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Abstract

When does a gradual learning rule translate
into gradual learning performance? This pa-
per studies a gradient-ascent Maximum En-
tropy phonotactic learner, as applied to two-
alternative forced-choice performance ex-
pressed as log-odds. The main result is
that slow initial performance cannot acceler-
ate later if the initial weights are near zero, but
can if they are not. Stated another way, abrupt-
ness in this learner is an effect of transfer, ei-
ther from Universal Grammar in the form of
an initial weighting, or from previous learning
in the form of an acquired weighting.

1 Introduction

An important class of constraint-based phonologi-
cal learning models responds to training by mak-
ing small changes in the weight or rank of con-
straints (reviewed in Jarosz 2016). The gradualness
of the learning rule seems to suggest that perfor-
mance ought to change gradually as well, resem-
bling the first rather than the second panel in Figure
1. In work on non-linguistic pattern learning, abrupt
improvement has been cited as diagnostic of an ex-
plicit, “rule-based” learning algorithm which seri-
ally tests hypotheses, as opposed to a “cue-based”
one which slowly learns association weights (Ashby
et al., 1998; Love, 2002; Maddox and Ashby, 2004;
Smith et al., 2012; Kurtz et al., 2013). Abruptness
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has been found to correlate with other indicia of ex-
plicitness by humans learning artificial phonology
(Moreton and Pertsova, 2016).

In fact, performance can change abruptly in grad-
ual learners (Elman et al. 1996, Ch. 3–4; GLA ex-
amples in Boersma 1998, Figure 14.25; Boersma
and Levelt 2000; Jesney 2016). When does a gradual
learning rule entail gradual learning performance?
Could the model spend many trials invisibly inch-
ing its way around to some point in weight space
from which it can suddenly accelerate? Conversely,
if we observe abrupt improvement in human learn-
ers, does that disconfirm the model?

Figure 1: Hypothetical “gradual” and “abrupt” learning curve.

This paper addresses the question in a particu-
larly basic case, that of a Maximum Entropy phono-
tactic learner with a fixed constraint set that uses
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gradient ascent on log-likelihood, no prior, and
no restrictions on weights, and that makes two-
alternative forced-choice (2AFC) decisions using
the Luce choice rule. Gradient ascent Max-Ent is
of interest not only in its own right, but because
of its close relation to the Gradual Learning Algo-
rithms for Stochastic Optimality Theory, Harmonic
Grammar and Noisy Harmonic Grammar, and mod-
els of non-linguistic learning such as the Perceptron
(Boersma and Hayes, 2001; Fischer, 2005; Jäger,
2007; Johnson, 2007; Pater, 2008; Pater and More-
ton, 2012; Boersma and Pater, 2016; Moreton et al.,
2017).

The results can be summarized as follows: Re-
gardless of what the constraints actually are, if the
initial weights are exactly zero then — provided that
the training and test distributions are chosen in a par-
ticular way — 2AFC performance improves fastest
at the outset of learning, making abrupt learning im-
possible. Even if, instead, the initial weights are
only near zero, the 2AFC learning curve tracks that
of a learner whose initial weights are exactly zero,
in that the two learners’ trajectories in weight space
steadily converge, and the closer they are in weight
space, the more similar their 2AFC performance is.
An example is given to show that large non-zero ini-
tial weights can, but need not, lead to abrupt 2AFC
performance.

2 Learner and experimental scenario

The universe of candidates is a finite set X =
{x1, . . . , xn}, known to the experimenter. The
model uses an unobservable set of constraints
c1, . . . , cm and an unobservable weight vector w =
(w1, . . . , wm) to assign unobservable probabilities
p = (p1, . . . , pn) to the candidate. This is done as
follows (Goldwater and Johnson, 2003; Jäger, 2007;
Hayes and Wilson, 2008):

The harmony of a candidate xj is defined as the
sum of its score vector, weighted by the current
weights:

hw(xj) =
m∑

i=1

wici(xj) (1)

The model’s estimate of the probability pj of can-
didate xj is the exponential of its harmony, divided
by the summed exponentials of the harmonies of all
representations:

