); Clercq
et al. (2014) for Dutch texts describe crowd an-
notated resources whereas the common core stan-
dards corpus described in Nelson et al. (2012) is
annotated by experts according to the common
core guidelines on text complexity. Corpora cre-
ated with such human annotations are expensive
to obtain and hence, are generally smaller in size.
Therefore, such corpora may not be sufficient to
build new models, although they can serve as good
evaluation datasets.

Primary concern with all these corpora is that
the articles in different reading levels are not com-
parable versions of each other (except Encyclope-
dia Britannica). The only other publicly and/or
freely accessible readability corpus that poten-
tially has parallel and comparable texts in multi-
ple reading levels is the NewsEla3 corpus which is
a corpus of manually simplified news texts. While
the corpus is available for research under some li-
cense restrictions, it also addresses a different tar-

3https://newsela.com/

get audience, young L1 English learners. In this
background, we release an openly accessible cor-
pus of texts with text and sentence level mapping
across three reading levels, targeting L2 learners
of English.

In terms of sentence aligned corpora for text
simplification, different versions of aligned Wiki-
Simple Wikipedia sentences have been used in
NLP research (Zhu et al., 2010; Coster and
Kauchak, 2011; Hwang et al., 2015). Different su-
pervised and unsupervised approaches were pro-
posed to construct such corpora (Bott and Sag-
gion, 2011; Klerke and Søgaard, 2012; Klaper
et al., 2013; Brunato et al., 2016). Our corpus adds
a new resource for the English text simplification
task.

3 Corpus

Our corpus was compiled from on-
estopenglish.com over the period 2013–2016.
onestopenglish.com is an English language
learning resources website run by MacMillan
Education, with over 700,000 users across 100
countries. One of the features of the website is
a weekly news lessons section, which contains
articles sourced from The Guardian newspaper,
and rewritten by teachers to suit three levels of
adult ESL learners (elementary, intermediate, and
advanced). That is, content from the same original
article is rewritten in three versions, to suit three
reading levels. The advanced version is close to
the original article, although not with exact same
content. Texts from this source were previously
used for training sentence level readability models
(Vajjala and Meurers, 2016; Ambati et al., 2016;
Howcroft and Demberg, 2017), for performing
corpus analysis about the characteristics of
simplified text (Allen, 2009), and in user studies
about the relationship between text complexity
and reading comprehension (Crossley et al., 2014;
Vajjala et al., 2016), although the corpus was not
publicly available in the past.

Original articles from the website consisted of
pdf files containing the article text, some pre/post
test questions, and other additional material. So,
the first step in the corpus creation process in-
volved removing the irrelevant content. We first
explored off-the-shelf pdf to text converters, and
while they worked, they did not always result in a
clean text, sometimes missing entire pages of con-
tent. While this may not be a significant issue for
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Reading Level Example
Advanced (Adv) Amsterdam still looks liberal to tourists, who were recently assured by the

Labour Mayor that the city’s marijuana-selling coffee shops would stay open
despite a new national law tackling drug tourism. But the Dutch capital may
lose its reputation for tolerance over plans to dispatch nuisance neighbours to
scum villages made from shipping containers.

Intermediate (Int) To tourists, Amsterdam still seems very liberal. Recently the city’s Mayor as-
sured them that the city’s marijuana-selling coffee shops would stay open de-
spite a new national law to prevent drug tourism. But the Dutch capitals plans
to send nuisance neighbours to scum villages made from shipping containers
may damage its reputation for tolerance.

Elementary (Ele) To tourists, Amsterdam still seems very liberal. Recently the city’s Mayor told
them that the coffee shops that sell marijuana would stay open, although there
is a new national law to stop drug tourism. But the Dutch capital has a plan
to send antisocial neighbours to scum villages made from shipping containers,
and so maybe now people wont think it is a liberal city any more.

Table 1: Example sentences for three reading levels

doing text level classification, it becomes impor-
tant when we try to align sentences or use this cor-
pus for any qualitatiokave analyses. Hence, one
of the authors manually went through all the files,
comparing with the pdf version, to ensure there are
no missing pages/content, resulting in a clean cor-
pus4. An example of the degree of simplification
performed is shown in Table 1.

Table 2 contains some descriptive statistics
about the final corpus. As expected, advanced
texts are much longer than elementary texts. How-
ever, the standard deviation for each level is also
high, indicating that text length may not be the de-
ciding factor in terms of reading level.

Reading level Avg. Num. Words Std. Dev
Elementary 533.17 103.79
Intermediate 676.59 117.15
Advanced 820.49 162.52

Table 2: Descriptive Statistics about the corpus

We performed some preliminary corpus analy-
sis of the three reading levels in terms of some
common features used in readability literature. Ta-
ble 3 shows the summary of these results, using
traditionally used features such as Flesch-Kincaid
Grade Level (FKGL) (Kincaid et al., 1975) and

4We acquired permission both from Onestopenglish.com
and The Guardian to release this plain-text version of the cor-
pus.

Type-token ratio (TTR), and occurrences of dif-
ferent phrases, as given by Stanford Parser (Chen
and Manning, 2014). In general, all feature values
decrease from ADV to ELE, which is expected,
if we assume all these features to be indicative of
reading level of text.

Feature ADV INT ELE
FKGL 9.5 8.2 6.4
TTR 0.56 0.432 0.42
avg num. NP 6.08 5.52 4.92
avg num. VP 4.49 4.03 3.49
avg num. PP 2.72 2.30 1.82

Table 3: Some of the features across reading levels

Sentence Alignment: A sentence aligned ver-
sion was created using cosine similarity, taking
one pair of reading levels at a time and perform-
ing a one-to-all comparison of sentences in both
texts. We chose a similarity range of [0.7-0.95] for
pairing sentences, after experimenting with sev-
eral thresholds. The reason for choosing 0.95 in-
stead of 1 is that there were some sentences with
only a change of punctuation, which we did not
want in our sentence aligned data. The final sen-
tence aligned corpus had 1674 pairs for ELE-INT,
2166 pairs for ELE-ADV and 3154 pairs for INT-
ADV. On an average, INT-ADV sentence pairs had
a higher degree of similarity (0.9) than ELE-ADV
(0.77) or ELE-INT (0.85).
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4 Experiments

We demonstrate the usefulness of this corpus for
two applications: readability assessment and text
simplification.

4.1 Readability Assessment
We modeled this as a classification problem us-
ing both generic text classification features such
as word ngrams as well as features typically used
in readability classification research5. Generic text
classification features include:

1. Word n-grams: Uni, Bi, Trigram features

2. POS n-grams: Bi and Trigrams of POS tags
from Stanford tagger (Toutanova et al., 2003)

3. Character n-grams: 2–5 character n-grams,
considering word boundaries

4. Syntactic production rules: phrase structure
production rules from Stanford parser (Klein
and Manning, 2003)

5. Dependency relations: Dependency relation
triplets of the form (relation, head, word)
from Stanford dependency parser (Chen and
Manning, 2014)

All n-gram features and grammar rules/relations
that occurred at least 5 times in the entire corpus
were retained for the final feature set. All these
features were extracted using LightSide text min-
ing workbench (Mayfield and Rosé, 2013). Ta-
ble 4 shows the classification results with these
features, using Sequential Minimal Optimization
(SMO) classifier with linear kernel (with a ran-
dom baseline of 33% as all classes are represented
equally in the data).

Features Accuracy
Word n-grams 61.38%
POS n-grams 67.37%
Char n-grams 77.25%
Syntactic Production Rules 54.67%
Dependency Relations 27.16%

Table 4: Text Classification Results with generic
features

Character ngrams seem to be the best perform-
ing group of generic features, achieving 77% ac-
curacy. Data-driven features that rely on deeper

5full feature file is provided in the supplementary mate-
rial.

linguistic representations seem to perform poorly
compared to these simple features. Particularly,
dependency relations perform worse than the ran-
dom baseline. Since we are working with paral-
lel texts, there will be a lot of word level overlap
across reading levels, and hence, it is not entirely
surprising to see word n-grams not doing well.
However, despite this, character n-grams seems to
do well. We speculate they capture sub-word sim-
plified text information such as usage of certain
suffixes or prefixes, which has to be further ex-
plored in future.

In addition to the generic features, we also
trained classifiers with features that are typically
used in ARA research. These are:

1. Traditional features and formulae, that have
been used in all the ARA models in the past

2. lexical variation, type token ratio, and POS
tag ratio based features

3. Features based on psycholinguistic databases

4. Features based on constituent parse trees

5. Discourse features include:

• overlap measures among sentences in
a document as used in Coh-Metrix
(Graesser et al., 2014)
• usage of different kinds of connectives

obtained from the discourse connectives
tagger (Pitler and Nenkova, 2009)
• coreference chains in the text from Stan-

ford CoreNLP

Table 5 summarizes the results from these experi-
ments6.

Feature Group Num. Feats. Accuracy
Traditional 10 58.5%
Word 10 67.19&
Psycholinguistic 11 52.02%
LexVar, POS 29 72.48%
Syntactic Features 28 73.89%
Discourse Features 67 63.66%
Total 155 78.13%

Table 5: Text Classification Results with specific
linguistic complexity features

6Code for feature extraction is available at:
https://bitbucket.org/nishkalavallabhi/
complexity-features
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Highest classification accuracy is achieved
when all the features are put together, as shown in
Table 5. However, this only results in a less than
1% improvement over character n-grams. Char-
acter n-grams as features for readability assess-
ment were not explored in the past, and these re-
sults would lead us to explore that in future. In
terms of comparison with existing work on ARA,
highest accuracies reported are close to 90% on
WeeBit dataset (Vajjala and Meurers, 2012). How-
ever, considering that we are comparing texts on
the same topic, differing primarily in terms of
style rather than content, this is perhaps a diffi-
cult dataset to model, compared to other existing
readability datasets.

Since we now have a corpus with parallel ver-
sions of sentences and paragraphs at different
reading levels, one idea to explore further is to
model readability assessment as a sentence and
paragraph level pair-wise ranking problem, and
then use those ”local” readability assessments to
infer ”global” text level readability (e.g., Chap-
ter 5.5, Vajjala (2015)). Previous research also
(Ma et al., 2012) showed that pair-wise ranking
resulted in better readability models than classifi-
cation. A combination of both these approaches
would be an interesting dimension to explore in
future.

4.2 Text Simplification

Automatic Text Simplification (ATS) has been
commonly modeled as a Phrase Based Machine
Translation (PBMT) problem in the literature. To
demonstrate the usefulness of this corpus for ATS
experiments, we used the adv-ele sentence aligned
version of the OSE corpus and treated it as a
phrase based machine translation problem. We
split the dataset with 2166 sentence pairs into -
1000 sentence pairs for training, 500 for develop-
ment, and the remaining 666 pairs for testing. We
did not explore a neural model, due to the size of
the dataset considered. We used Moses (Hoang
et al., 2007) to train the model, and evaluated the
model performance on test data in terms of various
evaluation metrics used in MT research, compar-
ing machine generated and human translations.

This model resulted in a BLEU (Papineni et al.,
2001) score of 54.45 and METEOR (Denkowski
and Lavie, 2014) score of 46. While the scores
are not interpretable by themselves, general guide-
lines by Lavie (2011) suggest that BLEU and

METEOR scores above 50 indicate understand-
able translations. Comparing with existing re-
sults on ATS, Zhang and Lapata (2017) trained
a neural network based MT model with 300K
sentence pairs as training data, and reported a
much higher BLEU score of 88.85. The results
on current dataset (with 1000 sentence training
data and PBMT) cannot be compared with this re-
sult though, especially considering the size of the
dataset. However, previous research showed that a
high BLEU score with one corpus did not gener-
alize when the test set came from another source
(Chapter 6 in Vajjala, 2015). While our dataset
may not be sufficient to build robust text simpli-
fication models, it can be used to test the gener-
alizability of such state of the art text simplifica-
tion approaches, or to be combined with a larger
dataset while training a simplification model.

5 Conclusion

In this paper, we described the creation of a new
corpus for readability assessment and text simpli-
fication research, and demonstrated its usefulness
for readability assessment and text simplification
research. The corpus is released with this paper,
and we hope it will foster further research into
readability assessment and text simplification sys-
tems aimed at ESL learners.

Beyond researchers interested in computational
modeling, this corpus is also useful for other
groups such as: a) researchers interested in con-
ducting user studies about the relationship be-
tween text simplification and reader comprehen-
sion, or between expert annotated readability la-
bels and target reader comprehension of texts (e.g.,
Vajjala et al. (2016)) and b) researchers interested
in doing corpus studies with simplified and unsim-
plified texts, which can give insights into creat-
ing both manual and automatically simplified texts
(e.g., (Allen, 2009)).
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Abstract

Some language exams have multiple writing
tasks. When a learner writes multiple texts
in a language exam, it is not surprising that
the quality of these texts tends to be similar,
and the existing automated text scoring (ATS)
systems do not explicitly model this similar-
ity. In this paper, we suggest that it could be
useful to include the other texts written by this
learner in the same exam as extra references
in an ATS system. We propose various ap-
proaches of fusing information from multiple
tasks and pass this authorship knowledge into
our ATS model on six different datasets. We
show that this can positively affect the model
performance in most cases.

1 Introduction

The existence of various English exam products
provides a useful and fair way for language learn-
ers to measure their English skills accurately.
It also offers a well-accepted standard to help
schools and companies to quantitatively judge
whether their non-native English applicants meet
the compulsory language requirements they set up.
Many learners have taken different English exams
to get the qualifications required by different or-
ganisations. For example, more than two mil-
lion International English Language Testing Sys-
tem (IELTS) exam sessions have been taken in
2012-20131, and more than 30 million people have
taken the Test of English as a Foreign Language
(TOEFL) exam2.

English exams like IELTS and TOEFL have
free-text writing tasks to evaluate a learner’s writ-
ing ability. For a writing task, each learner needs
to write a text to answer the prompt in the task.
Appropriately assessing the quality of free-text

1https://www.britishcouncil.org/organisation/press/record-
two-million-ielts-tests

2https://www.ets.org/toefl/ibt/about

writings requires highly proficient human exam-
iners, and the lack of professional and qualified
examiners makes it hard for learners to get accu-
rate feedback on the quality of their writings in a
timely fashion. Consequently, it is hoped that an
ATS system can possibly act as a kind of examiner
to mitigate this problem, which offers an assis-
tance to both learners and educators. The goal of
ATS is to improve consistency and reduce human
resource overheads. ATS usually utilises machine
learning techniques to build a model to learn the
underlying relationship between texts and scores.
ATS is often used as the second marker in high-
stakes exams, the only marker in practice and tu-
toring software products.

1.1 Multiple Writing Tasks

To evaluate a learner’s writing skill more thor-
oughly, many English exams like IELTS and
TOEFL ask them to answer multiple writing tasks.
These tasks are drawn from different topics and
genres, and each learner is required to write a
text for each task. In practice, human judges
score each text with an individual score, and these
scores are aggregated to obtain an overall score,
which reflects their writing skills. We also define
the ATS model predicting the individual score of
a text and the overall score of all the texts as the
individual-level and overall-level models, respec-
tively.

When an individual-level ATS model scores
texts, previous work has made an implicit as-
sumption that all responses to all tasks are com-
posed independently. This is not true for exams
requiring responses to multiple tasks. The writ-
ing skill exemplified by a learner during the same
exam session will not normally vary greatly, so the
texts written by one learner may share some com-
monalities, such as preferential word usages and
common mistakes, and should also approximately
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equally reflect their writing skills. We suggest that
when an individual-level model predicts the score
of a text written by a learner, it is helpful to use
their other texts as a reference and pass it as an ex-
tra piece of information to the model. We refer to
this information as authorship knowledge.

We suggest that the potential benefit of pass-
ing this authorship knowledge to an ATS model
might come from a reduction of data sparsity and
improvement in the robustness and reliability of
feature extraction. Normally the text length for
each task is limited, and so there may be insuffi-
cient features exemplified in a single response to
differentiate language proficiency levels. It can
be challenging for an ATS model to learn the
mapping between texts and scores accurately, and
adding authorship knowledge might provide addi-
tional salient features to learn the mapping.

In this paper, we test the hypothesis that au-
thorship knowledge can improve individual-level
model performance. We pass this authorship
knowledge to an individual-level model in two in-
dependent ways: feature fusion and score fusion.
When the model predicts text scores, both meth-
ods pass all the texts written by the same learner
to the model as an extra reference. It is shown that
adding this knowledge is helpful in an individual-
level ATS model in most cases. To the best of our
knowledge, this is the first study that studies how
authorship knowledge affects ATS system perfor-
mance.

2 Related Work

In most previous work, text features are defined
manually and automatically extracted from each
text. A machine learning model is then applied
to learn the mapping from features to scores.
Many different machine learning models have
been used, including regression (Page, 2003; At-
tali and Burstein, 2006; Phandi et al., 2015), clas-
sification (Larkey, 1998; Rudner and Liang, 2002)
and ranking (Chen and He, 2013; Cummins et al.,
2016b). The features used in previous work range
from shallow textual features to discourse struc-
ture and semantic coherence (Higgins et al., 2004;
Yannakoudakis and Briscoe, 2012; Somasundaran
et al., 2014), and from prompt independent to de-
pendent features (Cummins et al., 2016a). Some
recent models have dispensed with feature engi-
neering and utilised word embeddings and neu-
ral networks (Alikaniotis et al., 2016; Dong and

Zhang, 2016; Taghipour and Ng, 2016).
However, no previous work has investigated the

utility of authorship knowledge in ATS. One possi-
ble reason is that most datasets only have one text
written by each learner. The First Certificate in
English (FCE) dataset released by Yannakoudakis
et al. (2011), on the other hand, contains two texts
per learner. We primarily focus on the FCE dataset
in this paper, but also utilise other datasets to cor-
roborate our results. Yannakoudakis et al. defined
all the texts written by a learner as a script. They
extracted features from each text and then com-
bined the features of the two texts within the same
script together. A support vector machine (SVM)
ranking model was trained to learn the relationship
between features and overall scores.

3 Datasets

In this paper, we require a dataset that includes
more than one text written by each learner, where
each text is scored with an individual-level score.
We finally get six datasets in total for our exper-
iments. Each dataset is a set of texts collected
from a real exam, and each exam is targeted at one
or more Common European Framework of Refer-
ence for Languages (CEFR) 3 levels in English.
There are six CEFR levels in total: A1, A2, B1,
B2, C1 and C2 arranged from lowest to highest.

In each dataset, each script consists of the an-
swers to two tasks. The answers to both tasks were
scored on the same grading scale. Each script was
written on the same day so we can safely assume
no dramatic variation in the writing skill for each
learner. The FCE dataset discussed in Section 2
was collected from the FCE exam. The other five
datasets were provided by Cambridge Assessment
collected from different years.

We need to choose the score for each text for
an ATS model to learn. As the original score for
each text in the FCE is not reported on a numer-
ical scale, Cambridge Assessment helped us con-
vert the grades to integers between 0 and 20. This
mapping is available in Table 2. All the texts from
the B2-U, B2-S, C1-U and C1-S datasets are eval-
uated in terms of four aspects: content, commu-
nicative achievement, language quality and organ-
isation. Each aspect is scored as an integer in the
range 0-5. We add the scores of these four aspects
of a text together to obtain a total score in the range
0-20, and we use this total score as the score for

3http://www.coe.int/t/dg4/linguistic/Cadre1 en.asp
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Exam CEFR Score Range MEAN STD # prompts # scripts # train # dev # test
FCE B2 0-20 13.92 2.92 31 1212 822 293 97
B2-U B2 0-20 14.51 2.18 37 2047 1447 300 300
C1-U C1 0-20 13.20 2.69 50 2088 1488 300 300
AL-U A1-C2 0-9 5.78 0.96 58 1604 1004 300 300
B2-S B2 0-20 13.72 2.41 67 6584 5984 300 300
C1-S C1 0-20 12.77 2.73 35 1910 1310 300 300

Table 1: The details of the six datasets. FCE is the dataset released by Yannakoudakis et al.. For the
other five datasets, the name of each dataset encodes its target CEFR level learners with whether it is
unshuffled or shuffled. B2-U means that it aims at B2 level learners and is unshuffled. MEAN and
STD describe the mean and standard deviation of the scores. All the datasets have two writing tasks, and
for each writing task, each learner is required to write an answer to one prompt. # prompts describes how
many prompts exist in each dataset.

this text for our study. In contrast, AL-U is marked
on a scale of 0-9 at 0.5 mark intervals, where each
text also receives a score for each of four aspects
including task achievement, coherence, word us-
age and grammar. The total score is aggregated
from the scores on all four aspects by Cambridge
Assessment, and it is still normalised to 0-9 at 0.5
mark intervals. In this case, we directly use the ex-
isting total score as the individual score for a text
in AL-U for our study.

Original→ New Original→ New
0,0→ 0 3,2→ 13
1,1→ 1 3,3→ 14
1,2→ 4 4,1→ 15
1,3→ 7 4,2→ 16
2,1→ 9 4,3→ 17
2,2→ 10 5,1→ 18
2,3→ 11 5,2→ 19
3,1→ 12 5,3→ 20

Table 2: The score mapping in the FCE dataset

We summarise the six datasets in Table 1. The
difference between the shuffled and unshuffled
datasets in Table 1 is how texts are presented to
human judges to score. For the four unshuffled
datasets, each human judge marks the first and sec-
ond text written by a learner in sequence, so the
score of the second text might be affected by the
first marked text. In comparison, the texts in B2-S
and C1-S are shuffled and randomly displayed to
human judges. Hence, this removes any grading
bias due to knowing the authorship.

Due to transcription errors, we only kept scripts
which do not contain any invalid individual score.

After we cleaned the text scores, each dataset was
then split into training, development and test sets.
The total number of scripts in each dataset, and the
number of scripts in the training, development and
test sets are summarised in Table 1. The test set for
FCE is the same in Yannakoudakis et al. (2011).

4 Notations

Let us introduce some notations to facilitate our
discussion. Each dataset consists of M tasks for
each learner to answer, and there are J learners
in one dataset. We assume that each learner only
takes any exam once. All the datasets we de-
scribed in Section 3 require learners to write two
texts. Hence, M = 2 in each dataset. tm,j de-
notes the mth text written by learner lj , which an-
swers the mth task taskm in a dataset. text tm,j

can be represented as a sequence of words written
by learner lj . The individual score for text tm,j

marked by a human examiner is sm,j .

TLj = {tm,j |m = 1, ...,M} denotes the set
of all the texts written by lj in a dataset. In other
words, TLj is equivalent to the script answered by
learner lj .

TNm,j = TLj \ tm,j denotes the neighbouring
text set of tm,j , which is all the texts written by
learner lj except for tm,j . In this section, since
each dataset only contains 2 texts per learner, the
number of texts in TNm,j is always 1, and the only
text in this set is t(M+1−m),j , which denotes the
neighbouring text of tm,j .

TTm = {tm,j |j = 1, ..., J} denotes the se-
quence of all the texts to the mth task taskm an-
swered by all learners in the same exam.
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5 Assumptions

There are two assumptions behind authorship
knowledge and ATS we want to validate.

The first assumption is that there is a variable
skillj which can describe the writing skill of each
learner lj , and skillj is approximately constant
during an exam. If we believe the skill of a learner
could be measured by the English exam they take,
sm,j for any m will be a sample from a distribu-
tion constrained by skillj during the exam. We
also assume that no learner will behave totally dif-
ferently on the two tasks during the same exam.
In this case, these individual text scores should
be close and correlate well with their skill skillj ,
and this correlation might be helpful in training an
individual-level model.

However, the first assumption is not always cor-
rect. In some circumstances, learners will perform
really well on some tasks, but fail to finish other
tasks to the same quality, and they can get low
scores on these tasks. An obvious reason for this
is that some learners may have managed their time
badly and failed to finish the second task; some
may also be better prepared for the topic and genre
elicited by one of the prompts.

To verify and measure this assumption, we cal-
culate root-mean-squared error (RMSE), quadratic
weighted kappa (κ), Pearson (ρprs) and Spearman
correlation (ρspr) between all the responses to the
first task TT1, and the second task TT2 answered
by all learners. The results are given in Table 3.

Dataset RMSE κ ρprs ρspr
unshuffled datasets

FCE 2.264 0.700 0.706 0.704
B2-U 1.902 0.620 0.630 0.607
C1-U 2.148 0.680 0.684 0.670
AL-U 0.716 0.726 0.746 0.735

shuffled datasets
B2-S 2.566 0.434 0.440 0.416
C1-S 2.984 0.408 0.419 0.394

Table 3: The relation between TT1 and TT2 to
check how the scores of the first and second text
written by each learner are correlated

As we can see, κ, ρprs and ρspr are above 0.6 in
the four unshuffled datasets, and about 0.4 in the
two shuffled datasets. It is suggested by Landis
and Koch (1977) that there is a substantial agree-
ment between two sequences if Cohen’s Kappa is
above 0.6 and a moderate agreement when Co-

hen’s Kappa is between 0.4 to 0.6 4. We use their
interpretation to describe our results, and there is
at least a moderate correlation and agreement be-
tween the scores of TT1 and TT2. This verifies
our first assumption to some degree. Whether this
amount of agreement can affect the performance
of an ATS model is further investigated in the fol-
lowing sections.

The second assumption concerns whether pass-
ing authorship knowledge to an ATS model truly
improves the model performance by bringing
more reliable features and better understanding
about each learner’s writing skill. An alternative
explanation for the possible improvement, if it ex-
ists, is brought by the bias during the marking pro-
cedure. When comparing RMSE for the unshuf-
fled and shuffled datasets as shown in Table 3, we
can see that RMSE is higher for BS-2 than for
B2-U, and higher for C2-S than for C2-U. This
suggests that human judges might be biased when
marking the second text after the first. Hence, we
aim to determine whether authorship knowledge
truly improves ATS performance by looking at the
shuffled dataset, since any improvement on the un-
shuffled dataset might be the result of grading bias.

6 Methods

To study how authorship knowledge affects ATS,
we first need a baseline model.

6.1 Baseline

In the baseline model, a feature vector fm,j , ex-
tracted from text tm,j written by learner lj , is used
to train an individual-level model to learn the rela-
tionship between feature vector space F and text
score space S. The model finally predicts the
score of text tm,j as ŝm,j . The predicted score
ŝm,j might be invalid on the given grading scale.
For example, an ATS model might predict a score
of 4.3, but the grading scale requires an integer.
Hence, we round ŝm,j to the nearest valid score on
the given grading scale as r̂sm,j , which is 4 in this
case.

6.1.1 Features
The features for the baseline model we use are
similar to those of Yannakoudakis et al. men-
tioned in Section 2. More specifically, we use
features including word and POS n-grams, script

4Although Landis and Koch claimed that this interpreta-
tion is clearly arbitrary.
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length, the n-gram missing rate estimated on a
background corpus, phrase structure rules, and
grammatical dependency distances between any
two words within the same sentence, though we
only use the top parse result for grammatical rela-
tion distance measures. The n-gram missing rate
is estimated on UKWaC (Ferraresi et al., 2008).
Besides that, we also include the number of words
misspelt, the count of grammatical relation types,
and the minimum, maximum and average sen-
tence and word lengths. The POS tags, grammati-
cal relations and phrase structure rules are derived
from the RASP (robust accurate statistical pars-
ing) toolkit (Briscoe et al., 2006). We remove
any feature whose frequency in the training set
is below 4, and keep the top 25,000 features that
have the highest absolute Pearson correlation with
text scores. Each feature vector is normalised to
||fm,j || = 1.

6.2 Benchmark

Yannakoudakis et al. (2011) only built an overall-
level model and evaluated it in terms of ρprs and
ρspr. As we use more features and also a global
feature selection step, we should ensure that our
model is relatively optimal and thus a challenging
baseline.

We firstly concatenate all the texts in script TLj

together as concatenated text ctj so that

ctj := t1,j ⊕ t2,j ⊕ ...⊕ tM,j

We extract the script feature vector cfj from the
concatenated text ctj based on the features defined
in Section 6.1.1. We define the combined script
score csj as the sum of the individual text scores
to represent the overall score of each script: csj :=∑M

m=1 sm,j

The FCE dataset has another overall script
score ssj for script TLj used by Yannakoudakis
et al. (2011). In order to benchmark with Yan-
nakoudakis et al.’s work, we train an overall-

Model RMSE κ ρprs ρspr
UKWaC X X 0.735 0.758

CLC X X 0.741 0.773
DISCOURSE X X 0.749 0.790
SVR (BASE) 3.988 0.657 0.761 0.787

SVM RANKING 4.123 0.646 0.735 0.766

Table 4: The comparison of the previous work and
our baseline models on the FCE test set.

level model by means of support vector regres-
sion (SVR) and SVM ranking between cfj and its
script score ssj rather than csj together with a lin-
ear kernel. In order to get the valid predicted score
on given the grading scale for SVM ranking, we
train another linear regression model on the train-
ing set between the ranking scores and the actual
text scores. For both SVR and SVM ranking, we
then round the scores predicted from their corre-
sponding regressors to the nearest valid integers
on the given grading scale.

We tune the regularization hyper-parameter on
the development set and report the results achiev-
ing the lowest RMSE on the development set. The
results are included in Table 4. The upper part
of the table shows previous results. UKWaC and
CLC are the results reported in Yannakoudakis
et al. (2011) on SVM ranking models which use
the UKWaC and the Cambridge Learner Corpus
(CLC) (Nicholls, 2003) as the background corpus
for n-gram missing rate estimation respectively.
DISCOURSE is the CLC version with extra dis-
course features. In the DISCOURSE version, Yan-
nakoudakis and Briscoe (2012) investigated differ-
ent features to measure the coherence of a text and
how these features affect the overall score of the
texts in the FCE dataset. They showed that the
coherence feature based on incremental semantic
analysis (Baroni et al., 2007) measuring average
adjacent sentence similarity can help their ATS
system improve in terms of the Pearson and Spear-
man correlations.

Table 4 does not include any recent neural
model on the FCE dataset, because the neural
model developed by Farag et al. (2017) shows that
there is still a performance gap between the neural
model and the models built on hand-crafted fea-
tures.

Our models achieve relatively good perfor-
mance, and we also found that by selecting ap-
propriate features and hyper-parameters, the dif-
ference between using ranking and regression to
train an ATS model is relatively small. This con-
trasts with Yannakoudakis et al. (2011)’s finding
that ranking is much better than regression on this
task. Therefore, we use SVR (BASE) in the fol-
lowing experiments.

6.3 Model Fusion

There are two ways in which we can pass author-
ship knowledge in our ATS model. We refer to
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them as score fusion and feature fusion.
For score fusion, we concatenate all the texts

within the same script together as ctj written by
learner lj . We extract the script feature vector cfj
from ctj . An overall-level model is trained on cfj
and its combined script score csj , which is the
sum of all the individual scores of one script. This
overall-level model predicts the combined script
score of ctj as ĉsj , and the predicted normalised
combined score ĉsj

M is fused with the predicted in-
dividual score ŝm,j by linear interpolation to get
the predicted fused score f̂ sm,j :

f̂ sm,j := (1− α)ŝm,j + α
ĉsj
M

The interpolation hyper-parameter α is tuned on
the development set, and f̂ sm,j is then rounded
to the nearest valid score on the given grading
scale as the final predicted individual-level score
for tm,j .

For feature fusion, we still extract the script
feature vector cfj from ctj . Then, we define the
fused feature vector ffm,j of tm,j as the vector
concatenated by fm,j and cfj together as follows:

ffm,j := (1− β)fm,j ⊕ βcfj

where β is the concatenation weighting hyper-
parameter to be tuned on the development set. We
train an individual-level model on the fused fea-
ture vector ffm,j and text score sm,j , and the pre-
dicted score ŝm,j is rounded to the nearest valid
score r̂sm,j on the given grading scale.

Another question raised by the discussion here
is what to fuse. For text tm,j in score fusion, in-
stead of fusing the individual score ŝm,j with the
combined script score ĉsj , we can also fuse ŝm,j

with the individual predicted score ŝ(M−m+1),j

from the other text within the same script, which
is the neighbouring text t(M−m+1),j .

For feature fusion, when we are augmenting text
feature vector fm,j to ffm,j , we can concatenate
it with the feature vector f(M−m+1),j from the
neighbouring text t(M−m+1),j instead of the script
feature vector cfj derived from the concatenated
text ctj . Therefore, we have two different fusion
approaches, and each approach also has two dif-
ferent sources to fuse.

It should be noticed that the two questions for
each dataset are designed on a similar difficulty
level. The fusion approach can easily be made to
work even if these questions are not on the same

difficulty level. If the difficulty difference between
the targeted question and the neighbouring ques-
tion is too large, we can penalise the neighbouring
question so that the ATS model mainly look at the
targeted question. This is straightforward to do in
our method by adjusting the weight of the neigh-
bouring question. We will investigate questions
from different difficulty levels in future work once
we have a suitable dataset.

7 Results and Discussion

In this section, we evaluate the baseline model and
the fusion approaches to study the influence of
authorship knowledge. For each setup, we train
an individual-level model for each dataset. The
model for each setup is optimised on each devel-
opment set in terms of RMSE. We tune the SVR
regularisation and interpolation hyper-parameters
on each development set. We report RMSE, κ,
ρprs and ρspr in Table 6 for each test set. The op-
timal interpolation hyper-parameters for each fu-
sion approach are reported as α/β in Table 6.

Some readers might notice that there is a numer-
ical difference between Table 4 and Table 6 for the
same baseline model evaluated on the FCE test set.
The reason for the difference here is that these two
tables correspond to two different tasks. The task
in Table 4 is predicting the overall-level score, and
Table 6 is the individual-level score of a text. It
seems that predicting the individual-level scores is
a harder task as there is less text to assess (Sec-
tion 1.1).

For feature fusion, feature fusion with neigh-
bouring text (FF-NT) and concatenated text (FF-
CT) is consistently better than the baseline
(BASE) on all the datasets except for the B2-U
on κ, ρprs and ρspr. For score fusion, score fu-
sion with concatenated text (SF-CT) is better than
BASE on all the six datasets except for κ in AL-
U. In contrast, score fusion with neighbouring text
(SF-NT) is better than BASE on all the datasets re-
garding RMSE except for FCE, but κ is only better
than BASE on C1-S. Both SF-CT and SF-NT are
better than BASE in terms of ρprs and ρspr. The
improvement is also visible on the two shuffled
datasets, and we suggest that adding authorship
knowledge is not merely the result of modelling
grading bias, which answers the second assump-
tion in Section 5.

To give a better global understanding of how
each approach performs, we conduct the Wilcoxon
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signed-rank test (Wilcoxon, 1945; Demšar, 2006)
across the six datasets to see whether any setup is
significantly better or worse than BASE at a global
level. We use the SciPy implementation to run the
test5, and the p-values of all the metrics across all
the six datasets are listed in Table 5. Based on the
result in Table 5, there is a significant difference
between all the fusion approaches (p < 0.05) and
BASE on all the metrics except for SF-NT on κ
across multiple datasets.

Setup RMSE κ ρprs ρspr
SF-NT 0.046 0.058 0.028 0.028
SF-CT 0.028 0.046 0.028 0.028
FF-NT 0.028 0.046 0.046 0.046
FF-CT 0.028 0.046 0.046 0.046

Table 5: p-value for each approach estimated by
the Wilcoxon signed-rank test across all the six
datasets. The value bigger than 0.05 is in bold

7.1 Hyper-parameters

α, β > 0.5 in each fusion approach tells the ATS
model that it should favour the information from
the other source over the current individual text
tm,j being marked, and vice versa. We also vi-
sualise the relation between β and RMSE for the
feature fusion approaches in Figure 1 and 2.

For the fusion with concatenated text ctj , α >
0.5 on FCE and C1-S in SF-CT. β > 0.5 for all
the datasets except for B2-U in FF-CT. Further-
more, if we tune β on the test sets, we can find the
optimal β for all the six datasets are bigger than
0.5. On the one hand, we are a little bit surprised
that the fusion approaches with concatenated text
favour ctj , and it might mean that ctj is more
salient compared to the original text tm,j in ATS.
On the other hand, it is still to be expected to ob-
serve these results, because ctj also contains tm,j ,
and the information from tm,j is still dominant in
the model even if α, β > 0.5.

In contrast, we expect that the model fused with
neighbouring text achieves the best performance
on each dataset when α or β is smaller than 0.5,
as the model should focus on the text tm,j being
marked. For SF-NT in Table 6, the optimal α is
always smaller than 0.5. However, for FF-NT, the
optimal β = 0.5 for AL-U and C1-U in Table 6.
Furthermore, if we choose the test sets to tune β
instead of the development sets, we can see that

5https://www.scipy.org

β > 0.5 on the FCE, C1-U and AL-U dataset in
Figure 2. Based on these results, we suggest that
in some cases, the features from two tasks written
by the same learner could be highly similar and
shared to some extent in an ATS model.

7.2 Score Difference

Although positive effects are observed in most
cases, no method is significantly better than BASE
on every dataset and metric we used. One reason
might be that it is not ideal to aggregate the two
texts written by the same learner together if the
performance difference between these texts is big.
For example, some learners might perform well on
the first task, but fail to complete the second task.
This is what we have discussed in the first assump-
tion in Section 5, and this assumption might be in-
valid in some cases. So, we conduct another study
to see how the score difference between the two
texts in each script affects the model performance.

We define the script score difference sdj as the
score difference between two texts t1,j and t2,j
within the same script TLj : sdj := |s1,j − s2,j |.

The text score difference of text tm,j is defined
as the score difference of the script to which it be-
longs: sdm,j := sdj .

The text score error errorm,j denotes the dif-
ference between the predicted score and the gold
score of tm,j : errorm,j := |r̂sm,j − sm,j |.

The text score errors errorm,j produced by
BASE and any fusion approach on text tm,j de-
note errorBASE

m,j and errorFUSION
m,j , respectively.

The performance difference PDm,j between
BASE and any fusion approach for text tm,j de-
notes the difference between the errors made by
the two setups:

PDm,j := errorBASE
m,j − errorFUSION

m,j (1)

PDm,j > 0 means that the fusion approach is bet-
ter than BASE at predicting the score of tm,j , and
vice versa.

