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Abstract

Edit distance is commonly used to relate cog-
nates across languages. This technique is par-
ticularly relevant for the processing of low-
resource languages because the sparse data
from such a language can be significantly
bolstered by connecting words in the low-
resource language with cognates in a related,
higher-resource language. We present three
methods for weighting edit distance algo-
rithms based on linguistic information. These
methods base their penalties on (i) phonolog-
ical features, (ii) distributional character em-
beddings, or (iii) differences between cognate
words. We also introduce a novel method for
evaluating edit distance through the task of
low-resource word alignment by using edit-
distance neighbors in a high-resource pivot
language to inform alignments from the low-
resource language. At this task, the cognate-
based scheme outperforms our other meth-
ods and the Levenshtein edit distance base-
line, showing that NLP applications can ben-
efit from information about cross-linguistic
phonological patterns.

1 Introduction

Many NLP techniques require large quantities of
training data, which is a problem for low-resource
languages (languages with little available data).
Work on low-resource languages often focuses on
tackling this low-data problem, such as by creat-
ing more data (Marton et al., 2009), collecting more
data from the Internet (Mendels et al., 2015) or from

∗Work done while at Yale University.

scholarly papers (Xia et al., 2016), efficiently elicit-
ing informative data (Probst et al., 2002), or crowd-
sourcing the collection of corpora (Post et al., 2012).
One promising approach is to supplement the avail-
able data for a low-resource language with data from
higher-resource languages, an approach which has
been applied to tasks ranging from speech recog-
nition (Thomas et al., 2012) to machine translation
(Dholakia and Sarkar, 2014).

An open problem within this approach is find-
ing the best way to map information from one lan-
guage to another. When connecting related lan-
guages, a natural place to start is with cognates, and
many works use edit distance for cognate detection
(Simard et al., 1993; Barker and Sutcliffe, 2000;
Koehn and Knight, 2000; Mann and Yarowsky,
2001; Inkpen et al., 2005; Bergsma and Kondrak,
2007; Munro and Manning, 2012). Edit distance
refers to the difference between two strings, and
this paper explores several techniques for determin-
ing edit distance. Our baseline is the Levenshtein
edit distance algorithm (Levenshtein, 1966; Wagner
and Fischer, 1974), and we introduce three novel
edit distance algorithms, namely feature-based edit
distance, char2vec-based edit distance, and cognate-
based edit distance, and assess their performance at
transferring information across languages using the
task of low-resource cognate identification. Finally,
we introduce a novel method for evaluating edit dis-
tance algorithms through the task of word alignment.

2 Related work

Ristad and Yianilos (1998) first presented schemes
for training weighted edit distances, and others such
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as Cotterell et al. (2014) have proposed modifica-
tions to this method. Weighted edit distance and
other weighted schemes for computing string sim-
ilarity such as point-wise mutual information have
been used by several authors for cognate detection
(Kondrak, 2001; Ciobanu and Dinu, 2014; Jäger and
Sofroniev, 2016; Jäger et al., 2017).

This paper’s novel contribution is to extend this
technique to a low-resource setting. The prior work
in edit-distance-based cognate detection has relied
on phonetic transcriptions, information about word
meaning, or hand-created lists of cognates on which
to train a system. Here we investigate how to assign
edit distance weights when no such information is
available for one of the languages in question. Sev-
eral prior systems have used word similarity to as-
sess historical linguistic claims about language phy-
logeny (Kondrak, 2002; Jäger, 2013; List, 2013), but
here we follow the inverse strategy of using knowl-
edge about language phylogeny to inform the deter-
mination of string similarity by compensating for the
lack of resources about a language with information
from closely related and better-resourced languages.
An additional novel contribution of this paper is to
propose a new technique for assessing string simi-
larity metrics based on how much a given metric can
improve performance on a practical NLP task.

3 Edit distance algorithms

We use four basic approaches to calculating edit dis-
tance, detailed in the following subsections.

3.1 Levenshtein edit distance
As a baseline, we use Levenshtein edit distance
(Levenshtein, 1966; Wagner and Fischer, 1974).
Levenshtein edit distance focuses on three opera-
tions that can be performed on a string of characters:

1. Insertion: The insertion of a new character
into the string.

2. Deletion: The deletion of a character already
present in the string.

3. Substitution: The substitution of some new
character for a character already in the string.

The Levenshtein edit distance between two words
w1 and w2 is defined as the minimum number of

insertions and/or deletions and/or substitutions that
must be made to transform w1 into w2. Table 1 con-
tains some examples of word pairs and the Leven-
shtein edit distance (distL(w1, w2)) between them.