Zw =
n∑

j=1

exphw(xj) (2)

Pr(X = xj | w) =
exphw(xj)

Zw
(3)

The experimenter can at any time give the model a
two-alternative forced-choice test, in which two can-
didates xi and xj are presented to the model, which
chooses xi with probability

Pr(xi|(xi, xj)) =
pi

pi + pj
(4)

This is the Luce choice rule (Luce, 1959, 23). The
test is assumed not to change the state of the model.
At the beginning of the experiment, the experi-
menter chooses two probability distributions r+ and
r−. On each test trial, one candidate is sampled from
X with probabilities given by r+, and the other is
sampled from X with probabilities given by r−.

The experimenter can also train the model by
giving it a candidate xi as an example of a le-
gal word. Instead of training on individual candi-
dates (stochastic gradient ascent), we instead run the
learner in batch mode (gradient ascent); i.e., instead
of a candidate on each trial, the learner receives a
distribution p+, where p+i corresponds to the proba-
bility of presenting xi on a stochastic gradient ascent
training trial.

The model updates its weights according to the
following rule:

∆wi =θ · (Ep+ [ci]− Ew[ci]) (5)

This the Maximum Entropy gradient-ascent up-
date rule, as described by Jäger (2007). Its contribu-
tion to the update is independent of p−, the proba-
bilities of the negative training candidates; i.e., the
learner does “unsupervised” learning.

Below a continuous approximation to this discrete
update rule is used, substituting dwi/dt for ∆wi.
The learning rate parameter η is omitted by setting it
to 1; i.e., the training-time unit is defined to be how
long it takes a constraint to change its weight by one
weight unit when Eemp[ci] − Ew[ci] = 1. The step
size in weight space is thus fixed, rather than de-
creasing on a preset schedule (Boersma and Hayes,
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2001) or adaptively (Boyd and Vandenberghe, 1999,
Section 5.2.1).

In this paper, “abrupt” is used to mean that perfor-
mance improves slowly at the outset of the experi-
ment, then accelerates later (e.g., a sigmoid). Perfor-
mance is expressed here as log-odds rather than pro-
portion correct because (A) log-odds is more trans-
parently related both to the learning model (Jäger,
2007) and to the statistical models fit to experimen-
tal results (Jaeger, 2008), and (B) proportion correct
acts as a squashing function, reducing the visible in-
fluence of changing large weights and thus exagger-
ating the effect whose existence we are arguing for
on other grounds.

3 Improvement in log-likelihood
decelerates monotonically

We begin by establishing a result that is almost what
we want:

Proposition 1. Let L(t) =
∑n

j=1 p
+
j log pj(t) de-

note the model’s expectation of the log-likelihood of
the empirical distribution at time t (Berger et al.,
1996). Then L(t) is always increasing but never
accelerating; i.e., for any t ≥ 0, dL/dt ≥ 0 and
d2L/dt2 ≤ 0.

Proof. We convert the learner to its Replicator form
(Moreton et al., 2017):

d
dt

log pi = (CTCe)j − pTCTCe (6)

where C is the matrix1 whose (i, j)-th entry is
ci(xj), and e = p+ − p. Differentiating the defi-
nition of L(t) then yields

dL
dt

=

n∑

j=1

p+j
d
dt

log pj

=

n∑

j=1

p+j ((CTCe)j − pTCTCe))

=(p+ − p)TCTCe

=eTCTCe

=‖Ce‖2

(7)

1Note difference from familiar tableaus: Rows of C corre-
spond to constraints, and columns to candidates.

(In this paper, ‖ · ‖ is the usual Euclidean norm.)
Since CTC is positive semidefinite, dL/dt ≥ 0.
That confirms what we already know, since the
learner does gradient ascent on L. The second
derivative is

d2L
dt2

=
d
dt
eTCTCe

=2eCTC

(
d
dt
e

)

=− 2


∑

j

pj(C
TCe)2j −

∑

j

(pj(C
TCe)j)

2




=− 2
∑

j

pj(1− pj)(CTCe)2j

(8)

Since 0 < pj < 1, the sum is positive unless e = 0.
Hence d2L/dt2 ≤ 0 — the log-likelihood is always
increasing, but always more and more slowly, until
it stops.