We calculate the Pearson correlation ρprs be-
tween PDm,j and sdm,j for each test set in Ta-
ble 7. Although we do not find any interesting
relation between the correlation here and the per-
formance variation in Table 6, Table 7 does reveal
some patterns. On the one hand, most values are
negative, and the five positive values in bold tend
to be close to 0, and p is always bigger than 0.05
for all the positive values. We suggest that there
is a negative correlation between performance dif-
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Setup RMSE κ ρprs ρspr α/β RMSE κ ρprs ρspr α/β
FCE AL-U

BASE 2.569 0.511 0.662 0.652 X 0.693 0.620 0.684 0.659 X
SF-NT 2.572 0.490 0.693 0.696+ 0.35 0.686 0.603 0.704 0.687+ 0.34
SF-CT 2.495 0.533 0.696 0.702+ 0.70 0.691 0.610 0.689 0.667 0.33
FF-NT 2.529 0.554+ 0.688 0.688+ 0.30 0.683 0.634 0.698 0.680 0.50
FF-CT 2.460+ 0.554+ 0.694 0.695 0.67 0.664+ 0.649+ 0.720+ 0.710+ 0.70

B2-U B2-S
BASE 1.991 0.246 0.359 0.339 X 2.085 0.386 0.476 0.442 X
SF-NT 1.979 0.241 0.371 0.347 0.18 2.050+ 0.384 0.501+ 0.463 0.23
SF-CT 1.954+ 0.271+ 0.398+ 0.377+ 0.32 2.029+ 0.400 0.510+ 0.476+ 0.33
FF-NT 1.982 0.242 0.348 0.324 0.20 1.983+ 0.430+ 0.541+ 0.511+ 0.33
FF-CT 1.974 0.241 0.354 0.333 0.25 2.017+ 0.415 0.506 0.481 0.80

C1-U C1-S
BASE 2.405 0.269 0.411 0.410 X 2.421 0.341 0.504 0.471 X
SF-NT 2.387 0.260 0.438 0.433 0.37 2.413 0.343 0.511 0.480 0.02
SF-CT 2.366+ 0.288 0.453+ 0.451+ 0.37 2.346+ 0.378+ 0.567+ 0.523+ 0.78
FF-NT 2.350+ 0.304+ 0.462+ 0.455+ 0.50 2.370+ 0.389+ 0.529 0.498 0.40
FF-CT 2.378 0.296+ 0.428 0.420 0.60 2.361+ 0.381+ 0.548+ 0.513+ 0.67

Table 6: The results of different setups on the test sets. The best setup per dataset is in bold.
GREEN means improvement and RED means degradation over BASE. The optimal interpolation hyper-
parameters for each fusion approach are reported as α/β. + means significantly better (p < 0.05) than
BASE using the permutation randomisation test (Yeh, 2000) with 2,000 samples. No metric is found
significantly worse than BASE.
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Figure 1: How RMSE (y-axis) changes with β (x-axis) in FF-CT. The vertical RED and GREEN dashed-
dot lines in each graph represent that the model achieves the lowest RMSE on the development and test
sets at the corresponding β.

ference PDm,j and text score difference sdm,j on
some datasets.

On the other hand, only the p-values for six neg-
ative values in Table 7 are smaller than 0.05. We
think the negative influence brought by the score
difference is not huge, because the scores of the
two texts written by the same learners are at least
moderately correlated in Table 3. This correlation
might reduce the negative influence of score dif-
ference here.

In some operational settings, it might be consid-

ered unfair to use other responses to score a new
response, and grading guidelines usually require
texts to be marked independently. Nevertheless,
we found a clear improvement when making use
of such information, and no approach is signifi-
cantly worse than BASE on any metric or dataset.
In other words, the positive influence brought by
our fusion approaches is stronger than any possi-
ble negative effects.
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Figure 2: How RMSE (y-axis) changes with β (x-axis) in FF-NT. The vertical RED and GREEN dashed-
dot lines in each graph represent that the model achieves the lowest RMSE on the development and test
sets at the corresponding β.

Setup SF-NT SF-CT FF-NT FF-CT
FCE -0.102 -0.156* 0.002 -0.162*
B2-U -0.034 -0.009 0.036 0.012
C1-U -0.060 -0.018 0.034 -0.005
AL-U -0.188* -0.107* -0.021 -0.108*
B2-S -0.039 -0.039 0.014 -0.074
C1-S -0.074 -0.102* -0.032 -0.048

Table 7: The Pearson correlation between perfor-
mance difference PDm,j and script score differ-
ence sdm,j on the test sets. * denotes p-value
< 0.05, and bold denotes a positive correlation.

8 Conclusion

In this paper, we studied how authorship knowl-
edge, by means of score fusion and feature fusion,
is a useful feature in ATS. We showed that in-
cluding such information improves model perfor-
mance at in most datasets, and that improvement
is not only from modelling grading bias. One pos-
sible topic for future work is to study whether the
target CEFR level of each dataset affects the influ-
ence of adding authorship knowledge.
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Språkbanken

University of Gothenburg
Sweden

ildiko.pilan@gu.se

Abstract

In this paper, we describe our experiments
for the Shared Task on Complex Word Iden-
tification (CWI) 2018 (Yimam et al., 2018),
hosted by the 13th Workshop on Innovative
Use of NLP for Building Educational Appli-
cations (BEA) at NAACL 2018. Our sys-
tem for English builds on previous work for
Swedish concerning the classification of words
into proficiency levels. We investigate dif-
ferent features for English and compare their
usefulness using feature selection methods.
For the German, Spanish and French data we
use simple systems based on character n-gram
models and show that sometimes simple mod-
els achieve comparable results to fully feature-
engineered systems.

1 Introduction

The task of identifying complex words consists of
automatically detecting lexical items that might be
hard to understand for a certain audience. Once
identified, text simplification systems can substi-
tute these complex words by simpler equivalents
to increase the comprehensibility (readability) of
a text. Readable texts can facilitate information
processing for language learners and people with
reading difficulties (Vajjala and Meurers, 2014;
Heimann Mühlenbock, 2013; Yaneva et al., 2016).

Building on previous work for classifying
Swedish words into different language proficiency
levels (Alfter and Volodina, 2018), we extend our
pipeline with English resources. We explore a
large number of features for English based on,
among others, length information, parts of speech,
word embeddings and language model probabil-
ities. In contrast to this feature-engineered ap-
proach, we use a word-length and n-gram proba-
bility based approach for the German, Spanish and
French data.

Our interest for participation in this shared task
is connected to the ongoing development of a com-
plexity prediction system for Swedish (Alfter and
Volodina, 2018). In contrast to this shared task,
we perform a five-way classification correspond-
ing to the first five levels of the CEFR scale of lan-
guage proficiency (Council of Europe, 2001). We
adapted the pipeline to English, and included some
freely available English resources to see how well
these would perform on the CWI 2018 task and to
gain insights into how we could improve our own
system.

2 Data

There were four different tracks at the shared task.
Table 1 shows the number of annotated instances
per language. For the French sub-task, no training
data was provided. Each instance in the English
dataset was annotated by 10 native speakers and
10 non-native speakers. For the other languages,
10 annotators (native and non-native speakers) an-
notated the data. An item is considered complex if
at least one annotator annotates the item as com-
plex.

Language Training Development

English 27299 3328
Spanish 13750 1622
German 6151 795
French / /

Table 1: Number of instances per language

In the dataset, information about the total num-
ber of native and non-native annotators and how
many of each category considered a word complex
is also available.

A surprising aspect of the 2018 dataset was
the presence of multi-word expressions (MWE),
which were not part of the 2016 shared task. For
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the 2018 task, the training data contains 14% of
MWEs while the development data contains 13%.

3 Features

We extract a number of features from each target
item, either a single word or a multi-word expres-
sion. The features can be grouped into: (i) count
and word form based features, (ii) morphological
features, (iii) semantic features and (iv) context
features. In addition, we use psycholinguistic fea-
tures extracted by N-Watch (Davis, 2005). In Ta-
ble 2, we list the complete set of features used for
English.

Count features

Length (number of characters)
Syllable count (S1)
Contains non-alphanumeric character
Is number
Is MWE
Character bigrams (B1)
N-gram probabilities (Wikipedia)
In Ogden list
AWL distribution
CEFRLex distribution

Morphological features

Part-of-speech
Suffix length

Semantic features

Number of synsets
Number of hypernyms
Number of hyponyms
Sense id

Context features

Topic distributions
Word embeddings

N-Watch features

British National Corpus frequency (BNC)
CELEX frequency (total, written, spoken)
In Kučera Francis (KF) list
Sydney Morning Herald frequency (SMH)
Reaction time
Bigram frequency (B2)
Trigram frequency (T2)
Syllable count (S2)

Table 2: Overview of features

Word length in terms of number of characters
has been shown to correlate well with complexity
in a number of studies (Smith, 1961; Björnsson,
1968; O’Regan and Jacobs, 1992).

Besides the number of characters, we also con-
sider the number of syllables (S1 and S2). As the
calculation of syllables in English is not straight-
forward, we use a lookup-based method for S1. In
case the word is not present in the lookup list, we
apply a heuristic approach as a fall-back. A high
number of multi-syllabic words has been shown to
increase the overall complexity of a text (Flesch,
1948; Kincaid et al., 1975), so we assume it could
also be helpful in predicting the complexity of
smaller units.

The feature related to bigrams (B1) indicates
which character bigrams occur in the target item.
We calculate all character-level bigrams in the
training data and only retain the 36 most predic-
tive bigrams using Correlation-based Feature Sub-
set Selection (Hall, 1999).

N-gram probabilities are based on language
models trained on the English Wikipedia dumps
from June and July 20151. We calculate character-
level unigram, bigram and trigram probabilities.

The Ogden list contains 850 words from Basic
English (Ogden, 1944) and this feature indicates
whether a word is part of this list.

AWL distribution considers the ten Academic
Word List (AWL) sublists (Coxhead, 1998) and in-
dicates in which lists the word occurs. The AWL
list contains word families which appear often in
academic texts but excludes general English vo-
cabulary, making it specific to the academic con-
text. The ten sub-lists are ordered according to fre-
quency, so that words from the first sub-list are
more frequent than words from the second sub-
list, and so forth.

CEFRLex distribution indicates the pres-
ence/absence in the 5th, 10th and 20th percentile
English CEFRLex lists2. These lists are obtained
by aligning and sorting four different vocabulary
lists for English (EFLLex) (Dürlich and François,
2018), French (FLELex) (François et al., 2014),
Swedish (SVALex) (François et al., 2016) and
Dutch (NT2Lex) (François and Fairon, 2017) by
frequency and only taking words which occur in

1We already had these pre-calculated language models
from previous experiments. For simplicity and time rea-
sons, we chose not to retrain them on more recent Wikipedia
dumps.

2http://cental.uclouvain.be/cefrlex/
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the 5th, 10th and 20th percentile across all lan-
guages.

Morphological features include information
about parts of speech and suffix length. Suffix
length is calculated by stemming the word using
the NLTK stemmer (Bird et al., 2009) and sub-
stracting the length of the identified stem from the
length of the original word.

Semantic features are: number of synsets, num-
ber of hyponyms, number of hypernyms and sense
id. These features are calculated from WordNet
(Miller and Fellbaum, 1998). The first three are
obtained by calculating how many items WordNet
returns for the word in terms of synsets, hyponyms
and hypernyms. Sense id is obtained by using the
Lesk algorithm (Lesk, 1986) on the sentence the
target item occurs in.

Context features consist of topic distribution
and word embeddings. For word embeddings, we
use the pre-trained Google News dataset embed-
dings. We calculate the word context of a word wi

in a sentence S ∈ w1...wn as the sum of word vec-
tors from wi−5 to wi+5, excluding the vector for
wi. In case there is not enough context, the avail-
able context is used instead. Topic distributions
are calculated by first collecting Wikipedia texts
about 26 different topics such as animals, arts, ed-
ucation or politics. These texts are tokenized and
lemmatized. We then exclude words which occur
across all topic lists. Topic distribution indicates
in which of these topic lists the target item occurs.

Features from N-Watch include frequency in-
formation from the British National Corpus
(BNC), the English part of CELEX, the Kučera
and Francis list (KF), the Sydney Morning Herald
(SMH); reaction times and bi- and trigram charac-
ter frequencies (B2 and T2). While these features
are redundant in some case, such as number of syl-
lables (S1 and S2), their values can differ due to
being calculated differently.

Since our pipeline was not designed to handle
multi-word expressions, we address this by a two-
pass approach. First, we extract all features for
single words and store the resulting vector repre-
sentations. Then, for each multi-word expression,
if we have feature vectors for all constituents mak-
ing up the MWE, we sum the vectors for count-
based features such as length and number of sylla-
bles and average the vectors for frequency counts.
We have experimented with adding all vectors
and averaging all vectors, but found that summing

some features and averaging other features not
only yields higher scores but also is linguistically
more plausible. Context vectors for MWEs are not
added but calculated separately as described above
with the difference that for a multi-word expres-
sion MWE ∈ wi, ..., wi+k occurring in a sentence
S ∈ w1, ..., wn as the sum of vectors from wi−5

to wi−1 and wi+k+1 to wi+k+5. In case not all
constituents of a multi-word expression have cor-
responding vectors from phase 1, we set all feature
values to zero and only use the context.

4 Experiments on the English data

We tried three different configurations for the En-
glish data set, namely context-free, context-only
and context-sensitive. For context-free, we use
the features described above, excluding word em-
bedding context. For context-only, we only use
the word embedding context vectors.For context-
sensitive, we concatenate the context-free and
context-only features.

4.1 Classification
We tried different classifiers, among others Ran-
dom Forest (Breiman, 2001), Extra Trees (Geurts
et al., 2006), convolutional neural networks and
recurrent convolutional neural networks imple-
mented in Keras (Chollet et al., 2015) and PyTorch
(Paszke et al., 2017). For Random Forest and Ex-
tra Trees, we tried different numbers of estimators
in the interval [10, 2000] and found that generally
either 500 or 1000 estimators reached the best re-
sults on the development set. For neural networks,
we tried different combinations of hyperparame-
ters such as the type of layers, number of con-
volution filters, adding LSTM layers, varying the
number of neurons in each layer. We tried two
different architectures, one taking as input the fea-
tures extracted as described below and convolving
over these features, the other taking both the fea-
tures and word embeddings as separate inputs and
merging the separate layers before the final layer.

5 Experiments on other languages

5.1 Predicting the German and the Spanish
test set

During testing, we noticed that using the
character-level n-gram model trained on the En-
glish Wikipedia and using only unigram, bigram
and trigram probabilities and word length as fea-
tures yielded scores in the vicinity of our best-
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performing feature-engineered models at that time
(0.81 F1 vs 0.82 F1).

Following this finding, we used character-level
n-gram models trained on Wikipedia dumps3 for
Spanish, German and French and calculated uni-
gram, bigram and trigram probabilities for these
languages. In addition, we used target item length
in characters as additional feature.

5.2 Predicting the French test set

As there was no training or development data for
the French test set, we used the n-gram language
model to convert each French entry into n-gram
probabilities. We then used the n-gram classifiers
for English, German and Spanish to predict labels
for each word. We tested two configurations:

1. Predict with English, German and Spanish
classifier and use majority vote to get the final
label

2. Predict with Spanish classifier and use label
as final label

The rationale behind the second configuration
is that French and Spanish are both Romance lan-
guages. The single Spanish classifier might thus
model French data better than incorporating also
the English and the German classifiers, as German
and English are both Germanic languages.

6 Results

Table 3 shows the results of the best classifiers on
both the development data and the test data. For
the English News and WikiNews, the best classi-
fier is an Extra Trees classifier with 1000 estima-
tors with the reduced feature set (see subsection
6.1) and trained on each genre separately, as op-
posed to the general English classifier trained on
all three genres. For all other tasks, the best classi-
fier is an Extra Trees classifier with 500 estimators
with the reduced feature set.

6.1 Feature selection for English

Out of the set of features proposed for a certain
task, usually some features are more useful than
others. Eliminating redundant features can result
not only in simpler models, but it can also im-
prove performance (Witten et al., 2011, 308). We

3See footnote 1

F1 (dev) F1 (test)

EN News 0.8623 0.8325
EN WikiNews 0.8199 0.8031
EN Wikipedia 0.7666 0.7812
German 0.7668 0.7427
Spanish 0.7261 0.7281
French / 0.6266

Table 3: Results of best classifiers

therefore run feature selection experiments in or-
der to identify the best performing subset of fea-
tures. We use the SelectFromModel4 feature se-
lection method as implemented in scikit-learn (Pe-
dregosa et al., 2011). This method selects features
based on their importance weights learned by a
certain estimator. We base our selection on the
development data and the Extra Trees learning al-
gorithm, since it performed best with the full set
of features. We use the median of importances as
threshold for retaining features. For the other pa-
rameters, the default values were maintained for
the selection.

The feature selection method identified a subset
of 64 informative features. We list these features
in Table 4, indicating in parenthesis the amount of
features per feature type where it is relevant.

Selected features

Length Sense id
Is adjective # Syllable count S2
Is noun BNC freq.
Is verb CELEX freq. (3)
Syllable count S1 KF list
Suffix length Reaction time
# synsets SMH
# hypernyms Bigram B2 freq (4)
# hyponyms Trigram T2 freq (4)
Topic distr. (22) Is MWE
Char. bigram B1 (8) Unigram prob
In Ogden list Bigram prob
CEFRLex distr. (3) Trigram prob

Table 4: Selected subset of features

The best performing features included, among
others, features based on word frequency, infor-

4We also tested other feature selection methods, namely
an ANOVA-based univariate feature selection and recursive
feature elimination, but we omit the results of these since they
were inferior.
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mation based on words senses and topics as well
as language model probabilities.

As only lexical classes were annotated for com-
plexity, it is not surprising to see that, even though
our pipeline considers all part-of-speech classes,
the feature selection picked adjectives, nouns and
verbs.

7 Additional experiments on English

7.1 Native vs non-native
Since we had information about how many na-
tive speakers and non-native speakers rated target
items as complex, we experimented with training
classifiers separately for these two categories of
raters. We applied the native-only classifier on the
native judgments of the development set, as well
as on the non-native judgments, and similarly the
non-native classifier on native judgments and non-
native judgments. In all four configurations, we
found accuracy to be the same, at about 75%.

7.2 2016 vs 2018
Before this shared task, we experimented with the
2016 CWI shared task data and trained classifiers
on it. We tried applying the best-performing clas-
sifier trained on the 2016 data on the 2018 devel-
opment data, but results were inferior to training
on the 2018 training data and predicting 2018 de-
velopment data. The same is true in the other di-
rection; applying the best-performing 2018 classi-
fier on the 2016 data yields inferior results. Table 5
shows the result of these experiments. This raises
the question of how generalizable these complex
word identification systems are and how depen-
dent they are on the data, the annotation and the
task at hand.

Configuration Accuracy Recall F1

2016 on 2018 0.6499 0.7463 0.6948
2018 on 2018 0.7992 0.7269 0.7613

2018 on 2016 0.6610 0.6335 0.6470
2016 on 2016 0.8062 0.6511 0.7204

Table 5: Results of 2016/2018 comparison

7.3 Genre dependency
During the training phase, we concatenated the
English training files for News, WikiNews and
Wikipedia into one single training file. We did
the same with the development data. We trained

a single, genre-agnostic English classifier on this
data. During the submission phase, we used the
single classifier but also split the data into the three
sub-genres News, WikiNews and Wikipedia again
and retrained our systems, which improved perfor-
mance. This hints at the genre-dependency of the
concept of complex words.

7.4 Context

As the notion of complexity may be context-
dependent, i.e. a word might be perceived as more
complex in a certain context, we used word em-
bedding context vectors as features. However, our
feature selection methods show that these context
vectors do not contribute much to the overall clas-
sification results. Indeed, of the 300-dimensional
word embedding vectors representing word con-
text, not a single dimension was selected by our
feature selection.

However, if we only look at features which can
be derived from isolated words, we also have a
problem of contradictory annotations. This means
that representing isolated words as vectors can
lead to the same vector representation of different
instances of a word with different target labels. We
calculated the number of contradictions and found
that representing each word as a vector leads to 5%
of contradictory data points.

8 Discussion

One interesting aspect of the data is the separation
of annotators into native and non-native speakers.
However, while it can be interesting to try and
train separate classifiers for modeling native and
non-native perceptions of complexity, and this in-
formation can be exploited at training time, us-
ing features that rely on the number of native and
non-native annotators could not be used on the test
data, as the only information given at test time is
the total number of native and non-native annota-
tors, and these numbers do not vary for the English
data.

Our best classifiers are all Extra Trees. All
other classifiers that we tested, especially convolu-
tional neural networks and recurrent convolutional
neural networks, reached lower accuracies. This
might be due to insufficient data to train neural
networks, a suboptimal choice of hyperparameters
or the type of features used.

While our systems did not reach high ranks
on the English datasets (ranks 13, 13 and 6 on
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News, WikiNews and Wikipedia respectively), we
reached place 2 on the German data set and place
3 on the French data set. Given the simplicity
of the chosen approach, this is slightly surpris-
ing. However, we surmise that n-gram proba-
bilities implicitly encode frequency among other
things, and frequency-based approaches generally
perform well.

Further, we found that using only the Spanish
classifier on the French data lead to better scores
than using all three classifiers and majority vote.
This speaks in favor of the hypothesis that closely
related languages model each other better. This
can be interesting for low-resource languages if
there is a related language with more resources.

9 Conclusion

We presented our systems and results of the 2018
shared task on complex word identification. We
found that simple n-gram language models per-
form similarly well to fully-feature engineered
systems for English. Our submission for the non-
English tracks were based on this observation, cir-
cumventing the need for more language-specific
feature engineering.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. Journal of Machine
Learning Research, 12(Oct):2825–2830.

Edgar A Smith. 1961. Devereux Readability Index.
The Journal of Educational Research, 54(8):298–
303.

Sowmya Vajjala and Detmar Meurers. 2014. Assess-
ing the relative reading level of sentence pairs for
text simplification. In Proceedings of the 14th Con-
ference of the European Chapter of the Association
for Computational Linguistics.

Ian H Witten, Eibe Frank, Mark A Hall, and Christo-
pher J Pal. 2011. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann.

Victoria Yaneva, Irina P Temnikova, and Ruslan
Mitkov. 2016. Evaluating the Readability of Text
Simplification Output for Readers with Cognitive
Disabilities. In LREC.

Seid Muhie Yimam, Chris Biemann, Shervin Mal-
masi, Gustavo Paetzold, Lucia Specia, Sanja Štajner,
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Abstract

We describe the systems of NLP-CIC team
that participated in the Complex Word Iden-
tification (CWI) 2018 shared task. The shared
task aimed to benchmark approaches for iden-
tifying complex words in English and other
languages from the perspective of non-native
speakers. Our goal is to compare two ap-
proaches: feature engineering and a deep neu-
ral network. Both approaches achieved com-
parable performance on the English test set.
We demonstrated the flexibility of the deep-
learning approach by using the same deep neu-
ral network setup in the Spanish track. Our
systems achieved competitive results: all our
systems were within 0.01 of the system with
the best macro-F1 score on the test sets except
on Wikipedia test set, on which our best sys-
tem is 0.04 below the best macro-F1 score.

1 Introduction

Complex Word Identification (CWI) is an impor-
tant step in text simplification. The ability to accu-
rately identify word(s) as complex or not in a given
context for a given target population significantly
impacts subsequent processing steps such as lexi-
cal substitution in the simplification pipeline.

The organizers of the 2018 CWI shared task
(Yimam et al., 2018) provided participants with
multilingual human-annotated datasets (Yimam
et al., 2017a,b) for the identification of complex
words. Training and development data were pro-
vided for three languages: English, Spanish, and
German. In the case of English, three genres were
covered: news, Wikinews, and Wikipedia.

Some of the participants of the previous
CWI shared task used neural network-based ap-
proaches. For instance, Bingel et al. (2016) used

a simple feed-forward neural network, while Nat
(2016) used an ensemble of recurrent neural net-
works (RNN). The performance of the neural net-
work approaches was not impressive. The RNN
achieved the best result among all the submissions
that used neural networks (Paetzold and Specia,
2016b).

In this paper, we report further experiments with
the efficacy of deep neural networks for CWI, us-
ing another deep neural network architecture—
Convolutional Neural Network (CNN). Namely,
we compare two approaches for the task of CWI:
one based on an extensive feature engineering
and the tree ensembles classifier, and another one
based on deep neural network using the word em-
bedding representation. The latter approach is,
to the best of our knowledge, the first attempt
to apply CNNs to the task of CWI. Apart from
comparing the performance of the two approaches
on the classification subtask of CWI on English,
we demonstrate the flexibility of the CNN-based
approach by applying it to another language—
Spanish in our case.

The remainder of the paper is organized as fol-
lows. Section 2 outlines relevant work. Sections 3
and 4 present our two approaches. Section 5 gives
some details on the datasets used. Results of our
experiments are in Section 6. Section 7 presents
error analysis. Finally, Section 8 concludes the pa-
per and outlines future work directions.

2 Related Work

The majority of works on CWI are related to fea-
ture engineering at various linguistic levels. Sec-
tion 2.1 below discusses existing approaches to
feature engineering for machine-learning models
used for CWI. On the other hand, Section 2.2 men-
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tions some relevant applications of CNNs to natu-
ral language processing (NLP).

2.1 Feature Engineering for he CWI Task
Participants of the first edition of CWI shared
task have experimented with various linguistic fea-
tures. These linguistic features span various lin-
guistic levels: morphological, syntactic, semantic,
and psycholinguistic. Paetzold and Specia (2016c)
used morphological, lexical, and semantic fea-
tures to train frequency-based, lexicon-based, and
machine-learning models for CWI. Konkol (2016)
used only frequency of occurrence of a word in
Wikipedia as the only feature to train a Max en-
tropy classifier. Davoodi and Kosseim (2016) ex-
perimented with the degree of abstractness of a
word as a psycholinguistic feature for CWI.

In this work, we used some of these features
and experimented with some new features, such as
contextual and entity information and additional
psycholinguistic scores.

2.2 CNNs in NLP
Convolutional neural networks have shown no-
table results in the fields of computer vision,
speech recognition and recently in NLP.

CNN models achieve state-of-the-art results
in NLP tasks such as clause coherence (Yin
and Schütze, 2015b), paraphrase identification
(Yin and Schütze, 2015b,a) and Twitter sentiment
analysis (Severyn and Moschitti, 2015).

Kim (2014) presents a CNN fed with word2vec
word embedding vectors (Mikolov et al., 2013)
used for detection of positive and negative re-
views, as well as sentence classification. Their
results suggest that pre-trained vectors encode
generic semantic features, which can benefit var-
ious NLP classification tasks. In our work, we
used a similar model with slight additions to the
architecture of the network and a different prepro-
cessing step.

3 Feature-Engineering Approach

In this section, we present the set of features used
to build one of our CWI systems.

Morphological Features Most of the morpho-
logical features we used consist of frequency
count of target text on large corpora such as
Wikipedia and Simple Wikipedia. We computed
term frequency, inverse term frequency, document
frequency and term document entropy. Also, the

tf-idf values were calculated. In addition, we used
characteristics of each target text such as number
of characters, vowels, and syllables.

Syntactic and Lexical Features We used
OpenNLP1 part-of-speech (POS) tagger to deter-
mine the target word’s POS in the context. We
used the POS as a parameter to filter the possible
meanings of the target word. With this, we ob-
tained the number of senses, lemmas, hyponyms,
and hypernyms given by WordNet.2

Psycholinguistic and Entity Features We in-
cluded some psycholinguistic scores provided by
the improved MRC psycholinguistics database
(Paetzold and Specia, 2016a) as features. The
database provides familiarity, age of acquisition,
concreteness, and imagery scores for each word.
We hypothesized that these scores would be use-
ful to identify complex word. Unfortunately, many
target words were absent in this database. We used
OpenNLP and Stanford CoreNLP3 to tag target
words as organization, person, location, date, and
time. The resulting tag was used as an entity fea-
ture.

Word Embedding Distances as Features Be-
yond these classic linguistic features, we used
word embeddings. Namely, we downloaded the
pre-trained Word2vec (Mikolov et al., 2013) vec-
tors of 300 dimensions to measure the distance be-
tween the sentence and the target word. The dis-
tance was computed using cosine similarity and
Euclidean similarity over the average of the vec-
tor representation of the words in the sentence and
the target text.

Classical Machine Learning Models We no-
ticed that for this task (with our features), the
tree learner offered better performance than other
models. Thus, we tried several settings for the
tree learner model provided by KNIME (Berthold
et al., 2009), as well as more complex variations
such as random forest, gradient boosted, and tree
ensembles. The best obtained result was given by
the tree ensembles with 600 models.

4 Deep-Learning Approach

In this section, we present our deep-learning ap-
proach. It is based on 2D convolution and word-

1http://opennlp.apache.org/
2https://wordnet.princeton.edu/
3https://stanfordnlp.github.io/CoreNLP
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Figure 1: The architecture of our network

embedding representation of the target text frag-
ment and its context.

Since text is one-dimensional, we applied a
preprocessing step described in Section 4.1 prior
to the application of convolution layer. Sec-
tion 4.2 describes our network architecture, and
Section 4.3 presents the training procedure.

4.1 Preprocessing

As a first step, we removed punctuation marks,
digits, and special characters. Each word was then
replaced by its vector representation using the pre-
trained word vectors from the Word2vec model
(Mikolov et al., 2013) for English and fastText
model (Grave et al., 2018) for Spanish. A min-
max normalization was applied to every vector to
convert the values from the range [−1, 1] to [0, 1].
We assigned a zero vector to the words missing in
the pre-trained embeddings.

We defined the left context (LC) and the right
context (RC) as those words that appear to the left
and the right of the target text, respectively. As a
compact representation of the left or right context,
we used one 300-dimensional vector calculated as
the average of the vectors of all the words in the
LC and RC, respectively (if the target text was lo-
cated at the beginning or the end of the sentence,
we used a zero vector as the respective context rep-
resentation). Next, we generated a matrix where
the first row corresponds to the LC vector, the next
k rows are given by the embedding vectors of the
words contained in the target text, where k is the
number of words in the target text, and the last row
corresponds to the RC vector. In order to have a
regular representation, we padded the matrix with

p = m−k zero vectors, where m is the maximum
value of k in the training set.

Figure 1 illustrates the preprocessing step on the
sentence of an example in the English training set.
The output of the preprocessing step is the input
of the network.

We believe that the averaging operation on the
words in the contexts allowed differentiating be-
tween cases where the same sentence has distinct
target texts. Those words included or excluded in
the context will slightly modify the representation
of the context, which will help the model to learn
some relationships between the target text and the
rest of the sentence. We could have compressed
the representation matrix by combining the vec-
tor representation of the words in the target text
instead of stacking them. However, this could dra-
matically reduce the valuable information pertain-
ing to the target text.

4.2 Architecture of our Network

In our architecture, we used an input, convolution,
pooling, and fully-connected layers; see Figure 1.
Below we describe each of these layers except the
input layer, which was described in Section 4.1.

Convolution The number of filters in this layer
varied from 16 to 256 with a convolution stride of
1 and kernel size in the range of 2 to 4. We ap-
plied the rectified linear unit activation function to
the output of this layer in order to introduce non-
linearity. This layer is central to the idea of CNN,
which enables the network to identify the most im-
portant features in the input. The output of this
layer is often referred to as feature maps. Our net-
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Source Training Set Test Set
Avg. Length Avg. Sentence Examples Positive Avg. Length Avg. Sentence Examples
Target Text Length Target Text Length

Wikinews 8 168 7746 42% 8 166 1287
News 8 174 14002 40% 8 153 2095

Wikipedia 8 175 5551 45% 9 194 870
Spanish 9 193 13750 40% 9 190 2233

Table 1: English and Spanish datasets

work included four convolutional layers.

Pooling Max pooling was applied to the output
of the convolution layer to downsample the feature
maps. The feature maps of the last pooling layer
were flattened.

Fully-Connected Layer We used three fully-
connected layers (FC). The first FC took as in-
put the flattened output of the last pooling layer.
The first two FCs used a linear activation func-
tion and the third applied the sigmoid activation
function. The last FC gave a number in the range
[0, 1], which was the final output of the network.
By a threshold (we found 0.5 to be optimal), we
determined whether the output on a given exam-
ple implied a label of 0 (simple) or 1 (complex).

4.3 Training

We used the binary cross-entropy as our objec-
tive function for training the network. We ex-
perimented with various types of optimizers. We
chose optimizers with static learning rate and
those with adaptive learning rate schedules. Based
on the performance of the model on the validation
set, we found RMSprop to be the best on updating
the network parameters and minimizing the loss
function while using 100 epochs.

The dataset is imbalanced: it contains unequal
proportion of examples by class labels, roughly
60% negative examples and 40% positive exam-
ples. So, we introduced class weights in our train-
ing procedure, which resulted in performance im-
provement. We computed class weights using
scikit-learn (Pedregosa et al., 2011).

To mitigate overfitting, we tried several regu-
larization alternatives (Goodfellow et al., 2016)
including kernel and weight regularization, batch
normalization, dropout, and early stopping. We
found dropout and early stopping useful. Our final
model included dropout (Srivastava et al., 2014)
after every layer with dropout probability of 0.25.

5 Datasets

Table 1 shows some statistics on the corpora we
used: the average length of the target text and sen-
tences and the number of examples in the train-
ing and test sets, with the percentage of positive
examples (target texts labeled as complex) in the
training set. The table shows that the datasets are
skewed towards negative examples: the percent-
age of positive examples on the datasets did not
exceed 45%. The Wikipedia dataset has the small-
est number of training examples, 5551. The aver-
age length of target text in the training examples
and test examples are comparable. One can see
some variations in the average length of sentences
in the training and test sets. These variations are
remarkable for the Wikipedia and News datasets.

6 Results

This section presents the performance of both
models on the English test set and that of the CNN
model on the Spanish test set.

Table 2 shows the macro-F1 and accuracy
scores as well as the respective ranks of both
CNN and TreeE models on the English test set.
The performance measures are given per genre in
the English test set. Out of 11 teams, our best
model places fifth on News; second on Wikinews,
and seventh on Wikipedia. All our systems were
within 0.01 of the system with the best macro-F1
score on the test sets except on Wikipedia test set.
On the Wikipedia test set, our best system was
0.04 below the best macro-F1 score.

On the Spanish test set, we submitted only the
CNN-based system. Table 3 shows its macro-
precision, macro-recall, macro-F1, and accuracy
scores. Our best submission ranks third among
seven teams that participated in the Spanish track.

The main advantage of the CNN model is that it
can be applied to any language for which an em-
bedding can be easily created given the availability
of sufficient electronic textual resources.
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News Wikinews Wikipedia
Models Macro-F1 Accuracy Rank Macro-F1 Accuracy Rank Macro-F1 Accuracy Rank

NLP-CIC-TreeE 0.851 0.859 9 0.831 0.837 3 0.772 0.774 11
NLP-CIC-CNN 0.855 0.863 8 0.824 0.828 7 0.772 0.772 12

Table 2: Accuracy and macro-F1 scores by genres on the English test set

Model Macro-Recall Macro-Precision Macro-F1 Accuracy Rank
NLP-CIC-CNN 0.765 0.772 0.767 0.772 3

Table 3: CNN performance scores on the Spanish test set

Source NLP-CIC-TreeE Model NLP-CIC-CNN Model
Correct Wrong Correct Wrong

Wikinews 0.94± 0.53 1.10± 0.65 0.94± 0.51 1.12± 0.72

News 0.97± 0.55 1.21± 0.75 0.97± 0.55 1.17± 0.75

Wikipedia 1.05± 0.65 1.04± 0.68 1.04± 0.66 1.08± 0.65

Table 4: Target text Normalized character count BY model performance on English test set

7 Discussion

We observed a relationship between the length of
the target text—character count—and the perfor-
mance of our models.

On the News genre dataset of the English test
set, our CNN model tends to show better perfor-
mance on target texts with fewer words compared
to Tree Ensembles. When the target text contains
more than three words, Tree ensembles perform
better than CNN. Similarly, both models tend to
make mistakes when the average character count
in the target text is higher. Table 4 shows the nor-
malized mean character count of the target text in
the English test set when each of our models made
correct and wrong predictions.

We believe that this behavior is a reflection of
the training examples: there are fewer examples
with longer target texts.

8 Conclusion and Future Work

We have described two approaches for the classi-
fication subtask of the CWI 2018 shared task: one
using feature engineering with Tree Ensembles
and one using CNN. We compared them on the test
set provided for the CWI 2018 shared task. On the
English test set, the two approaches showed com-
parable performance: the difference between the
performance scores was within 0.01. On the En-
glish test set, our best model placed fifth on News,
second on Wikinews, and seventh on Wikipedia.
On the Spanish test set, the CNN model ranked
third. This result demonstrates the flexibility of

applying CNN to CWI on any language for which
pre-trained embeddings are available.

Our models behaved differently depending on
the length of the target text: they tend to make
mistakes on longer target texts. We attribute this
behavior to the skewness of the training set.

In the future, it would be interesting to evalu-
ate the impact of domain-specific features, as well
as of different vector operations used to generate
context vectors, on the performance of our models.
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Abstract

We describe a system for the CWI-task that in-
cludes information on 5 aspects of the (com-
plex) lexical item, namely distributional infor-
mation of the item itself, morphological struc-
ture, psychological measures, corpus-counts
and topical information. We constructed a
deep learning architecture that combines those
features and apply it to the probabilistic and
binary classification task for all English sets
and Spanish. We achieved reasonable perfor-
mance on all sets with best performances seen
on the probabilistic task, particularly on the
English news set (MAE 0.054 and F1-score
of 0.872). An analysis of the results shows
that reasonable performance can be achieved
with a single architecture without any domain-
specific tweaking of the parameter settings and
that distributional features capture almost all
of the information also found in hand-crafted
features.

1 Introduction

In general, complex word identification (CWI)
aims to identify words that are perceived as dif-
ficult for a given target audience. As such, chil-
dren (De Belder and Moens, 2010), foreign lan-
guage learners (Paetzold and Specia, 2016c) and
readers suffering from aphasia (Devlin and Tait,
1998), dyslexia (Rello et al., 2013) or autism spec-
trum disorder (Štajner et al., 2017) will struggle
with different words.

The goal of the current CWI shared task (Yi-
mam et al., 2018) is to predict which words can be
difficult for a non-native speaker, based on annota-
tions collected from a mixture of native and non-
native speakers. The instructions for the English
dataset are formulated so that the annotator marks
the words he thinks are problematic for children,
non-native speakers, or people with language dis-
abilities.