3.2 Feature-based edit distance

This section details two approaches to edit distance
in which the basic aim is to alter the Levenshtein
penalties based on the phonological properties of
the characters involved. The assumption underly-
ing this method is that, when two cognates differ in
some of the phonemes they contain, they are likely
to differ in phonologically sensible ways. For ex-
ample, it is more likely that one cognate will con-
tain a d where its partner contains a t than it is for
one cognate to contain a d where the other con-
tains a u. If this assumption is true, an edit dis-
tance algorithm that encodes some phonological in-
formation may be more successful at identifying
cognates than the basic Levenshtein algorithm. In-
deed, Kondrak (2002) showed that the ALINE sys-
tem, which computes string similarity based on a so-
phisticated set of phonological features, performed
better at cognate identification than the basic Lev-
enshtein method did; however, this success does not
necessarily extend to our current situation because,
due to our assumption that we are in a low-resource
environment, we use only orthographic representa-
tions of words, not phonetic transcriptions.

3.2.1 Vowel/consonant approach
In this model, the penalty for substituting a vowel

for a consonant, or for substituting a consonant for
a vowel, is greater than that for substituting a vowel
for a vowel or for substituting a consonant for a con-
sonant. Specifically, this model works almost ex-
actly like the basic Levenshtein−with a penalty of
1 for an insertion or a deletion or for a substitution
that does not change a vowel to a consonant or vice
versa−but the penalty for substituting a vowel for a
consonant (or vice versa) is 2.

3.2.2 More features
For this model, we assign a set of phonological

features to each character and make the penalty for
any operation equal to the number of features that
change when that operation occurs. For example,
substituting a d for a t incurs a penalty of 1 because a

103



w1 w2 distL(w1, w2) Operations performed
stephen king stephen hawking 3 insert(h), insert(a), insert(w)

lemony snicket jiminy cricket 5 sub(l, j), sub(e, i), sub(o, i), sub(s, c), sub(n, r)
jim carrey john kerry 6 sub(i,o), insert(h), sub(m, n), sub(c, k), sub(a, e), del(e)

Table 1: Examples of Levenshtein edit distance.

single feature (namely, voicing) has changed, while
substituting a b for a t incurs a penalty of 2 because
two features (voicing and place) have changed. In
practice, it is impossible to enact this approach rigor-
ously because orthography does not map cleanly to
phonology and does not have consistent phonolog-
ical properties across languages. Therefore, many
of the weights used for this method are by necessity
somewhat arbitrary because the set of phonological
features that we assign to each character does not
necessarily match that character’s true features in all
contexts and across all languages.

3.3 Char2vec edit distance

The word2vec algorithm from Mikolov et al.
(2013a) uses word distributions to train representa-
tions of words as vectors in high-dimensional vec-
tor space; such vector representations are called em-
beddings. Inspired by word2vec’s success at cre-
ating semantically sensible embeddings for words,
we apply the word2vec algorithm to characters in
an attempt to create phonologically sensible embed-
dings for characters. We refer to this technique as
char2vec. The char2vec algorithm begins by con-
sidering a window of a fixed size around every in-
stance of character c in the training corpus (which, in
this case, was the monolingual Portuguese data from
the Europarl corpus; see Section 4 for more details).
We tested windows of size 3 and 5. For word2vec,
larger windows are typically used, but since there
are far fewer characters than words, a smaller win-
dow size seemed sensible for the char2vec experi-
ments because, unlike with word2vec, the cooccur-
rence vectors for char2vec are not at all sparse, so
there is little need to look farther away from the tar-
get character to populate the cooccurrence vector.

Once the desired windows around different occur-
rences of c were established, a neural network was
used to generate the vector embedding for c. The
neural network used was a simple feed-forward net-
work with an input layer and an output layer both

having dimensionality equal to the number of char-
acters in the character set, and with a single hid-
den layer of dimensionality 16. The network was
then trained using either the continuous bag of words
(CBOW) method or the skip-gram method, both de-
scribed in Mikolov et al. (2013a). Once the network
finished training, the trained weight matrix used to
transition from the input layer to the hidden layer
was used to generate the embeddings for all of the
characters. Specifically, for the character at index i
in the input vector, its embedding was row i of the
weight matrix. An embedding was also created for
the empty string ε by pretending that there was an ε
between every two letters in the training data.