Regardless of the constraint set, initial state, tar-
get pattern, or model parameters, learning, measured
as log-likelihood, only ever slows down. Abrupt,
sigmoidal, or U-shaped L(t) curves are not possi-
ble. However, what the experiments measure is not
log-likelihood, which depends only on the probabil-
ity assigned by the model to the winners, but rather
2AFC performance, which depends in part on how it
distributes probability among the losing candidates.
The next section addresses that complication.

4 When initial weights are all zero, initial
improvement bounds later improvement

In typical “artificial-language” experiments, the
training and testing stimuli are, or approximate, ran-
dom samples from the same distribution, and are
presented to participants with equal frequency. We
consider here a slightly more general possibility:

Proposition 2. Suppose the experimenter chooses
p+, r+, and r− such that at time t = 0, we have

p+ − p(0) = α(r+ − r−) (9)

for some α > 0. Let λ+,− be the log-odds of a cor-
rect 2AFC response. Then at any time t ≥ 0,
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d
dt
Ew[λ+,−]

∣∣∣∣
t

≤ d
dt
Ew[λ+,−]

∣∣∣∣
0

(10)

Proof. For a given weight vector w, the expected
harmony of a positive test candidate is

Ew,r+ [hw(x+)] =
∑

j

r+j hw(xj)

=
∑

j

r+j

(∑

i

wici(xj)

)

=
∑

i

wi


∑

j

r+j ci(xj)




=
∑

i

wiEr+ [ci]

(11)

i.e, the expected harmony of a positive test candidate
is the weighted-by-the-weights sum of the average
score on each constraint among positive test candi-
dates. In terms ofC, the matrix whose (i, j)-th entry
is ci(xj), we can write this as

Ew,r+ [hw(x+)] =
∑

i

wi(Cr
+)i

=wTCr+
(12)

The same holds, mutatis mutandis, for negative
test candidates. For any test pair (xi, xj), the log-
odds λi,j of choosing xi is, by Equation 3, just
the difference in harmony scores given the current
weighting:

λi,j = hw(xi)− hw(xj) (13)

That gives us the following expression for the ex-
pected value of λ+,−, the log-odds in favor of a cor-
rect test response:

Ew[λ+,−] =Ew[hw(x+)− hw(x−)]

=
∑

i

wi(Er+ [ci]− Er− [ci])

=wTC(r+ − r−)

(14)

We differentiate that to get

d
dt
Ew[λ+,−] =

∑

i

(
d
dt
wi

)
(C(r+ − r−))i

=

(
d
dt
w

)T
C(r+ − r−)

(15)

By the update rule in Equation 5, we have

d
dt
wi = (Ep+ [ci]− Ew[ci]) (16)

If q is any probability distribution over the candi-
dates X = {x1, . . . , xn}, then Cq is a vector with
m elements in which the ith element is Eq[ci], the
expected score on Constraint ci when a candidate is
sampled from X under the distribution q. Hence

d
dt
w = C(p+ − p) (17)

Substituting back into Equation 15 then yields

d
dt
Ew[λ+,−] = (C(p+ − p))TC(r+ − r−) (18)

Setting e = p+ − p, we have

d
dt
Ew[λ+,−] = (Ce)T C(r+ − r−) (19)

Applying the Cauchy-Schwarz inequality to
Equation 19 yields:

∣∣∣∣
d
dt
Ew[λ+,−]

∣∣∣∣ ≤ ‖Ce‖ · ‖C(r+ − r−)‖ (20)

with strict equality if and only if C(r+ − r−) is a
scalar multiple of Ce. Because the experimenter
chose p+, r+, and r− to satisfy the hypothesis in
Equation 9, C(r+ − r−) is a scalar multiple of
Ce(0), and so strict equality holds at t = 0:
∣∣∣∣

d
dt
Ew[λ+,−]|t=0

∣∣∣∣ =‖Ce(0)‖ · ‖C(r+ − r−)‖
(21)