Having such a diverse target audience requires
a system that includes a variety of information at

different levels of linguistic description. We in-
clude information that covers 5 aspects of the lexi-
cal item at hand, namely distributional information
of the item itself, morphological structure, psycho-
logical measures, corpus-counts and topical infor-
mation. With the exception of the psychological
measures, all can be readily trained by an appro-
priate neural network architecture and/or acquired
from large-scale corpora.

We train a neural network to integrate said
sources of information and apply it to the proba-
bilistic and the binary complexity assessment for
the three English datasets and the Spanish one.

2 Related Work

2.1 Complex Word Identification

The task of complex word identification has often
been regarded as a critical first step for automatic
lexical simplification (Shardlow, 2014). Indeed,
erroneously identifying or failing to identify words
as complex is likely to trigger important errors in
the simplification pipeline. As a result, a grow-
ing number of studies have been dedicated specif-
ically to complex word identification and have fo-
cused on developing accurate statistical learning
methods and on collecting appropriate gold stan-
dards (Paetzold and Specia, 2016a; Yimam et al.,
2017a,b; Štajner et al., 2017)

Complex word identification has only relatively
recently been framed as a machine learning (ML)
problem (Zeng et al., 2005; Shardlow, 2013).
Indeed, before any gold-standard datasets were
made available, the early approaches to the iden-
tification of complex words in a text included,
on the one hand, readability measures determin-
ing complex words based on word familiarity
(Dale and Chall, 1948) or on syllable count (Gun-
ning, 1952; Mc Laughlin, 1969) and, on the other
hand, simplification methods which plainly con-
sidered all words as complex and simplified every-

328



thing (Devlin and Tait, 1998) or simplified words
based on a threshold on word familiarity (Elhadad,
2006).

The SemEval-2016 shared task on complex
word identification (described in detail in Paetzold
and Specia, 2016a) was the first evaluation cam-
paign which provided a gold-standard dataset as
well as an extensive comparison of different ma-
chine learning approaches for the task at hand.
The submitted systems included different types of
classifiers such as SVMs, random forests, maxi-
mum entropy systems, ... which combined differ-
ent types of features, ranging from linguistic infor-
mation (on a lexical, morphological, semantic and
syntactic level), over psycholinguistic measures
to corpus-based information such as frequencies.
The results on the shared task showed how en-
semble methods (Paetzold and Specia, 2016b) out-
performed any other ML technique and neural ap-
proaches in particular (Bingel et al., 2016). The
task also showed however how a lack of anno-
tation standards made it difficult for any ML-
approach to model the rather inconsistent human
assessment (Zampieri et al., 2017).

2.2 Deep Learning Architectures

The system we describe likewise inscribes itself
in the ML-approach to CWI and draws inspira-
tion from neural network literature in NLP. We
adapt the architectures’ initial purposes and ap-
ply it to the task at hand. Collobert et al. (2011)
show how distributional information from words,
called word embeddings, can be used in combina-
tion with a neural network architecture to largely
replace hand-crafted features for learning NLP-
related tasks such as POS-tagging and NER. The
embeddings capture fine-grained information cov-
ering its linguistic behavior and the neural network
model successfully teases out the relevant prop-
erties from that representation for the given task.
Character embeddings (Zhang et al., 2015; Zhang
and LeCun, 2015) take it one step further and also
make it possible to encode and capture subword
information in the modeling process.

3 Methods, Data, etc.

3.1 Data sources

The English datasets cover 3 informationally
dense target domains for which to assess lex-
ical complexity, namely news, Wikipedia and
Wikipedia news. The Spanish dataset contains

data taken from Spanish Wikipedia pages. Table 1
summarizes the number of training, development
and test items for each dataset we used in the ex-
periment. We combined training and development
sets and used it as a single training set.

As a general domain corpus we use the COW-
corpora (Schäfer, 2015; Schäfer and Bildhauer,
2012). The corpora are gathered online and cover
a wide scope of topics. The English corpus con-
tains well over 13 billion tokens, the Spanish one
over 4 billion tokens.

We have at our disposal psychological mea-
sures for English from the MRC Psycholinguistic
Database (Wilson, 1988). Measures include age
of acquistion, imageability, concreteness, familiar-
ity and meaningfulness and covers 150837 words.
The overlap between the training dataset is how-
ever limited to approximately 1500 words.

Dataset Train Dev Test

English News 14002 1764 2095
English Wikipedia 5551 694 870
English Wikinews 7746 870 1287
Spanish 13750 1622 2233

Table 1: CWI training, development and test sets

3.2 Feature operationalization

Psychological measures Psychological mea-
sures are used for the words found in the available
dataset. Missing values were extrapolated based
on findings that psychological measures correlate
(inversely) to frequency. As such, less frequent
words tend for instance to have a higher age of ac-
quisition, and a lower imageability and concrete-
ness rating. We therefore chose to respectively use
third and first quartile values. In order to accom-
modate the neural network architecture all values
have been normalized by dividing by the maxi-
mum value.

Frequency counts Frequency counts are calcu-
lated from the general corpus for all experiments.
To avoid skewness we perform a rank transforma-
tion, with equal ranks being given the first encoun-
tered rank, and normalize again by dividing by the
highest rank.

Word length Word length is also determined.

Word embeddings Word embeddings are pre-
trained using the COW-corpora and are used to
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initialize several of our input layers in the neural
network. We use the gensim implementation of
word2vec to construct a 300 dimensional embed-
ding space, based on a window-size of 5 including
words that reach a minimum frequency threshold
of 20.

Character embeddings Character embeddings
are trained on the train and development set of all
target words. Each character is replaced by a 16-
dimensional encoding which has been randomly
initialized. Each word consists of a concatenation
of its character representations.

3.3 Architecture

Figure 1 shows the general architecture for the
CWI-task. The model has been constructed with
the Keras deep learning library (Chollet et al.,
2015) with tensorflow-gpu as a backend. It in-
cludes the 5 sources of information we discussed
in the previous section/ which are used as features
to represent information at the word and the sen-
tence level. At the word level, we include engi-
neered features (psychological measures, corpus-
counts and word length) and distributional infor-
mation (word and character embeddings). At the
sentence level we concatenate embeddings to cap-
ture topical information.

3.3.1 Input Layers
We include engineered features for the English
dataset following the idea that they correlate with
cognitive complexity. The features include psy-
chological information, corpus-counts and word
length. Corpus-counts measure familiarity and in-
frequent words are attributed a higher degree of
complexity. Word length then has been shown to
be related to processing difficulties and is relevant
for instance to determine which words pose prob-
lems for persons with dyslexia.

Each target word is encoded by its word em-
bedding, or in the case of word groups by their
concatenated embeddings. The idea is that words
with similar distributional patterns might have a
comparable complexity. An LSTM layer with a
dimensionality of 64 compacts the dimensionality
of the representation.

Each target is also encoded as a sequence of
its character embeddings. This input encoding
is meant to capture morphological information as
well as cues from letter sequences which might be
perceived as difficult. The character embeddings

are trained through 2 convolutional layers (4 fil-
ters, kernel size of 4, stride of 1) followed by max
pooling (with a size of 2). An LSTM of size 64 is
the final layer that directly encodes the character
information.

The entire sentence is encoded as a concatena-
tion of word embeddings and serves as a sort of
topical approximation using contextual cues. An
LSTM of 128 finalizes the information captured
in this layer.

3.3.2 Dense Layers
All inputs are then concatenated and run through
a shallow 3 layered fully connected network (each
consisting of 32 nodes) with a moderate dropout
rate of 0.3. A final dense layer predicts the out-
put. 2 auxiliary loss functions are provided to en-
sure smooth training of the character and the topic
model. We use binary cross-entropy as the loss
function for the binary outcome task and mean
squared error rate for the probabilistic one. We ap-
plied the architecture to the English datasets and,
with the exception of the psychological measures,
also to the Spanish one.

4 Results

Dataset Result Rank Maximum-score

English News (Acc) 0.872 2 0.879
English Wikipedia (Acc) 0.782 5 0.812
English Wikinews (Acc) 0.815 6 0.843
Spanish (Acc) 0.777 2 0.784

English News (MAE) 0.054 2 0.051
English Wikipedia (MAE) 0.081 2 0.074
English Wikinews (MAE) 0.071 3 0.067
Spanish (MAE) 0.073 2 0.072

Table 2: Results, Rank and Maximum scores for the
CWI identification task

The results in Table 2 show reasonably good
performance for all tasks. Our architecture seems
to work especially well for the regression task,
but shows its aptitude for the classification task
as well. The size of the training data seems to
play a direct role in the system’s ability for accu-
rate predictions. This is in line with other deep
learning literature. This does not hold for the
Spanish set however, which might be due to a
slight difference in apprehension during the data
collection phase. The inclusion of corpus-counts
and pre-trained embeddings from a general cor-
pus, rather than a wikipedia corpus shows directly
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Figure 1: Neural Network Architecture
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Input Precision Non-complex Precision Complex Recall Non-complex Recall Complex

Character encoding (C) 0.876 0.757 0.839 0.809
Engineered features (E) 0.853 0.755 0.846 0.764
Word embeddings (W) 0.892 0.813 0.882 0.829
Sentences (S) 0.617 0 1 0

W + C 0.897 0.829 0.893 0.835
W + C + E 0.902 0.825 0.888 0.845

Table 3: Precision and Recall for different input layers

in the performance of the respective tasks. Using
a wikipedia corpus will probably positively influ-
ence the results for those particular sets. Yet, the
inclusion of general corpus-information proves to
be a valid alternative in lack of specialized cor-
pora. The inclusion of the engineered features
does not seem to affect the obtained scores much.

Table 3 provides an overview of the relative
contribution of each input layer to the final result
for the English news dataset. The models were
trained for 50 epochs. Considering each input
layer separately, the word embeddings are the best
estimator for the complexity task, followed closely
by the character embeddings. Engineered features
capture some information on the word’s complex-
ity, yet not as much as the embedding layers. In-
terestingly, sentence information does not outper-
form the baseline.

The combination of input layers shows the rel-
ative improvement that can be achieved by adding
more information to the best performing input
layer. The results indicate that combining in-
formation only marginally improves performance.
They also confirm that the engineered features
in combination with the embeddings do not con-
tribute much to the final score.

This leads to the following conclusions for the
current dataset. First, complexity is best deter-
mined by including focused information of the tar-
get word itself. The inclusion of contextual, topi-
cal information does not show any noticeable ad-
vantage. Looking at the combination of input lay-
ers, we can derive that the engineered features
only add marginally different information from
other input sources. This could be due to the lim-
ited number of words that are actually covered by
the psychological dataset, but it also implies that
the information from the corpus-counts is indi-
rectly captured by the embeddings and from the
word length by the character encodings. It is a case
in point for replacing manual feature engineer-

ing by word and character embeddings. Based on
these results we cannot conclude whether the word
embeddings’ better performance over the charac-
ter embeddings is due to pre-training.

5 Conclusion

Reasonable performance can be achieved with a
single architecture including information from dif-
ferent levels of linguistic description. Information
derived from large scale corpora makes it possi-
ble to include them as a starting point on which
to build a general architecture that learns the ap-
propriate weights for the specific problem, in our
case, the CWI-task. Embeddings at the word and
the character level seem to contain sufficient infor-
mation to model the problem well.

Future work will include an exploration to find
optimal hyperparameter settings to optimize the
identification task. We will likewise explore
whether pre-training the character embeddings on
a larger corpus will put its performance on par
with the pre-trained word embeddings. The latter
would pave the way for a model with less training
parameters and would significantly reduce com-
plexity.
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Abstract
This paper describes the results of NILC team
at CWI 2018. We developed solutions follow-
ing three approaches: (i) a feature engineering
method using lexical, n-gram and psycholin-
guistic features, (ii) a shallow neural network
method using only word embeddings, and (iii)
a Long Short-Term Memory (LSTM) language
model, which is pre-trained on a large text cor-
pus to produce a contextualized word vector.
The feature engineering method obtained our
best results for the classification task and the
LSTM model achieved the best results for the
probabilistic classification task. Our results
show that deep neural networks are able to per-
form as well as traditional machine learning
methods using manually engineered features
for the task of complex word identification in
English.

1 Introduction

Research efforts on text simplification have mostly
focused on either lexical (Devlin and Tait, 1998;
Biran et al., 2011; Glavaš and Štajner, 2015; Paet-
zold and Specia, 2016b) or syntactic simplifica-
tion (Siddharthan, 2006; Kauchak, 2013). Lexical
simplification involves replacing specific words in
order to reduce lexical complexity. Lexical sim-
plification is an open problem, as identifying and
simplifying complex words in a given context is
not straightforward. Although very intuitive, this
is a challenging task since the substitutions must
preserve both the original meaning and the gram-
maticality of the sentence being simplified. Com-
plex word identification is part of the usual lex-
ical simplification pipeline (Paetzold and Specia,
2015), which is illustrated in Figure 1.

For the challenge, we focused on the English
monolingual CWI track. We implemented three

∗ The opinions expressed in this article are those of the
authors and do not necessarily reflect the official policy or
position of the Itaú-Unibanco.

Figure 1: Lexical Simplification pipeline.

approaches using machine learning: the first one
uses feature engineering; the second one takes the
average embedding of target words as input to a
neural network; and the third approach models the
context of the target words using an LSTM (Gers
et al., 1999). Our code is publicly available at
github1.

2 Task Description

The setup of the CWI Shared Task 2018 is as fol-
lows: given a target word (or a chunk of words)
in a sentence, predict whether or not a non-native
English speaker would be able to understand it.
These predictions are based on annotations col-
lected from a mixture of 10 native and 10 non-
native speakers. The labels in the binary classifi-
cation task were assigned “1” if at least one of the
20 annotators did not understand it (complex), and
“0” otherwise (simple). The labels in the prob-
abilistic classification task were assigned as the
number of annotators who marked the word as dif-
ficult divided by the total number of annotators.

In this edition a multilingual dataset was avail-
able and participants could choose to partici-
pate in one or more of the following tracks:
English monolingual CWI, German monolingual

1https://github.com/nathanshartmann/
NILC-at-CWI-2018
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CWI, Spanish monolingual CWI, Multilingual
CWI shared task with French test set. Also, the
participants could choose between binary classi-
fication or probabilistic classification task. We
chose to participate in the English monolingual
track and in both classification tasks (see in Table
1 the dataset distribution for the track).

Dataset Train Dev Test

News 14,002 1,764 2,095
WikiNews 7,746 870 1,287
Wikipedia 5,551 694 870

Total 27,299 3,328 4,252

Table 1: CWI 2018 english dataset distribution.

More relevant task description, data and results
are available in Yimam et al. (2018).

3 Datasets

In this work, we used two extra corpora to train
language models, one of these to train a neural lan-
guage model:

• BookCorpus dataset: which has 11,038 free
books written by yet unpublished authors
(Zhu et al., 2015);

• One Billion Word dataset: which is the
largest public benchmark for language mod-
eling (Chelba et al., 2013).

4 Proposed Methods

In this section we show our developed methods,
following three approaches: feature engineering,
feature learning and ensembles.

4.1 Methods based on Feature Engineering
We used linguistic, psycholinguistic and language
model features to train several classification and
probabilistic classification methods. Our feature
set consists of three groups of features:

• LEX: includes word length, number of sylla-
bles, number of senses, hypernyms and hy-
ponyms in WordNet (Fellbaum, 1998);

• N-gram: includes log probabilities of an n-
gram containing target words in two language
models trained on BookCorpus and One Bil-
lion Word datasets using SRILM (Stolcke,
2002);

• PSY: contains word-level psycholinguistic
features such as familiarity, age of acquisi-
tion, concreteness and imagery values for ev-
ery target word (Paetzold and Specia, 2016a).

Because an instance can contain more than a tar-
get word, mean, standard deviation, min and max
values were calculated for each feature. A total
of 38 features are extracted for each instance. We
also normalized features using Z-score.

We trained Linear Regression, Logistic Regres-
sion, Decision Trees, Gradient Boosting, Extra
Trees, AdaBoost and XGBoost methods for both
classification and probabilistic classification tasks.

4.2 Methods based on Feature Learning and
Transfer Learning

An alternative approach to feature engineering is
to make the machine learning model itself create a
data representation. This is the principle of feature
learning. In this scenario, all elements of the vec-
tor contain an independent value, which has some
meaning for the model (LeCun et al., 2015).

Most importantly, we can reuse this representa-
tion in another tasks, which is called transfer learn-
ing or domain adaptation. This strategy is already
used with success in Computer Vision, where deep
neural networks are pre-trained in large supervised
training sets like ImageNet (Girshick et al., 2014;
Esteva et al., 2017).

It is common in Natural Language Process-
ing (NLP) tasks to use pre-trained word embed-
dings with models like Word2Vec (Mikolov et al.,
2013) or GloVe (Pennington et al., 2014). How-
ever, more recently some studies have used dis-
tributed sentences to produce contextualized em-
beddings, from a language model, machine trans-
lation model, or auto-encoder (Dai and Le, 2015;
Kiros et al., 2015; Yuan et al., 2016; Le et al.,
2017; Peters et al., 2017, 2018; McCann et al.,
2017; Howard and Ruder, 2018).

In the next section we will explain how we used
both strategies.

4.2.1 Average Embedding Method
Word embedding is a technique to represent words
into dense real vectors, that helps NLP tasks and
improves neural networks models (Collobert et al.,
2011; Kim, 2014; Bowman et al., 2015), because
this dense representation captures semantic and
morphological information of the words. In this
work, we obtained word vector representations for
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complex words. When a complex word was a
chunk of words, we took the average of their vec-
tors. We used word vectors from GloVe (6B to-
kens (Pennington et al., 2014)).

The resulting vector was passed on to a neural
network with two ReLU layers (Nair and Hinton,
2010) followed by a Sigmoid layer, which pre-
dicted the probability of whether or not the word
was complex (Figure 2).

sparking clashesintense

Output

μ

ReLU layer

ReLU layer

Sigmoid layer

Word
Embeddings

Figure 2: Example of average embedding method
processing target words.

4.2.2 LSTM Method
LSTM is a powerful tool for modeling sequen-
tial data. This type of neural network architec-
ture can learn to map an input sentence of vari-
able length into a fixed-dimensional vector repre-
sentation. For this reason, a lot of state-of-the-
art systems in several NLP tasks incorporate an
LSTM, for example, language modeling (Joze-
fowicz et al., 2016; Melis et al., 2017), machine
translation (Di Gangi et al., 2017), textual infer-
ence (Tay et al., 2017), and others.

Some studies used a pre-trained LSTM lan-
guage model (Dai and Le, 2015; Yuan et al., 2016;
Le et al., 2017; Peters et al., 2017, 2018) to repre-
sent a sentence/document and used this represen-
tation to improve their results.

Therefore, we trained a language model in the
One Billion Word dataset using similar parame-
ters from Le et al. (2017): one-layer LSTM with
512 units, 128 embedding size, and sampled soft-
max loss (Jean et al., 2015). However, we used
weight tying, which means the weights between
the embedding and softmax layer are shared, con-
sequently reducing the total parameters of the
model (Melis et al., 2017). For the CWI task,
the LSTM read five words before the complex
word, then the complex word itself (or the chunk

of words). We took the last hidden vector from the
LSTM and passed it through a Sigmoid layer.

In Figure 3 we show the pipeline where the blue
boxes represent the context words and red boxes
represents the complex word, which is a chunk in
this example.

and Philippinesflexed musclestheBoth China their

Sigmoid layer

Output

Figure 3: Example of a LSTM processing target
words.

4.2.3 Sent2Vec
We also used sentence embeddings generated by
Skip-thought (Kiros et al., 2015). This model pro-
duces a sentence representation of 2,400 dimen-
sions. We trained two models using sentence em-
bedding. In the first, we passed the embedding
through a sigmoid layer and in the second, we used
two layers with ReLUs of 1,200 and 600 dimen-
sions respectively, followed by a Sigmoid layer. In
the last model we employed a dropout layer (0.7)
between all of the layers. Both models obtained
good results in the training set, however, the mod-
els had poor results in the development set.

4.3 Ensembles
We combined our three best systems: Feature En-
gineering, MLP Average Embedding and LSTM
Transfer Learning. For the binary classification
task, we combined the system by majority vot-
ing rule. For the probabilistic classification task
we used stacking with Linear Regression as a
base learner, which took the probabilities from our
three best system as features.

5 Results

For the binary classification task, we first evalu-
ated the ROC-AUC in the development set for all
methods. For the Feature Engineering method,
we decided to use an XGBoost classifier which
achieved the best AUC in development set (0.91).
Although we selected the threshold which max-
imizes the F1 in the training set for each Fea-
ture Engineering, Shallow and Deep Neural net-
work method, it is important to mention that these
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News WikiNews Wikipedia

F1 #Subm. #Author F1 #Subm. #Author F1 #Subm. #Author

XGBoost Linguistics 0.8606 9th 0.8277 7th 3rd 0.7918 4th
MLP Avg. Embeddings 0.8467 15th 0.7977 16th 0.7360 26th
LSTM Transfer Learning 0.8173 27th 0.7961 17th 0.7528 20th
Voting 0.8636 5th 4th 0.8270 8th 0.7965 2nd 2nd

Best competition results 0.8736 0.8400 0.8115

Table 2: F1 (macro) for English monolingual classification task.

News WikiNews Wikipedia

MAE #Subm. #Author MAE #Subm. #Author MAE #Subm. #Author

XGBoost Linguistics 0.2978 14th 0.3203 15th 0.3819 7th
MLP Avg. Embeddings 0.2958 13th 0.3240 16th 0.3578 7th
LSTM Transfer Learning 0.0588 7th 4th 0.0742 7th 0.0822 7th
Stacking 0.0590 8th 0.0733 6th 4th 0.0819 6th 3rd

Best competition results 0.0510 0.0674 0.0739

Table 3: MAE for English monolingual probabilistic classification task.

thresholds were found for the whole training set
and not for each subset. This guarantees that we
are not overfitting our method to test data or to a
specific dataset. Our results for the English mono-
lingual classification task are described in Table
2. The Feature Engineering method itself achieved
by far our best results for the three test sets. In or-
der to achieve better results, we submitted a fourth
system which calculated the majority voting of our
three methods. This voting system surpassed our
individual methods in two test sets, but was infe-
rior compared to the Feature Engineering method
by less than 1−3 F1 in the WikiNews dataset. Ma-
jority voting was our best method for the classifi-
cation task.

For the probabilistic classification task, our Fea-
ture Engineering method used also an XGBoost
classifier which achieved the best MAE in de-
velopment set (0.28). Our results for English
monolingual probabilistic classification task are
described in Table 3. While both Feature Engi-
neering and Average Embedding did not perform
well, our best individual system by a large margin
was the LSTM method. In order to achieve better
results, we used stacking of our three models. The
stacking performed better than individual methods
in two datasets, but was not better than LSTM for
the News test set (2−4 gap).

6 Conclusion

For the binary classification task, majority voting
achieved our best results, although only slightly
better than the standalone Feature Engineering
model.

For the probabilistic classification task, LSTM
had better results in one data set, but the stacking
method performed slightly better in the other data
sets. The deep learning method showed its poten-
tial when contrasted with the feature engineering
method.

In the future, we intend to explore more pow-
erful neural language models, such as encod-
ing characters embeddings (Jozefowicz et al.,
2016), bidirectional language model (Peters et al.,
2017, 2018), and other transfer learning methods
(Howard and Ruder, 2018).
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Abstract

This paper investigates the use of character
n-gram frequencies for identifying complex
words in English, German and Spanish texts.
The approach is based on the assumption that
complex words are likely to contain different
character sequences than simple words. The
multinomial Naive Bayes classifier was used
with n-grams of different lengths as features,
and the best results were obtained for the com-
bination of 2-grams and 4-grams. This vari-
ant was submitted to the Complex Word Iden-
tification Shared Task 2018 for all texts and
achieved F-scores between 70% and 83%. The
system was ranked in the middle range for all
English tracks, as third of fourteen submis-
sions for German, and as tenth of seventeen
submissions for Spanish. The method is not
very convenient for the cross-language task,
achieving only 59% on the French text.

1 Introduction

Complex Word Identification (CWI) refers to
identification of words which are considered by
readers from a specific target audience to be com-
plex. The CWI task is the first step towards the
lexical simplification task which aims at improv-
ing the readability of texts: a lexical simplifica-
tion system should replace the identified complex
words with their simpler synonyms. Some of these
systems have a CWI module at the beginning of
their pipeline, e.g. (Paetzold and Specia, 2015)
whereas some perform the CWI task implicitly,
such as (Glavaš and Štajner, 2015).

The first shared task on CWI was organized at
the SemEval 2016 (Paetzold and Specia, 2016)
where 21 teams submitted 42 systems trained to
predict whether words in a given context were
complex for a non-native English speaker. Follow-
ing the success of the first CWI shared task and
additional findings reported in (Zampieri et al.,

2017), the second shared task has been organ-
ised at the BEA workshop 2018 (Yimam et al.,
2018) featuring a multilingual dataset. The dataset
consists of training and testing sets for three lan-
guages: English, German and Spanish, as well as
French test set for cross-lingual CWI. The goal
was to predict which words could be difficult for a
non-native speaker, based on annotations collected
from a mixture of native and non-native speakers.
The predictions could be submitted in the form of
class labels (complex or simple) and/or in the form
of complexity probabilities.

This work proposes the use of character n-
grams for complex word identification. The main
assumption is that complex words contain differ-
ent character sequences than simple words, i.e.
that the combination of particular characters is re-
lated to the complexity of a word. Additional
motivation is the successful use of character n-
grams for machine translation evaluation metrics
in recent years (Stanojević and Sima’an, 2014;
Popović, 2015; Wang et al., 2016). The results of
Machine Translation Metrics Shared Tasks1 (Bo-
jar et al., 2017) have shown that these metrics
correlate very well with human judgments for all
analysed target languages, which indicates that
character sequences carry some important infor-
mation.

We used the multinomial Naive Bayes classifier,
although the assumption about independence be-
tween different n-grams was certainly not valid.
The motivation to conduct our first experiments
with character n-grams using this classifier was its
often use as a baseline for text classification (Mc-
Callum and Nigam, 1998; Kibriya et al., 2004; Lo-
har et al., 2017). Since Naive Bayes probabilities
are generally not reliable, we participated only in
the binary classification task.

1http://www.statmt.org/wmt17/metrics-task.html
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Although the relation between character n-
grams and word complexity intuitively depends on
the language, we still decided to investigate cross-
lingual CWI and to participate in this track.

1.1 Related work

Several different techniques for identifying com-
plex words were investigated by (Shardlow, 2013)
which include word frequency, word length and
syllable counts among others, but no character se-
quences.

The first CWI shared task (Paetzold and Specia,
2016) featured 42 systems based on different tech-
niques and using different features such as seman-
tic, morphological, lexical, as well as word fre-
quencies which are reported to be a very important
factor for CWI.

One of the submitted systems (Mukherjee et al.,
2016) used Naive Bayes classifier with morpho-
logical, semantic and lexical features, however no
character n-grams were investigated.

Another system (Zampieri et al., 2016) used
probabilities of word character trigrams and sen-
tence character trigrams together with word length
and sentence length to measure orthographic dif-
ficulty. These features together with the word fre-
quency features are used for three classifiers: Ran-
dom Forest, Nearest neighbour and SVM. Nev-
ertheless, no results regarding the contribution of
character trigram features were reported.

Number of vowels, number of syllables and
number of characters (word length) together with
word frequencies in corpora were investigated in
(Yimam et al., 2017b), but no experiments with
character n-grams were conducted.

2 Character n-grams and multinomial
Naive Bayes classifier

For each labelled word, all character n-grams of
given length(s) and their frequencies were ex-
tracted and the word was represented as a “bag
of n-grams”. Decision on which n-gram length(s)
to concentrate is far from trivial since, to our best
knowledge, no similar experiments have been con-
ducted before. Therefore, we started with individ-
ual n-gram lengths from 2 to 6, following the find-
ings from machine translation metric task where
lenghts above 6 did not bring any improvements.
Our preliminary experiments showed that intro-
ducing six-grams degraded the performance so we
kept the lengths up to 5. As for mixed lengths, the

best preliminary results were obtained for 2-gram,
3-gram and 4-gram combinations, so we concen-
trated on these variants.

Table 1 presents two complex and three simple
English words with their 2-grams, 3-grams and
4-grams and corresponding frequencies. Under
the (very) naive assumption of conditional inde-
pendence between individual n-grams, these fre-
quencies are then used for estimating the class-
contidition probabilities of the Naive Bayes multi-
nomial model:

ĉ = argmax
c
P (c)

Nngr∏

i=1

P (ngri | c) (1)

whereP (ngri|c) is the conditional probability that
the n-gram ngri occurs in a word with the class
value c, and Nngr is the total number of distinct
n-grams, i.e. the dimension of the feature vector.
P (c) is the prior probability that a word has class
label c.

For the multinomial model, these two probabil-
ities can be estimated as relative frequencies in the
following way:

P̂ (ngri | c) =
count(ngri, c)∑Ngr
i=1 count(ngri, c)

(2)

where the numerator represents the number of oc-
curences of the n-gram ngri in a word with class
label c, and the denominator represents the num-
ber of occurences of all n-grams in this class. The
smoothing probability for unseen n-grams was set
to 0.001.

The prior class probability can be estimated as:

P̂ (c) =
count(c)

count(words)
(3)

where count(c) represents the number of words
with class label c and count(words) represents
the total number of labelled words.

If the words in Table 1 and their 4-grams were
used for training, the prior class probabilities for
simple (“S”) and complex (“C”) words would be
P (S) = 3/5 = 0.60 and P (C) = 2/5 = 0.4.
Class condition probabilities for the 4-gram “frug”
would be P (frug|S) = 0 and P (frug|C) =
1/5 = 0.2, and for the 4-gram “real” P (real|S) =
0.25, P (real|C) = 0. The 4-ram “lity” would
have similar probabilities for the complex and for
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word “bag of n-grams”: 2-grams, 3-grams, 4-grams and their frequencies class
frugality fr:1 ru:1 ug:1 ga:1 al:1 li:1 it:1 ty:1 fru:1 rug:1 uga:1 ali:1 lit:1 ity:1 C

frug:1 ruga:1 ugal:1 gali:1 lity:1
reefs re:1 ee:1 ef:1 fs:1 ree:1 eef:1 efs:1 reef:1 eefs:1 C
banana ba:1 an:2 na:2 ban:1 ana:2 nan:1 bana:1 anan:1 nana:1 S
coral co:1 or:1 ra:1 al:1 cor:1 ora:1 ral:1 cora:1 oral:1 S
reality re:1 ea:1 al:1 li:1 it:1 ty:1 rea:1 eal:1 ali:1 lit:1 ity:1 S

real:1 eali:1 alit:1 lity:1

Table 1: Examples of two complex and three simple words with their 2-grams, 3-grams and 4-grams and corre-
sponding frequencies.

the simple class since it appears both in “frugal-
ity” and in “reality”: P (lity|S) = 1/4 = 0.25,
P (lity|C) = 1/5 = 0.20.

3 Data

The organisers of the shared CWI task provided
all participants with training and test data sets
for English, German and Spanish. For French,
only test data set was provided since it was in-
tended for the cross-lingual CWI task. The En-
glish data set consists of mixture of professionally
written news (News), non-professionally written
news (WikiNews), and Wikipedia articles (Wiki).
German, Spanish and French data sets contain
data taken from German, Spanish and French
Wikipedia pages. Data statistics is presented in
Table 2.

Each sentence in the English data set was an-
notated by 20 people, 10 native and 10 non-native
speakers. Each sentence in the German, Spanish
and French data sets was annotated by 10 people, a
mixture of native and non-native speakers. Anno-
tators were provided with the surrounding context
of each sentence, i.e. a paragraph, then asked to
mark words they think would be difficult to under-
stand for children, non-native speakers, and people
with language disabilities. Annotators were en-
abled not only to annotate individual words, but
also several consecutive words as complex. The
details about the data sets can be found in (Yimam
et al., 2017b) and (Yimam et al., 2017a).

4 Results

As mentioned in Section 2, the main part of our ex-
periments was to determine which n-gram lenghts
to include in the classifier. Preliminary experi-
ments showed that the individual lengths of 2,3,4
and 5 should be further investigated, as well as

combinations of 2- and 4-grams, 3- and 4-grams,
as well as 2-, 3- and 4-grams.

All these variants were investigated for three
scenarios: (i) standard classification, where each
training set corresponds to the development set,
(ii) classification with the extended English train-
ing corpus, where all English training corpora
were concatenated and used for classifying each of
the development sets, and (iii) cross-lingual clas-
sification, where training sets of other two lan-
guages were used for each language.

The comparison of the methods was carried out
on the development sets in terms of complex word
F-score and overall accuracy.

4.1 Standard set-up

In the standard set-up, each development set was
classified using its corresponding training set, both
in terms of domain and of language. Table 3 rep-
resents the obtained resuls, with best F-scores / ac-
curacies in bold.

It can be noted that the combination of 2-grams
and 4-grams is the best option for allmost all texts.
It is second ranked (and very close to the best
one) only for the accuracy of English news. As
for the individual n-grams, the best performance
is obtained by 4-grams. The scores are improv-
ing when increasing n-gram length up to 4, and
then drop for 5-grams (except for the accuracy
of English News and German Wikipedia). It can
also be seen that in general, combining different
n-gram lenghts works better than using the indi-
vidual ones.

4.2 Concatenated English training corpus

Since the English data set contained three do-
mains: Wikipedia, News and WikiNews, the ques-
tion about effects of enlarging the training set
arised: will the use of a larger training corpus from
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#words English German Spanish French
domain Wiki News WN Wiki Wiki Wiki
Train 5551 14002 7746 6151 13750 0
Dev 694 1764 870 795 1622 0
Test 870 2095 1287 959 2233 2251

Table 2: Data statistics: the number of instances for each training, development and test set used in the CWI 2018
shared task.

n-gram English German Spanish
length(s) Wiki News WikiNews Wiki Wiki
2 64.7 / 64.8 63.2 / 70.5 61.8 / 67.6 60.7 / 69.6 55.9 / 68.2
3 67.5 / 68.7 72.6 / 77.8 64.8 / 71.5 62.5 / 68.6 62.0 / 70.3
4 67.5 / 69.3 75.9 / 81.2 68.9 / 75.4 60.9 / 69.9 63.4 / 73.1
5 61.1 / 67.3 75.0 / 81.7 64.5 / 74.6 57.3 / 70.2 58.2 / 72.6
24 69.9 / 70.9 76.7 / 81.3 69.9 / 75.7 65.3 / 72.6 64.7 / 73.6
34 68.3 / 69.2 75.9 / 80.4 68.5 / 74.0 62.2 / 69.2 64.7 / 72.4
234 68.4 / 69.4 75.4 / 79.6 69.9 / 75.0 62.9 / 69.4 64.4 / 72.1

Table 3: F-score for complex word class / accuracy for English, German and Spanish development sets.

different domains lead to better results or not? In
order to answer this question, each of the three En-
glish development sets was also classified using
the concatenated English training corpus contain-
ing all three domains and the results are presented
in Table 4. These results show that enlarging the
training corpus generally helps.

The smallest improvements can be observed for
the News text, probably because the News training
corpus is the largest one, as can be noted in Ta-
ble 2. Another finding is that for the larger training
set, individual 3-grams, 4-grams and 5-grams can
outperform the n-gram combinations. A possible
explanation is that the reliability of longer char-
acter sequences is increased when a larger train-
ing corpus with more instances is used. When the
three n-gram length combinations are compared
on the larger training set, “24” still outperforms
the other two except for the Wikipedia set.

4.3 Cross-lingual classification

In order to explore cross-language classification,
each of the Wikipedia development sets was clas-
sified using the training corpora of another two
languages. English News and WikiNews devel-
opment sets were not used in order to avoid possi-
ble effects of domain mixing. The results in Ta-
ble 5 show that the method is, as mentioned in
Section 1, indeed not very appropriate for cross-
lingual classification since the character combina-

tions are generally language dependent – the drop
in F-score and accuracy is large, in the range of 10
to 15 absolute points.

As for the n-gram lengths, combination “24”
is useful, although mostly for English. For Ger-
man and Spanish, 3-grams and 5-grams outper-
formed the n-gram combinations. As for the usage
of different languages, no advantage of one “for-
eign” language over another was observed – the
best results are rather similar for both “external”
languages. For example, the F-score for English
is slightly better when the German training set is
used, and accuracy is slightly better when the sys-
tem was trained on the Spanish text. The fact that
none of the language pairs is closely related might
have an important influence on these results.

4.4 Confusion analysis

The results described in previous sections have
shown the following:

• combination of 2-grams and 4-grams is the
best option for the standard setting, and
performs decently also for enlarged English
training corpus as well as for cross-lingual
classification;

• individual 3-grams, 4-grams and 5-grams
outperform the combinations when a larger
English corpus is used.
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n-gram Wiki dev News dev WikiNews dev
length(s) Wiki train all train News train all train WN train all train
2 64.7 / 64.8 61.2 / 63.6 63.2 / 70.5 61.9 / 69.8 61.8 / 67.6 63.0 / 68.8
3 67.5 / 68.7 68.6 / 69.7 72.6 / 77.8 71.5 / 77.5 64.8 / 71.5 73.4 / 74.0
4 67.5 / 69.3 73.5 / 74.6 75.9 / 81.2 76.0 / 81.3 68.9 / 75.4 73.4 / 78.4
5 61.1 / 67.3 66.8 / 71.8 75.0 / 81.7 75.9 / 82.4 64.5 / 75.6 71.2 / 79.0
24 69.9 / 70.9 70.9 / 72.0 76.7 / 81.3 76.4 / 81.3 69.9 / 75.7 73.3 / 77.9
34 68.3 / 69.2 73.3 / 74.1 75.9 / 80.4 76.2 / 81.0 68.5 / 74.0 72.8 / 77.2
234 68.4 / 69.4 71.4 / 72.2 75.4 / 79.6 75.4 / 80.2 69.9 / 75.0 72.5 / 77.0

Table 4: F-score for English complex word class / accurracy for domain-specific and concatenated training set.

n-gram English development German development Spanish development
length(s) es-train de-train en-train es-train en-train de-train
2 50.7 / 59.4 60.1 / 59.5 48.9 / 54.3 49.9 / 62.6 55.4 / 55.7 53.9 / 57.4
3 58.0 / 60.5 60.4 / 58.6 55.6 / 55.0 49.6 / 56.5 55.8 / 54.2 55.0 / 58.6
4 57.3 / 62.5 51.7 / 57.2 53.8 / 61.2 55.6 / 64.0 51.8 / 58.4 45.8 / 59.7
5 41.7 / 59.6 38.2 / 57.5 34.9 / 62.5 33.3 / 63.1 38.2 / 61.0 24.4 / 61.8
24 58.9 / 63.0 61.4 / 61.4 53.3 / 56.7 57.0 / 63.9 53.4 / 54.4 52.5 / 57.2
34 59.7 / 61.7 59.6 / 57.1 53.7 / 53.0 53.9 / 58.0 54.6 / 53.1 54.7 / 57.1
234 59.3 / 61.4 61.1 / 58.2 51.6 / 51.6 56.0 / 60.9 54.8 / 53.4 55.4 / 56.7

Table 5: Cross-language classification: F-score for complex word class / accurracy for cross-language classifica-
tion.