Once these embeddings were trained, the
char2vec edit distance between any two characters
was defined as one divided by the cosine distance
between the embeddings for those two characters,
which is given by the following equation:

(cosdist(c1, c2))
−1 =

||~c1|| ||~c2||
~c1 · ~c2

(1)

where ~c1 and ~c2 are the vector embeddings of c1
and c2. The negative exponent is there because the
cosine is greater for more similar vectors, whereas
we want a smaller penalty for more similar vectors.
For insertions and deletions, the same equation is
used, except that either c1 (for insertions) or c2 (for
deletions) is ε because deleting a character can be
thought of as replacing it with the empty string, and
inserting a character can be thought of as replacing
the empty string with that character.

These embedding-based edit distances are
founded upon two assumptions: First, as with the
feature-based edit distance methods in Section 3.2,
these methods assume that, across a pair of cog-
nates, it is more likely for one character to substitute
for a character phonologically similar to it than for
a character that is not very phonologically similar
to it. Secondly, the embedding-based methods
make the further assumption that the distribution
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of a character can give an accurate portrayal of
the character’s phonological nature. Distributional
facts certainly can shed light on the phonolog-
ical properties of a speech sound; for example,
Peperkamp et al. (2006) created an algorithm that
was highly effective at determining which sounds
were allophones vs. distinct phonemes based on the
distributions of those sounds. Despite this success,
it is not necessarily the case that distributional
evidence is useful for cognate determination, since
identifying allophones within a language might
entail significantly different types of evidence than
identifying cognates across languages.

3.4 Cognate-based edit distance

The embedding-based methods in the previous sec-
tion all derive their embeddings from a single train-
ing language (in this case Portuguese). We now try
to utilize cross-linguistic information from three Ro-
mance languages, namely Portuguese, Italian, and
French. The idea behind this approach is to identify
cognates amongst Portuguese, Italian, and French
and to use those cognates to determine which phono-
logical differences are likely to be present in Ro-
mance cognate pairs and which are not and to ap-
ply this information to the test language of Spanish
(which is not used as a training language).

The following criteria were used to generate train-
ing examples for this experiment; positive examples
were identified by finding any pairs (w1, w2) that
satisfied criteria (1), (2), (3), and (4a), while neg-
ative examples were identified by finding any pairs
(w1, w2) that satisfied criteria (1), (2), (3), and (4b):

1. w1 and w2 are from different languages.

2. The Levenshtein edit distance between w1 and
w2 is greater than 0 but less than some specified
amount d.

3. Both w1 and w2 are at least 4 characters long.

4. (a) The most likely English translation of w1

is the same as the most likely English
translation of w2.

(b) The cosine similarity between the GloVe
embeddings (Pennington et al., 2014) of
the most likely English translation of w1

and w2 is less than 0.5.

For criterion (1), the languages considered were
Portuguese, French, and Italian, which are all of the
Romance languages (besides the test language of
Spanish) considered in this paper. For criterion (2),
we ran the experiments both with d = 1 and with
d = 2. Criterion (3) is included because a low Lev-
enshtein edit distance does not mean much for very
short words−for example, any two two-letter words
will have an edit distance of at most 2, but this by no
means implies that all two-letter words are cognates
of each other. For criterion (4), the most likely En-
glish translation of a word is identified based on the
IBM Model 1 (Brown et al., 1993) translation prob-
abilities generated by running the mgiza word align-
ment program (Gao and Vogel, 2008) on the bilin-
gual Portuguese/English, French/English, and Ital-
ian/English training sets. Finally, for criterion (4b),
we used the GloVe embeddings from Pennington et
al. (2014) as a metric for determining semantic sim-
ilarity; words with a cosine similarity less than 0.5
tend not to be very semantically similar, so this cri-
terion is intended to ensure that the negative exam-
ples are not cognates despite being phonologically
similar, while criterion (4a) is meant to find positive
examples by identifying words that appear phono-
logically similar and have similar meanings.

When d from criterion (2) was specified to be 1,
this criteria generated 8,718 positive examples and
25,440 negative examples, while having d = 2 gen-
erated 27,744 positive examples and 448,746 nega-
tive examples. We restricted the number of negative
examples to be equal to the number of positive ex-
amples in each case, so that there ended up being
both 8,718 positive examples and 8,718 negative ex-
amples when d = 1 and 27,744 positive examples
and 27,744 negative examples when d = 2. Table
2 shows some of the positive and negative example
pairs generated when d = 1.