From Proposition 1, we know that ‖Ce‖ de-
creases monotonically as t increases. Since
‖C(r+ − r−)‖ is constant, the product is never big-
ger than at t = 0:
∣∣∣∣

d
dt
Ew[λ+,−]

∣∣∣∣ ≤ ‖Ce(0)‖ · ‖C(r+ − r−)‖

≤
∣∣∣∣

d
dt
Ew[λ+,−]|t=0

∣∣∣∣
(22)
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In other words, if the learner starts with w = 0
at t = 0, then 2AFC performance can’t later on im-
prove (or deteriorate) any faster than it did at t = 0.
In particular, the abrupt learning curve of Figure 1 is
impossible for such a learner.2

This result was checked numerically by simula-
tion. Each replication of the simulation was done
as follows: m and n were sampled uniformly from
{4, . . . , 30}. A probability swas sampled uniformly
from the interval (0, 1), and an m×n constraint-by-
candidate matrix C was generated by randomly set-
ting each entry to 1 with probability s, else to 0. A
random concept was generated by uniformly sam-
pling an integer k from {1, . . . ,m}, and decreeing
Candidates {x1, . . . , xk} to be positive. The train-
ing and test distributions were set thus: p+ = r+ =
(1/k, . . . , 1/k, 0, . . . , 0)T ; r− = (0, . . . , 0, 1/(n −
k), . . . , 1/(n− k))T . The learning rate η was set to
1/100, w(0) was set to 0, and the learner was run
for 300 update cycles. The change in the model’s
log-likelihood on each cycle was measured, and the
index of the largest increase was recorded. Ten thou-
sand such replications were run. The largest increase
always occurred on the first cycle, as predicted.

5 Adjacent learning trajectories converge
in weight space

In this section, we show that learning erases small
perturbations in the state of the model: Two learners
that now have slightly different weights will in the
future draw closer and closer together. This is not al-
together unexpected; after all, the learners are climb-
ing the same convex hill, and eventually they will
both arrive at the summit. But what if a small ini-
tial difference somehow leads to paths that diverge
before converging, or causes one to lag further and
further behind the other for a while? Fortunately,
this is not the case.

Proposition 3. Consider two otherwise identical
learning simulations such that at a given time t1,
one is in state w(t1) and the other is in a nearby
state w′(t1). For any t2 > t1, we have ‖w(t2) −
w′(t2)‖ ≤ ‖w(t1)−w′(t1)‖.

2The rate of improvement is bounded above by a monotoni-
cally decreasing quantity (Equation 20), but that does not guar-
antee that the rate itself is monotonically decreasing. Hence,
U-shaped curves are not excluded by this result. None were
found in the simulations described on this page.

Proof. The rate of change in the squared distance
between the two learners in weight space at any time
t is

D =
d
dt
‖w −w′‖2 = 2(w −w′)T

d
dt

(w −w′)

= 2(w −w′)T (Ce− Ce′)
= −2(w −w′)TC(p− p′)

(23)

Since the harmonies of the candidates are the
weighted sums of their constraint scores,

(w −w′)TC = (h− h′)T (24)

It will be convenient to set γ = h′ − h and write

D = 2γT (p− p′) (25)

We will show thatD attains a local maximum at γ =
0, using the usual second-derivative test.

When w = w′, γ = 0, and so of course D = 0.
We now find the first and second partial derivatives
of D with respect to the elements of γ, evaluated at
γ = 0. From Equation 3, we have

p′i =
ehi+γi∑
k e

hk+γk
(26)

The effect on p′ of small changes in γ is given by
the derivatives

∂

∂γi
p′i = p′i(1− p′i) and

∂

∂γi
p′j 6=i = −p′ip′j

(27)
Hence the first-order partials of D are

∂

∂γi
D =2

∑

k

∂

∂γi

(
γk(pk − p′k)

)

=2

(
pi − p′i − γip′i + p′i

∑

k

γkp
′
k

) (28)

These are all zero at γ = 0, since then pi = p′i.
The second-order partials at γ = 0 turn out (after
considerable algebra, omitted here) to be