In order to better understand the above findings,
confusion analysis was carried out for all n-gram
lengths and for all Wikipedia development sets in
all three set-ups.

Table 6 shows the percentages of (non-
)confusions: C-C and S-S represent correctly clas-
sified instances, C-S stands for complex words
classified as simple, and S-C for simple words
classified as complex. The results show the fol-
lowing:

• 5-grams are very good in identifying simple
words: less than 10% of them are classified as
complex. Nevertheless, they are absolutely
the worse in labelling complex words: for
German and Spanish texts, they even label
more complex instances incorrectly than cor-
rectly (red numbers).

• the combination “24” is very good in la-
belling complex words, although often out-
performed by one of the other two combina-
tions; the percentages in the majority of those
cases are very close, though.

• the same combination, “24”, is the best of
all three combinations for labelling simple

words, although clearly outperformed by 5-
grams and 4-grams.

The described findings indicate that the combi-
nation “24”, despite not always yielding the best
scores, is the most balanced and the most stable
one over all set-ups. Therefore, this variant was
submitted for all shared task tracks.

It should be noted that the confusions were also
analysed for the cross-lingual classification show-
ing the very same behaviour for 5-grams and for
the “24” variant. As for other n-gram lenghts,
a number of different large confusion percent-
ages was observed, indicating once again that the
method is not convenient for cross-lingual CWI.

5 Official shared task results

Following all the findings described in previous
sections, we decided to submit the “24” variant,
i.e. the combination of 2-grams and 4-grams, to
all shared task tracks. For each of the three En-
glish test sets, we sent two submissions: one clas-
sified using the corresponding in-domain training
corpus, and one classified using the concatenated
training corpus. For the French test set, we sent
four submissions: one classified using English
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(a) English – in-domain training corpora

n-gram Wiki News WikiNews
order(s) C-C C-S S-C S-S C-C C-S S-C S-S C-C C-S S-C S-S
2 32.3 16.6 18.6 32.6 25.3 14.1 15.4 45.2 26.2 14.4 18.0 41.4
3 32.4 16.4 14.8 36.3 29.5 10.0 12.2 48.3 26.2 14.4 14.1 45.3
4 31.8 17.0 13.7 37.5 29.6 9.8 9.0 51.5 27.2 13.3 11.3 48.2
5 25.6 23.2 9.5 41.7 27.4 12.0 6.2 54.3 23.1 17.4 7.9 51.5
24 33.9 15.0 14.1 37.0 30.7 8.8 9.9 50.7 28.2 12.4 11.8 47.6
34 33.3 15.6 15.3 35.9 30.8 8.6 11.0 49.6 28.3 12.3 12.7 45.7
234 33.1 15.7 14.8 36.3 31.3 8.2 12.2 48.3 29.0 11.6 13.3 46.1

(b) English – concatenated training corpus

n-gram Wiki News WikiNews
order(s) C-C C-S S-C S-S C-C C-S S-C S-S C-C C-S S-C S-S
2 28.7 20.2 16.1 35.0 24.5 14.9 15.3 45.2 26.6 14.0 17.1 42.3
3 33.1 15.7 14.6 36.6 28.7 10.8 12.1 48.5 28.0 12.5 13.4 46.0
4 35.2 13.7 11.7 39.5 29.5 10.0 8.7 51.9 29.9 10.7 10.9 48.5
5 28.4 20.5 7.8 43.4 28.2 11.2 6.6 53.9 26.0 14.6 6.4 53.0
24 34.0 14.8 13.1 38.0 30.3 9.1 9.6 51.0 30.2 10.3 11.7 47.7
34 36.0 13.2 12.7 38.5 30.4 9.0 10.0 50.6 30.4 10.1 12.6 46.8
234 34.7 14.1 13.7 37.5 30.3 9.1 10.7 49.9 30.3 10.2 12.8 46.7

(c) German

n-gram
order(s) C-C C-S S-C S-S
2 23.5 18.5 11.9 46.1
3 26.2 15.8 15.6 42.4
4 23.4 18.6 11.4 46.5
5 20.0 22.0 8.8 50.2
24 25.8 16.2 11.2 46.8
34 25.4 16.6 14.2 43.8
234 25.9 16.1 14.5 43.5

(d) Spanish

n-gram
order(s) C-C C-S S-C S-S
2 20.2 20.1 11.6 48.1
3 24.2 16.1 13.6 46.2
4 23.3 17.0 10.0 49.7
5 19.0 21.2 6.2 53.6
24 24.2 16.0 10.4 49.4
34 25.3 14.9 12.7 47.0
234 25.2 15.0 12.9 46.9

Table 6: Confusion analysis for the English, German and Spanish development sets: C-C and S-S are correctly
classified complex and simple words, C-S stands for complex words classified as simple, and S-C for simple words
classified as complex.
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Wikipedia training corpus, one classified using the
concatenated English training corpus, one classi-
fied using the Spanish training corpus, and one us-
ing the German training corpus. For the German
and Spanish test sets, one submission was sent for
each.

The official accurracies for the best system, for
all our submissions and for the worst system are
shown in Table 7 together with the ranks (in paren-
thesis).

All our monolingual submissions were ranked
in the middle, some better than others. The best
rank is achieved for German (3 of 14) and the
worst for Spanish (10 from 17). The obtained ac-
curracies are all above 70%, the German being the
lowest one and the English News the highest one.
For the cross-lingual task, our submissions were
ranked very low, with one of the submissions be-
ing the worst one. However, it should be noted
that the use of the Spanish training set yielded the
best result: this indicates that the method could
potentially be used for closely related languages,
however this should be further examined in future
work.

All the results indicate that there is a poten-
tial for using character n-grams for complex word
identification, however more experiments should
be carried out and several refinements should be
applied.

6 Summary and outlook

In this paper, we have proposed the use of charac-
ter n-grams for complex word idenfitication start-
ing from the assumption that character sequences
in complex words are often different than those
in simple words. We carried out extensive ex-
periments with multinomial Naive Bayes classi-
fier with n-grams of different lengths as features,
and found out that using 2-grams and 4-grams is
the most stable option in this configuration. Our
system was ranked in a middle-range position for
all tracks except for the cross-lingual track where
it was ranked very low – this was not surprising
since frequencies of character sequences in words
are intuitively rather language-dependent. Our of-
ficial accurracy scores range from 70% to 83% for
English, German and Spanish texts and from 50%
to 59% for French cross-lingually classified text.

Our experiments described in this work together
with the official shared task results indicate that
the use of character n-grams for complex word

identification has a potential, but the methods
should be further investigated and improved. First
of all, other classifiers without independency as-
sumption should be investigated. In addition, us-
ing context (surrounding words and their n-grams)
should be investigated as well.
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Abstract

This paper describes the system developed by
the Centre for English Corpus Linguistics for
the 2018 Duolingo SLAM challenge. It aimed
at predicting the successes and mistakes of
second language learners on each of the words
that compose the exercises they answered. Its
main characteristic is to include conjunctive
features, built by combining word ngrams with
metadata about the user and the exercise. It
achieved a relatively good performance, rank-
ing fifth out of 15 systems. Complementary
analyses carried out to gauge the contribution
of the different sets of features to the perfor-
mance confirmed the usefulness of the con-
junctive features for the SLAM task.

1 Introduction

This paper presents the participation of the Cen-
tre for English Corpus Linguistics (CECL) in the
2018 Duolingo shared task on Second Language
Acquisition Modeling (SLAM) which was held in
conjunction with the 13th Workshop on Innova-
tive Use of NLP for Building Educational Appli-
cations. The objective of the task is to build a
model to predict whether second language learn-
ers will make a mistake on each of the words (to-
kens) that compose the exercises they answered.
There were three tracks: English speakers learn-
ing Spanish (es en), Spanish speakers learning En-
glish (es en) and English speakers learning French
(en en).

To develop the model, the organizers of the
challenge made available a very large number of
exercises carried out by a large number of learn-
ers of Duolingo, a free online language-learning
platform, which attracted more than 200 million
learners since its launching in 2012 (see Settles et
al. (2018) for details). In this training set, the to-
kens on which each learner made a mistake were
marked, but the error itself was not provided. This

task is thus very different from the one at the root
of many applications of natural language process-
ing in the field of education that aim to automati-
cally evaluate texts produced by second language
learners (Weigle, 2013). The traditional approach
for the latter, which relies on linguistic indices
more or less strongly correlated with text quality
such as lexical richness, syntactic complexity and
especially the presence of errors of different types
(e.g., Burstein et al., 2004; Futagi et al., 2008;
Yannakoudakis et al., 2011; Santos et al., 2012;
Ramineni and Williamson, 2013; Somasundaran
et al., 2015; Bestgen, 2016, 2017), is obviously
not applicable to the SLAM challenge.

Compared to the automatic evaluation of learner
texts, the SLAM task has several advantages (+),
but also several disadvantages (-):

+ Each learner produced a relatively large num-
ber of responses allowing to estimate his or
her level of competence;

+ The learners’ responses are spaced out in
time making possible to try to model the evo-
lution of their competence throughout their
learning;

+ The same exercises were presented to a large
number of different learners making it pos-
sible to get a relatively good estimate of the
difficulty of each of them;

– The exercises are very short, as 99% of the
utterances consist of no more than six tokens,
which strongly limits the linguistic context
available for any NLP procedure;

– And above all, as indicated above, the prompt
to be processed by the learner is provided, but
not the actual answer.

As previous research of the CECL in this field
deals with the question of automatic evaluation
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and only partially took into account the tempo-
ral dimension of learning (Bestgen and Granger,
2014), I chose to break down the problem in two
steps:

• Try to get the best prediction without using
the sequential information available in the
dataset.

• Add the sequential information and see
whether it can improve the prediction.

Having not been successful in the second step,
I focused this report on the first. It is therefore not
really an attempt to model second language acqui-
sition, but to predict the successes and mistakes
of second language learners. The proposed sys-
tem can be seen as a baseline system since it does
not take into account the richest information made
available.

The developed system achieved a relatively
good performance since it ranks fifth out of 15
systems, but nevertheless at a respectable distance
from the best systems. Its main characteristic is to
include conjunctive features, built by combining
several primitive features. In machine learning,
these conjunctive features are classically obtained
by means of a polynomial kernel, but this has the
effect of greatly lengthening the time needed to
learn the model (Fan et al., 2008; Yoshinaga and
Kitsuregawa, 2012). It was more efficient to ob-
tain them manually and to use a (much faster) lin-
ear approach to learn the model.

The remainder of this report describes the
datasets made available for this challenge, the sys-
tem developed and the results obtained as well as
the analyzes performed to get a better idea of the
usefulness of the various components of the sys-
tem.

2 Data

As explained in Settles et al. (2018), each in-
stance to be categorized corresponded to a token
of an exercise that has been presented to a user
in one of three possible types of exercise, in one
of three possible types of session and at a given
time of his or her participation in the learning ac-
tivities of the Duolingo platform. Several other
metadata were provided for each exercise such as
the country from which a user had done it. For
each token, a series of morpho-syntactic features
were also provided. The datasets were very large.

The fr en dataset, which was by far the smallest,
contained more than 410 000 exercises and almost
1 200 000 tokens. The other data sets were approx-
imately 2.12 times (es en) and 2.83 times (en es)
larger.

These datasets were divided by the organizers
into three sets, the TRAIN set with 80% of the
data, the DEV set with 10% and the TEST set with
remaining 10%. The final results of the challenge
were determined by the organizers on the TEST
set. In this report, all the developments that led to
the predictive models were only done on the fr en
dataset because its smaller size allowed the fastest
processing. They were based on the TRAIN set to
build the models and on the DEV set for evalua-
tion.

3 System

3.1 Main Features Used
As a quick glance at the exercises, undertaken
by students during their first 30 days of learning
with the Duolingo platform (Settles et al., 2018),
suggested that they were relatively simple from a
lexical and syntactical point of view, I chose to
base the features on the tokens and to disregard
morpho-syntactic information.

Each instance (i.e., a token in an exercise) was
encoded as a vector of 47 binary features, consist-
ing of the following three feature sets:

• The main part (5 features) was composed of
the target token and the tokens (T) that sur-
round it in the exercise. For a token such
as “pas” (not) in the exercise “Ce n’ est pas
un sandwich” (This is not a sandwich), the
following five features were encoded: the tri-
gram including the two tokens that precede
it (n’ est pas), the bigram including the to-
ken that precedes it (est pas), the token itself
(pas), the bigram including the next token
(pas un) and the trigram including the two
following tokens (pas un sandwich)1. When
a ngram is incomplete because a token is too
close to the beginning or to end of the exer-
cise, the missing element is replaced by the
pseudo-token “<s>”.

1The trigram composed of the preceding token, the tar-
get token and the following token (est pas un) was not en-
coded. This was an oversight, fortunately without conse-
quences since the analyzes carried out after the end of the
challenge showed that taking into account this trigram and
the conjunctive features derived from it (8 features, see be-
low) did not improve the performances.
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• The second set of features (7 features) was
based on three metadata: the unique iden-
tifier for each student (U), the exercise for-
mat (F: three different values), and the ses-
sion type (S: three different values). These
features were encoded alone and in conjunc-
tion, producing the following features: U, F,
S, UF, US, FS and UFS.

• Finally, the conjunction of each token fea-
ture2 with each of the metadata feature, such
as n’ est pas UFS, was encoded (35 fea-
tures).

Each different type of feature was prefixed with
a unique character sequence to avoid any colli-
sion between features of different types. Of the 47
features used to encode each instance, some were
very common in the dataset, such as the format,
the session and their conjunctions, others were
moderately frequent such as a user id or a token,
but the majority was much rarer such as the con-
junction of a user, a format, a session and a tri-
gram.

3.2 Sequential Information Use
All the features, which included a target token and
had been previously seen by a user, were dupli-
cated with a new value that reflected the number
of times it had been seen, the proportion of mis-
takes this user made on it, and the time that had
elapsed since he or she had seen it for the last time.
These values were transformed by means of an ex-
ponential3 function. More details are not given on
these features because they were very inefficient
as shown in the analyzes reported below.

3.3 Procedure to Build the Models
The feature extraction was performed by means
of a series of custom SAS programs running
in SAS University (freely available for research
at http://www.sas.com/en us/software/university-
edition.html). The predictive models used dur-
ing the development phase were built on the fr en
dataset by means of the L1-regularized logistic
regression (L1-LR) available in the LIBLINEAR
package (-s 6, Fan et al., 2008). The only meta-
parameter that can be optimized was the regular-

2Technically, bigrams and trigrams can also be seen as
conjunctive features.

3Following a reviewer’s suggestion, a logarithm transfor-
mation was also tried, but it did not improve the performance
on the TRAIN and DEV fr en datasets.

ization parameter C. A series of tests carried out
on the TRAIN and DEV fr en sets led to setting
it to 0.75. It was also the L1-LR with this same
C parameter that was used in all the analyzes re-
ported here, except for the models used for the fi-
nal submission that were build by means of the L2-
regularized logistic regression (-s 7, L2-LR) be-
cause it appeared while preparing the submission
that it produced slightly higher performances.

4 Analyses and Results

All the performances are summarized in terms of
the area under the receiver operating characteris-
tic curve (AUROC), the challenge main evaluation
metric. The F1 score was also proposed as a sec-
ondary metric by the challenge organizers, but it is
not reported here because no attempt was made to
optimize it4.

In the tables presented below, T stands for the
Token ngrams, M for the Metadata, with U for
User, F for Format and S for Session, Mc for
the conjunctive features derived from the metadata
and TM for the conjunctive features derived from
the token ngrams and the metadata.

4.1 Performance on the Test Set
The performance and ranking of the base model
and of the model that takes into account the se-
quential information is given in Table 1 along with
the performances of the systems ranked first, those
of the two closest teams in the ranking and those of
the baseline provided by the organizers. As a re-
minder, the proposed models were developed for
the fr en dataset and simply applied to the two
other tracks. For the three tracks, the regulariza-
tion parameter C for the L2-LR was set on the ba-
sis of the TRAIN and DEV sets at the following
values: 0.10 for fr en and es en and 0.05 for en es.
The final models were learned on the concatenated
TRAIN and DEV sets.

The performances of the proposed models were
significantly better than the baseline, but not as
good as the best system. They were lower than
those of the team ranked fourth in two tracks, but
higher in the fr en track on the basis of which they

4Furthermore, simple tricks allow, at least in the present
case, to strongly improve it without harming the AUROC.
For example, the base model described in this paper gets an
AUROC of 0.8367 and an F1 of 0.4796 when C is set at 0.75
(on fr en TRAIN and DEV sets, see Table 2). If C is set
at 0.30 for the correct instances and at 0.84 for the mistakes
(using LIBLINEAR -wi parameter), the model keeps exactly
the same AUROC, but the F1 is now 0.5409.
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System en es es en fr en
First 0.861 0.838 0.857

Fourth 0.848 0.824 0.839
Sequential 0.846 0.818 0.843

Base 0.845 0.817 0.842
Sixth 0.841 0.807 0.835

Baseline 0.774 0.746 0.771

Table 1: Final performances (AUROC) for several sys-
tems.

T M Mc TM AUROC
x x x x 0.8367
x x x 0.8167
x x 0.8078
x 0.7488

Table 2: AUROC for several sets of features in the base
model.

were developed. The benefits brought by using
the sequential information were very small, prob-
ably because the procedure employed did not in-
troduce new features, but duplicated a number of
them with different values.

4.2 In-depth Analysis of the Feature Sets
The remainder of this report analyzes in detail the
contribution of the different sets of features to the
performance of the base model. All these analy-
ses were conducted on the TRAIN and DEV fr en
dataset as explained above.

First, the ablation approach was used to assess
the independent contribution of each set of fea-
tures to the overall performance of the system. It
consists in removing some sets of features of the
model and re-evaluating it.

As Table 2 shows, the conjunctive features, in-
cluding those built from the metadata alone, made
a significant contribution to performance. The
model that only includes the token ngrams clearly
underperformed. The metadata are thus necessary
to achieve an acceptable performance.

A second analysis was conducted to evaluate the
impact of the three lengths of ngrams in the base
model (Table 3). The results indicated that the tri-
grams were not very useful contrarily to the bi-
grams.

To get a better idea of the usefulness of the con-
junctive features, Table 4 presents the number of
features of each type to which the L1-LR assigned
a non-zero weight (Andrew and Gao, 2007). It
also indicates how many of these features were

Unigram Bigram Trigram AUROC
x x x 0.8367
x x 0.8340
x 0.8130

Table 3: AUROC for the three ngram lengths (base
model).

Type # # in Dev % in Dev
TU 14 996 4 975 33.2
TUS 10 651 2 396 22.5
TUF 9 507 2 643 27.8
TUFS 6 597 1 382 20.9
TF 6 436 5 993 93.1
TFS 5 854 5 072 86.6
T 4 938 4 717 95.5
TS 4 830 4 343 89.9
UFS 2 181 1 772 81.2
UF 1 948 1 877 96.4
US 1 151 990 86.0
U 854 849 99.4
FS 9 9 100.0
F 3 3 100.0
S 3 3 100.0
Total 70 624 37 668 53.3

Table 4: Number of features of each type selected by
the L1-LR. Note: The conjunctive features are represented
by the concatenation of the corresponding symbols.

present in the DEV set.
This table shows that the conjunctive features,

including the more complex ones, were frequently
selected by the L1-LR and that a non-negligible
proportion of them were present in the DEV set.
These are of course the types that encompassed
the largest number of different features.

However, an ablation approach on these feature
subtypes suggests that many conjunctive features
are not truly essential as shown in Table 5. The
first row of the table reports the performance of
the base model. The second section shows that the
conjunctions of four and three types of features are
not necessary for achieving this performance. The
third section indicates that it is the conjunctive fea-
tures including the tokens and the exercise format
on the other hand that make the most important
contribution (see below for instances). With re-
gard to the conjunctive features based on the meta-
data only, UF (alone or with Session in UFS) is the
most useful. The last line of the table corresponds
to the model without conjunctive features (except
the token ngrams). Overall, it appears that the Ses-
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T M UF US FS UFS TU TF TS TUF TUS TFS TUFS AUROC
x x x x x x x x x x x x x 0.8367
x x x x x x x x x x x x 0.8371
x x x x x x x x x x x 0.8367
x x x x x x x x x x x 0.8372
x x x x x x x x x x x 0.8368
x x x x x x x x x 0.8368
x x x x x x x x 0.8334
x x x x x x x x 0.8214
x x x x x x x x 0.8357
x x x x x x x 0.8203
x x x x x x x 0.8324
x x x x x x x 0.8178
x x x x x x 0.8167
x x x x x 0.8161
x x x x x 0.8170
x x x x x 0.8169
x x x x x 0.8175
x x x 0.8187
x x x 0.8075
x x x 0.8079
x x x 0.8165
x x 0.8078

Table 5: AUROC for several subsets of features in the base model.

sion metadata are not very useful.

All these observations confirm the interest of
some of the conjunctive features for the SLAM
task, the token ngrams being a specific type of
conjunctive features whose usefulness is well es-
tablished in NLP. Their interest can be illustrated
concretely by the two following examples. In the
fr en TRAIN set, users made 78% of errors on the
token “-” when it is preceded by the token “après”
(after), forming the bigram “après -” (N = 198)
found in “après-midi” (afternoon). This overall
percentage hides a large difference between the
reverse-tap exercises (N = 91) on which 100% of
errors were made and the reverse-translate exer-
cises (N = 51) in which 49% of errors were made.
The opposite profile is observed for the bigram
“Vous connaissez” (You know), whose target to-
ken is “connaissez”, for which there were in gen-
eral 66% of errors (N = 73). When presented in the
reverse-translate format, there were 94% of errors
(N = 48) while there were only 9% of errors in the
reverse-tap format (N = 22).

4.3 Conclusion

The base model presented in this paper does not
take into account the longitudinal nature of the
data made available by the organizers. Despite
this, it achieved relatively high performances,
ranking fifth out of 15 teams with an average
of 0.016 AUROC point less than the best team,
but it also outperformed nine team by more than
0.016 AUROC point. It must however be recog-
nized that the inclusion of longitudinal informa-
tion in this approach was inefficient. A psycholin-
guistically motivated approach would have prob-
ably produced better results (Settles and Meeder,
2016). The papers of the best teams participat-
ing in this challenge should allow to determine
whether they have used non-sequential features
that are identical or similar to those used here. If
it is not the case, it might be interesting to deter-
mine whether the conjunctive features used here
would allow to further improve their system per-
formances.

It would also be interesting to look at other
metadata provided by the organizers. In particular,
the country from which a user has done the exer-
cises could perhaps allow to take into account the
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L1 transfer, which is known to affect the type of
errors produced by learners of a foreign language
(Wong and Dras, 2009; Jarvis et al., 2013).

In a future edition of the challenge, it might
be interesting to include in the test set a larger
proportion of tokens that do not appear (or very
rarely) in the training set and to carry out part of
the evaluation separately on those tokens. In the
current datasets, only 116 of the 1 920 different
tokens present in the fr en TEST set were absent
from the TRAIN and DEV sets. Even more, these
116 different tokens represented only 0.12% of the
instances to categorize (168 out of 135 525). It
should be noted that the datasets included a siz-
able proportion of rarely seen tokens (i.e. 27%
of the different tokens in fr en TRAIN and DEV
sets were present at most 3 times), but they rep-
resented only a very small fraction of the TEST
set (less than 0.5%). Increasing the proportion of
new or infrequently seen tokens in the test materi-
als could favor the use of features that can be gen-
eralized to unseen tokens. If this path is followed,
it could be interesting to provide, in the training
datasets, the exercises and the mistakes actually
produced to further the development of predictive
models that try to figure out the relation between
a token and the mistake (while providing only the
exercises for the test material to avoid the use of
simple error detection systems).
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Abstract

Knowledge tracing serves as a keystone in de-
livering personalized education. However, few
works attempted to model students’ knowl-
edge state in the setting of Second Language
Acquisition. The Duolingo Shared Task on
Second Language Acquisition Modeling (Set-
tles et al., 2018) provides students’ trace data
that we extensively analyze and engineer fea-
tures from for the task of predicting whether a
student will correctly solve a vocabulary exer-
cise. Our analyses of students’ learning traces
reveal that factors like exercise format and en-
gagement impact their exercise performance to
a large extent. Overall, we extracted 23 differ-
ent features as input to a Gradient Tree Boost-
ing framework, which resulted in an AUC
score of between 0.80 and 0.82 on the official
test set.

1 Introduction

Knowledge Tracing plays a crucial role in provid-
ing adaptive learning to students (Pelánek, 2017):
by estimating a student’s current knowledge state
and predicting her performance in future interac-
tions, students can receive personalized learning
materials (e.g. on the topics the student is esti-
mated to know the least about).

Over the years, various knowledge tracing tech-
niques have been proposed and studied, includ-
ing Bayesian Knowledge Tracing (Corbett and
Anderson, 1994), Performance Factor Analysis
(Pavlik Jr et al., 2009), Learning Factors Analy-
sis (Cen et al., 2006) and Deep Knowledge Trac-
ing (Piech et al., 2015). Notable is that most of
the existing works focus on learning performance
within mathematics in elementary school and high
school due to the availability of sufficiently large
datasets in this domain, e.g. ASSISTment and OLI
(Piech et al., 2015; Xiong et al., 2016; Zhang et al.,
2017; Khajah et al., 2016). The generalization

to other learning scenarios and domains remains
under-explored.

Particularly, there are few studies attempted to
explore knowledge tracing in the setting of Second
Language Acquisition (SLA) (Bialystok, 1978).
Recent studies showed that SLA is becoming in-
creasingly important in people’s daily lives and
should gain more research attention to facilitate
their learning process (Larsen-Freeman and Long,
2014). It remains an open question whether the
existing knowledge tracing techniques can be di-
rectly applied to SLA modeling—the release of
the Duolingo challenge datasets now enables us to
investigate this very question.

Thus, our work is guided by the following re-
search question: What factors impact students’
language learning performance?

To answer the question, we first formulate six
research hypotheses which are built on previous
studies in SLA. We perform extensive analyses on
the three SLA Duolingo datasets (Settles et al.,
2018) to determine to what extent they hold. Sub-
sequently, we engineer a set of 23 features in-
formed by the analyses and use them as input for a
state-of-the-art machine learning model, Gradient
Tree Boosting (Ye et al., 2009; Chen and Guestrin,
2016), to estimate the likelihood of whether a stu-
dent will correctly solve an exercise.

We contribute the following major findings: (i)
students who are heavily engaged with the learn-
ing platform are more likely to solve words cor-
rectly; (ii) contextual factors like the device being
used and learning format impact students’ perfor-
mance considerably; (iii) repetitive practice is a
necessary step for students towards mastery; (iv)
Gradient Tree Boosting are demonstrated to be
an effective method for predicting students’ future
performance in SLA.
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2 Data Analysis

Before describing the six hypotheses we ground
our work in as well as their empirical validation,
we first introduce the Duolingo datasets.

2.1 Data Description
To advance knowledge modeling in SLA,
Duolingo released three datasets1, collected from
students of English who already speak Spanish
(EN-ES), students of Spanish who already speak
English (ES-EN), and students of French who
already speak English (FR-EN), respectively,
over their first 30 days of language learning on
the Duolingo platform (Settles et al., 2018). The
task is to predict what mistakes a student will
make in the future. Table 1 shows basic statistics
about each dataset. Interesting are in particular
the last two rows of the table which indicate
the unbalanced nature of the data: across all
languages correctly solving an exercise is far
more likely than incorrectly solving it. Note that
the datasets contain rich information not only
on students, words and exercises2 but also on
students’ learning process, e.g., the amount of
time a student required to solve an exercise, the
device being used to access the learning platform
and the countries from which a student accessed
the Duolingo platform.

Table 1: Statistics of the datasets.

FR-EN ES-EN EN-ES

#Unique students 1,213 2,643 2,593
#Unique words 2,178 2,915 2,226
#Exercises 326,792 731,896 824,012
#Words in all exercises 926,657 1,973,558 2,622,958
#Avg. words / exercise 2.84 2.7 3.18
%Correctly solved words 84% 86% 87%
%Incorrectly solved words 16% 14% 13%

In our work, we use learning session to denote
the period from a student’s login to the platform
until the time she leaves the platform. We use
learning type to refer to the “session” information
in the original released datasets, whose value can
be lesson, practice or test.

2.2 Research Hypotheses
Grounded in prior works we explore the following
hypotheses:

1http://sharedtask.duolingo.com/
#task-definition-data

2An exercise usually contains multiple words.

H1 A student’s living community affects her lan-
guage acquisition performance.
Previous works, e.g., (Dixon et al., 2012)
demonstrated that the surrounding living
community is a non-negligible factor in SLA.
For instance, a student learning English whilst
living in an English-speaking country is more
likely to practice more often and thus more
likely to achieve a higher learning gain than a
student not living in one.

H2 The more engaged a student is, the more
words she can master.
Educational studies, e.g., (Carini et al., 2006),
have shown that a student’s engagement can
be regarded as a useful indicator to predict her
learning gain, which is the number of mas-
tered words in our case.

H3 The more time a student spends on solving an
exercise, the more likely she will get it wrong.

H4 Contextual factors such as the device being
used (e.g. iOS or Android), learning type
(lesson, practice or test) and exercise for-
mat (such as transcribing an utterance from
scratch or formulating an answer by selecting
from a set of candidate words) will impact a
student’s mastery of a word.
We hypothesize that, under specific contexts,
a student can achieve a higher learning gain
due to the different difficulty level of exer-
cises. For instance, compared to transcribing
an utterance from scratch, a student is likely
to solve more exercises correctly when being
provided with a small set of candidate words.

H5 Repetition is useful and necessary for a stu-
dent to master a word (Young-Davy, 2014;
Gu and Johnson, 1996; Lawson and Hogben,
1996).

H6 Students with a high-spacing learning routine
are more likely to learn more words than those
with a low-spacing learning routine.
Here, high-spacing refers to a larger number
of discrete learning sessions. Correspond-
ingly, low-spacing refers to relatively few
learning sessions, which usually last a rela-
tively long time. In other words, students with
a low-spacing routine tend to acquire words
in a “cramming” manner (Miyamoto et al.,
2015; Donovan and Radosevich, 1999; Bjork,
1994).
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2.3 Performance Metrics

We now define four metrics we use to measure a
student’s exercise performance.
Student-level Accuracy (Stud-Acc) measures the
overall accuracy of a student across all completed
exercises. It is calculated as the ratio between the
number of words correctly solved by a student and
the total number of words she attempted.
Exercise-level Accuracy (Exer-Acc) measures to
what extent a student answers a particular exercise
correctly. It is computed as the number of cor-
rectly solved words divided by the total number of
words in the exercise.
Word-level Accuracy (Word-Acc) measures the
percentage of times of a word being answered cor-
rectly by students. For a word, it is calculated as
the number of times students provided correct an-
swers divided by the total number of attempts.
Mastered Words (Mast-Word) measures how
many words have been mastered by a student. As
suggested in (Young-Davy, 2014), it takes about
17 exposures for a student to learn a new word.
Thus, we define a word being mastered by a stu-
dent only if (i) it has been exposed to the student
at least 17 times and (ii) the student answered the
word accurately in the remaining exposures.

2.4 From Hypotheses To Validation

To verify H1, we use the location (country) from
where a student accessed the Duolingo platform
as an indicator of the student’ living community.
We first bin students into groups according to
their locations. Next, we calculate the average
student-level accuracy and the number of mastered
words of students in each group. We report the
results in Table 2. Here we only consider loca-
tions with more than 50 students. If a student ac-
cessed the platform from more than one location,
the student would be assigned to all of the identi-
fied location groups. In contrast to our hypothe-
sis, we do not observe the anticipated relationship
between living community and language learning
(e.g. Spanish-speaking English-students living in
the US do not perform better than other students).

For H2 (student engagement), we consider three
ways to measure engagement with the platform:
(i) number of attempted exercises, (ii) number of
attempted words and (iii) amount of time spent
learning. To quantify the relationship between stu-
dents’ engagement and their learning gain, we re-
port the Pearson correlation coefficient between

Table 2: Avg. student-level accuracy (%) and
the number of mastered words of students living
in different locations (approximated by the coun-
tries from which students have finished the exer-
cises). Significant differences (compared to Avg.,
according to Mann-Whitney) are marked with ∗
(p < 0.001).

Datasets Locations Stud-Acc Mast-Word

FR-EN

Avg. 83.57 3.37
CA 84.12 3.13
US 83.01 3.40
GB 83.66 3.46
AU 85.69 3.70

ES-EN

Avg. 85.91 2.74
CA 84.89 3.26
US 86.22 2.58
AU 85.82 3.50
GB 83.94 * 3.30
NL 87.15 2.86

EN-ES

Avg. 87.62 4.39
CO 87.49 4.14
US 87.98 5.02
ES 87.85 5.66 *
MX 86.92 * 3.71 *
CL 88.95 4.42
DO 87.26 4.40
AR 89.58 4.75
VE 89.47 * 4.99
PE 88.83 4.37

the three engagement metrics and Stud-Acc as
well as Mast-Word (Table 3). We note a consistent
negative correlation between accuracy and our en-
gagement metrics. This is not surprising, as more
engagement also means more exposure to novel
vocabulary items. When examining the number of
mastered words, we can conclude that—as stated
in H2—higher engagement does indeed lead to a
higher learning gain. This motivates us to design
engagement related features for knowledge tracing
models.

To determine the validity of H3, in Table 4
we report the Pearson correlation coefficient be-
tween the amount of time spent in solving each
exercise and the corresponding exercise-level ac-
curacy. The moderate negative correlation values
indicate that the hypothesis holds to some extent.

For H4, we investigate three types of contextual
factors: (i) device used (i.e., Web, iOS, Android);
(ii) learning type (i.e., Lesson, Practice, Test) and
(iii) exercise format (i.e., Reverse Translate, Lis-
ten, Reverse Tap). To verify whether these con-
textual factors impact students’ exercise perfor-
mance, we partition exercises into different groups
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Table 3: Pearson Correlation between student engagement (measured by # attempted exercises/words and
the amount of time spent in learning) and student-level accuracy as well as # mastered words. Significant
differences are marked with ∗ (p < 0.001).

Stud-Acc Mast-Word

FR-EN ES-EN EN-ES FR-EN ES-EN EN-ES
# Exercises Attempted -0.05 * -0.09 * -0.08 * 0.85 * 0.87 * 0.79 *
# Words Attempted -0.06 * -0.08 * -0.08 * 0.85 * 0.86 * 0.80 *
Time Spent -0.13 * -0.14 * -0.22 * 0.73 * 0.79 * 0.61 *

Table 4: Pearson Correlation between the amount
of time spent in solving each exercise and
exercise-level accuracy. Significant differences
are marked with ∗ (p < 0.001).

FR-EN ES-EN EN-ES

Correlation -0.16 * -0.18 * -0.18 *

Table 5: Average exercise-level accuracy (%) in
different contextual conditions. Significant dif-
ferences (compared to Avg., according to Mann-
Whitney) are marked with ∗(p < 0.001).

FR-EN ES-EN EN-ES

Avg. 84.29 86.31 87.96

Client

Web 80.64 * 85.44 * 85.68 *
iOS 86.45 * 87.90 * 88.10 *

Android 83.92 * 84.88 * 88.92 *

Session

Lesson 85.43 * 87.23 * 88.76 *
Practice 80.94 * 83.92 * 84.19 *

Test 82.19 * 84.34 * 84.66 *

Format

Reverse Translate 77.92 * 85.88 * 85.42 *
Listen 78.30 * 77.01 82.78 *

Reverse Tap 92.51 * 94.84 * 95.48 *

according to the contextual condition in which
they were completed and calculate the average of
their exercise-level accuracy within each group.
Table 5 shows the results. Interestingly, students
with iOS devices perform better than those using
Web or Android. Students’ learning accuracy is
highest in the Lesson type. Learning formats also
have an impact: Reverse Tap achieves the highest
accuracy followed by Reverse Translate and then
Listen. This result is not surprising as active re-
call of words is more difficult than recognition.
Finally, we note for English students who speak
Spanish (EN-ES) and Spanish students who speak
English (ES-EN), the accuracy of Reverse Trans-

late is considerably higher than Listen, which is
not the case in FR-EN (where both are compara-
ble). These results suggest that contextual factors
should be taken into account in SLA modeling.

Table 6: Avg. word-level accuracy (%) of words
with different number of exposures.

# Words Word-Acc Correlation

FR-EN

≥ 1 2,178 72.30 -0.08 *
≥ 10 1,007 75.01 0.13 *
≥ 20 756 75.78 0.15 *
≥ 50 756 76.41 0.19 *
≥ 100 580 77.47 0.25 *

ES-EN

≥ 1 2,915 75.33 -0.10 *
≥ 10 1,798 77.10 0.12 *
≥ 20 1,511 77.29 0.19 *
≥ 50 1,163 77.92 0.25 *
≥ 100 900 78.67 0.31 *

EN-ES

≥ 1 2,226 75.58 0.00
≥ 10 1,587 77.12 0.25 *
≥ 20 1,401 77.88 0.28 *
≥ 50 1,171 78.90 0.28 *
≥ 100 963 79.57 0.34 *

Table 7: Pearson Correlation between student per-
formance and the number of previous attempts and
the amount of time elapsed since the last attempt
for a word.