These examples were used to train weights for
each possible operation of insertion, deletion, or
substitution. There are 27 characters for which to
learn weights (the 26 letter plus an OTHER charac-
ter1); thus there are

(
27
2

)
possible substitutions that

can be made. Because it makes sense for these edit
distances to be symmetrical, it was deemed that the

1A character with a diacritic is represented as 2 characters,
the base character plus a diacritic character that is collapsed into
the OTHER category.
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Word 1 Word 2
afgane (It.) afghane (Fr.)
“afghan” “afghan”

stupide (Fr.) stupido (It.)
“stupid” “stupid”

serviu (Port.) servi (Fr.)
“served” “served”

discriminata (It.) discriminada (Port.)
“against” “against”
finali (It.) finale (Fr.)

“final” “final”

Word 1 Word 2
colmando (It.) comando (Port.)

“closing” “command”
eternamente (It.) externamente (Port.)

“eternally” “externally”
monge (Port.) ronge (Fr.)

“monk” “plaguing”
paute (Port.) faute (Fr.)
“transparent” “fault”
mentis (It.) mentir (Fr.)
“mindset” “lie”

Table 2: Some of the examples used for training the cognate-based edit distance. The table on the left shows positive examples

(pairs deemed to be cognates), while the table on the right shows negative examples (pairs deemed not to be cognates).

penalty for inserting a character should be the same
as the penalty for deleting that character, so there
were also 27 possible insertion/deletion operations.
Thus, there are a total of

(
27
2

)
+ 27 = 378 operations

for which to learn weights. We used logistic regres-
sion to find the weights that performed best at classi-
fying the training items as cognates or non-cognates.

The success of this approach depends on the as-
sumption that the types of sound changes that occur
between some pairs of languages within a language
family are similar to the types of sound changes that
occur between other pairs of languages in that lan-
guage family. This assumption is not necessarily
true; a language pair could easily have some system-
atic sound changes between its members that are not
represented in any other language pairs. However,
perhaps it is the case that there will be some broader
trends that cut across many members of a family.

4 Experimental setups

For all experiments, Spanish is treated as if it is a
low-resource language for which we wish to gain
information based on its high-resource relatives of
Portuguese, Italian, and French. Although Spanish
is a very high-resource language in real life, for these
experiments we simulate low-resourcedness by not
providing the computer with any Spanish training
data; thus, the test data is the computer’s only expo-
sure to Spanish. We chose this path rather than us-
ing a truly low-resource language because it is much
easier to create gold standards for evaluation for a
high-resource language. As in real life, Portuguese,
Italian, and French are treated as high-resource (that

is, there is ample training data for these languages),
as is English, which is used in the word alignment
experiments. Thus, the char2vec embeddings are
trained on Portuguese data, and the cognate-based
edit distances are trained on Portuguese, French, and
Italian data. All experiments used the Europarl par-
allel corpus (Koehn, 2005) as sources of text in the
languages of interest. This corpus comes from the
proceedings of the European Parliament, a govern-
ing body of the European Union.

4.1 Cognate identification

Cognate identification was used as a direct method
of testing how well each edit distance algorithm per-
formed. To do this, a set of pairs of likely Span-
ish/Portuguese cognates was formed in the same
way as the likely cognates were chosen for the
cognate-based embeddings (see Section 3.4). Call
such a Spanish/Portuguese pair (s, p). For each such
pair, each edit distance algorithm was used to iden-
tify the Portuguese word pclosest with the smallest
edit distance from s (with ties being broken ran-
domly). It was then checked whether p = pclosest.
A total of 12,198 cognate pairs were tested in this
manner for each edit distance algorithm.

4.2 Word alignment

4.2.1 Background
Though cognate identification is the most direct

method for evaluating each edit distance algorithm,
it has several flaws. First, it requires the selection
of exactly one Portuguese word as the cognate for
a given Spanish word, when in reality there may
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be many valid Portuguese choices (such as other
inflected forms of the intended Portuguese word).
More generally, cognacy only really makes sense at
the lemma level, but the low-resource setting of our
task means that we do not have access to lemmati-
zation and must use words instead of lemmas, mak-
ing the cognate detection task ill-defined in this con-
text. In addition, the fact that the method of select-
ing cognates so closely mirrors the steps for training
cognate-based edit distance may unfairly advantage
the cognate-based edit distance algorithm2. There-
fore, as a fairer and more definitely quantifiable as-
sessment, we use the task of word alignment.