∂2

∂γ2i
D =− 4pi(1− pi) (29)

117



and

∂2

∂γi∂γj
D =4pipj (30)

The Hessian matrix H of D at γ = 0 is thus3

H = −4(diag(p)− ppT ) (31)

The row sums of H are all zero, the diagonal en-
tries are all negative, and the off-diagonal entries are
positive, so by the Gershgorin circle theorem (Horn
and Johnson, 1985, 344–345), none of the eigenval-
ues of H are positive. We now show that exactly
one of the eigenvalues is zero: Suppose Hx = 0.
Then diag(p)x = p(pTx), i.e., a scalar multiple of
p. Consequently, for every i, it is true that pixi =
pip

Tx. We can cancel the pis to get xi = pTx,
so x = 1(pTx). Hence, 1 is the only eigenvector
whose eigenvalue is zero. The other eigenvalues are
all negative.

Thus the value that D attains at γ = 0 is a local
maximum in every direction except along the line
where γ is a scalar multiple of 1. We now show that
along this line, D is constantly zero: Let γ = t1.
Then, from the original definition of D in Equation
25, D = 2t1T (p−p′) = 2t(1Tp−1Tp′) = 0. All
derivatives of D along that line are therefore con-
stantly zero.4

If w′ differs by a small amount from w, then γ
differs by a small amount from 0. The component
of the difference along the line t1 has no effect on

3The Hessian H is −4 times the variance-covariance ma-
trix of the multinomial distribution parametrized by p (Agresti
1990, 423; Chris Wiesen, p.c., 2017), i.e., the Max Ent distri-
bution parametrized by w. Hence D is approximately a scalar
multiple of the variance in the difference between the two learn-
ers in harmony, sampled under the distribution of the original
learner.

4Moving γ along the line 1t has the effect of adding the
same fixed amount t to the harmony of every candidate. Do-
ing that does not change the model’s candidate-probability esti-
mates (et cancels in the numerator and denominator of Equation
3), and so it also does not change the model’s expectations of
the constraint scores, and so it also does not change the update
to the weights. Two learners whose weights differ by a multiple
of 1 are indistiguishable by any experiment. That is a special
case of a general consequence of Max-Ent/Replicator equiva-
lence, which is that if two learners assign the same probabilities
to all candidates at some time t, they will continue to do so at
all later times if exposed to identical training data.

D; all other components make D negative. Since
D is the rate of change in the squared distance be-
tween w(t) and w′(t), that distance must be stable
or decreasing over time. Thus for any t2 > t1, we
have ‖w(t2) − w′(t2)‖ ≤ ‖w(t1) − w′(t1)‖, as
claimed.

To check this result, the simulations from Section
4 were repeated, except this time the initial weights
w(0) were not zero, but were sampled from a nor-
mal distribution (mean 0, s.d. 1). Then, for each
of those 10,000 simulations, a perturbed mate was
made by adding normally distributed noise (mean
zero, s.d. 0.1) to w(0) to get w′(0). The second-
order Taylor approximation to D around γ = 0 is
D ≈ (1/2)γTHγ, where γ = CT (w′ − w). This
was used to predict D on each of the 300 update
steps for each pair. Results, shown in Figure 2, ver-
ify the accuracy of the approximation (and hence
corroborate the analysis), and show that D was in
every case negative, i.e., that each learner consis-
tently converged with its mate over time.

Figure 2: Actual vs. predicted rate of convergence between

pairs in weight space. Values have been multiplied by -1 so that

logarithmic axes can be used. Each streak is one of N = 1000

pairs (9,000 more omitted to reduce image size).

6 Similar initial weights imply similar
2AFC learning curves

A learner that starts with weights near 0 follows a
trajectory that is close to, and convergent with, that
of the learner that started at 0 (Proposition 3). 2AFC
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performance in a learner that starts at 0 never im-
proves faster than it did at t = 0 (Proposition 2). Just
how closely is the 2AFC learning curve of the near-
0 learner tethered to the bounded learning curve of
the at-0 learner?