FR-EN ES-EN EN-ES

# Previous attempts -0.05 * -0.04 * -0.07 *
Time elapsed 0.05 * 0.06 * 0.07 *

We investigate H5 from two angles. Firstly,
we investigate whether words with very different
exposure amounts will differ from each other in
terms of word-level accuracy as they are practiced
by students to different degrees. For this purpose,
we only retain words with more than n exposures
(with n being ≥ 1, ≥ 10, ≥ 20, ≥ 50, ≥ 100)
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and calculate Pearson correlation coefficient be-
tween the word-level accuracy and their number
of exposures (Table 6). As expected, the more
low-exposure words we filter out, the higher the
average word-level accuracy and the stronger the
correlation scores (albeit at best these are moder-
ate correlations).

Secondly, we believe that whether a student will
solve a word correctly (0 mean solving correctly
and 1 incorrectly) is affected by two factors re-
lated to word repetition. One factor is the num-
ber of previous attempts that a student has for a
word, and the other is the amount of time elapsed
since her last attempt at the word. Therefore, we
compute Pearson correlation coefficient between
students’ performance on exercises and the two
repetition related factors (Table 7). The resulting
correlations are even weaker than in our preced-
ing analysis, though they do point towards a (very)
weak relationship: if a student gets more exposed
to a word or practices the word more frequently,
she is more likely to get it correct. Clearly, the
results indicate that other factors at play here too.

Lastly, to study H6, we partition all students
into low-spacing and high-spacing groups accord-
ing to (Miyamoto et al., 2015). Initially, all stu-
dents are sorted in ascending order according to
their total time spent in learning words. Subse-
quently, these students are binned into ten equally-
sized groups labeled from 0 (spending the least
amount of time) to 9 (spending the most amount of
time). Therefore, we can regard students from the
same group as learning roughly the same amount
of time. Next, within each group, the students
are sorted based on their number of distinct learn-
ing sessions3, and we further divide them into two
equally-sized subgroups: students with few ses-
sions (low-spacing) and students with many ses-
sions (high-spacing). In this way, students spend-
ing similar total amounts of time can be compared
with each other. We plot the average student-
level accuracy as well as the number of mastered
words within each low-spacing and high-spacing
subgroup in Figure 1. We do not observe con-
sistent differences between low-spacing and high-
spacing groups. Therefore, we conclude H6 to not
hold.

3Here we consider all learning activities occurring within
60 minutes as belonging to the same learning session.

3 Knowledge Tracing Model

We now describe the machine learning model we
adopt for knowledge tracing and then introduce
our features.

3.1 Gradient Tree Boosting
Various approaches have been proposed for mod-
eling student learning. Two representatives are
Bayesian Knowledge Tracing (Corbett and An-
derson, 1994) and Performance Factor Analysis
(Pavlik Jr et al., 2009), both of which have been
studied for years. Inspired by the recent wave of
deep learning research in different domains, deep
neural nets were also recently applied to track the
knowledge state of students (Piech et al., 2015;
Xiong et al., 2016; Zhang et al., 2017). In prin-
cipal, all of these methods can be adapted to pre-
dict students’ performance in SLA. As our ma-
jor goal is to investigate the usefulness of the de-
signed features, we selected a robust model that
is able to take various types of features as input
and works well with skewed data. Gradient Tree
Boosting (GTB) is a machine learning technique
which can be used for both regression and clas-
sification problems (Ye et al., 2009). It is cur-
rently one of the most robust machine learning
approaches that is employed for a wide range of
problems (Chen and Guestrin, 2016). It can deal
with various types of feature data and has reli-
able predictive power when dealing with unbal-
anced data (as in our case). We selected it over
a deep learning approach as we aim to built an in-
terpretable model.

3.2 Feature Engineering
Based on the results in §2.4, we designed 23
features. The features are categorized into two
groups: features directly available in the datasets
(7 given features) and features derived from the
datasets (16 derived features). Note that the fea-
tures differ in their granularity—they are com-
puted per student, or per word, per exercise or a
combination of them, as summarized in Table 8.

Given features:

• Student ID: the 8-digit, anonymized, unique
string for each student;

• Word: the word to be learnt by a student;

• Countries: a vector of dimension N (N de-
notes the total number of countries) with
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Figure 1: The average student-level accuracy, i.e., Stud-Acc (Left), and the average number of mastered
words, i.e., Mast-Word (Right), of students in high-spacing and low-spacing groups.

Table 8: Granularity levels on which each feature is re-
trieved or computed. Features marked with b are used as input
in the baseline provided by the benchmark organizers.

Features Granularity Level
User Word Exercise

Student IDb √
Wordb √
Countries

√
Formatb √
Type

√
Device

√
Time spent (exercise)

√

# Exercises attempted
√

# Words attempted
√

# Unique words attempted
√

# sessions
√

Time spent (learning)
√

# Previous attempts
√ √

# Correct times
√ √

# Incorrect times
√ √

Time elapsed
√ √

Word-Acc
√ √

Std. timestamps (exercise)
√ √

Std. timestamps (word)
√ √

Std. timestamps (session)
√

Std. timestamps (word-session)
√ √

Std. timestamps (word-correct)
√ √

Std. timestamps (word-incorrect)
√ √

binary values indicating whether a student
complete an exercise in one or multiple coun-
tries;

• Format: the exercise format in which a stu-
dent completed an exercise, i.e., Reverse
Translate, Reverse Tap and Listen;

• Type: the learning type in which a student
completed an exercise, i.e., Lesson, Practice
and Test;

• Device: the device platform which is used by
a student to complete an exercise, i.e., iOS,
Web and Android;

• Time spent (exercise): the amount of time
a student spent in solving an exercise, mea-
sured in seconds;

Derived features:

• # Exercises attempted: the number of exer-
cises that a student has attempted in the past;

• # Words attempted: the number of words that
a student has attempted in the past;

• # Unique Words attempted: the number of
unique words a student has attempted in the
past;

• # Sessions: the number of learning sessions a
student completed;

• Time spent (learning): the total amount of
time a student spent learning, measured in
minutes;

• # Previous attempts: a student’s number of
previous attempts at a specific word;

• # Correct times: the number of times that a
student correctly solved a word;

• # Incorrect times: the number of times that a
student incorrectly solved a word;

• Time elapsed: the amount of time that
elapsed since the last exposure of a word to
a student;
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• Word-Acc: the word-level accuracy that a stu-
dent gained for a word in the training dataset;

• Std. timestamps (exercise): the standard devi-
ation of the timestamps that a student solved
exercises;

• Std. timestamps (word): the standard devia-
tion of the timestamps that a student solved a
word;

• Std. timestamps (session): the standard devi-
ation of timestamps that a student logged in
to start a learning session;

• Std. timestamps (word-session): the standard
deviation of session starting timestamps that
a student solved a word;

• Std. timestamps (word-correct): the stan-
dard deviation of timestamps that a student
answered a word correctly;

• Std. timestamps (word-incorrect): the stan-
dard deviation of timestamps that a student
answered a word incorrectly.

Finally, we note that none of the features in our
feature set make use of external data sources. We
leave the inclusion of additional data sources to
future work.

4 Experiments

In this section, we first describe our experimental
setup and then present the results.

4.1 Experimental Setup

Each of the three Duolingo datasets consists of
three parts: TRAIN and DEV sets for offline ex-
perimentations and one TEST set for the final
evaluation. We use the TRAIN and DEV sets
to explore features that are useful in predicting a
student’s exercise performance and then combine
TRAIN and DEV sets to train the GTB model; we
report the model’s performance on the TEST set.

We trained the GTB model using XGBoost, a
scalable machine learning system for tree boost-
ing (Chen and Guestrin, 2016). All model param-
eters4 were optimized through grid search and are
reported in Table 9.

4For a detailed explanation of the parameters, please refer
to https://github.com/dmlc/xgboost/blob/
v0.71/doc/parameter.md.

We also report the official baseline provided
by the benchmark organizers as comparison. The
baseline is a logistic regression model which takes
six features as input, which include student ID,
word, format and three morpho-syntactic features
of the word (e.g., Part of Speech). As suggested by
the benchmark organizers, we use the AUC and F1
scores as our evaluation metrics.

Table 9: Model parameters of the GTB model; de-
termined by using grid search per dataset.

FR-EN ES-EN EN-ES

learning rate 0.4 0.5 0.6
n estimatorss 800 1100 1550
max depth 6 6 5
min child weight 7 8 13
gamma 0.0 0.0 0.1
subsample 1.0 1.0 1.0
colsample bytree 0.7 0.7 0.85
reg alpha 4 6 5

4.2 Results

In order to evaluate the impact of the features de-
scribed in §3.2, we report in Table 10 different
versions of GTB training, starting with three fea-
tures (Student ID, Word, Format) and adding ad-
ditional features one at a time. We incrementally
added features according to the order presented in
Section 3.2 and only kept features that boost the
prediction performance (i.e. the AUC score im-
proves on the DEV set). Among all 23 evaluated
features, seven are thus useful for SLA model-
ing. Here, we only report the results in the ES-
EN dataset; we make similar observations in the
other two datasets. In contrast to our expectations,
a large number of the designed features did not
boost the prediction accuracy. This implies that
further analyses of the data and further feature en-
gineering efforts are necessary. The extraction of
features from external data sources (which may
provide insights in the difficulty of words, the re-
lationship between language families and so on) is
also left for future work.

In our final prediction for the TEST set, we
combine the TRAIN and DEV data to train the
GTB model with the nine features listed in Ta-
ble 10 and student ID as well as the word as input.
The results are shown in Table 11. Compared to
the logistic regression baseline, GTB is more ef-
fective with a 6% improvement in AUC and 83%
improvement in F1 on average.
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Table 10: Experimental results reported in AUC on
ES-EN. Each row indicates a feature added to the
GBT feature space; the model of row 1 has three
features.

TRAIN DEV

Student ID & Word & Format 0.8095 0.7758
Mode 0.8111 0.7780
Client 0.8137 0.7790
Time spent (exercise) 0.8270 0.7828
# Previous attempts 0.8323 0.7835
# Wrong times 0.8348 0.7871
Std. time (word-session) 0.8348 0.7871

Table 11: Final prediction results on the TEST
data. Significant differences (compared to Base-
line, according to paired t-test) are marked with ∗
(p < 0.001).

Methods AUC F1

FR-EN Baseline 0.7707 0.2814
GTB 0.8153 * 0.4145 *

ES-EN Baseline 0.7456 0.1753
GTB 0.8013 * 0.3436 *

EN-ES Baseline 0.7737 0.1899
GTB 0.8210 * 0.3889 *

5 Conclusion

Knowledge tracing is a vital element in person-
alized and adaptive educational systems. In or-
der to investigate the peculiarities of SLA and ex-
plore the applicability of existing knowledge trac-
ing techniques for SLA modeling, we conducted
extensive data analyses on three newly released
Duolingo datasets. We identified a number of fac-
tors affecting students’ learning performance in
SLA. We extracted a set of 23 features from stu-
dent trace data and used them as input for the GTB
model to predict students’ knowledge state. Our
experimental results showed that (i) a student’s
engagement plays an important role in achieving
good exercise performance; (ii) contextual factors
like the device being used and learning format
should be taken into account for SLA modeling;
(iii) repetitive practice of words and exercises af-
fect students performance considerably; (iv) GTB
can effectively use some of the designed features
for SLA modeling and there is a need for fur-
ther investigation on feature engineering. Apart
from the future work already outlined in previous
sections, we also plan to investigate deep knowl-
edge tracing approaches and the inclusion of some

of our rich features into deep models, inspired
by (Zhang et al., 2017). Also, instead of devel-
oping a one-size-fits-all prediction model, it will
be interesting to explore subsets of students that
behave similarly and develop customized models
for different student groups.
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Abstract

We introduce the TMU systems for the sec-
ond language acquisition modeling shared task
2018 (Settles et al., 2018). To model learner
error patterns, it is necessary to maintain a
considerable amount of information regard-
ing the type of exercises learners have been
learning in the past and the manner in which
they answered them. Tracking an enormous
learner’s learning history and their correct and
mistaken answers is essential to predict the
learner’s future mistakes. Therefore, we pro-
pose a model which tracks the learner’s learn-
ing history efficiently. Our systems ranked
fourth in the English and Spanish subtasks,
and fifth in the French subtask.

1 Introduction

The second language acquisition modeling
(SLAM) is an interesting research topic in the
fields of psychology, linguistics, and pedagogy as
well as engineering. Popular language learning
applications such as Duolingo accumulate learn-
ing data of language learners on a large-scale;
thus, there has been an increasing interest for
SLAM using machine learning using such data.
In this study on SLAM, we aim to clarify both:
(1) the inherent nature of second language learn-
ing, and (2) effective machine learning/natural
language processing (ML/NLP) engineering
strategies to build personalized adaptive learning
systems.

In order to predict the learner’s future mistakes,
it is important to track a huge history of what
and how exercises were solved by that learner and
be able to model it. Therefore, we propose a
model that can efficiently track a learner’s learning
history. (Piech et al., 2015; Khajah et al., 2014,
2016)

Figure 1: An exercise example. Given exercise is
a “correct” input. Outputs are “1” each time a
learner makes a mistake

2 2018 Duolingo Shared Task on SLAM

We used data from Duolingo in this shared task.
Duolingo is the most popular language-learning
online application. Learners solve the exercises
and this shared task use only 3 type of exer-
cises. Exercise (a) is a reverse translate item,
where learners translate written prompt from the
language they know into the language they are
learning. Exercise (b) is a reverse tap item, where
learners construct an answer given a set of words
and distractors in the second language. Exercise
(c) is a listen item, where learners listen and tran-
scribe an utterance in the second language. In this
shared task, There are 3 exercise data of the fol-
lowing groups of second language learners:

• English learners (who already speak Spanish)

• Spanish learners (who already speak English)

• French learners (who already speak English)

The Duolingo data set, which contains more
than 2 million annotated words, is created from
the answers submitted by more than 6,000 learn-
ers during their first 30 days. In the related ex-
ercises, learners answer questions related to the
second language they are learning; thus, they in-
evitably make various mistakes during the course.
In this task, we predict mistakes on word level
given an exercise. Figure 1 is an exercise exam-
ple. Given a “correct” exercise as input a system
has to predict labels as output.
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Figure 2: Architecture of the proposed TMU system.

In general, most tokens are perfect matches;
however, the remainder of the tokens are either
missing or spelled incorrectly (ignoring capitaliza-
tion, punctuation, and accents). The former is as-
signed the label “0” (OK), while the latter is as-
signed the label “1” (Mistake).

3 TMU System

To track a lot of learner’s histories, our proposed
TMU system has two components: (1) a base com-
ponent that predicts whether a learner has made
a mistake for the given word in an exercise (Fig.
2, Prediction Bi-LSTM) and (2) a component that
tracks a specific learner’s information regarding
the learned exercises and the words that he or she
might have mistaken (Fig. 2, History LSTM). It is
expected to track huge history of the learned exer-
cise by inputting the hidden state of the Prediction
model to the History LSTM.

In prediction, we receive exercise as input and
make predictions on word-level. Using Bi-LSTM
for sequence labeling on exercise level, e.g., in-
formation as POS tags or dependency edge labels,
allows us to share information within each exer-
cise for better prediction. We perform training by
feeding input exercises arranged in a chronologi-

cal order for each learner.

3.1 Features

Table 1 lists all the features used by our system.
We use features (1-7) included in the dataset dis-
tributed by the task organizers as well as the track-
ing history (8) (Section 3.3) and labels for lan-
guage identification (9). We trained a single model
with three languages, including English, Spanish,
and French; in addition, we used the language
identification feature to distinguish them.

There are three types of inputs for the Bi-
LSTM. The first input includes word-level features
that indicate information changing for each word
in an exercise. In particular, word surface and POS
are used as word-level features. The second input
consists of exercise-level features. In particular,
days, session, format, time, and history are used
as exercise-level features. The third input includes
learner-level features. For this, learner and lan-
guage features are extracted for each learner.

3.2 Prediction Bidirectional LSTM

We used bidirectional LSTM (Bi-LSTM) to pre-
dict whether a learner has mistaken each word in
an exercise. The k-th word and POS of the j-th
exercise of the i-th learner are converted into ei

(j,k)
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Feature Embeddings Description
1 Word ei

(j,k) ∈ Rde×1 Word Surface
2 POS pi

(j,k) ∈ Rdp×1 Part of Speech
3 Session si

j ∈ Rds×1 Lesson, Practice or Test
4 Format f i

j ∈ Rdf ×1 Reverse translate, Reverse tap, or Listen
5 Days bi

j ∈ R1×1 Number of Days Since the Start for Each Learner
6 Time tij ∈ R1×1 Amount of Time to Construct and Submit Answers for Each Learner
7 User ui ∈ Rdu×1 Unique Identifier for Each Learner
8 History ci

(j−1,M) ∈ Rdc×1 Last Hidden Layer of History LSTM
9 Language li ∈ Rdl×1 English, Spanish, French

Table 1: Features used in our system. i: Learner’s ID; j: Exercise Number of the i-th Learner; k: Word’s
and POS’s index of the j-th Exercise. de: Word Embedding Size; dp: POS Embedding Size; ds: Session
Embedding Size; df : Format Embedding Size; du: User Embedding Size; dc: History Embedding Size;
M : Total Sentence Length of All Previous Exercises; dl: Language Embedding Size.

and pi
(j,k) distributed representations, respectively.

Further, the session and format of the j-th exer-
cise of the i-th learner are converted into si

j and
f i

j distributed representations, respectively. Days
and time are represented as bi

j and tij , respectively.
User and language are converted into ui and li

distributed representations, respectively. History
is the last hidden state ci

(j−1,M) of the History
LSTM, which will be described later (Section 3.3).

The inputs of the Bi-LSTM are given as
xi

(j,1), x
i
(j,2), · · · , xi

(j,N). where, xi
(j,k) =

[ei
(j,k); p

i
(j,k); s

i
j ; f

i
j ; b

i
j ; t

i
j ; c

i
(j−1,M); u

i; li] is the
concatenation of all features and N is the length
of the j-th exercise. xi

(j,k) is converted into the

forward hidden state
−−−→
hi

(j,k) ∈ Rdh×1 and back-

ward hidden state
←−−−
hi

(j,k) ∈ Rdh×1 using LSTM,
where dh is the hidden size. The final hidden
state hi

(j,k) ∈ R2dh×1 is acquired by concatenat-

ing
−−−→
hi

(j,k) and
←−−−
hi

(j,k). Further, hi
(j,k) is fed into the

extra hidden layer:

ĥi
(j,k) = ReLU(Whhi

(j,k) + bh) (1)

where ĥi
(j,k) ∈ Rdĥ×1 is an extra hidden layer out-

put, Wh ∈ Rdĥ×dh is a weighting matrix, and
bh ∈ Rdĥ×1 is a bias. The extra hidden layer
output ĥi

(j,k) is linearly transformed using the out-
put layer as follows and the probability distribu-
tion pi

(j,k) ∈ Rt×1 of the true/false tag is acquired
using the softmax function, where t is the size of
the tag, which is set to 2 in our study.

pi
(j,k) = softmax(Wĥĥi

(j,k) + bĥ) (2)

where Wĥ ∈ Rt×dĥ is a weighting matrix and bĥ ∈
Rt×1 is a bias.

3.3 History LSTM
As previously mentioned, to correctly predict each
learner’s mistakes, it is important to consider not
only the history of learned exercises, but also the
learner’s answers to exercises. Thus, the History
LSTM tracks all previous information regarding
the learned exercises and how they were answered
by each learner.

For each j-th exercise, oi
(j,1), o

i
(j,2), · · · , oi

(j,N)
is given as an input to the j-th History LSTM,
where oi

(j,k) = [hi
(j,k); g

i
(j,k)]. hi

(j,k) (Section 3.2)
is considered as information about the j-th exer-
cise of the i-th learner and gi

(j,k) ∈ R1×1 is the
gold answer of the i-th learner to the j-th exercise.
In addition, the first hidden state and cell mem-
ory of the j-th History LSTM is initialized with
the last hidden state and cell memory of the previ-
ous j-1-th History LSTM. The hidden state ci

(j,1)

is created from oi
(j,1) using the LSTM for the next

step of the Prediction Bi-LSTM.

3.4 Training
The objective function is defined as follows:

Lθ =
1

|D|
∑

(x,y)∈D

log p(y|x; θ) (3)

where D is the training data and θ represents
model parameters. We use Backpropagation
Through Time (BPTT) for training.

In general, low-frequency words are replaced
by unk word to learn unk vector. However, in our
study, unknown words appear not because they
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Language Train Dev Test
English 936,782 3,000 114,586
Spanish 824,899 3,000 93,145
French 367,402 3,000 41,753

Table 2: Number of exercises for each language.

have low-frequency, but because they have not
been learned yet. Hence, we use words that ap-
pear for the first time in an exercise to be replaced
by unk word to learn unk vector. In addition, we
use words without unk replacement to track the
history for the History LSTM.

The final loss is calculated as follows:

Lθ = αLunk
θ + (1− α)Lorig

θ (4)

where αLunk
θ is calculated by replacing the word

appearing for the first time with unk, while (1 −
α)Lorig

θ is calculated using this word itself. In par-
ticular, α expresses the degree of emphasis placed
on unk and a learned word. For example, when a
word “Japanese” appears for the first time, then:

Original exercise: I am Japanese
Replaced by unk: I am <unk>

If the unk does not exist in any exercise, Lθ has the
same value as Lorig

θ .

3.5 Testing
During our test, predictions were made on exer-
cises of the test data arranged in chronological or-
der for each learner. We update History LSTM
using output and hidden state of Prediction Bi-
LSTM. Test data does not have gold answers un-
like training data. Hence, each system used its
own converted probability outputs of the Predic-
tion Bi-LSTM component with arg max as gold
answers.

In addition, we performed ensemble predic-
tions. The parameters of ensemble models are ini-
tialized with different values. As the final predic-
tion result, we used the average of the probability
outputs of each Prediction Bi-LSTM. Each system
used its own converted probability outputs of the
Prediction Bi-LSTM component as gold answers.

4 Experiments

4.1 Experiment settings
Table 2 shows the number of exercises for train,
dev and test data for each language. The hyper pa-
rameters of our model are listed in Table 3. All

Parameter Value
de: Word Embedding Size 100
dp: POS Embedding Size 20
ds: Session Embedding Size 20
df : Format Embedding Size 20
du: User Embedding Size 50
dl: Language Embedding Size 20
dc: Hidden Size (History) 200
dh: Hidden Size (Prediction) 100
dĥ: Extra Hidden Size 50
Minibatch size 32
BPTT 18
Optimizer Adadelta
Learning rate 0.1
Initialization parameters [-0.1, +0.1]
α, Eq. (4) 0.01
Dev, (Section 3.5) 3,000
Ensemble, (Section 3.5) 10

Table 3: Hyper parameter values.

words that appeared in the training data were in-
cluded in the vocabulary. Preliminary experiments
showed that the AUROC of the one model trained
on data of three languages was higher than those
models trained for each language. Therefore, we
trained a single model with three language tracks,
including English, Spanish and French. Espe-
cially, AUROC increased for low-resource French
language.

Each model of the ensemble uses different dev
and training sets randomly sampled from the data.
In particular, since we needed to evaluate the
learning results of Future Days of each learner, we
combined the provided official training and dev
sets and arranged exercises in chronological or-
der of Days for each learner. Next, we randomly
sampled exercises from final learning exercises of
learners to create a dev set and the remaining data
were used as training data.

4.2 Results

Table 4 lists the results of SLAM for English
learners, Spanish learners, and French learners.
The systems are ranked by their AUROC. The
TMU system ranked fourth in English and Spanish
subtasks, while it ranked fifth in the French sub-
task.

4.3 Analysis of Tracking History

In order to confirm the importance of history
tracking, we compared the model that considers
history (W/ History Model) with the model that
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English Spanish French
0.861 SanaLabs 0.838 SanaLabs 0.857 SanaLabs
0.860 singsound-xushuyao 0.835 alexrich 0.854 singsound-xushuyao
0.858 alexrich 0.834 singsound-xushuyao 0.858 alexrich
0.848 TMU 0.823 TMU 0.843 zz
0.846 zz 0.818 zz 0.839 TMU
0.841 Cam 0.807 Cam 0.834 Cam
0.828 btomosch 0.802 btomosch 0.822 btomosch
0.821 nihalnayak 0.801 LambdaLearning 0.815 LambdaLearning
0.821 LambdaLearning 0.790 Grotoco 0.813 Grotoco
0.816 Grotoco 0.790 nihalnayak 0.811 nihalnayak
0.815 jilljenn 0.788 ymatusevich 0.808 jilljenn
0.813 ymatusevich 0.787 jilljenn 0.808 ymatusevich
0.796 renhk 0.773 renhk 0.806 caseykennington
0.787 zlb241 0.745 SLAM baseline 0.795 renhk
0.773 SLAM baseline 0.681 zlb241 0.770 SLAM baseline

Table 4: SLAM official evaluation results. Systems are ranked by AUROC.

Model AUROC
W/ History Model 0.834
W/O History Model 0.648

Table 5: The history model has an effect to improve
AUROC on English subtask.

does not consider history (W/O History Model) on
the dev set for English. The W/O History Model
used only the Prediction Bi-LSTM component
which does not use the history feature. For exper-
iments using this model, we used a single model
trained only on the English corpus. The default
split of training set and dev set was 824,012 ex-
ercises and 115,770 exercises, respectively. Both
aforementioned models used the same parameters
as listed in Table 3.

Table 5 lists our evaluation results1. It can be
observed that the AUROC of prediction of the W/
History Model case is considerably higher than
that of the W/O History Model. As we expected, it
is important to consider what learner have learned
in the past and how they responded to it in order to
improve future predictions.

5 Conclusion

In this study, we described the TMU system for
the 2018 SLAM Shared Task. Our system is based
on RNN; It has two components: (1) Bi-LSTM for
predicting learners’ error and (2) LSTM for track-
ing learners’ learning history.

1The performance is slightly different from the one re-
ported in Table 3 because of the difference in models and
ensembling.

In this work, we have not used any language-
specific information. As future work, we plan
to exploit additional data for each language,
such as pre-trained word representations, n-
grams, and character-based features. Additionally,
we hope to incorporate word difficulty features
(Kajiwara and Komachi, 2018). In particular, the
more complex a word is, the more difficult it likely
is to be learned.
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Abstract

This paper introduces our solution to the 2018
Duolingo Shared Task on Second Language
Acquisition Modeling (SLAM). We used deep
factorization machines, a wide and deep learn-
ing model of pairwise relationships between
users, items, skills, and other entities consid-
ered. Our solution (AUC 0.815) hopefully
managed to beat the logistic regression base-
line (AUC 0.774) but not the top perform-
ing model (AUC 0.861) and reveals interesting
strategies to build upon item response theory
models.

1 Introduction

Given the massive amount of data collected by on-
line platforms, it is natural to wonder how to use
it to personalize learning. Students should receive,
based on their estimated knowledge, tailored exer-
cises and lessons, so they can be guided through
databases of potentially millions of exercises.

With this objective in mind, numerous models
have been designed for student modeling (Des-
marais and Baker, 2012). Based on the outcomes
of students, one can infer the parameters of these
so-called student models, measure knowledge, and
tailor instruction accordingly.

In the 2018 Duolingo Shared Task on Second
Language Acquisition Modeling (Settles et al.,
2018), we had access to attempts of thousands of
students over sentences (composed of thousands
of possible words, each of these being labeled
as correct or incorrect), and we had to predict
whether a student would write correctly or not the
words of a new sentence. Sentences were anno-
tated with precious side information such as lex-
ical, morphological, or syntactic features. This
problem is coined as knowledge tracing (Corbett
and Anderson, 1994) or predicting student perfor-
mance (Minaei-Bidgoli et al., 2003) in the litera-

ture. In this particular challenge, it is done at the
word level.

In this paper, we explain the motivations that
led us to our solution, and show how our models
handle typical models in educational data mining
as special cases. In Section 2, we show related
work. In Section 3, we present the existing model
of DeepFM and clarify how it can be applied for
knowledge tracing, notably the SLAM task. In
Section 4, we detail the data preparation, in order
to apply DeepFM. Finally, we expose our results
in Section 5 and further work in Section 6.

2 Related Work

Item Response Theory (IRT) models (Hambleton
et al., 1991) have been extensively studied and de-
ployed in many real-world applications such as
standardized tests (GMAT). They model the abil-
ity (level information) of students, and diverse pa-
rameters of items (such as difficulty), and involve
many criteria for the selection of items to measure
the ability of examinees.

Related work in knowledge tracing consists
in predicting the sequence of outcomes for a
given learner. Historically, Bayesian Knowledge
Tracing (BKT) modeled the learner as a Hidden
Markov model (Corbett and Anderson, 1994), but
with the advent of deep learning, a Deep Knowl-
edge Tracing (DKT) model has been proposed
(Piech et al., 2015), relying on long short-term
memory (Hochreiter and Schmidhuber, 1997).
However, Wilson et al. (2016) have shown that
a simple variant of IRT could outperform DKT
models.

All of these IRT, BKT or DKT models do
not consider side information, such as knowledge
components, which is why new models naturally
rose. Vie and Kashima (2018) have used Bayesian
factorization machines for knowledge tracing, and
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recovered most student models as special cases.
Wide and deep learning models have been pro-

posed by Google (Cheng et al., 2016) to learn
lower-order and higher-order features. Guo et al.
(2017) have proposed a variant where they replace
the wide linear model by a factorization machine,
and this is the best model we got for the Shared
Task challenge.

3 DeepFM for knowledge tracing

We now introduce some vocabulary. We assume
that our observed instances can be described by C
categories of discrete or continuous features (such
as user id, item id or country, but also
time). Entities denote couples of categories and
discrete values (such as user=2, country=FR
or again time if the category is continuous). We
denote byN the number of possible entities, num-
ber them from 1 to N . The DeepFM model we
are describing will learn an embedding for each of
those entities1.

Each instance can be encoded as a sparse vec-
tor x of size N : each component will be set at
a certain value (for example, 1 if the category of
the corresponding entity is discrete, the value it-
self if it is continuous, and 0 if the entity is not
present in the observation). For each instance, our
model will output a probability p(x) = ψ(yFM +
yDNN ), where ψ is a link function such as the
sigmoid σ or the cumulative distribution function
(CDF) Φ of the standard normal distribution.

The DeepFM model is made of two compo-
nents, the FM component and the Deep compo-
nent.

3.1 FM component

Given an embedding size d ∈ N, the output of a
factorization machine is the following:

yFM =

N∑

k=1

wkxk +
∑

1≤k<l≤N

xkxl〈vk,vl〉

The first term shows that a bias wk ∈ R is
learned for each entity k. The second term models
the pairwise interactions between entities by learn-
ing a vector vk ∈ Rd for each entity k.

1The original DeepFM paper (Guo et al., 2017) chooses
fields and features in lieu of categories or entities, but we
prefer to use our own formulation (Vie and Kashima, 2018)
because we usually agree with ourselves.

3.1.1 Relation to existing student models
If d = 0 and ψ is the sigmoid function σ, p(x) =
σ(〈w,x〉) and the FM component behaves like lo-
gistic regression.

In particular, if there are two fields users (of n
possible values) and items, then each instance en-
coding xij of user i and item j is a concatena-
tion of two one-hot vectors, and p(xij) = σ(wi +
wn+j) = σ(θi − dj) for appropriate values of w,
which means the Rasch model is recovered.

As pointed out by Settles et al. (2018), their
baseline model is a logistic regression with side
information, which makes it similar to an additive
factor model. To see more connections between
our FM component and existing educational data
mining models, see Vie and Kashima (2018).

3.2 Deep component
The deep component is aL-layer feedforward neu-
ral network that outputs:

yDNN = ReLU(W (L)a(L) + b(L))

where each layer 0 ≤ ` < L verifies:

a(`+1) = ReLU(W (`)a(`) + b(`))

for learned parameters W , a, b for each layer, and
the first layer is given by the corresponding vic
embeddings of the activated entities (the ones for
each category c = 1, . . . , C, which correspond to
the nonzero entries of x):

a0 = (vi1 , . . . ,viC ).

In order to select the hyperparameters, we fol-
lowed the instructions of (Guo et al., 2017) and the
default values of the available implementation on
GitHub2.

3.3 Training
Training is performed by minimizing the log loss
of the output probabilities compared to the true
outcomes of the students over the tokens. For all
models trained, the optimizer was Adam (Kingma
and Ba, 2014), with learning rate γ = 10−3 and
minibatches of size 1024.

4 Encoding the Duolingo Dataset

4.1 Fundamental, discrete categories
Fundamental categories (<fundamental>) re-
fer to the features that have discrete values, such as

2https://github.com/ChenglongChen/tensorflow-DeepFM
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user (which refer to the user ID) or countries
(which can be in a many-to-many relationship).

• user
• token
• part_of_speech
• dependency_label
• exercise_index

• countries
• client
• session
• format

4.2 Noisy discrete categories

Duolingo was providing the SyntaxNet features
(morphosyntactic rules) such as:

• Definite
• Gender
• Number
• fPOS
• Person

• PronType
• Mood
• Tense
• VerbForm

We call them noisy (<noisy> below), be-
cause they are the output of another algorithm.
Also, not all of them were specified, there were
some missing entries.

4.3 Continuous categories

• time for answering the question
• days since when the user subscribed the

Duolingo platform.

4.4 Encoding

In the baseline model provided by Duolingo, all
fundamental features were encoded as a concate-
nation of n-hot encoders3. Then they used logistic
regression and achieved AUC 0.772.

Here are the models we considered.

• IRT: user + token, d = 0
• Logistic regression baseline:
<fundamental>
• Vanilla FM: <fundamental>
• DeepFM: <fundamental>
• DeepFM*: <fundamental> +
<noisy> + <continuous>

The implementation of Deep Factorization Ma-
chines we used needed a concatenation of one-hot
encoders. So we picked the first country among
the list of countries for each instance. Also, it
could not handle missing entries, so for the noisy
partial categories, we used a None entity.

3For this reason, the continuous features could not be used
for the baseline.

ACC AUC NLL F1

IRT + attempts 0.833 0.739 0.411
Basic IRT 0.838 0.752 0.399

LR baseline 0.838 0.772 0.391 0.284
Vanilla FM 0.824 0.773 0.414
DeepFM* 0.811 0.382
DeepFM 0.815 0.329

Table 1: Performance of all tested algorithms on the
en es dataset.

5 Results

We first tried different models on a validation set.
All models were trained using 500 epochs for the
vanilla FM, or 100 epochs for DeepFM with early
stopping, and refit on the validation set.

5.1 On validation set

A vanilla FM was used considering ψ = Φ the
CDF of the standard normal distribution as link
function, like in the implementation of4 (Rendle,
2012). Then, for our experiments, we used the
TensorFlow implementation of DeepFM provided
by Alibaba on GitHub5. Our encoding is available
on GitHub6.

Vanilla FM had comparable performance of the
LR baseline. It agrees with the findings of Vie and
Kashima (2018) that a bigger dimension may not
necessarily help.

5.2 On test set

The DeepFM model managed to improve the base-
line by 3 points AUC. We got AUC 0.815, while
the top performing solution had AUC 0.861.

Our best performing model was DeepFM: us-
ing only the discrete features, train a model of
latent embedding size 10 during a fixed number
of epochs (50). DeepFM* using all features was
slightly worse.

6 Further Work

We could embed the dependency graph provided
by Duolingo in the encoding of the vanilla FM.

Ensemble methods such as xgboost (Chen
and Guestrin, 2016) could be considered, as typ-
ically encountered in challenges.

4http://www.libfm.org
5https://github.com/ChenglongChen/tensorflow-DeepFM
6https://github.com/jilljenn/ktm
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Here we want to combine information of the
student which is quite poor (almost only their
outcomes), compared to the knowledge of tokens
(syntactic trees, or word2vec, etc.). This is why
we could use extra embeddings, such as a LSTM
encoding of the sentence as feature for the token.

The performance of DeepFM* that was using
all features was slightly worse than DeepFM that
was limited to the fundamental features. We might
mitigate this problem by using a field-aware fac-
torization machine (Juan et al., 2016) that learns
a parameter per category of feature in order to
draw more importance on some category (such as
user) than others (such as date).

7 Conclusion

In this paper, we showed how to use deep factor-
ization machines for knowledge tracing. Our find-
ings show interesting combinations of features, to-
gether with embeddings provided by deep neural
networks. In some way, it shows how to learn
dense embeddings from the sparse features typi-
cally encountered in learning platforms.
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Abstract

Second Language Acquisition Modeling is the
task to predict whether a second language
learner would respond correctly in future ex-
ercises based on their learning history. In
this paper, we propose a neural network based
system to utilize rich contextual, linguistic
and user information. Our neural model con-
sists of a Context encoder, a Linguistic fea-
ture encoder, a User information encoder and
a Format information encoder (CLUF). Fur-
thermore, a decoder is introduced to combine
such encoded features and make final predic-
tions. Our system ranked in first place in the
English track and second place in the Span-
ish and French track with an AUROC score of
0.861, 0.835 and 0.854 respectively.

1 Introduction

Education systems that can adapt to the present-
ing of educational materials according to stu-
dents’ personal learning needs have great poten-
tial. Specifically, in the area of second language
learning, we try to predict whether the learning
materials are too easy or too hard for language
learners. Therefore, we study the Second Lan-
guage Acquisition Modeling (SLAM) task to build
a model of the language learning process.

Bayesian Knowledge Tracing (BKT) (Corbett
and Anderson, 1994; Pardos and Heffernan, 2010;
Pelánek, 2017) that models students’ knowledge
over time is a well-established problem. It takes
a Hidden Markov Model (HMM) with binary hid-
den states to represent knowledge acquisition for
each concept separately. BKT had been success-
fully applied to subjects like mathematics and pro-
gramming, where a limited number of concepts
can be predefined. However, in language learning,
it’s difficult to define a small number of concepts,
especially when the vocabulary size increases over
time. Deep Knowledge Tracing (DKT) (Piech

et al., 2015; Wilson et al., 2016) is a recent im-
plementation of knowledge tracing which uses Re-
current Neural Networks (RNNs) to model stu-
dent’s learning trace. Although RNNs and its
commonly used variants, such as Gated Recur-
rent Units (Cho et al., 2014) and Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997), are capable of exploring dynamic temporal
behavior for a time sequence, it’s hard to model
extremely long learning history that can range over
months even years. Half-life Regression (Settles
and Meeder, 2016) is a novel approach for the
SLAM task, which combines a psycholinguistic
model of human memory with modern machine
learning techniques. It had demonstrated state-of-
art performance for predicting student recall rates.

Mapping symbols, such as characters or words,
into a continuous space is a popular method in nat-
ural language processing (Hinton, 1986; Mikolov
et al., 2013; Pennington et al., 2014; Mikolov
et al., 2017). It achieved remarkable success in
many tasks, for example, neural language model-
ing (Bengio et al., 2003; Collobert and Weston,
2008; Mikolov et al., 2010), machine translation
(Sutskever et al., 2014; Bahdanau et al., 2015), text
classification (Lai et al., 2015; Zhang et al., 2015;
Conneau et al., 2017), sentiment analysis (dos
Santos and Gatti, 2014; Poria et al., 2015) and ma-
chine reading comprehension (Xiong et al., 2017;
Hu et al., 2017). In this work, we introduce a sim-
ilar neural approach for the SLAM task, where we
use neural encoders to extract features from each
exercise as well as metadata about student and ses-
sion. To be specific, we build a Context encoder, a
Linguistic feature encoder, a User information en-
coder and a Format information encoder (CLUF)
to calculate high-level representations from char-
acters, words, part-of-speech (POS) labels, syn-
tactic dependency labels, user id and country, ex-
ercise type, client, etc.
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Track Set Users Exercises
Unique
Tokens

Positive
Ratio (%)

OOV Ratio
(%)

en es
Train 2593 824012 1967 12.6 -
Dev 2592 115770 1839 14.3 3.4
Test 2593 114586 1879 - 4.5

es en
Train 2643 731896 2525 14.1 -
Dev 2640 96003 2353 15.7 7.6
Test 2641 93145 2459 - 10.0

fr en
Train 1213 326792 1941 16.2 -
Dev 1206 43610 1671 17.6 7.1
Test 1206 41753 1707 - 5.9

Table 1: The SLAM dataset statistics

2 Dataset

The Duolingo SLAM dataset (Settles et al., 2018)
is organized into three language tracks:

• en es: English learners (who already speak
Spanish)

• es en: Spanish learners (who already speak
English)

• fr en: French learners (who already speak
English)

According to Table 1, most tokens (more than
80%) are perfect matches and are given the label
0 for “OK”. Tokens that are missing or spelled
incorrectly (ignoring capitalization, punctuation,
and accents) are given the label 1 denoting a mis-
take. Across the three language tracks, en es has
the lowest positive ratio, while es en has the high-
est out-of-vocabulary (OOV) ratio.

Table 2 shows the features provided with the
SLAM dataset. In our system, we used all fea-
tures except the morphology features and syntactic
dependency edges, as we did not get any improve-
ment during experiments. Perhaps it is because
that the neural networks already encoded similar
information from characters, words and their syn-
tactic dependency labels.

3 Method

We used in total four encoders to model the stu-
dents’ learning behavior. Inputs to these encoders
are embeddings learned from one-hot representa-
tions of raw features. The context encoder consists
of a character level LSTM encoder and a word
level LSTM encoder. The linguistic feature en-
coder is also a LSTM model, where POS and syn-

Category Features
Context word surface form

Linguistic

part of speech
morphology features
syntactic dependency edges
syntactic dependency labels

User
user id
countries
days in course

Format

client
session type
exercise format
response time

Table 2: Features provided with the SLAM task

tactic dependency embedding are concatenated to-
gether and then fed into a multilayer LSTM unit.
At last, user encoder and format encoder are both
fully-connected neural networks. The user en-
coder takes account of user id, users’ national-
ity and other user related information, while the
format encoder encodes exercise format, session
type, client type and time used for the exercise.
The decoder combines the outputs of these en-
coders and then makes predictions through a sig-
moid unit.

3.1 Context Encoder

The context encoder operates at both the word
level and the character level. The word level en-
coding is capable of capturing better semantics
and longer dependency than the character level
encoding. But learning new words is a key part
in language learning. By modeling the character
sequence, we may be able to learn certain word
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a cute cat

Lookup
layer

BiLSTM
layer

Word encoder
outputs

Figure 1: The Word Level Context Encoder

formation rules, therefore partially avoid the OOV
problem.

The word level context encoder is a Bidirec-
tional LSTM model. Given a sequence of words
represented as one-hot vectors (w1, w2, ..., wN ),
we can get the word embedding of wt as

xt = Ew · wt,

where Ew is the word embedding matrix, which is
learned during training.

Given the input vector xt, the forward, back-
ward, and combined activations of the j-th hidden
layer are computed as

f jt = LSTM(f jt−1, f
j−1
t )

bjt = LSTM(bjt+1, b
j−1
t )

gt = [fK0
t , bK0

t ],

where K0 is the number of layers of the network,
j = 1, 2, ...,K0.

The character level context encoder is a hi-
erarchical LSTM model. Given a sequence of
one-hot representations of characters in word wt,
(c1, c2, ..., cM ), we can get the embedding of ci
as

h0i = Ec · ci,

where Ec is the character embedding matrix,
which is learned during training.

The outputs of the lookup layer are then fed into
a multilayer LSTM unit

hji = LSTM(hji−1, h
j−1
i )

Hwt = (hK1
1 , hK1

2 , ..., hK1
M ),

where K1 is the number of layers of the LSTM,
j = 1, 2, ...,K1.

a c u t e c a t

Lookup
layer

LSTM
layer

Mean over
Time

BiLSTM
layer

Character
encoder outputs

Figure 2: The Character Level Context Encoder

The mean-over-time (MoT) layer takes Hwt as
inputs

hwt =
1

M

M∑

i=1

hK1
i ,

Then the outputs of the MoT layer (hw1 , hw2 , ...,
hwN ) are inputs to a Bidirectional LSTM model,

f̂ jt = LSTM(f̂ jt−1, f̂
j−1
t )

b̂jt = LSTM(b̂jt+1, b̂
j−1
t )

ĝt = [f̂K2
t , b̂K2

t ],

where K2 is the number of layers of the BiLSTM,
j = 1, 2, ...,K2.

The final outputs of the context encoder are
computed as:

O = (o1, o2, ..., oN ),

where ot = gt + ĝt.

3.2 Linguistic Feature Encoder

The linguistic feature encoder is also a LSTM
model. Similar to the context encoder, we trained
embedding representations of the POS labels and
the syntactic dependency labels. The POS embed-
dings and syntactic dependency embeddings are
concatenated together and then fed into a LSTM
unit,

l0t = [post, dept]

ljt = LSTM(ljt−1, l
j−1
t )

L = (lK3
1 , lK3

2 , ..., lK3
N ),
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where post is the POS embedding of word wt and
dept is the syntactic dependency label embedding
of word wt. j is the layer index, and we have K3

layers in this LSTM unit.

3.3 User Encoder
The user encoder is a one-layer fully-connected
feedforward network. The encoder takes user
metadata as inputs

µ0 = [u, s, days]

µ1 = tanh(Wµ · µ0 + bµ),

where u is the embedding of the user id, s is the
embedding of the user’s nationality and days is
the time since the student started learning this lan-
guage. Wµ, bµ are trained network parameters.
We used the tanh activation function for the user
encoder.

3.4 Format Encoder
Similar to the user encoder, the format encoder is
also a one-layer fully-connected feedforward net-
work. The inputs are format, session, client, and
the response time,

f0 = [format, session, client, time]

f1 = tanh(Wf · f0 + bf ),

where Wf , bf are trainable parameters.

3.5 Decoder
The decoder takes the outputs (O, L, µ1, f1) of the
context encoder, linguistic encoder, user encoder
and format encoder as inputs. The prediction for
word wt in the given sequence (w1, w2, ..., wN )
is computed as

ν = σ(Wν · [µ1, f1] + bν)

γt = σ(Wγ · [lK3
t , ot] + bγ)

pt = σ(Wp · (ν � γt) + bp),

where Wν , bν , Wγ , bγ , Wp, and bp are trainable
parameters. For decoding, we used the sigmoid
activation function σ.

3.6 Training
The model is trained to minimize the following
loss function

Loss = − 1

N

N∑

t=1

(αyt · log(pt) +

(1− α)(1− yt) · log(1− pt)),

Team AUROC F1
SanaLabs 0.861 0.561
our model 0.861 0.559
alexrich 0.859 0.468
Masahiro 0.848 0.476
zz 0.846 0.414
Cam 0.841 0.479
btomosch 0.829 0.424
LambdaLearning 0.821 0.389
nihalnayak 0.821 0.376
... ... ...
baseline 0.774 0.190

Table 3: Results of the en es track.

Team AUROC F1
SanaLabs 0.838 0.530
our model 0.835 0.524
alexrich 0.835 0.420
Masahiro 0.824 0.439
zz 0.818 0.390
Cam 0.807 0.435
btomosch 0.803 0.375
LambdaLearning 0.801 0.344
Grotoco 0.791 0.452
... ... ...
baseline 0.746 0.175

Table 4: Results of the es en track.

where α is the hyper parameter to balance the neg-
ative and positive samples and yt is the label of the
time step t. In our experiment, we set α to 0.7.

4 Experiments and Results

4.1 Experiments

We considered the words that appear less than five
times in the training data as unknown token. For
students with more than one nationality, only the
first one was used.

The embedding size was set to 100, and the
Dropout (Srivastava et al., 2014) regularization
was applied, where the dropout rate was set to
0.5. We used the Adam optimization algorithm
(Kingma and Ba, 2014) with a learning rate of
0.001. The word level context encoder was a two-
layer Bidirectional LSTM. The character level
context encoder had one LSTM layer for encoding
each word and three Bidirectional LSTM layers
above the MoT layer. Furthermore, the linguistic
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Team AUROC F1
SanaLabs 0.857 0.573
our model 0.854 0.569
alexrich 0.854 0.493
zz 0.843 0.487
Masahiro 0.839 0.502
Cam 0.835 0.508
btomosch 0.823 0.442
LambdaLearning 0.815 0.415
Grotoco 0.813 0.502
... ... ...
baseline 0.771 0.281

Table 5: Results of the fr en track.

Term en es es en fr en
Relative impr (%) 11.24 11.93 9.72

Table 6: The relative improvement over the base-
line

encoder was a two-layer LSTM. Both of the user
encoder and format encoder were one-layer fully-
connected feedforward networks.

4.2 Results

The evaluation metrics for the SLAM task were
the Area Under the Receiver Operation Character-
istic (AUROC) curve and the F1 score.

As provided in Table 3, Table 4 and Table 5, our
model achieved the AUROC score of 0.861, 0.835,
and 0.854 and the F1 score of 0.559, 0.524 and
0.569 for the en es, es en, and fr en track, respec-
tively. We ranked in first place in the en es track
and second place in the es en and fr en track.

Table 6 shows that CLUF gained significant im-
provements on all tracks compared to the baseline
model. The improvement on the en es and es en
track were close, while the improvement on the
fr en track was a bit lower. We think this is be-
cause the fr en (327k exercises) track has much
less training data than the en es (824k exercises)
and es en (732k exercises) track.

4.3 Discussion

Our intuition behind CLUF is to factorize raw fea-
tures into four independent parts: 1) word surface
form models the word formation rules; 2) the lin-
guistic encoder is to provide linguistic and syntac-
tic dependency information; 3) the user part ex-
plores students’ second language acquisition skills

Model AUROC F1
CLUF 0.846 0.554
LUF 0.775 0.446
CUF 0.843 0.552
CLF 0.813 0.501
CLU 0.779 0.467

Table 7: Encoder analysis. LUF has no context
encoder; CUF has no linguistic encoder; CLF has
no user encoder; CLU is the model without format
encoder.

over time; 4) the format encoder measures the
difficulty level of different exercises on various
clients.

Table 7 shows the performance of our CLUF
model when excluding one of the context, linguis-
tic, user and format encoder. We can see that the
performance drops substantially if we don’t use
the contextual or format features. On the other
hand, excluding the linguistic features does not
affect the performance much. At last, we can
achieve fairly good performance even if we don’t
use any user information.

5 Conclusion

We presented a neural network based model,
CLUF, for the SLAM task. We encoded the con-
textual, linguistic, user and format features sepa-
rately. Our system achieved one of the best re-
sults in this task. Moreover, our CLUF model was
language invariant, as it performed approximately
equally well across three language tracks. We fur-
ther explored how effective each encoder was. We
found that the context encoder was the most effec-
tive one, while the linguistic encoder was the least
effective one.
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Abstract

This paper describes our use of two recurrent
neural network sequence models: sequence la-
belling and sequence-to-sequence models, for
the prediction of future learner errors in our
submission to the 2018 Duolingo Shared Task
on Second Language Acquisition Modeling
(SLAM). We show that these two models cap-
ture complementary information as combining
them improves performance. Furthermore, the
same network architecture and group of fea-
tures can be used directly to build competitive
prediction models in all three language tracks,
demonstrating that our approach generalises
well across languages.

1 Introduction

Most recent work on second language acquisition
(SLA) has focused on intermediate-to-advanced
learners in assessment settings driven by a series
of shared tasks (Dale and Kilgarriff, 2011; Dale
et al., 2012; Ng et al., 2013, 2014; Lee et al.,
2015, 2016; Daudaravicius et al., 2016). The 2018
Duolingo Shared Task on Second Language Ac-
quisition Modeling (SLAM) (Settles et al., 2018)
targets early stage learners and aims to provide
personalised learning instructions. Participating
teams are provided with transcripts from exercises
submitted by learners over their first 30 days of
learning on Duolingo,1 which are annotated for to-
ken (word) level errors. The task is to predict what
errors each learner will make in the future based
on their learning history. There are three language
tracks in this shared task:

• en es: native Spanish speakers learning En-
glish;

• es en: native English speakers learning Span-
ish;

1https://www.duolingo.com

• fr en: native English speakers learning
French.

Teams can either focus on a particular language
track, or explore generalised models and features
across all three languages.

Inspired by the success of neural sequence
models in grammatical error detection and cor-
rection (Yuan and Briscoe, 2016; Rei and Yan-
nakoudakis, 2016; Yannakoudakis et al., 2017;
Schmaltz et al., 2017), we propose two recurrent
neural network sequence models for this prob-
lem: sequence labelling and sequence-to-sequence
modelling. We demonstrate the utility of these two
models for the future learner error prediction task.
We also provide evidence of performance gains by
using an ensemble of these two models, suggest-
ing that they are complementary to each other.

For model development, we focus on the En-
glish track only and language-specific features are
introduced and studied. When it comes to official
evaluation, two new prediction systems, one for
the es en track and another for the fr en track, are
built using the same network architecture and the
same (hyper-)parameter setting, without tuning for
new datasets or languages. Competitive results on
all three language tracks show that our approach
generalises well and might be used as a generic
solution across different languages.

The remainder of this paper is organised as fol-
lows: Section 2 describes our approach and two
neural sequence models in detail, Section 3 dis-
cusses the feature types that we exploit in our
models, Section 4 reports our experiments and re-
sults on the development set for the en es track,
Section 5 presents our official results on the test
sets for all three language tracks. Finally, Sec-
tion 6 provides conclusions and ideas for future
work.
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2 Approach

We introduce two models for the task of fu-
ture learner error prediction: a sequence labelling
model and a sequence-to-sequence model. The
following sections describe these two models.

2.1 Neural sequence labelling

We treat error prediction as a sequence labelling
problem. Similar to Yannakoudakis et al. (2017),
we construct a bidirectional recurrent neural net-
work for detecting future learner errors. Unlike
their system, error-free and correct sequences are
fed into our model, and the goal is to predict
where a learner is likely to make token-level er-
rors based on their learning history. The model
receives a sequence of tokens x = (x1, x2, ..., xT )
as input, and assigns a label y to each input to-
ken x. A bidirectional long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) is
used to learn context-specific representations:

−→
ht = LSTM(xt,

−−→
ht−1) (1)

←−
ht = LSTM(xt,

←−−
ht+1) (2)

ht = [
−→
ht ;
←−
ht ] (3)

where
−→
ht is the hidden state of the forward-

moving LSTM at time t, that reads the input se-
quence from the first token to the last;

←−
ht is the

hidden state of the backward-moving LSTM at
time t, which reads the input sequence in reverse
order; and ht is the concatenation of both hidden
states, that captures both historical and future se-
quential information.

A softmax output layer predicts the label distri-
bution for each input token, given the whole input
sequence x:

p(yt|x) = softmax(Woht) (4)

where Wo is an output weight matrix.
We optimise the model by minimising categori-

cal cross-entropy between the predicted label dis-
tributions and the gold labels:

E = −
T∑

t=1

log p(yt|x) (5)

2.2 Sequence-to-sequence modelling

We utilise a sequence-to-sequence model with a
soft attention mechanism similar to that of Yuan
and Briscoe (2016), which contains a bidirectional
LSTM encoder and an attention-based LSTM de-
coder. An encoder first reads and encodes an
input sequence x = (x1, x2, ..., xT ) into hidden
state representations h = (h1, h2, ..., hT ), which
is the same as the one used in our sequence la-
belling model (see Section 2.1, Equation 3). A
decoder then generates an output sequence y =
(y1, y2, ..., yT )

2 by predicting the next token yt
based on the input sequence x and all the previ-
ously generated tokens {y1, y2, ..., yt−1}:

p(yt|{y1, ..., yt−1}, x) = softmax(Wost) (6)

where Wo is a decoder output weight matrix,
and st is the hidden state of the LSTM decoder at
decoding time t:

st = LSTM(st−1, yt−1, ct) (7)

where ct is the input sequence representation for
predicting the output token yt, and is calculated
using a soft attention mechanism:

ct =
T∑

j=1

(αtjhj) (8)

The weight αtj is computed with a softmax
function:

αtj =
exp(etj)∑T
k=1 exp(etk)

(9)

A feedforward neural network is used to repre-
sent the energy function:

etj = tanh(Wαst−1 + Uαhj) (10)

where Wα and Uα are attention weight matri-
ces.

3 Feature space

Besides original word tokens, new features (in the
form of discrete labels) are introduced, which pro-
vide additional exercise and learner information.
These features are described briefly below.

2For the error prediction task, the number of tokens gen-
erated in the output sequence y must equal the number of
tokens in the input sequence x.
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3.1 Exercise-level feature set

user: a unique identifier for each learner;

format: the exercise format (reverse translate,
reverse tap, or listen);3

session: the exercise session type (lesson, prac-
tice, or test);4

client: the learner’s device platform (android,
ios, or web);

country: the country from which the learner has
done the exercise.

3.2 Token-level feature set

part of speech (POS): the POS tag of the word;

dependency edge label (DEP): the grammati-
cal relation (GR) between the word and its head.

3.3 Language-specific feature set

CEFR word level: The Common European
Framework of Reference (CEFR) (Council of Eu-
rope, 2011) describes what language learners can
do at different stages of their learning and defines
language proficiency in six levels: A1, A2, B1,
B2, C1 and C2, with A1 being the lowest and C2
the highest. These six CEFR levels can be grouped
into three broad levels: basic (A1 and A2), inde-
pendent (B1 and B2) and proficient (C1 and C2).

The CEFR levels for all the English words ap-
peared in the dataset are extracted from the En-
glish Vocabulary Profile (EVP),5 which is based
on the 50-million word Cambridge Learner Cor-
pus (CLC) and the 1.2-billion word Cambridge
English Corpus (CEC). The EVP is a free on-
line vocabulary resource that contains information
about which words and phrases are known and
used by learners at each CEFR level (Capel, 2012).

Even though we only focus on English words
here, it is worth noting that the CEFR levels were

3reverse translate: learners are asked to read a sentence
written in their L1, and then translate it into L2; reverse tap:
an easier version of reverse translate, where learners are
given a bank of words and distractors; listen: learners are
asked to listen to an utterance in L2, and then transcribe it.

4The lesson sessions (about 77% of all the data) intro-
duce new words; the practice sessions (22%) contain only
previously-seen words; and the test sessions (1%) are quizzes
that allow learners to “skip” a particular skill unit of the cur-
riculum.

5http://www.englishprofile.org/
wordlists

designed in a way that can be applied to all lan-
guages. Therefore, if resources for other lan-
guages similar to the EVP became available, we
can then make use of this feature for other lan-
guages.

CLC error rate: We collect error rate informa-
tion from the CLC, which is a large annotated cor-
pus of learner English developed by Cambridge
University Press and Cambridge English Lan-
guage Assessment since 1993 (Nicholls, 2003). It
comprises examination scripts written by learners
of English who took Cambridge English examina-
tions around the world with over 80 L1s and rep-
resenting all six CEFR levels.

Two criteria are applied to create two sub cor-
pora:

• CLC(KET): contains examination scripts for
A2 Key, formerly known as Cambridge En-
glish: Key (KET)6; and A2 Key for Schools,
formerly known as Cambridge English: Key
for Schools (KETfS)7.

KET is the lowest level General English ex-
amination in the Cambridge English range,
which targets at A2 level. KETfS is at the
same level as KET, but its examination con-
tent is targeted at the interests and experi-
ences of schoolchildren.

• CLC(ES): contains examination scripts writ-
ten by native speakers of Spanish, which ac-
count for around 24.6% of the non-native
speakers represented in the CLC.

For every word w, an error rate E(w) is defined
as:

E(w) =
count(s 6= w, t = w)

count(t = w)
(11)

where count(t = w) is the number of times the
wordw is seen in the target side (i.e. corrected ver-
sion) of the corpus, and count(s 6= w, t = w)
is the number of times any word except w in the
source side (i.e. original version) has been cor-
rected to the word w in the target side.

We compute E(w) from the CLC, CLC(KET)
and CLC(ES); and then create two new features
CLC-KET and CLC-ES:

6http://www.cambridgeenglish.org/
exams-and-tests/key

7http://www.cambridgeenglish.org/
exams-and-tests/key-for-schools
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CLC-KET =





1 if
ECLC(KET)
ECLC

> 1

0 otherwise
(12)

CLC-ES =





1 if
ECLC(ES)
ECLC

> 1

0 otherwise
(13)

All the exercise-level and token-level features
are directly extracted from the metadata and pre-
processed data provided by the shared task organ-
isers. The language-specific features are only gen-
erated for the English data to be used in the en es
track.

4 Experiments and results

4.1 Dataset and evaluation
The shared task dataset comprises answers sub-
mitted by more than 6,000 Duolingo users over the
course of their first 30 days. Token-level binary la-
bels are provided:

Correct reference : She is my mother
Learner answer: She is mader
Label: 0 0 1 1

Matched tokens are given the label ‘0’; and
missing or misspelt tokens (ignoring capitalisa-
tion, punctuation and accents) are given the la-
bel ‘1’ to indicate an error. Only correct refer-
ences and label sequences are provided, not orig-
inal learners’ responses. Therefore, in our exper-
iments, we map correct reference to its label se-
quence.

The dataset is partitioned sequentially into
training, development and test sets, which all con-
tain the same group of learners. The training set
contains the first 80% of the sessions for each
learner, followed by the next 10% for development
and the final 10% for testing. Each learner’s test
items are subsequent to their development items,
which in turn are all subsequent to their training
items.

During development, we focus on learners of
English. The training set provided for the en es
track contains approximately 2,622,958 tokens
(however, only 13% are labelled with ‘1’) in
about 824,012 sentences. The development set in-
cludes additional 387,374 tokens in 115,770 sen-
tences. All the data has been pre-processed using

the Google SyntaxNet dependency parser8 by the
shared task organisers.

System performance is evaluated in terms of
area under the ROC curve (AUROC) and F1 (with
a threshold of 0.5).

4.2 Training

All our models are built using OpenNMT (Klein
et al., 2017). For the sequence labelling model,
our training procedure is similar to Yannakoudakis
et al. (2017)); while for the sequence-to-sequence
model, we follow Yuan and Briscoe (2016). Ad-
ditionally, we set the source and target word em-
bedding sizes to 750, as well as the LSTM hidden
layer size. We no longer limit the vocabulary size
or the maximum sentence length as both of them
are small enough to train effectively. New features
defined in Section 3 are added to the models in-
crementally and results are presented in the next
section.

4.3 Results

Evaluation results on the development set for the
en es track are reported. We also include a base-
line model provided by the shared task organisers
for comparison purposes. The baseline model uses
L2-regularised logistic regression, trained with
stochastic gradient descent (SGD) weighted by
frequency (Settles et al., 2018).

Sequence labelling model Results for the se-
quence labelling models are presented in Table 1,
and all our models outperform the baseline (Ta-
ble 1 #0). We start by adding exercise-level
features incrementally (Table 1 #1-5). Introduc-
ing new exercise-level features yields consistent
improvements in overall performance. The one
trained on all our exercise-level features gives the
best AUROC and F1 scores (Table 1 #5).

Token-level features (Table 1 #6-7) and
language-specific features (Table 1 #8-10) are then
added to the current best model. However, none of
them yields further gains. A closer inspection of
the training data reveals a number of cases where
POS and DEP tags provided by the shared task
organises are not reliable, as in the following ex-
amples (incorrect tags are marked in red):

8https://github.com/tensorflow/models/
tree/master/research/syntaxnet
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# Feature AUROC F1
0 baseline 0.776 0.173
1 token + user 0.784 0.421
2 token + user + format 0.809 0.453
3 token + user + format + session 0.825 0.470
4 token + user + format + session + client 0.834 0.476
5 token + user + format + session + client + country 0.837 0.480
6 token + user + format + session + client + country + POS 0.807 0.447
7 token + user + format + session + client + country + DEP 0.830 0.474
8 token + user + format + session + client + country + CEFR 0.823 0.469
9 token + user + format + session + client + country + CLC-KET 0.825 0.471
10 token + user + format + session + client + country + CLC-ES 0.825 0.470

Table 1: Results of our sequence labelling models on the en es development set. The results of our best model are
marked in bold.

Token POS DEP Label
A DET det 0
man NOUN ROOT 0
a PUNCT punct 0
woman DET det 0

Token POS DEP Label
The DET det 1
judge ADJ amod 1
returns NOUN ROOT 1

Since we use the tags in the dataset directly,
without cleaning any noisy data or pre-processing
the data again, it is not surprising that adding these
features yields worse performance.

In terms of the language-specific features, we
also notice that the CEFR word level feature is
not very informative as not all the words in the
dataset are also in the EVP; and for words that are,
most of them turn out to be at either A1 or A2
level.

Sequence-to-sequence model We follow the
same training procedure to build sequence-to-
sequence models - see Table 2. Similar results are
observed: all our models perform better than the
baseline (Table 2 #0); exercise-level features con-
tribute to the overall performance improvements
(Table 2 #1-5); and token-level and language-
specific features seem to be detrimental and bring
performance down (Table 2 #6-10). The best
sequence-to-sequence model uses all the exercise-
level features, achieving an AUROC score of
0.837 and an F1 score of 0.464 - see Table 2 #5.

Combining two sequence models Our best se-
quence labelling model (seqlabel) and our
best sequence-to-sequence model (seq2seq)
achieve the same AUROC score of 0.837; while
seqlabel yields a better F1 score of 0.480, com-
pared to an F1 score of 0.464 for seq2seq.

We further combine these two best models us-
ing linear interpolation:

Pcombined = (1− λ)Pseqlabel + λPseq2seq (14)

where Pseqlabel represents the score from the
sequence labelling model, Pseq2seq represents
the score from the sequence-to-sequence model,
and λ is a parameter that controls the impact
the sequence-to-sequence model has on the final
score. After tuning λ on the development set, we
set it to 0.5.

Results of our best individual models and the fi-
nal combined model are reported in Table 3. We
can see that the combined model yields the overall
best results, which suggests that our two individ-
ual neural sequence models capture complemen-
tary information even though they are both trained
on the same group of features.

5 Official evaluation results

Our submissions to the shared task are the results
of our best systems. As each participating team
is allowed to submit up to 10 runs, we first run
our best sequence labelling, sequence-to-sequence
and combined systems from the previous section
on the en es test set.

After determining that our language-specific
features are not helpful, we train new models for
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# Feature AUROC F1
0 baseline 0.776 0.173
1 token + user 0.787 0.353
2 token + user + format 0.800 0.431
3 token + user + format + session 0.811 0.441
4 token + user + format + session + client 0.825 0.448
5 token + user + format + session + client + country 0.837 0.464
6 token + user + format + session + client + country + POS 0.829 0.460
7 token + user + format + session + client + country + DEP 0.823 0.448
8 token + user + format + session + client + country + CEFR 0.805 0.433
9 token + user + format + session + client + country + CLC-KET 0.804 0.433
10 token + user + format + session + client + country + CLC-ES 0.805 0.433

Table 2: Results of our sequence-to-sequence models on the en es development set. The results of our best model
are marked in bold.

Model AUROC F1
seqlabel 0.837 0.480
seq2seq 0.837 0.464

combined 0.843 0.481

Table 3: Results of our best models on the en es de-
velopment set. The best results are marked in bold.

the es en and fr en tracks using the same network
architecture and the same group of features as for
en es. No tuning of (hyper-)parameters is per-
formed for new datasets or languages.

The official results of our submissions for all
three language tracks are reported in Table 4. Re-
sults on the en es test set are similar to those
on the en es development set (see Table 3) - no
significant drop is observed. The combined
model produces the best overall performance, and
the seqlabel model outperforms the seq2seq
model. In the fr en track, the combined
model again yields the highest AUROC and F1
scores, followed by the seq2seq model and the
seqlabel model. Our es en seq2seq model
had not finished training by the shared task sub-
mission deadline, therefore, we only submit the
es en seqlabel model. Based on the results for
the other two language tracks, we expect our es en
results might be further improved by combining a
seqlabel model and a seq2seq model.

6 Conclusions and future work

In this paper, we have described the use of recur-
rent neural sequence labelling and sequence-to-
sequence models for future learner error predic-

tion. We have provided evidence of further perfor-
mance gains by combining them together, showing
that these two types of sequence models are com-
plementary. We have also explored different types
of features, which capture exercise-level, token-
level and language-specific information. Further-
more, we have demonstrated that the same net-
work architecture and group of features can be ap-
plied directly to build competitive prediction sys-
tems across all three languages, without the need
for language-specific parameter tuning.

Results of our best systems on the official test
sets yield: AUROC=0.841 (ranked sixth out of the
fifteen participating teams) and F1=0.479 (ranked
third) for the en es track; AUROC=0.835 (ranked
sixth) and F1=0.508 (ranked third) for fr en;
and AUROC=0.807 (ranked sixth) and F1=0.435
(ranked fifth) for es en.

Plans for future work include combining the
training and development sets to train new mod-
els, using better quality token-level features, and
exploring other exercise-level features like the
amount of time it took for the learner to con-
struct and submit their answer and the number of
days since the learner started using Duolingo. We
would also like to test our approach as well as
our language-specific features on a broader scale
(i.e. using corpora which cover language learners
at different levels, ideally ranging from basic to
proficient).
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Abstract
Developing plausible distractors (wrong an-
swer options) when writing multiple-choice
questions has been described as one of the
most challenging and time-consuming parts of
the item-writing process. In this paper we
propose a fully automatic method for generat-
ing distractor suggestions for multiple-choice
questions used in high-stakes medical exams.
The system uses a question stem and the cor-
rect answer as an input and produces a list
of suggested distractors ranked based on their
similarity to the stem and the correct answer.
To do this we use a novel approach of com-
bining concept embeddings with information
retrieval methods. We frame the evaluation as
a prediction task where we aim to “predict” the
human-produced distractors used in large sets
of medical questions, i.e. if a distractor gener-
ated by our system is good enough it is likely
to feature among the list of distractors pro-
duced by the human item-writers. The results
reveal that combining concept embeddings
with information retrieval approaches signif-
icantly improves the generation of plausible
distractors and enables us to match around 1
in 5 of the human-produced distractors. The
approach proposed in this paper is generalis-
able to all scenarios where the distractors refer
to concepts.

1 Introduction

Multiple-choice tests are one of the most widely
used forms of both formative and summative as-
sessment and are a probably the most prominent
feature of high-stakes standardized exams (Gierl
et al., 2017). Administering such exams requires
the development of a large number of good-quality
multiple-choice questions (MCQs). To illustrate
the need to have a large number of questions, Bre-
ithaupt et al. (2009) report that a 40-item computer
adaptive test for high-stakes examination adminis-
tered twice a year would require a bank with 2,000

items and Gierl et al. (2017) estimate that the cost
of developing an item bank of this size would be
between 3,000,000 and 5,000,000 USD. Naturally,
this creates the incentive to automate the test pro-
duction as much as possible and has resulted in a
large number of papers on the topic of automatic
MCQ generation.
An important aspect of MCQ development is the
generation of plausible distractors (wrong answer
options), as they can help control for the difficulty
of the item, reduce random guessing and discrim-
inate properly between different levels of student
ability (Alsubait et al., 2013). This task poses a
challenge to both humans and machines and is es-
pecially demanding in the field of medical exams.
For example, an analysis of 514 human-produced
items including 2056 options (1542 distractors
and 514 correct responses), administered to un-
dergraduate nursing students, indicated that “Only
52.2% (n = 805) of all distractors were function-
ing effectively and 10.2% (n = 158) had a choice
frequency of 0.” (Tarrant et al., 2009). Items
with more functioning distractors were found to
be more difficult and more discriminating.
A particular challenge for the automatic develop-
ment of MCQ distractors for the medical domain
is the coverage of the ontologies, which could be
too narrow in some cases, and too broad in others,
and the need to rank the candidates in order to se-
lect the best ones. At the same time, this domain
is of particular need of automated assistance, as
the requirement for a very specialized knowledge
makes the recruitment of item-writers and the test
development procedure even more costly.

To address this issue we propose a method to
fully automatically suggest distractors for MCQs
given a stem1 and a correct answer. The data used

1In this study we refer to the following components of an
MCQ. The stem denotes the part that identifies the question or
problem; answer options refer to all possible answers that an
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in this study features two sets of 1,441 MCQs and
369 MCQs from the United States Medical Li-
censing Examination (USMLE) for which we have
the stem, all answer options and information on
which the correct answer is. We compare two
approaches to suggesting distractors based on: i)
concept embeddings only and ii) concept embed-
dings reranked using information retrieval tech-
niques. The evaluation of these approaches is for-
mulated as a prediction task, where each system
uses the stem and the correct answer as an input
and tries to predict the existing distractor options
for each item as an output. The contributions of
this study are as follows:

• We propose a novel method for distractor
generation and selection based on concept
embeddings reranked using information re-
trieval, which can successfully suggest rele-
vant distractors given an item stem and the
correct answer option.

• We show that the ranking based on
information-retrieval methods improves
the distractor prediction significantly.

• The approach used in this study is generalis-
able to all scenarios where the answer options
refer to concepts. Furthermore, it can gen-
erate distractors for any item given that the
correct answer features as an entry in the on-
tology, as opposed to only items generated by
a specific method.

The rest of this paper is organised as follows.
The next section presents related work on auto-
matic item generation with special emphasis on
distractor generation and evaluation. Section 3 de-
scribes the data sets used in this study and Section
4 describes our method. The results are reported in
Section 6, discussed in Section 6 and summarised
in Section 7.

2 Related Work

The automatic generation of multiple-choice ques-
tions (MCQs) has received a lot of attention in the
past two decades, offering a range of approaches
such as template-based item generation (Gierl
et al., 2015, 2016; Lai et al., 2016), ontology-
based item generation (Holohan et al., 2006; Pa-
pasalouros et al., 2008; Alsubait et al., 2014),

examinee can choose from; distractors are the wrong answer
options, and the correct answer is the correct answer option.
Please refer to Table 1 for an example of a MCQ item.

and generation of items from unstructured text
(Mitkov and Ha, 2003; Brown et al., 2005; Heil-
man, 2011; Hoshino and Nakagawa, 2005; Ma-
jumder and Saha, 2015).
The work most relevant to the field of MCQ gener-
ation for the medical education domain relies on a
semi-automatic approach for template-based lan-
guage generation, where variations of items are
produced based on an item template (Gierl et al.,
2016; Lai et al., 2016). An item template is a
model that highlights the features which can be
manipulated in order to generate a variation of the
MCQ (e.g. strings and numerals) and thus increase
the item bank for an exam. The method is semi-
automatic in that it requires content developers to
specify the initial item template and the informa-
tion which could potentially be varied. For nu-
meric options, the distractors are generated based
on a pre-defined formula for each distractor candi-
date. For key feature options, the distractors may
be from the same category as the correct answer,
such as the same concept, topic, or idea at varying
hyponymic or hypernymic levels. Evaluation of
13 MCQs generated in this way by 455 Canadian
and international medical graduates revealed that
the generated items were consistently discrimina-
tive in measuring the different levels of abilities of
the students (Lai et al., 2016).
In terms of automatic distractor generation, sys-
tems which generate MCQs based on unstructured
text have a limited ability to infer implicit rela-
tions within the text and generate plausible dis-
tractors (Alsubait et al., 2013). However, Mitkov
and Ha (2003) select distractors by using Word-
Net to compute concepts semantically close to
the correct answer by retrieving hypernyms, hy-
ponyms, and coordinates of the term. In the event
of WordNet returning too many concepts, prefer-
ence is given to those appearing in the corpus and
in the event that no concepts are returned the cor-
pus is searched for noun phrases with the same
head which are then used as distractors. Evalua-
tion of 24 MCQs with test-takers revealed that the
distractors were able to discriminate between high
and low-ability students, where only 3 distractors
were selected by no student and 6 were classed as
poor, for misleading high-ability students.
Finally, most ontology-based MCQ generation
systems output distractors based on hierarchical
parent and sibling relations between the correct
answer and the candidates (Papasalouros et al.,
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An example of an item from the public data set
A 55-year-old woman with small cell carcinoma of the lung is admitted to the hospital to undergo
chemotherapy. Six days after treatment is started, she develops a temperature of 38C (100.4F).
Physical examination shows no other abnormalities. Laboratory studies show a leukocyte count of
100/mm3 (5% segmented neutrophils and 95% lymphocytes).
Which of the following is the most appropriate pharmacotherapy to increase this patient’s leukocyte
count?
(A) Darbepoetin
(B) Dexamethasone
(C) Filgrastim
(D) Interferon alfa
(E) Interleukin-2 (IL-2)
(F) Leucovorin

Table 1: An example of an item from the USMLE exam

2008). Different strategies are then employed to
select the most plausible distractors and the gener-
ated MCQs are most commonly evaluated by ex-
perts, and in more rare cases given to students or
crowd workers. For example, Papasalouros et al.
(2008) present a rule-based approach for select-
ing the distractors, mostly limiting them to sib-
lings of the correct answer. In another study Žitko
et al. (2009) use ontologies to generate the ques-
tion stems and then propose a random list of al-
ternative answers. More recent approaches make
use of the semantics of the domain represented as
mapped axioms (Vinu and Kumar, 2015b). An-
other approach called pattern-based MCQ genera-
tion utilizes different combinations of predicates
associated with the instances of an ontology to
generate the stems (Vinu and Kumar, 2015a). The
distractors are selected from the list of instances in
the ontology within the intersection classes of the
domain or range of the predicates in the stem and
are presented in a random order. In a follow-up
study, Vinu et al. (2016) manipulate the difficulty
of the stem and choice set based on similarity mea-
sure called Instance Similarity Ratio which takes
into consideration the similarity between instances
with regards to the conditions in the stem. The
system then varies the question difficulty based on
the similarity between the distractors, the correct
answer and the stem (higher similarity indicates
a more difficult question). Evaluation with test-
takers revealed a correlation of .79 between the
predicted and the actual difficulty levels.