Proposition 4. For any w and w′, the difference
∆λ(w,w′) = Ew′ [λ+,−] − Ew[λ+,−] is bounded
by |∆λ| ≤ ‖w′ − w‖√mcrange, where crange is the
largest absolute difference between any two entries
in C.

Proof. From Equation 14, the difference between
the two learners in the expected log-odds of a cor-
rect test response is given by ∆λ(w,w′) = (w′ −
w)TC(r+ − r−). By Cauchy-Schwarz, this is no
greater than ‖w′ − w‖‖C(r+ − r−)‖. Each entry
in C(r+−r−) is the difference between the average
scores of the positive versus negative test stimuli on
one of the constraints, which is at most crange. Thus
‖C(r+ − r−)‖ ≤ √mcrange.

Since ‖w′(t) − w(t)‖ ≤ ‖w′(0) − w(0)‖ by
Proposition 3, the 2AFC learning curve of a learner
that started at w′(0) 6= 0 cannot stray further than
‖w′(0)‖√mcrange from one that started at 0.

In actual practice, the experimenter will often di-
vide the candidates into positive and negative test
sets in a controlled way, so that the two sets receive,
on average, the same score from all but some small
number m? of the m constraints, which we can sup-
pose are Constraints c1 through cm? . Since the ith
entry of C(r+ − r−) is the average difference be-
tween the positive and the negative test sets in their
score on the ith constraint, all but the first m? of the
entries will be as close to zero as the experimenter is
able to arrange. In that case, we can truncate w, w′,
andC to their firstm? entries or rows, tightening the
bound to |∆λ| ≤ ‖w′? −w?‖

√
m?c?range.

Proposition 5. Let M = maxi ‖Ci,·‖ be the norm
of the row of C with the largest norm, and let R =
maxi |Ci,·1| be the largest absolute row sum in C.
Then the difference between the initial rate of 2AFC
improvement of a learner that starts at w = 0 and
one that starts at w′ near 0 is bounded by

|d∆λ/dt|w=0 ≤ ‖w′‖
(
M2

n
+
R2

n2

)
m
√
m?crange

(32)

Proof. Use Equation 19, approximating p′ − p ≈
JCT (w′−w), where Ji,j = ∂pi/∂γj is the Jacobian
of p′ as a function of γ. From Equation 27 it follows
that J = diag(p)− ppT (i.e., J = −H/4; see Eqn.
31). Then

|d∆λ/dt| ≈
∣∣(w′ −w)TCJCTC(r+ − r−)

∣∣
≤ ‖(w′ −w)T ‖‖CJCT ‖‖C(r+ − r−)‖

(33)

where ‖ · ‖, for matrices, is the operator norm, the
maximum factor by which the matrix can stretch
a vector (Strang, 1980, 284). Since CJCT is
symmetric, its operator norm is simply its largest
eigenvalue, which is no larger than ma, where
a = maxi,j |(CJCT )i,j | (Zhan, 2006, Corollary 2).
What is a?

For w = 0, we have J = 1
nI − 1

n211
T , so

CJCT = 1
nCC

T − 1
n2C11

TCT . Then

∣∣∣∣
1

n
(CCT )i,j

∣∣∣∣ =
1

n
|Ci,· · Cj,·|

≤ 1

n
max
i
|Ci,· · Ci,·|

≤ 1

n
M2

(34)

Likewise,

∣∣∣∣
1

n2
C11TCT

∣∣∣∣ ≤
1

n2
max
i,j
|(C1)i · (C1)j |

≤ 1

n2
max i(C1)2i

≤ 1

n2
R2

(35)

Hence

a = max
i,j
|(CJCT )i,j | ≤

1

n
M2 +

1

n2
R2 (36)

and so, since ‖CJCT ‖ ≤ ma,

‖CJCT ‖ ≤m
(

1

n
M2 +

1

n2
R2

)
(37)