The studies mentioned so far describe automatic
and semi-automatic approaches for distractor gen-
eration in scenarios where the system generates
the entire MCQ (i.e. it controls the stem). In the
experiments presented in this paper we introduce
a fully automatic approach to distractor generation

and selection based on embedding vectors and in-
formation retrieval techniques, which can be used
for any given stem and correct answer pair. The
next section presents the data used in our study.

3 Data

In this study we use multiple-choice questions ad-
ministered by the United States Medical Licens-
ing Examination (USMLE). The USMLE exam is
a high-stakes examination for medical licensure in
the United States, the outcome of which is recog-
nised by all medical boards in the USA. The goal
of the licensure and certification examination is
to ensure that medical professionals have met the
required standards and are qualified to engage in
practice. The data has been provided by the Na-
tional Board of Medical Examiners (NBME) who
develop and manage the USMLE.

We use two separate data sets of questions
where each test item is a single-best-answer
multiple-choice question consisting of a stem fol-
lowed by four or more response options. An ex-
ample of such item is provided in Table 1.

Our main data set consists of 1,441 multiple
choice test items that have been administered or
pretested during the 2008 administration of the
USMLE. These questions are not available to the
public due to test security reasons and are hence-
forth referred to as the private data set. An ad-
ditional 369 items which are publicly available2

have also been used in this study and are referred
to as the public data set. The public data set con-
tains 132 questions from the USMLE Step 1 2015
sample booklet, 117 questions from the USMLE
Step 1 2016 sample booklet, and 120 questions

2The items can be accessed at the USMLE web site, for
example: http://www.usmle.org/pdfs/step-1/
2017samples_step1.pdf
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from the USMLE Step 2 2017 sample booklet.
The main characteristics of the test items and their
options within both sets are presented in Table 3.

Dataset Public Private
Total number of items 369 1441
Total number of options 1728 7664
Total number of distractors 1359 6223
Options per item 4.68 5.32

Table 2: Item characteristics for the two data sets

4 Method

Content specialists are instructed to create distrac-
tors that are similar in content and structure rel-
ative to the correct options (Ascalon et al., 2007;
Gierl et al., 2017; Case and Swanson, 2001). The
similarity can be quantified using either ontologies
or computational models such as distributional
similarity ones. For example, according to embed-
ding vectors which represent the state-of-the-art in
distributional similarity, distractors found in actual
items are more similar to the correct answers than
random concepts; they are also more similar to
their stem than a random concept as well (this is
also empirically tested further in the paper, see ta-
bles 3 and 4). As a result, we extend the instruction
that distractors should be similar to the correct an-
swers to computer models used to suggest distrac-
tors: distractor candidates are those that are simi-
lar to the correct answers and stems, measured us-
ing various models of similarity, and specifically,
embedding vectors and information retrieval based
similarity (Sections 4.1 and 4.3).

We first describe the lexicons, the embedding
vectors derived from them (Section 4.1) and how
they are used to calculate the similarity between
different item parts (e.g. stem, correct answer,
answer options, etc.) (Section 4.2). We then de-
scribe the methodology for ranking the suggested
distractors using information retrieval techniques
in Section 4.3.

4.1 The concept embeddings

We use embedding vectors to quantify the sim-
ilarity between correct answers, distractors, and
stems. Precomputed embedding vectors are avail-
able for various lexical databases such as Freebase
and UMLS. We use the embedding vectors based
on data from two lexical-semantic databases:

• Unified Medical Language System (UMLS) 3

2012. We use the concept embedding vectors
provided by Yu et al. (2017). These vectors
are built using Pubmed citations published
before 2016, bag-of-words model, and 200
dimensions.

• Freebase entities4. Freebase is a large collab-
orative knowledge base containing more than
39 million topics and more than 1.9 billion
“facts”. We use pretrained vectors for 1.4M
entities, trained using 100B words from vari-
ous news articles5. Each vector has 1000 di-
mensions.

Table 5 shows the number of USMLE item
options that are also entries in the two lexical-
semantic databases: UMLS and Freebase enti-
ties. As can be seen from the table, the UMLS
database is a promising source for option candi-
dates, as more than half of the options from both
data sets can also be found in this database. On
the other hand, Freebase vectors have been derived
from much more data compared to UMLS vectors
(approximately 100 billion of tokens). Neverthe-
less, even though Freebase has more concepts than
UMLS (the Freebase vectors represent 1.4M enti-
ties, whereas UMLS vectors represent 300K con-
cepts), its coverage is poorer in the medicine do-
main, and only 32% of distractors can be found in
the Freebase, versus 56% coverage of UMLS (see
Table 5). Based on this comparison, we focus on
experimenting with the UMLS vectors and all re-
sults reported in the remainder of this paper were
obtained using UMLS vectors.

4.2 Similarity calculation

We then calculate the similarity between:

1. The options themselves

2. Distractors and correct answers

3. Stems and options

4. Stems and correct answers

The similarities are calculated using embedding
vectors as follows. The embedding vectors map
an entity to a vector of n dimensions. In the case
of the Freebases entities, n = 1000, and in the case
of the UMLS concepts, n = 200. These vectors

3https://www.nlm.nih.gov/research/umls/
4https://developers.google.com/freebase/
5https://code.google.com/archive/p/word2vec/
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Mean STD Min Max N
Distractor-CorrectAnswer 0.34 0.15 -0.10 0.82 1341
Option-Option (Dist-CorrAns + DistDist) 0.33 0.15 -0.10 0.82 3674
Random pair of entities 0.09 0.13 -0.09 0.92 10000
Stem-Option 0.17 0.08 -0.02 0.53 1860
Stem-CorrectAnswer 0.18 0.08 -0.01 0.53 519
Stem-Random entity 0.05 0.06 -0.13 0.34 1860

Table 3: Cosine similarity between different item-part configurations calculated using Freebase vectors, using the
private dataset.

Mean STD Min Max N
Distractor-CorrectAnswer 0.41 0.17 -0.12 0.98 2849
Option-Option (Dist-CorrAns + DistDist) 0.39 0.19 -0.21 0.98 7981
Random pair of entities 0.03 0.17 -0.40 0.99 10000
Stem-Option 0.30 0.15 -0.24 0.71 4408
Stem-CorrectAnswer 0.34 0.14 -0.08 0.69 806
Stem-Random entity 0.02 0.17 -0.42 0.64 4408

Table 4: Cosine similarity between different item-part configurations calculated using UMLS vectors, using the
private dataset.

Total hits (%)
Lexicon Public Private
UMLS concepts 964 (56%) 4408 (57%)
Freebase entities 562 (32%) 2734 (36%)
In either 980 (57%) 4448 (58%)

Table 5: Number of USMLE item options that are also
entries in the two lexical-semantic databases

represent the distributional information of the en-
tities with regard to some training objective and
the cosine distance between two vectors is a good
estimation of the similarity between the two enti-
ties. Here, “similarity” is defined as the similarity
of information the two entities contain that is use-
ful for the objective of the models used to acquire
these vectors. The training objectives of the two
sets of embedding vectors are to predict the con-
text in which an entity would appear.

The representative embedding of a stem is
computed by first translating the stem into a
list of Concept Unique Identifiers (CUIs) using
Metamap6. In cases where numerals were present
in the stem (e.g. 100/mm3, 95%), these were ex-
cluded. We then sum the CUIs in the stem in the
following way7:

S = L2 − norm
( ∑

CUIinS

VCUI

)

We only choose options that appear in the re-
spective databases. Table 3 shows the cosine simi-

6https://metamap.nlm.nih.gov/
7OOV rate: About 8% of the CIUs returned by Metamap

do not feature in UMLS embedding

larities calculated using Freebase entities’ embed-
ding vectors, whereas Table 4 shows the calcula-
tions using UMLS concepts’ vectors. We also per-
form calculations using random entities as a base-
line. N represents the number of pairs.

As shown in Table 3, options that are found
within the Freebase database are more similar to
each other and to the stems, compared to random
entities. This suggests that Freebase vectors can
be used to suggest option candidates by suggesting
entities which are similar to the correct answer. As
can be seen from Table 4, options that are found
within the UMLS database are also more similar
to each other and to the stems than random entities
are. The above observations confirm the premise
that measurable similarity between distractors and
the correct answers as well as the stems can be
used as a criterion to suggest distractor candidates.
They serve as a basis for our proposed method of
predicting which distractor candidates would ac-
tually be used, as detailed below.

4.3 Predicting distractors using embedding
vector similarity and information
retrieval

In order to predict which distractor candidates
would actually be used in an item, we first get
the list of candidates, and then rank these candi-
dates according to their similarity to the options
and stems. The list of candidates could be entire
UMLS, or only those that share the same semantic
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type8 with the correct answers (STY), are marked
as sibling of the correct answer (SIB), or are built
using a graph walking method starting from the
correct answers, then walk up to their broader con-
cepts and then walk down to the narrower concepts
of these broader concepts (RB RN). For each of
these choices there is a trade-off between cover-
age and precision. Using sibling relation only will
produce the least number of candidates, at the ex-
pense of having the least coverage (only around
20% of potential matches). On the other hand, us-
ing the entire UMLS as candidates would ensure
maximum coverage, at the expense of having to
consider hundreds of thousands of candidates for
each correct answer.

We then sort the candidates according to their
similarity to the correct answers combined with
the stem. This similarity is measured as the cosine
similarity between the embedding vectors of the
candidates, and those that represent the sums of
the embedding vectors of the correct answer and
those of the stem.

Top 10, 20, and 100 are called “predictions”,
and the number of correct “predictions” (i.e. the
number of candidates that actually features as real
distractors) is recorded as hits.

We also incorporate information retrieval. We
first get the top n suggestions (in our experiment,
we use n = 500), as previously described, we
then rerank the candidates according to the rank
of the first document in which they appear, when
we use the stems as the query as we search our
text collection, in our case, 2013 MEDLINE cita-
tions9. We use Lucene10 for indexing and retriev-
ing documents. The premise for this reranking is
similar to that of Mitkov and Ha (2003): distractor
candidates that appear in the same document that
contains fragments of the stem would be priori-
tised over other candidates. Documents that con-
tain fragments of the stem are retrieved by query-
ing the text collection with the stem as the query.

To the best of our knowledge, a similar set up
for the generation and evaluation of distractors has
not been proposed before, which is why we are not
able to compare our results to baselines from pre-
vious studies. We do, however, compare the per-
formance of our system to a baseline of random hit
prediction. Furthermore, the concept-embedding

8For the full list of semantic types in UMLS, please visit
https://www.nlm.nih.gov/pubs/factsheets/umlssemn.html

9https://mbr.nlm.nih.gov/Download/Baselines/2013/
10https://lucene.apache.org/

approach can be viewed as a baseline compared to
the approach using concept embeddings combined
with IR techniques.

5 Evaluation

In order to evaluate our approach and the useful-
ness of the suggestions in the generated list, we de-
scribe an evaluation procedure where our system
takes existing items together with all their options
and tries to “predict” one or more of the existing
distractors. In other words, if the system comes
up with one or more of the same distractors as the
ones produced by the human item-writers, then the
approach could be considered useful for the gen-
eration of suitable distractor suggestions for new
items. To do this, for each item, we get the first n
concepts that are most similar to the combination
of stem and the correct answer, and see how many
of these concepts actually feature as distractors in
that item (hits). The number of hits provides an
estimation of the usefulness of the suggested list.

The results are presented in Table 6. Within that
table, Applicable items are the ones whose cor-
rect answers could produce distractor candidates
using the specific ontology relation. Number of all
candidates reflects the number of candidates sug-
gested by the specific ontology relation. Maximum
number of hits refers to the number of hits if all
the suggested candidates are considered, Random
N hits is the number of hits if random N candi-
dates are picked for each item. Recall at N signi-
fies the total number of hits if the top N candidates
are considered, divided by the total number of dis-
tractors that also feature in UMLS. In terms of
ontology relations, SIB includes only candidates
that are considered to be the siblings of the cor-
rect answer (according to UMLS). RN RB means
that only candidates that share a broader or nar-
rower concept with the correct answer are consid-
ered, and STY means that all candidates that share
the same semantic type with the correct answer
are considered. The precision and recall relation
is presented in Figure 1, while Figures 2 and 3
present the recall for the private and public data
sets respectively.

As can be seen from Table 6, the suggested list
outperformed the baseline of random hits in all
three types of relations (SIB, RB RN and STY),
where best result (in terms of trade off between
precision and recall) is achieved for the top 20
hits. Using the broadest ontology relation, namely
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By approach (the relation used is STY)
Public Private

Top 10
Embedding only 73 319

IR reranking 76 325
Improvement 4% 2%

Top 20
Embedding only 99 492

IR reranking 142 572
Improvement 43% 16%

Top 100
Embedding only 190 811

IR reranking 275 1242
Improvement 45% 53%

By Ontology relation (IR reranking is used)
Public Private

Ontology relations SIB RB RN STY SIB RB RN STY
Applicable items 143 165 181 640 756 806
Number of all candidates 3657 63998 10804667 18660 327623 48539316
Maximum number of hits 85 208 473 424 942 2360
Top 10 hits baseline 75 70 76 333 290 325
Random 10 hits 57 11 1 275 64 2
Recall at 10 (over all possible
UMLS distractors, see last row) 0.13 0.12 0.13 0.12 0.10 0.11
Top 20 82 120 142 382 450 572
Recall at 20 0.14 0.20 0.24 0.13 0.16 0.20
Top 50 85 165 233 410 750 968
Recall at 50 0.14 0.28 0.39 0.14 0.26 0.34
Top 100 85 191 275 415 844 1242
Recall at 100 0.14 0.32 0.46 0.15 0.30 0.44
Distractors that belong to items whose
correct answers feature in UMLS,
and themselves also feature in UMLS 592 2831

Table 6: Evaluation results: distractor hits.

same semantic type (STY), performs as well as the
sibling (SIB) relation for the top 10 hits (i.e. 76 vs.
75, respectively, for the public data set and 325 vs.
333 for the private one). From the top 20 hits on-
wards, the STY relation outperforms SIB (i.e. for
20 hits we have STY hits= 142 and SIB = 82 for
the public data set and STY = 572 and SIB = 382
for the private data set).

Figure 1: Precision - Recall Relation Graph

An example of a question and the list of gen-
erated distractors and their ranking is presented
in Table 7. As can be seen from the table, the

Figure 2: Recall at N, Private Data Set

Figure 3: Recall at N, Public Data Set
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Example Question 85, 2015 Booklet
A 30-year-old man with peptic ulcer disease suddenly develops pain, redness, and swelling of his right first
metatarsophalangeal joint. There is no history of injury. Serum uric acid concentration is 8 mg/dL. Examination of joint
aspirate shows birefringent crystals.
Which of the following drugs is most appropriate to treat the acute symptoms in this patient?
(A) Allopurinol;
(B) Colchicine (correct answer)
(C) Morphine;
(D) Probenecid;
(E) Sulfinpyrazone

SIB Top 10 SIB Top 10 IR RB RN top 10 RB RN top 10 IR STY top 10 STY top 10 IR

Vinca alkaloid Allopurinol* Desacetylcolch. Allopurinol* Colchicoside Probenecid*
Castanospermine Probenecid* Colchamine Morphine* Cornigerine Indomethacin
Emetine Opioid Vinca alkaloid Probenecid* Vinblastine sulf. Benemid
Probenecid* Quinine Thiocolchicoside Indomethacin Desacetylcolch. Sulfinpyrazone*
Cyproheptadine Dl-hyoscyam. Desmethylphall. Naproxen Oncodazole Gabexate Mesylate
Strychnine Amitriptyline O-methylandroc. Sulfinpyrazone* Lumicolchicine Deltahydrocort.
Swainsonine Cocaine Isocolchicine Uricosuric agent VLB Cholestyramine res.
Staurosporine Emetine Chelidonine Methyl morphine Oryzalin Methotrexate
Paclitaxel Hyoscine Tropone Opioid Demecolcine 6-alpha-Methylp.
Aconitine Nicotine Paclitaxel Quinine Colchicine analog Ursodeoxycholic Ac.

Table 7: Example of the Top 10 candidates suggested by various ontological relations and rankings for Question
85 from the 2015 booklet. Suggestions that also feature in the item are marked with *.

information-retrieval ranking improves the num-
ber of hits in all types of relations (SIB, RB RN,
and STY). It should be noted that the improvement
we notice in this example is not as significant in
other examples but the general trend is the same.
The average improvement across of all items can
be seen in Table 6.

6 Discussion

The results presented above indicate that best per-
formance is achieved when combining the two
approaches, namely generating distractors using
concept embedding similarity to provide the ini-
tial list, and then using a re-ranking approach from
information retrieval in order to improve the pre-
diction. Using this combined approach, our sys-
tem can hit around 1 in 5 distractors produced by
the human-item writers when producing 20 can-
didates for each item. It should be noted that a
random pick in the case of “predicting” distractors
has a very low chance of being correct. For exam-
ple, using the STY relation, a random 10 chosen
distractor candidates for each item will probably
produce one hit for the whole public dataset, and
two hits for the whole private dataset. It is also
worth noting that the proposed method does not
rely on training data.

It was shown that the STY relation outperformed
the SIB relation in the samples of top 20, top 50,

top 100 hits. The reason for this result is the ability
of the STY relation to consider more candidates.
Based on these results, we recommend the use of
a broader ontology relation. Further to this, the re-
sults presented in Table 6 indicate that the longer
the list of suggested ditractors, the smaller the re-
turn. As can be seen, the return diminishes when
having a list of more than 20 suggested distractors.

One limitation of the current evaluation is the
fact that it assumes that the distractors developed
by the human item-writers are the best ones. As
shown in the introduction section, this may not
necessarily be the case since item-writers also find
the selection of plausible distractors a challeng-
ing task. It is also quite possible that some of
the automatically generated distractors are suitable
enough even though they were not included as an
item option and in this sense it is possible that
our evaluation has been too conservative and that
more distractor candidates are in fact feasible op-
tions. To address this we plan a future evaluation
where human item-writers will be presented with
a list of automatically generated distractors that
they can choose from. An even longer term evalu-
ation would be to assess the quality of the distrac-
tors by collecting data from examinees and using
the item response theory (Embretson and Reise,
2013). Another limitation is that since we do not
have control over the stem, we do not control for
cases where a plausible distractor candidate may
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in fact be an alternative correct answer. To a cer-
tain extent this is mitigated by the condition that
no synonyms of the correct answer can feature as
distractors and that, ultimately, there would be a
human item-writer who selects the most suitable
distractors proposed by the system.
To the best of our knowledge, the experiments pre-
sented in this paper are the first fully automatic
approach for distractor generation which relies on
the combination between concept embeddings and
IR. The benefit of this approach is not only its
performance but that it can also be generalized to
other domains where the distractors are concepts.

Directions for improvement include experi-
menting with different embedding vectors or on-
tological relations (such as RO (other relation) in
UMLS). In addition, instead of using the whole
stem as the query to search the text collection,
one could break the stem into smaller components,
and search using these components11 Last but not
least, the number of prediction hits could be en-
hanced through other machine learning models.

7 Conclusion

We presented an experiment for the automatic sug-
gestions of distractors for multiple-choice ques-
tions given a question stem and the correct answer
option. Our method was based on concept embed-
dings and re-ranking of the distractors candidates
using an information retrieval approach. To evalu-
ate the output, we compare the existing human-
generated distractors and the automatic sugges-
tions in two sets of items. The results indicate that
the concept embeddings can correctly predict one
in five possible distractors, which otherwise has a
very low chance of being predicted randomly. Re-
ranking of the candidates boosts the performance
significantly, which shows that approaches from
IR can contribute to the task of automatic distrac-
tor generation.
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Abstract

This paper presents an investigation of us-
ing a co-attention based neural network for
source-dependent essay scoring. We use a co-
attention mechanism to help the model learn
the importance of each part of the essay more
accurately. Also, this paper shows that the co-
attention based neural network model provides
reliable score prediction of source-dependent
responses. We evaluate our model on two
source-dependent response corpora. Results
show that our model outperforms the baseline
on both corpora. We also show that the atten-
tion of the model is similar to the expert opin-
ions with examples.

1 Introduction

Manually grading students’ essays is labor inten-
sive. Therefore, many automated essay scoring
(AES) methods have been developed to support
grading essays at scale. However, in different
grading tasks, the information required by an AES
system is different. For example, if a system needs
to assign a holistic score to the essay, the sys-
tem needs to take all information into account. In
contrast, if a system needs to assign a score for
one specific aspect of the essay (e.g. use of evi-
dence), the system needs to ignore some informa-
tion. Also, if an essay is a source-dependent es-
say, the system needs to exploit knowledge of the
source article.

This paper focuses on source-dependent essay
assessment. In this task, students read a source
article before writing the essay, and assessment
involves recognizing and analyzing references to
the article in the essay. We propose a new type
of co-attention based neural network model tai-
lored to source-dependent grading, then use two
source-dependent essay corpora to evaluate our
model. Our first corpus contains the four source-
dependent essay sets in the Automated Student

Assessment Prize (ASAP) corpus1. The ASAP
grading task is to assign a holistic score to each
essay. The second corpus uses the Response to
Text Assessment (RTA) (Correnti et al., 2013) to
assess students’ analytic writing skills. Instead of
evaluating holistic writing skills, the RTA was de-
signed to evaluate students’ writing skills along
five dimensions: Analysis, Evidence, Organiza-
tion, Style, and MUGS (Mechanics, Usage, Gram-
mar, and Spelling). Our grading task for this cor-
pus is to assign an Evidence score to each essay,
by evaluating students’ ability to find and use evi-
dence from a source article to support their claims.

The main contributions of this paper are as fol-
lows. First, we introduce a co-attention based neu-
ral network model that is fully automated and does
not need any expert effort to encode knowledge of
a source article. Second, our co-attention based
neural network model extends prior work by de-
signing the model to take a source article into ac-
count during grading. Third, we apply our model
to the subset of source-dependent responses tasks
in the ASAP corpus and show that the model out-
performs a previous neural network model devel-
oped for the full corpus. Fourth, we show that
our model also performs well on the RTA task and
again significantly outperforms our baseline neu-
ral net model. Last, we use examples to show that
our model can assign reasonable attention scores
to different sentences in the essay.

In the following sections, we first present re-
lated research. Then we describe our tasks by in-
troducing the ASAP corpus and the RTA corpus.
Next, we explain the structure of our co-attention
based neural network model. Finally, we discuss
the results of our experiments and future plans.

1https://www.kaggle.com/c/asap-aes
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2 Related Work

Previous research in AES needed feature engineer-
ing. In very early work, Page (1968) developed an
AES tool named Project Essay Grade (PEG) by
only using linguistic surface features. A more re-
cent well-known AES system is E-Rater (Burstein
et al., 1998), which employs many more natural
language processing (NLP) technologies. Later,
Attali and Burstein (2004) released E-Rater V2,
where they created a new set of features to rep-
resent linguistic characteristic related to organiza-
tion and development, lexical complexity, prompt-
specific vocabulary usage, etc. Similarly to Page
(1968), this system used regression equations for
assessment of student essays. One limitation of all
of the above models is that all need handcrafted
features for training the model. In contrast, our
model uses a neural network for the AES task and
thus does not require feature engineering.

Recently, neural network models have been in-
troduced into AES, making the development of
handcrafted features unnecessary or at least op-
tional. Alikaniotis et al. (2016) and Taghipour
and Ng (2016) presented AES models that used
Long Short Term Memory (LSTM) networks. Dif-
ferently, Dong and Zhang (2016) used a Con-
volutional Neural Network (CNN) model for es-
say scoring by applying two CNN layers on both
the word level and then sentence level. Later,
Dong et al. (2017) presented another work that
uses attention pooling to replace the mean over
time pooling after the convolutional layer in both
word level and sentence levels. However, none of
these neural network grading models consider the
source article if it exists. In this paper, we intro-
duce a neural network model that takes the source
article into account by using a co-attention mech-
anism instead of the self-attention mechanism of
prior work.

Our work not only focuses on essay assess-
ment using a holistic score, but also evaluates a
particular dimension of argument-oriented writing
skills, namely use of Evidence. Louis and Higgins
(2010) analyze only the content of essays by de-
tecting off-topic essays. Ong et al. (2014) used ar-
gumentation mining techniques to evaluate if stu-
dents use enough evidence to support their posi-
tions. However, these two prior studies are not
suitable for our task because they did not measure
the use of content or evidence from a source ar-
ticle. With respect to source-based dimensional

essay analysis, Rahimi et al. (2014, 2017) devel-
oped a set of rubric-based features that compared
a student’s essay and a source article in terms of
number of related words or paraphrases. Zhang
and Litman (2017) improved their model by intro-
ducing word embedding into the feature extraction
process to extract relationships previously missed
due to lexical errors or use of different vocabulary.
However, in both of these studies, human effort
was still necessary for pre-processing the source
article, for example, by having experts manually
create a list of important words and phrases in the
article which the system would compare with fea-
tures extracted from the student’s essay. In con-
trast, our work does not need any human effort
to analyze the source article before essay grading.
Although Rahimi and Litman (2016) investigated
extracting example lists by using LDA (Blei et al.,
2003) model, the data-driven model missed an ex-
ample when there was no essay mentioning the ex-
ample. Klebanov et al. (2014) predicted which
parts of the source material were important and
that students needed to use in their essays. The
essay score is required to obtain the content impor-
tance for their work, but our work does not need to
know the essay score while identifying the content
importance.

3 Data

We use two different essay corpora in our exper-
iments: source-based essays from the ASAP cor-
pus, and source-based RTA essays. While the full
ASAP corpus contains essays in response to 8 dif-
ferent prompts, we use only essays in response to
the 4 source-dependent prompts. The gold stan-
dard ASAP assessment is a holistic score. In con-
trast, the gold standard assessment in the RTA cor-
pus is an Evidence score. In particular, the assess-
ment only considers how students use evidence
from a source article to support their claims; the
assessement thus ignores the lexical and syntactic
mistakes made by students and the organization of
the essay when assessing the evidence dimension.

3.1 ASAP

The Automated Student Assessment Prize (ASAP)
corpus consists of written responses to 8 prompts.
Among them, prompts 3, 4, 5, and 6 are source-
dependent which means students read an article
before writing their essays. Since the scores as-
signed to essays are holistic, assessment considers
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Source Excerpt: My mother and fa-
ther had come to this country with such
courage, without any knowledge of the
language or the culture. They came self-
lessly, as many immigrants do, to give
their children a better life, even though
it meant leaving behind their families,
friends, and careers in the country they
loved.

Essay Prompt: Describe the mood cre-
ated by the author in the memoir. Sup-
port your answer with relevant and spe-
cific information from the memoir.

Figure 1: A source excerpt for ASAP Prompt 5.

the overall quality of the essay, not just a specific
dimension. Figure 1 contains an excerpt from an
ASAP source article and the associated Prompt 5.

Prompt 3 4 5 6
Score 0 39 311 24 44

(2%) (18%) (1%) (3%)
Score 1 607 636 302 167

(35%) (36%) (17%) (9%)
Score 2 657 570 649 405

(38%) (32%) (36%) (23%)
Score 3 423 253 572 817

(25%) (14%) (32%) (45%)
Score 4 NA NA 258 367

(14%) (20%)
Total 1726 1770 1805 1800

Table 1: The holistic score distribution of ASAP.

In this paper, we only focus on prompts 3, 4, 5,
and 6 (denoted by ASAP3, ASAP4, ASAP5, and
ASAP6 respectively), because they are source-
dependent responses. In ASAP, different prompts
have different score ranges. The score range of
ASAP3 and ASAP4 is 0 to 3, while the range of
ASAP5 and ASAP6 is 0 to 4. Figure 2 shows an
excerpt of an essay with score of 4 for ASAP5.
The score distribution is shown in Table 1.

3.2 RTA

The RTA corpora were collected from upper ele-
mentary level students, as described by Correnti
et al. (2013). There are two forms of RTA based
on different articles that students read before writ-
ing essays. The first article is from Time for Kids

Essay Excerpt: The author of the mem-
oir, Narciso Rodriguez creates a caring,
happy, and thoughtful mood. By men-
tioning the Cuban traditions shared in
the neighborhood between close friends,
and cooking in the kitchen to share a
great meal with one another the mood
is happy. When Narciso talks about the
great friends he made from different her-
itages and knowing the entire commu-
nity like family the mood is thoughtful
and caring because it shows that the peo-
ple really appreciated each other’s com-
pany...

Figure 2: Excerpt of an essay with score of 4 for ASAP
Prompt 5.

about the Millennium Villages Project, an effort by
the United Nations to end poverty in a rural village
in Sauri, Kenya; we refer to it as RTAMV P . The
other article talks about the importance of space
exploration; we refer to refer it asRTASpace. Fig-
ure 3 shows an excerpt from the RTAMV P article
and the associated essay writing prompt. Bolded
text spans in the article excerpt are pieces of evi-
dence that our experts (School of Education RTA
team members) manually labeled as being impor-
tant for students to include in their essays.

Source Excerpt: Today, Yala Sub-
District Hospital has medicine, free of
charge, for all of the most common
diseases. Water is connected to the
hospital, which also has a generator
for electricity. Bed nets are used in ev-
ery sleeping site in Sauri...

Essay Prompt: The author provided
one specific example of how the quality
of life can be improved by the Millen-
nium Villages Project in Sauri, Kenya.
Based on the article, did the author pro-
vide a convincing argument that win-
ning the fight against poverty is achiev-
able in our lifetime? Explain why or
why not with 3-4 examples from the text
to support your answer.

Figure 3: A source excerpt for the RTAMV P prompt.

Evidence usage in each RTA essay was scored
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on a scale of 1 to 4 (low to high). The distribution
of Evidence scores is shown in Table 2. Figure 4
shows a student essay with a score of 3. Our ex-
perts manually bolded all pieces of evidence found
in this essay.

Essay: In my opinion I think that they
will achieve it in lifetime. During the
years threw 2004 and 2008 they made
progress. People didnt have the money
to buy the stuff in 2004. The hospi-
tal was packed with patients and they
didnt have alot of treatment in 2004.
In 2008 it changed the hospital had
medicine, free of charge, and for all
the common dieases. Water was con-
nected to the hospital and has a gen-
erator for electricity. Everybody has
net in their site. The hunger crisis
has been addressed with fertilizer and
seeds, as well as the tools needed to
maintain the food. The school has no
fees and they serve lunch. To me thats
sounds like it is going achieve it in the
lifetime.

Figure 4: A RTAMV P essay with score of 3.

Prompt RTAMV P RTASpace

Score 1 852 538
(29%) (26%)

Score 2 1197 789
(40%) (38%)

Score 3 616 512
(21%) (25%)

Score 4 305 237
(10%) (11%)

Total 2970 2076

Table 2: The Evidence score distribution of RTA.

4 Model

Our network is inspired by the hierarchical neural
network model presented by Dong et al. (2017).
In their model, they considered each essay as a
sequence of sentences rather than a sequence of
words. Their model has three parts. First, they
used a convolutional layer and attention pooling
layer to get sentence representation. Second, they
used an LSTM layer and another attention pooling

layer for document representation. Finally, they
used a sigmoid layer for score prediction.

Differently from their model, our model re-
places the attention pooling layer for document
representation with a bi-directional attention flow
layer and an additional modeling layer (Seo et al.,
2017). By doing so, our model considers students’
essays associated with a source article and this at-
tention mechanism captures the relationship be-
tween the essay and the source article. In partic-
ular, a higher attention score will be assigned to
sentences that are mentioned in the article but less
mentioned in other essays. Our model is a hierar-
chical neural network and consists of seven layers.
Figure 5 shows the structure of our network. The
layers in the dashed box were presented by Dong
et al. (2017). The sentence level co-attention layer
was presented by Seo et al. (2017).

4.1 Word Embedding Layer
This layer maps each word in sentences to a high
dimension vector. We use the GloVe pre-trained
word embeddings (Pennington et al., 2014) to ob-
tain the word embedding vector for each word.
It was trained on 6 billion words from Wikipedia
2014 and Gigaword 5. It has 400,000 uncased vo-
cabulary items. The dimensionality of GloVe in
our model is 50 dimensions. The outputs of this
layer are two matrices, LE ∈ RSe×We×dL for the
essay and LA ∈ RSa×Wa×dL for the article, where
Se, Sa, We, Wa, and dL are number of sentences
of the essay and the article, length of sentences of
the essay and the article, and the embedding size,
respectively. Same to Dong et al. (2017), a dropout
is applied after the word embedding layer.

4.2 Word Level Convolutional Layer
In this layer, we perform 1D convolution over the
word representations of both LE and LA, so that
we can get local representation of each sentence.
For each wordwi in each sentence, we perform 1D
convolution:

pi = g([wi : wi+k−1] · Up + bp) (1)

where g is a nonlinear activation, k is the kernel
size, Up is the filter weight matrix, and bp is the
bias vector. The outputs of this layer are Ce ∈
RSe×Pe×dC for the essay and Ca ∈ RSa×Pa×dC

for the article, where Pe and Pa are filtered lengths
of sentences of the essay and the article, respec-
tively. dC is the number of filters of the 1D convo-
lution layer.
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Figure 5: The Co-Attention Based Neural Network Structure.

4.3 Word Level Attention Pooling Layer
After the convolutional layer, a pooling layer is de-
manded to obtain the sentence representations. In
this layer, we follow the same design presented by
Dong et al. (2017). The attention pooling is de-
fined as equations below:

mi = tanh(Um · pi + bm) (2)

vi =
euv ·mi

∑
euv ·mj

(3)

s =
∑

vipi (4)

where Um, uv and bm are weight matrix, vector,
and bias vector, respectively. mi and vi are atten-
tion vector and attention weight for pi. The out-
puts of this layer are Ae ∈ RSe×dC for the essay
and Aa ∈ RSa×dC for the article.

4.4 Sentence Level LSTM Layer
In this layer, we use a Long Short-Term Memory
Network (LSTM) (Hochreiter and Schmidhuber,
1997) over the sentence representations of the es-
say and the article to capture contextual evidence
from previous sentences to refine the sentence rep-
resentation.

The LSTM unit is a special kind of RNN unit
which has long-term dependency learning abil-
ity. LSTMs use three gates to control information
flow to avoid the long-term dependency problem
by forgetting or remembering information in each
LSTM unit. They are an input gate, a forget gate,

and an output gate. The following equations define
the LSTM unit:

ft = σ(Wf · [ht−1, st] + bf ) (5)

it = σ(Wi · [ht−1, st] + bi) (6)

c̃t = tanh(Wc · [ht−1, st] + bc) (7)

ct = ft ∗ ct−1 + it ∗ c̃t (8)

ot = σ(Wo · [ht−1, st] + bo) (9)

ht = ot ∗ tanh(ct) (10)

where st and ht are the input sentence and the out-
put state of time t, respectively. Wf , Wi, Wc,
and Wo are weight matrices. bf , bi, bc, and bo
are bias vectors. σ is the sigmoid function, and
∗ is element-wise multiplication. The output of
this layer are He ∈ RSe×dH for the essay and
Ha ∈ RSa×dH for the article, where dH is the di-
mensionality of the output.

4.5 Sentence Level Co-Attention Layer
The concept of this layer is presented by Seo et al.
(2017) in the part of attention flow layer. This
layer links information from He and Ha, and gen-
erates a collection of article aware features vec-
tor of essay sentences. The attention is computed
in two directions, from essay to article, and vice
versa. Both attention scores are figured from a
similarity matrix by the following equation:

Sim =W T
sim · [het;haj ;hat ∗haTj ] + bsim (11)
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where Wsim is weight matrix, het and haj are tth
row vector ofHe and jth row vector ofHa, bsim is
bias vector. ∗ is element-wise multiplication. [; ]
is vector concatenation. After obtaining the simi-
larity matrix Sim ∈ RSe×Sa , we compute the at-
tention in two directions.

Essay to Article Attention measures which
sentences in the article are similar to each sentence
in students’ essays. The following equations de-
fine the essay to article attention:

aea = softmax(Sim) (12)

H̃a = aeaHa (13)

where aea ∈ RSe×Sa represents the attention
score of each sentence in the article associate with
each sentence in the essay, softmax is performed
across each row. The output of this H̃a ∈ RSe×dH .

Article to Essay Attention measures which
sentences in the essay have the closest meaning to
one of the sentences in the article. The following
equations define the article to essay attention:

aae = softmax(maxcol(Sim)) (14)

h̃e = aTaeHe (15)

where aae ∈ RSe , maxcol is a maximum function
performed across the column, and h̃e ∈ RdH . Be-
cause maxcol will find out which sentence in the
article has the closest meaning to each sentence
in the essay, so h̃e represents the attention score
of the most important sentence in the essay asso-
ciated with the article. After tiling Se times, the
final output of this layer is H̃e ∈ RSe×dH .

The final output G is a concatenated matrix of
He, H̃e, and H̃a defined by:

G = [He; H̃a;He ∗ H̃a;He ∗ H̃e] (16)

where ∗ is element-wise multiplication, and [; ] is
concatenation, He is the original representation of
essay, H̃a is the essay to article attention, He ∗ H̃a

is the self-aware representation, and He ∗ H̃e is
article-aware representation. Therefore, the output
of this layer is G ∈ RSe×4dH , the article-aware
representation of each sentence in the essay.