Substituting ‖C(r+−r−)‖ ≤
√
m?crange from the

discussion of Proposition 4 completes the proof.
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A row of C corresponds to a constraint, each en-
try being the score that that constraint gives to one
candidate. Since all of those scores are less than cmax
(the largest absolute value of any element in C), we
have M2 ≤ nc2max and R2 ≤ (ncmax)2. Hence

|d∆λ/dt|w=0 ≤ ‖w′‖m
√
m?c2maxcrange (38)

This is a worst-case estimate, based on very
weak hypotheses about C and on the blunt instru-
ment of the vector and matrix norms, which ig-
nore exploitable structure. Stronger hypotheses per-
mit improvment. For example, suppose C is bi-
nary, and let di = 1

nC1 be the proportion of 1’s
in Row i. Each entry (CCT )i,j is the number of
1’s that appear in the same column in Rows i and
j, and hence is at most the smaller of the two row
sums, so 1

n(CCT )i,j ≤ min{di, dj}. Each entry
(C11TCT )i,j is the product of the row sums of
Rows i and j, so 1

n2 (C11TCT )i,j = didj . Con-
sequently,

a = max
i,j
|(CJCT )i,j | ≤min{di, dj} − didj

≤min{di(1− dj), dj(1− di)}
≤1/4

(39)

To justify this last step, suppose without loss of
generality that di(1 − dj) ≤ dj(1 − di). Then
a2 = (di(1 − dj))

2 ≤ di(1 − dj)dj(1 − di) =
di(1 − di)dj(1 − dj) ≤ (1/4)(1/4), so unsquaring
on both sides yields a ≤ 1/4. It follows that

|d∆λ/dt|w=0 ≤ ‖w′‖
1

4
m
√
m? (40)

Suppose further that the entries of C are modelled
as i.i.d. Bernoulli trials with Pr(Ci,j = 1) = s.
Then M2 = maxi

∑n
j=1C

2
i,j =

∑n
j=1 |Ci,j | = R.

If n is large, the row sums are approximately sam-
ples from a normal distribution with mean ns and
standard deviation

√
ns(1− s). The expected value

of the maximum of a sample of sizem from the stan-
dard normal distribution N(0, 1) is approximately√

2 logm (Cramér, 1946, 374). Hence E[M2] =
E[R] = (ns +

√
ns(1− s)2 logm). As n → ∞,

E[M2]/n → s, while E[R2]/n2 = (E[R]/n)2 =

(E[M2]/n)2 → s2. Thus ‖(CJCT )‖ → (s +
s2)m = s(1 + s)m, and cmax = crange = 1, so from
Equation 40, we have

E [|d∆λ/dt|w=0] ≤ ‖w′‖m
√
m? min

{
1

4
, s(1 + s)

}

(41)
Equation 41 was checked against 10,000 simu-

lations, generated as described in Section 4. The
yoked pairs consisted of one learner that started at
w(0) = 0, and one that started at w′(0) with entries
sampled from a normal distribution with mean 0 and
standard deviation 0.1. In calculating the bound, m?

was set equal to m. The actual value was always
less than the bound, with the minimum difference
being 0.01405. The bound was usually a substantial
overestimate, the median difference being 5.372 and
the maximum 30.51. In the subset where the near-
zero learner’s initial performance was near chance
(|λ′(0)| ≤ 1/10) and initial improvement was near
zero (|dλ′/dt| ≤ 1/10), a total of 1075 cases, the
bound proved much tighter, overestimating by a me-
dian of 0.591 and a maximum of 0.998. These cases
tended to have either small m or extreme s.

7 Putting the bounds together

One way that these bounds might be applied in
practice is as follows. Suppose we hypothesize
that the learner’s initial weights w′(0) are such that
‖w′(0)‖ ≤ w, and we experimentally measure ini-
tial performance to be λ′(0) = 0 and the initial im-
provment rate to be dλ′/dt(0) = 0. Proposition 5
then gives us a bound — call it b — on the initial
improvement rate for an otherwise identical learner
with w(0) = 0. By Proposition 2, the slope of the
hypothetical 0-learner’s 2AFC curve λ(t) never ex-
ceeds b. That curve would have started at λ(0) = 0,
since w(0) = 0 makes all candidates equally har-
monic. Hence the hypothetical 0-learner’s 2AFC
curve is bounded by λ(t) ≤ bt. By Proposition 3,
the observed and hypothetical learner converge in
weight space, which by Proposition 4 means that
λ′(t) ≤ bt + w

√
m?crange. Conversely, if λ′(t) ever

exceeds this value, we know that w′(0) must have
been more than w, contrary to hypothesis.5

5We also have to assume that the experiment has sufficient
time resolution that learning cannot begin with an undetectably
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8 When initial weights are far from zero,
2AFC performance can accelerate

If the initial weights are far from 0, then even a
simple constraint set can yield abrupt learning. For
n = 4, let C = I4, the identity matrix of order
4 (i.e., 4 candidates, 4 constraints, each constraint
gives a 1 to just one candidate). If we set w(0) =
(x,−x, 0, 0)T , p+ = r+ = (1/2, 1/2, 0, 0)T , and
r− = (0, 0, 1/2, 1/2)T , the 2AFC curve starts out
flat at 0 and stays that way (longer the bigger x is),
then starts climbing rapidly as shown in the black
curve on Figure 3.

Figure 3: 2AFC learning curves for n = 4, C = I4, and

w0 = (6,−6, 0, 0)T (black curve) or (6,−6, 6,−6)T (gray

curve), with p+ = r+ = (1/2, 1/2, 0, 0)T , and r− =

(0, 0, 1/2, 1/2)T . Other parameters: η = 1/100 .
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The idea behind this construction is that initially,
every negative candidate is much less probable than
half of the positive candidates, and much more prob-
able than the other half, so that the outcome of a
2AFC trial is 50% likely to be correct (0 logits). The
learner then spends ages laboriously hauling up the
low-frequency half of the positive candidates, and
letting down the negative candidates, until the low-
frequency positive candidates finally start winning a

brief but huge improvment rate that would satisfy the hypoth-
esis of Proposition 2 and thus allow later unexpected sudden
improvement.

noticeable number of 2AFC competitions. The con-
struction can be carried out for any C that makes it
possible to sandwich the initial probabilities of the
positive (negative) candidate between those of the
negative (positive) ones by artful choice of w(0).

9 Discussion

Since abrupt learning has been observed in human
phonological acquisition in nature Smith (1973);
Macken and Barton (1978); Vihman and Velleman
(1989); Barlow and Dinnsen (1998); Levelt and van
Oostendorp (2007); Gerlach (2010); Guy (2014)
and in the lab Moreton and Pertsova (2016), the
question of when a gradual learning rule translates
into gradual learning performance is pertinent. For
the learner and experimental paradigm studied here,
transfer from UG or from previous learning is a nec-
essary condition for abruptness. This result spawns
many further questions, among them:

� The non-abrupt gray curve in Figure 3 shows
that not just any set of large non-zero initial weights,
paired with just any training and test distribution,
leads to abrupt learning in the model. Which ones
do? What are the most general sufficient conditions?
Phonological theory offers many proposals about
the initial state of L1 or L2 learning (e.g., Demuth
(1995); Gnanadesikan (1995); Smolensky (1996);
Pater (1997); Broselow et al. (1998); Boersma and
Levelt (2000); Curtin and Zuraw (2002); Hayes
(2004); Wilson (2006); Hayes et al. (2009); Jesney
and Tessier (2011); White (2014)); what predictions
follow for abruptness?

� In human learners, is abrupt learning associated
with transfer of constraint weights from UG, L1, or
previous training in the lab? What is going on during
apparent initial stagnation? Does it actually consist
of steady unlearning of a pre-existing grammar?

� Do the present results extend to other learners
that are algorithmically related to this one? That is a
sizable class, including not only elaborations of Max
Ent gradient ascent, but also the Gradual Learning
Algorithms for Stochastic OT and Harmonic Gram-
mar (recent reviews: Boersma and Pater (2016); Pa-
ter (2016); Jarosz (2016)). Abrupt learning has been
seen in some of them (see Introduction above). Dif-
ferences in the conditions under which they admit
abrupt learning may provide a hitherto unused way
to them empirically.
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