4.6 Modeling Layer
G is the representation of each sentence, and we
need the representation of the essay. Therefore, we
introduce another LSTM layer for modeling the
essay and only use the output of the final LSTM
unit as the output of this layer M ∈ RdM , where
dM is the dimensionality of the output of LSTM
units.

4.7 Output Layer
After obtaining the essay representation M , a lin-
ear layer with sigmoid activation will predict the
final output. The following equation defines the
output layer:

y = sigmoid(WoM + bo) (17)

where Wo is weight vector, and bo is bias vector. y
is the final predicted score of the essay.

5 Training

Loss. Dong et al. (2017) used mean squared er-
ror (MSE) loss, thus we use the same loss func-
tion. MSE evaluates the average of squared error
between the predicted score and the gold standard.
Thus it is widely used in regression tasks. The fol-
lowing equation defines MSE:

mse(y, y′) =
1

N

N∑

i=1

(yi − y′i)2 (18)

where yi is the predicted score, y′i is the gold stan-
dard, N it the total number of samples.

Optimization. The optimizer we use is RMS-
prop (Dauphin et al., 2015). The initial learning
rate is 0.001, momentum is 0.9, and Dropout rate
is 0.5 for preventing overfitting. These setting are
the same as used by Dong et al. (2017).

6 Experimental Setup

We configure experiments to test three hypotheses:

H1: the model we proposed (denoted by CO-
ATTN) will outperform or at least per-
form equally well as the baseline (denoted
by SELF-ATTN) presented by Dong et al.
(2017) on four ASAP essay corpora in the
holistic score prediction task.

H2: the model we proposed will outperform or at
least perform equally well as the baseline on
two RTA corpora in the Evidence score pre-
diction task.

H3: the model we proposed will outperform or at
least perform equally well as the non-neural
network baselines on both corpora.

We use NLTK (Bird et al., 2009) for text prepro-
cessing. The vocabulary size of the data is limited
to 4000, and all scores are scaled to the range [0,
1], following Taghipour and Ng (2016) and Dong
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et al. (2017). In particular, the 4000 most fre-
quent words are preserved, with all other words
treated as unknowns. The assessment scores will
be converted back to their original range during
evaluation. We use Quadratic Weighted Kappa
(QWK) to evaluate our model. QWK is not
only the official criteria of ASAP corpus, but
also adopted as evaluation metric in Rahimi et al.
(2014); Taghipour and Ng (2016); Dong et al.
(2017); Rahimi et al. (2017); Zhang and Litman
(2017) for both ASAP and RTA corpora.

We use 5-fold cross-validation because both
RTA and ASAP corpora have no released labeled
test data. We split all corpora into 5 folds. For the
ASAP corpus, the partition is the same as the set-
ting presented by Taghipour and Ng (2016). For
the RTA corpus, since there is no prior work to
split the corpus, we separate it into 5 folds ran-
domly. In each fold, 60% of the data are used for
training, 20% of the data are the development set,
and 20% of the data are used for testing.

To select the best model, we trained each model
on 100 epochs and evaluated on the development
set after each epoch. The best model is the model
with the best QWK on the development set. This
is done five times, once for each partition in the
cross-validation. Then the average QWK score
from these five evaluations on the test set is re-
ported. Paired t-tests are used for significance
tests with p < 0.05. Table 3 shows all hyper-
parameters for training.

The code of SELF-ATTN are provided by Dong
et al. (2017), they used Keras (Chollet et al., 2015)
1.1.1 and Theano (Theano Development Team,
2016) 0.8.2 as the backend. Because we are using
Keras 2.1.3 and TensorFlow (Abadi et al., 2015)
1.4.0 as the backend, we ran all experiments with
our frameworks. Therefore, the numbers of SELF-
ATTN have small differences to the numbers re-
ported by the baseline model.

For non-neural network baselines, we introduce
the SVR and BLRR baselines presented by Phandi
et al. (2015) for the ASAP corpus, and SG base-
line presented by Zhang and Litman (2017) for the
RTA corpus.

SVR and BLRR models use Enhanced AI Scor-
ing Engine (EASE)2 to extract four types of fea-
tures, such as length, part of speech, prompt, and
the bag of words. Then they use SVR and BLRR
as the classifiers, respectively. We do not perform

2https://github.com/edx/ease

any significance test on both SVR and BLRR be-
cause we do not have detailed experiment data.
Therefore, we only report the result presented in
Phandi et al. (2015).

SG model extracts evidence features based on
hand-crafted topic and example lists, and uses ran-
dom forest tree as the classifier. We follow the
same data partition. However, we only use the
training set for training and the testing set for test-
ing while ignoring the development set so that we
can perform the same paired t-tests in the experi-
ments.

Layer Parameter Name Value
Embedding Embedding dimension 50
Word-CNN Kernel size 5

Number of filters 100
Sent-LSTM Hidden units 100
Modeling Hidden units 100
Dropout Dropout rate 0.5
Others Epochs 100

Batch size 100
Initial learning rate 0.001

Momentum 0.9

Table 3: Hyper-parameters of training.

7 Results

We first examine H1. The results shown in Table 4
support this hypothesis. The CO-ATTN model
yields higher performance than the SELF-ATTN
model on all ASAP prompts. However, the CO-
ATTN model only significantly outperforms the
SELF-ATTN model on Prompt 3.

Second, we examine H2. Again, the results
shown in Table 4 support this hypothesis. The CO-
ATTN model yields higher performance than the
SELF-ATTN model, significantly on both of the
RTA corpora.

Last, we examine H3. The results shown in
Table 4 still support this hypothesis. The CO-
ATTN model yields higher performance than all
non-neural network baselines.

The results show that in our tasks, the neu-
ral network approaches are better than non-neural
network baselines. One possible reason is the final
representation of the essay from neural network
contains more information. However, some of the
information might be ignored by hand-crafted fea-
tures. For example, the importance of different
evidence in RTA task is not considered in the SG

405



Prompts SVR BLRR SG SELF-ATTN CO-ATTN
RTAMV P NA NA 0.653 0.701† 0.718∗†
RTASpace NA NA 0.632 0.690† 0.702∗†
ASAP3 0.630 0.621 NA 0.677 0.697∗
ASAP4 0.749 0.784 NA 0.807 0.809
ASAP5 0.782 0.784 NA 0.806 0.815
ASAP6 0.771 0.775 NA 0.809 0.812

Table 4: The performance (QWK) of the baselines and our model. ∗ indicates that the model QWK is significantly
better than the SELF-ATTN (p < 0.05). † indicates that the model QWK is significantly better than the SG
(p < 0.05). The best results in each row are in bold.

model. It treats all evidence equally. However,
the neural network models capture this informa-
tion automatically.

Apparently, the CO-ATTN model performs bet-
ter in the RTA tasks, because it always signifi-
cantly outperforms the SELF-ATTN model. One
possible reason is that the RTA task only considers
the Evidence score. The CO-ATTN model is more
suitable for the Evidence score prediction task be-
cause it can find pieces of evidence that appear in
both students’ essays and the source article better.
In contrast, the SELF-ATTN model only consid-
ers students’ essays associated with the scores. In
this case, if a piece of evidence is not mentioned
by students, this data-driven model cannot distin-
guish it. Consequently, some important pieces of
evidence will be assigned to a lower weight. How-
ever, the CO-ATTN model considers not only the
students’ essays but also the source article. In
other words, if an important piece of evidence is
not mentioned by too many students, but it is in
the source article, the CO-ATTN model will as-
sign this sentence higher attention.

In the ASAP holistic score prediction task, al-
though we still see a benefit in using the CO-
ATTN model, it is reduced. In this case, the
benefit we saw in the Evidence dimension from
the CO-ATTN model becomes less significant be-
cause the model also needs to consider more as-
pects of the essay, such as organization, grammar
mistakes, and so on. Our results suggest that the
co-attention mechanism of the CO-ATTN model
cannot capture these aspects significantly better
than the SELF-ATTN model. Therefore, the CO-
ATTN model only significantly outperforms the
SELF-ATTN model on Prompt 3.

8 Discussion

In Table 5, we list 10 sentences from student
RTAMV P essays and their associated attention
scores. Because we have a list of examples man-
ually extracted by our experts as important evi-
dence from the RTAMV P source article, exam-
ining RTA data helps us understand the attention
score assigned by our model. Bolded are exam-
ples extracted by the expert from the source article
that the student includes in the essay. A lower at-
tention score means this sentence is less important.
Otherwise, the score is high. As we can see, sen-
tences 1, 2, 3, and 4 are low attention sentences,
sentences 5, 6, and 7 are mid attention sentences,
and sentences 8, 9, and 10 are high attention sen-
tences. The attention scores reflect the importance
of these sentences accurately.

Sentence 1 is a short and general sentence re-
lated to the source article, but it has no specific
evidence from it. Sentence 2 even has no content
related to the source article. Sentence 3 has many
details related to the source article. However, it
still has no evidence directly from the source ar-
ticle. Sentence 4 mentions “The author did con-
vince me that winning the fight against poverty is
achievable in our lifetime” which comes from both
the prompt and the source article, but this state-
ment is so general that almost every student men-
tions this statement in the essay which makes this
statement not distinguishable. For these reasons,
these four sentences receive low attention scores.

Although sentence 5 is short, it mentions one
piece of evidence. Sentence 6 talks about farm-
ing which is a topic from the source article. In
the article, the things listed in this sentence are
things the farmer needs to worry about. However,
this sentence indicates “the farmer don’t have to
worry” because of the MVP project. Sentence 7
also mentions conditions of hospitals nowadays.
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However, it mentions not only water but also elec-
tricity which is more than Sentence 5. For these
reasons, these three sentences receive mid atten-
tion scores from low to high.

The last three sentences receive high attention
scores because they all use more pieces of evi-
dence directly from the source article. Sentence 8
talks about the school, and Sentence 9 talks about
the hospital. Sentence 10 talks about farming.
However, sentence 10 receives the highest atten-
tion score, because it mentions evidence from both
before and after the MVP project.

No. Sentences Attention
1 Life in Kenya is hard. 0.00173
2 In this essay I will give my top 3 rea-

sons why.
0.00174

3 Because like I said, we have more
advanced & better & more qualified
materials than them, and these days
kids & adults are spoiled, we have
phones stores, houses & even shoes
and clothes.

0.00243

4 The author did convince me that
winning the fight against poverty
is achievable in our lifetime be-
cause she showed me how many
people in Sauri, Kenya need our help
against poverty.

0.00229

5 Water is connected to the hospi-
tals.

0.02936

6 So the farmer don’t have to worry
all the time that him or his family
won’t have enough food to eat and
the farmer have to worry that their
kids will get hungry and then sick.

0.05580

7 The hospital aslo has water and
electricity.

0.07746

8 Also, there were no school fees, and
the school now serves lunch for the
students because they didn’t have
any midday meals to provide them
with energy they need to help them
with the rest of their days.

0.19483

9 In 2008 though, when they checked
for progress, the hospital had
medicine, free of charge, with run-
ning water and electricty.

0.20177

10 Also farmers could not afford fer-
tilizer and irrigation but now they
placed irrigation and have them
fertilizer for the crops.

0.25855

Table 5: Example attention scores of essay sentences.

From these sentences, we can also see that the
attention score depends on neither the length of
the sentence nor only the specificity of the sen-
tence. It instead depends on how many impor-
tant pieces of evidence there are in the sentence.
For example, Sentence 3 is long and talks about
some details of our modern life. Although it also

talks about quality materials or better housing and
clothing compared to people living in Kenya, it re-
ceives a low attention score because there is no
specific evidence directly from the source article.
In contrast, Sentence 9 is shorter than Sentence 3.
However, it receives a higher attention score be-
cause it mentions many pieces of evidence from
the source article.

Overall, the CO-ATTN model seems to capture
the importance of sentences by assigning reason-
able attention scores based on the relevance of the
sentence to the source article.

9 Conclusion and Future Work

In this paper, we presented a co-attention based
neural network model that outperforms a state of
the art attention based neural network model for
essay scoring, not only for RTA Evidence assess-
ment but also for holistic assessment of ASAP
source-dependent responses. Advantages of our
model are that it does not need any expert pre-
processing of the source article; the input of this
model is only the raw student essay and its source
article. Moreover, our model somewhat captures
the importance of different pieces of evidence, al-
though it is not specifically designed for this pur-
pose. However, quantitative experiments that can
answer whether the attention scores are correlated
to the importance of different pieces of evidence
need to be done. Also, this leads to an interesting
future investigation, development of a neural net-
work approach that both has an acceptable score
prediction, and can simultaneously generate evi-
dence lists from the source article. Another inter-
esting future investigation could be examining the
ability of this model to generalize to a new prompt.
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Abstract

We investigate the feasibility of cross-lingual
content scoring, a scenario where training and
test data in an automatic scoring task are from
two different languages. Cross-lingual scoring
can contribute to educational equality by al-
lowing answers in multiple languages. Train-
ing a model in one language and applying it
to another language might also help to over-
come data sparsity issues by re-using trained
models from other languages. As there is no
suitable dataset available for this new task, we
create a comparable bi-lingual corpus by ex-
tending the English ASAP dataset with Ger-
man answers. Our experiments with cross-
lingual scoring based on machine-translating
either training or test data show a considerable
drop in scoring quality.

1 Introduction

Automatically scoring the content of student an-
swers is a well-established research field (see,
e.g., Sukkarieh and Blackmore (2009); Ziai et al.
(2012); Higgins et al. (2014)). However, content
scoring is usually restricted to training a model on
labeled answers in one language and then apply-
ing it to unseen student answers in the same lan-
guage. In this paper, we examine how well the
scoring models transfer when being applied cross-
lingually, i.e., whether data in one language can be
used for training a model to score data in another
language.

The motivation for our study is two-fold: First,
cross-lingual scoring can contribute to educa-
tional equality. In a realistic educational setting,
scores assigned to an answer given in the language
of instruction can discriminate against non-native
students who might conceptually understand the
topic in question, but are unable to express their
understanding in that language. One solution to
this problem could be that students are allowed

to answer a question in a language they are pro-
ficient in. As only the content matters, the form,
including the language, is unimportant. Such a set-
ting would of course require that a teacher scor-
ing an item is also proficient in the language used
by the student, which would still restrict the avail-
able language options for the student. In such a
scenario, automatic scoring of answers in differ-
ent languages can help to treat students equally.

Second, cross-lingual scoring can help to over-
come data sparsity. Existing short-answer
datasets have mainly been collected in English. If
a researcher or practitioner wants to work on a dif-
ferent language, little annotated data is available.
Cross-lingual approaches can help in such a sce-
nario to re-use trained models from different lan-
guages or to combine data from several languages
to train a new model.

In our study, we investigate whether cross-
lingual scoring is possible using state-of-the-art
machine translation techniques. We translate ei-
ther training or test data from one language to
another, such that both training and test data are
available in the same language. We then build
prompt-specific models for each prompt and com-
pare the performance to a monolingual approach.
Figure 1 illustrates the different approaches.

It is likely that machine translation will nega-
tively impact scoring quality due to translation er-
rors. Additionally, student answers often contain
language errors that might further decrease trans-
lation quality. However, translation might also
have a positive effect on automatic scoring in case
of typos being corrected during translation (e.g.
seperate correctly translated as getrennt).

Datasets in more than one language might also
differ depending on different teaching or learning
traditions in the environments where they are col-
lected, so that a new dataset collection has to be
carefully planned to control such influence factors.
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Figure 1: Monolingual vs. cross-lingual scoring

To the best of our knowledge, we are the first to
investigate the feasibility of cross-lingual scoring.
As our approach relies heavily on the availabil-
ity of machine-translation methods, we also as-
sess whether state-of-the-art machine translation
methods perform well enough to be used in au-
tomatic scoring. To evaluate cross-lingual scor-
ing in a realistic scenario, we collect and release
a new dataset ASAP-DE that consists of three
prompts from the ASAP corpus for which we col-
lect answers in German.1 In our experiments,
we find that cross-lingual scoring using machine-
translation is feasible, but –unsurprisingly– at the
cost of a decrease in performance. Preliminary
analyses showed that his performance drop varies
across prompts and is only in part due to artifacts
of machine translation, but it rather results from
differences between the two datasets involved.

2 Pilot Study

Machine translation nowadays has good quality
in general, but we need to assess its performance
with respect to the language used in content scor-
ing datasets. In contrast to standard newspaper
data, answers in such datasets have been written
by non-professional writers, so they may contain
typos and ungrammaticalities. These datasets can
thus be harder to translate than newspaper text.

To examine the impact of these issues, we con-
duct monolingual scoring experiments with the
English ASAP dataset. We translate both the train-
ing and the test section of the ASAP data into a dif-

1https://github.com/ltl-ude/
crosslingual

ferent language and build and train a model in that
language. For the moment, we do not change the
score an answer receives after translation because
we assume that translating an answer preserves its
meaning. We will revisit this issue later.

We automatically translate the English ASAP
dataset using two different translation frame-
works: Google Translate API2 and DeepL3. As
target languages, we use German as a closely re-
lated language and Russian as a more distantly
related language. Table 2 shows the results of a
state-of-the-art scoring system applied in this set-
ting measured as quadratically weighted kappa..
We can see that there is a performance drop when
translating to a different language, but that the
change is within a reasonable margin, such that
we can assume that machine translation is good
enough for our purposes. We select Google Trans-
late for all further experiments in this paper, as it
produces on average better results than DeepL.

Influence of Spelling Errors Translating mis-
spelled words is especially challenging, and we
expect two different types of influence on the re-
sults. There could be a normalizing effect when
wrong forms are translated into correct ones, or a
noise-introducing effect when a wrong form from
one language leaks into the other. We observe
both effects in the data. First, some errors are cor-
rected by the translation, mainly for very common
misspellings, which a machine translation system
might have encountered during training, such as

2https://cloud.google.com/translate/
3https://www.deepl.com/home
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Domain Prompt EN DET DET RUT

ID Google DeepL Google

1 .72 .69 .64 .66
Science 2 .68 .64 .52 .57

10 .65 .66 .67 .64

Biology 5 .75 .70 .70 .71
6 .80 .75 .73 .79

3 .59 .60 .54 .59
4 .66 .67 .54 .60

ELA 7 .62 .50 .50 .55
8 .51 .53 .50 .53
9 .75 .75 .70 .71

Table 1: Monolingual scoring

Domain Prompt EN DET DET RUT

ID Google DeepL Google

1 .69 .69 .63 .65
Science 2 .69 .64 .52 .57

10 .66 .64 .68 .64

Biology 5 .75 .71 .69 .70
6 .81 .76 .74 .79

3 .59 .58 .53 .58
4 .66 .67 .54 .60

ELA 7 .62 .47 .50 .54
8 .51 .53 .47 .54
9 .75 .76 .69 .71

Table 2: Monolingual scoring

seperate instead of separate, which are both cor-
rectly translated to the German getrennt. Second,
the less frequent misspellings are often preserved,
although nouns are capitalized and inflected in
German. An example would be the phrase the
temperature of vineger which is translated to die
Temperatur des Vinegers using the correct Ger-
man inflected form, but not translating the word
to the correct German Essig. Another is the mis-
spelled word diffrence which is translated to the
similarly misspelled form Diffrenz (instead of Dif-
ferenz), i.e., the affix -ence is correctly translated
while keeping the misspelled stem of the word.

Influence of Translation on Human Scores So
far, we have simply assumed that the machine
translation process is good enough that it does not
affect the score assigned to an answer. We exam-
ine whether this assumption is valid by re-scoring
a small sample of 50 answers each from ASAP
prompts 1, 2 and 10, which have been machine
translated to German. The annotator also scored
the original English data (with some delay time in
between to avoid memory effects) so that we can
compare scores in different languages assigned by

the same annotator. We found the annotation to
be consistent between different language versions.
(Quadratically weighted kappa (Cohen, 1968) of
between .75 and .94 for the agreement of the same
annotator between the original version and the one
translated using google translate. Inter-annotator
agreement on this sample between the original an-
notation and our annotator is between .66 and .84.)
If machine translation introduced a lot of noise,
one would expect scores to differ more between
the two versions. One would especially assume
that translated answers might make less sense, and
would therefore receive lower scores, but we do
not see such a phenomenon in the data.

3 Collecting a Cross-lingual Dataset

For our cross-lingual experiments, we need a
dataset that contains answers to the same prompt
in at least two different languages. As no such
dataset is publicly available so far, we decided to
create and release a new dataset.

3.1 Selecting a Source Dataset

We decided to extend an existing monolingual
dataset instead of collecting a new dataset from
scratch, as it provides the advantage that larger
amounts of data are already available in one lan-
guage. The majority of datasets is available in En-
glish, so this is a realistic option for the source lan-
guage. We use German as the target language due
to familiarity with the language, as we need to be
able to manually score the new dataset. Also, the
expected translation quality between English and
German is rather high providing a good test case
for the feasibility of the approach in general.

There is a set of publicly available English
datasets that we could base our experiments on:
The ASAP-2 short answer scoring dataset 4, the
Powergrading dataset by (Basu et al., 2013),
the computer science dataset by (Mohler and
Mihalcea, 2009), and the SemEval2013 dataset
(Dzikovska et al., 2013). When deciding for a
dataset, we took the following criteria into ac-
count: First, all necessary prompt material has to
be completely available, including reading texts
or connected images. This requirement rules out
the SemEval2013 data, where the prompt contains
pictures and graphs (such a drawing of a electrical
circuit) that are necessary to answer the questions
but that are not included in the dataset.

4https://www.kaggle.com/c/asap-sas
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Second, the prompts should be language and
culture-independent so that speakers of a dif-
ferent language or from a different culture have
similar chances to answer the questions correctly.
This requirement rules out the Powergrading data,
as this dataset contains solely questions from US
immigration tests like, If both the President and
the Vice President can no longer serve, who be-
comes President? German participants are rather
unlikely to correctly answer those questions.

Third, the prompts should be curriculum-
independent, i.e., they should not be based on a
specific university course, as we expect answers
in those settings to be heavily influenced by what
exactly was taught in the corresponding course.
Thus, we excluded the computer science dataset,
which was targeted at students from a specific
computer science class. (In addition, the number
of only 30 answers per prompt is relatively small.)

Last, in order to be able to score the newly col-
lected data, scoring guidelines for the original
dataset have to be available and we must be able
to apply them with a reasonable inter-annotator-
agreement.

Re-scoring Study The ASAP dataset is the only
dataset fulfilling the first two requirements and
seems relatively curriculum-independent as well.
We tested in an annotation study, whether we
are able to apply the available annotation guide-
lines. We selected one prompt for each of the
three domains covered by the dataset (science, bi-
ology, English Language Arts (ELA)). Two Ger-
man native speakers with a good command in En-
glish annotated a subset of 50 answers for each
prompt. For the science prompt, the pairwise
inter-annotator agreement between our two anno-
tators and the original English annotators, mea-
sured by quadratically weighted kappa, was be-
tween .70 and .79 for the science prompt, between
.60 and .78 for biology, and between .26 and .63
for ELA. IAA between the two German annotators
lies in similar regions. The agreement between
the two original annotations was .95 for science,
.98 for biology and .77 for ELA. Based on these
numbers, we deemed ELA prompts unsuitable for
re-collection.

3.2 Dataset Collection & Annotation

As described above, we find the science and bi-
ology prompts from ASAP to be suitable for the
re-collection process. An exploratory data collec-

ASAP ASAP-DE

Language English German
#Prompts 10 3

#Answers / prompt >2000 300

Domains
Science

ELA
Biology

Science

Table 3: Dataset statistics

tion for the three science and two biology prompts
revealed that the knowledge tested in the biology
prompts was more course-specific than we thought
and most participants were unable to answer these
questions. Therefore, we restricted ourselves to
the three science prompts, which we translated
into German. We collect answers from the crowd-
sourcing platform CrowdFlower,5 as well as by di-
rectly asking colleagues and students, with the ma-
jority of answer (>90%) originating from Crowd-
Flower. We excluded answers in any language
different from German and obvious non-answers,
such as copying the prompt.6 Overall, we collect a
total of 301 answers per prompt. Table 3 compares
the resulting German dataset with the original En-
glish one.

All answers have been annotated by two Ger-
man annotators (one being one of the authors of
this paper). We found an inter-annotator agree-
ment per prompt between .58 and .84 quadrati-
cally weighted kappa. Figure 2 shows some exem-
plary answers from Prompt 1 both for the original
English and the newly collected German dataset.

3.3 Dataset Analysis

We provide a corpus analysis to get further in-
sights into the differences between the two lan-
guage versions of the dataset.

Label distribution A first indicator as to
whether the two language versions are compara-
ble is the label distribution as shown in Table 3.
We see that the distribution in the German dataset
is skewed towards lower scores, which could be
an artifact of our assessment situation. While we
tried to avoid questions answerable only by a cer-
tain group of learners, it might still be that the orig-
inal English test taker population was either better
prepared or more motivated to answer the ques-

5https://www.crowdflower.com
6We needed to do so because of a relatively high number

of such non-answers. However, we kept other non-answers
such as “Ich weiß es nicht” (I don’t know.)
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ENGLISH

QUESTION: After reading the groups procedure, describe
what additional information you would need in order to
replicate the experiment. Make sure to include at least
three pieces of information.

LEARNER ANSWERS:

• 3 points: Some additional information you will
need are the material. You also need to know the
size of the contaneir to measure how the acid rain
effected it. You need to know how much vineager
is used for each sample. Another thing that would
help is to know how big the sample stones are by
measureing the best possible way.

• 1 point: After reading the expirement, I realized
that the additional information you need to replicate
the expireiment is one, the amant of vinegar you
poured in each container, two, label the containers
before you start yar expirement and three, write a
conclusion to make sure yar results are accurate.

• 0 points: The student should list what rock is better
and what rock is the worse in the procedure.

GERMAN

QUESTION: Nachdem Sie die Prozedur der Gruppe gele-
sen haben, beschreiben Sie, welche zusätzlichen Infor-
mationen nötig sind, um das Experiment zu wiederholen.
Geben Sie mindestens drei benötigte Informationen an.

LEARNER ANSWERS:

• 3 points: Es fehlt der Säuregehalt des Es-
sigs. Die Menge Essig die verwendet wurde.
Und welche Holzart da Holzsorten unterschiedliche
Säureresistenz aufweist.

• 2 points: Wie viel Essig wurde verwendet? Aus
welchem Material waren die Behälter? Wurden die
Behälter verschlossen?

• 0 points: Wir müssen wissen, wie viel Wasser wir
sammeln müssen, um die Probe zu machen

Figure 2: Exemplary answers for prompt 1 from the English and the German datasets.

Language Prompt
1 2 10

EN

DE

Figure 3: Label distribution for each prompt in the Ger-
man and English version of the data.

tions correctly than the crowd-workers providing
the German answers.

Average Length Figure 4 shows that answers in
the English dataset are considerably longer than
in the German one. This difference can be due
to two parameters. One is the learner population
from which the data is collected, the other is id-
iosyncrasies of the language itself. To differen-
tiate between the influence of these two effects
as far as possible, we also run our comparisons
on versions of each dataset that have been auto-
matically translated into the other language (ENT

and DET ). Thus, comparing the English dataset to
DET should only display effects of having differ-
ent datasets, not different languages, while com-
paring the English dataset to ENT should show
differences between languages but is the same
data.
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Figure 4: Answer length in tokens averaged over all
answers with a certain score.

Figure 4 shows that the difference in length ob-
served between English and German is not an ef-
fect of the different languages, but of the different
datasets. Additionally, we observe in both datasets
that answers with a higher score tend to be longer
than incorrect answers.

Linguistic diversity Next, we look at the lin-
guistic diversity in both datasets. We compute the
type-token-ratio (TTR) for each dataset, by ran-
domly sampling chunks of 100 tokens and averag-
ing over the individual values to avoid effect of
different corpus sizes, shown in Figure 5. The
two main findings from this analysis are: First,
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Figure 5: Type-token-ratio for the four datasets com-
puted for all labels with a particular score.

Prompt
Compared datasets 1 2 10

EN (train) / EN (test) .68 .68 .62
EN (train) / DET .45 .49 .45
ENT (train) / DE .43 .48 .43

Table 4: Lexical overlap measured on the type level for
the top 1000 unigrams for each prompt.

TTR is slightly higher for low scoring answers.
This fits the observation that there are often more
ways to get an answer wrong than ways to formu-
late the correct answer. (Note that annotators ig-
nore spelling errors when scoring an answer, and
we found that low-scoring answers do not contain
more errors than high-scoring answers.) Second,
TTR is higher for the original German than for
the original English dataset. This is in part due
to the language difference. German has a much
richer morphology than English, and translating
data from German to English reduces TTR while
translating from English to German increases it.

Some part of the difference, however, can-
not be explained by the different languages and
must come from the learner population, which is
more homogeneous in the English version (high-
school students) as compared to the German ver-
sion (crowd-workers).

Vocabulary overlap Here, we compute the
overlap between the vocabulary used in the En-
glish data and the vocabulary of the German
dataset. Table 4 shows the comparison measur-
ing the overlap of types on the unigram level. As a
baseline, we compute the overlap between training
and test data from the English dataset. Next we
compare the English training data with the Ger-
man dataset by either translating the English or

the German data to the respective other language.
We find a much lower lexical overlap across all
prompts.

We therefore expect a decrease in performance
when using n-grams as features in a cross-lingual
setup compared to the monolingual case.

Summary Overall we observe differences be-
tween the datasets in terms of answer length, la-
bel distribution, linguistic diversity and used vo-
cabulary. They can only be partially explained by
the language difference and seem to be mostly due
to differences between the datasets themselves or
rather between the learner populations that pro-
duced theses answers. In the next section, we ex-
amine the effect these differences have on auto-
matic scoring.

4 Cross-lingual Scoring Experiments

After finding in the previous monolingual pilot
study that machine translation quality is good
enough for our purposes, we now present in this
section our cross-lingual experiments. We assume
that training data in one language is used to score
test data in another language by means of translat-
ing either the test or the training data.

4.1 Experimental setup

For our scoring experiments, we use a standard
supervised machine learning setup with Weka’s
SVM classifier in standard configuration as clas-
sification backbone, implemented using free-text
scoring toolkit ESCRITO (Zesch and Horbach,
2018). We use token uni-, bi- and trigrams as well
as character bi- to five-grams as features and eval-
uate our results using accuracy and quadratically
weighted Kappa (Cohen, 1968).

The English ASAP dataset comes with an es-
tablished split into train and test data, which we
reuse. The German dataset is very small in direct
comparison, so that we cannot use a fixed split into
training and test data. Therefore, we use 10-fold
cross-validation for the German dataset.

Experimental conditions We conduct experi-
ments falling into four groups:

(1) for the baseline experiments, we train and
test models on monolingual datasets and use either
the English or German dataset exclusively. These
two datasets have very different sizes. For the
original English data, we have over 2000 answers
per prompt. For the re-collected German set, we
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only have 300 answers per prompt, 270 of which
are used for training in our cross-validation setup.
This difference in size might also reflect in differ-
ent performances. To eliminate such effects, we
conduct experiments on the English training data
in a variant that uses only 270 training items, sam-
pled from the training data section. For compar-
ison, we also conduct the baseline experiment on
the full English train data (ENall). To avoid sam-
pling artifacts, we repeat the experiment 100 times
with different splits and report the average of all
runs.

(2) In the monolingual condition, we translate
both the training and the test data, similar to our
experiments in the pilot study, but using data sam-
pling that makes sure that training data sizes are
comparable. Differences to the baseline are thus
only due to the machine translation process.

(3) In the translate train experiments, we com-
bine the original English test data with the German
training data automatically translated to English,
as well as original German test data with the En-
glish training data translated to German.

(4) In the translate test condition, we use test
data translated into the other language with the
original test data from that language. In these
last two conditions, differences to the baseline re-
sult either from machine translation or from differ-
ences inherent to the datasets.

QWK

Train Test 1 2 10 ∅

baselines
ENall EN .72 .68 .65 .68
EN EN .64 .56 .64 .61
DE DE .78 .61 .63 .67

translate
both

ENT ENT .63 .49 .64 .58
DET DET .84 .62 .54 .66

translate
train

ENT DE .49 .08 .46 .34
DET EN .41 .39 .39 .40

translate
test

EN DET .35 .08 .43 .29
DE ENT .26 .35 .33 .31

Table 5: Content scoring performance measured
in quadratically weighted kappa for different cross-
lingual setups.

4.2 Results

Table 5 shows our results measured in quadrati-
cally weighted kappa. When looking at the base-
lines first, we see that automatic scoring in this
monolingual case works comparably well for En-

QWK

Train Test 1 2 10 ∅

EN EN .64 .56 .64 .61
EN EN2T .50 .40 .55 .48
EN2T EN .64 .52 .62 .60

Table 6: Double translation in monolingual setting

glish and German. This shows that our manual
scoring of the German data set is reliable enough
to learn a competitive model. In the second mono-
lingual case, when we translate both training and
test data, we only observe moderate losses or for
some prompts even small improvements compared
to the original language version.

When turning towards the cross-lingual results,
where we either only translate train or test data,
the picture looks quite different: in all four condi-
tions, scoring performance is considerably lower
compared to the monolingual settings. The loss
is especially pronounced for prompt 2. This dif-
ference between prompts cannot be explained by
our corpus analysis in Section 3, especially the
vocabulary overlap between English and German
datasets, which were in the same range for all three
prompts (and even slightly higher for prompt 2
than for the other two prompts).

Differences between Prompts To investigate
the apparent differences in similarity between
training and test data for the individual prompts
further, we analyze the data using language mod-
els. We build a trigram language model per prompt
for the English data using the SRILM toolkit (Stol-
cke, 2002) and measure the perplexity of trans-
lated German answers under that language model.
We find the perplexity of answers to prompt 2 to
be higher than answers to prompt 1 and 10, in-
dicating that German answers to prompt 2 fit the
model of the English answer worse than the other
prompts. Considering that using n-grams as classi-
fication features as well as for language models are
quite related tasks, these results are not surprising
but do not provide a full explanation to our obser-
vations. Further investigations into the differences
between prompts are definitely necessary

4.3 Follow-up Experiment: The Influence of
Machine Translation

As discussed in the introduction, the difference be-
tween the baseline and cross-lingual scoring per-
formance can originate from two sources: dif-
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ferent learner populations and effects of machine
translation. In order to assess the individual con-
tributions of these two factors, we propose a vari-
ant of our experiment that operates on only one
dataset but still uses machine translation on either
the test or the training data, so that the delta in per-
formance is due to translation and not to different
learner populations. We achieve this by double-
translating the training or test data of the English
ASAP dataset, i.e., we have the data automati-
cally translated from English to German and then
back to English (marked as EN2T ). Table 6 shows
the performance in comparison to the mono-
lingual baseline experiments where we see that
double-translating the test data decreases perfor-
mance considerably while –surprisingly– double-
translating the training data leaves performance
unaffected.

A naive approach to factor out artifacts from
translationese, while keeping effects stemming
from the differences between the datasets, would
be to use translated datasets in the cross-lingual
case both for training and testing, i.e., we double-
translate one dataset and translate the other one
only once. In this setup, shown in Table 7, perfor-
mance benefits only slightly, if at all, from double-
translation (with the exception of double trans-
lated train data in prompt 1).

Consider the following example of an answer
from the original English dataset:

(A) Plastic type B was the superior in
both trial 1 and trial 2. (B) Record
the weight that was put on to show how
much effected each plastic. Also con-
ducting more trials (. . . )

After translating the answer automatically to Ger-
man and back to English it looks like this:

Type B plastic was the supervisor in
both Trial 1 and Trial 2. (B) Write down
the weight that was put on to show how
much each one has made plastic. Also
do more experiments (. . . )

Apart from obvious translation errors (superior–
supervisor), we see a simplifying effect of trans-
lation: record–write down, effect–make, and con-
duct–do. Such simplifications might on the one
hand normalize over different paraphrases of the
same content, but could on the other hand also re-
move meaningful differences between correct and
incorrect answers.

QWK

Train Test 1 2 10 ∅

translate train

ENT DE .49 .08 .46 .34
ENT DE2T .49 .07 .46 .34

DET EN .41 .39 .39 .40
DET EN2T .43 .36 .44 .41

translate test

EN DET .35 .08 .43 .29
EN2T DET .55 .03 .46 .35

DE ENT .26 .35 .33 .31
DE2T ENT .41 .38 .32 .37

Table 7: Double translation in cross-lingual setting

5 Related Work

To the best of our knowledge, there are no pre-
vious approaches to cross-lingual scoring in the
educational domain. However, cross-lingual NLP
approaches have been successfully used for a vari-
ety of tasks, including information retrieval (Oard
and Diekema, 1998), sentiment analysis (Mihal-
cea et al., 2007) and textual similarity (Moham-
mad et al., 2007; Potthast et al., 2008). While in
some of these approaches, dictionaries are used
as the bridge the gap between languages to trans-
late search queries (e.g. by Ballesteros and Croft
(1996) for cross-lingual information retrieval) or
translate features in a learned model ((Shi et al.,
2010)), many approaches rely on having similar
training data in both languages, often by means
of parallel or comparable corpora (Gliozzo and
Strapparava, 2006). If such corpora are not avail-
able, as is the case for our scenario, leverag-
ing machine translation to create training data for
handling a new language or to transfer test data
into a language for which training data exists has
been explored for example by Fortuna and Shawe-
Taylor, while other approaches use cross-lingual
word embeddings (Klementiev et al., 2012).

6 Conclusion

In this paper we showed the general feasibility of
cross-lingual short-answer scoring. We also iden-
tified a number of challenges: One is that artifacts
from machine translation seem to produce a lan-
guage that is substantially different from genuine
text, and that this translationese poses a problem,
as highlighted by our experiments with double-
translated items. Second, the two datasets bear dif-
ferences that go beyond differences in language.
In a real-life application scenario, this problem
might be less severe, e.g. in a class where everyone
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received the same instructions and just answers an
exam in different languages, where answers can be
expected to be more consistent than the two ver-
sions of the ASAP corpus in our experiments.

For future work, we want to explore more so-
phisticated approaches going beyond our straight-
forward procedure of automatically translating test
or training data, such as translation of word fea-
tures or using cross-lingual embeddings in a neural
network approach as well as extending our exper-
iments to a broader variety of data.
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