Word alignment is the task of, given two sen-
tences that are translations of each other, determin-
ing which words correspond to each other seman-
tically across the two languages. Word alignment
is an important step in many machine translation
systems, such as the popular Moses software sys-
tem (Koehn et al., 2007), and effective word align-
ment depends heavily upon the size of the alignment
algorithm’s training corpus. Therefore, success at
word alignment (and, by extension, machine trans-
lation programs based on word alignment) suffers
greatly under a data shortage. Cognate information
can be used to combat this data shortage because, if a
low-resource language is related to a high-resource
language, educated guesses about the meanings of
words in the low-resource language may be formed
based on similar-looking words in the high-resource
language. Presumably, an edit distance algorithm
that more accurately identifies cognates will per-
form better at this sort of pivoting than an edit dis-
tance algorithm that does not perform as well at cog-
nate identification. Multiple authors in the past have
worked on exploiting language relatedness to assist
in machine translation (Mikolov et al., 2013b; Zoph
et al., 2016; Cheng et al., 2016), including via a fo-
cus on using this information to improve word align-
ment performance (Xiang et al., 2010).

4.2.2 Pivot-based alignment algorithm
All word alignment experiments aim to align

Spanish sentences with their English translations,

2An anonymous reviewer notes that this second problem
could be overcome by testing on human-generated cognate lists,
which would be a useful metric to compute in future work.
However, the other problem with the cognate task remains.

with no Spanish-English training data available. In-
stead, a bilingual Portuguese-English training set of
1 million lowercased and tokenized sentences from
the Europarl corpus is used to train Portuguese-
English translation probabilities of the form t(e|p),
where t(e|p) is the probability that a given Por-
tuguese word p will be translated as the English
word e. The training of these translation probabil-
ities was accomplished using mgiza (Gao and Vo-
gel, 2008), which is an implementation of the IBM
models of word alignment (Brown et al., 1993).
The test set for the word alignment experiments is
a set of 1,000 lowercased and tokenized parallel
Spanish/English sentences from the Europarl cor-
pus. The test set also contains a gold standard
set of alignments from the NAACL 2006 shared
task on statistical machine translation, available at
http://www.statmt.org/wmt06/shared-task/. These
gold standard alignments were generated using au-
tomatic methods (the exact methods are not stated),
so they can be expected to contain some errors, but
for the purposes of low-resource NLP these errors
are expected to be negligible.

In order to pivot from Portuguese (the pivot
language used for training) to Spanish (the low-
resource language used for testing), we define the
translation score3 t(e|s) between English word e and
Spanish word s as

t(e|s) = argmax
p∈P

t(e|p)
ed(s, p) + λn

(2)

where P is the set of all Portuguese words, ed(s, p)
is the edit distance between s and p, and λn is
the product of a smoothing factor λ and the num-
ber of edit operations n, where λ was optimized for
each edit distance algorithm to scale the relative im-
portance of t and ed. This definition encodes our
assumption that similar-looking Spanish and Por-
tuguese words (i.e., Spanish and Portuguese words
with low edit distances) will have similar meanings.

The Spanish and English sentences are then
aligned based solely on this translation score (as in
IBM Model 1), without reference to any of the prop-
erties such as distortion or fertility used in higher
IBM models. The choice to only use translation

3We call it a score rather than a probability because we do
not normalize, so the scores do not sum to 1.
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probability was made for simplicity; since the focus
of these experiments is on edit distance algorithms,
not on alignment algorithms, it was simplest to use
the most basic alignment algorithm.

In the typical instantiation of IBM Model 1, the
choice of which target word to align with source
word a is made by iterating through all words in
the target sentence and finding which has the great-
est translation probability for a. This pivot-based
formalism adds another step: Now, for each Span-
ish word s, the choice of which word to align with
is made by iterating through all of s’s closest Por-
tuguese edit distance neighbors, and for each of
those iterating through all words in the English sen-
tence, to find which pair of a Portuguese neigh-
bor and an English word yields the highest trans-
lation probability, and then aligning with that En-
glish word. Because IBM Model 1 treats all word
alignments as independent, the probability of a set
a of word alignments that align English sentence e
and Spanish sentence s can be maximized simply
by maximizing the probabilities of each individual
alignment between a Spanish word s and some En-
glish word e−that is, by aligning each Spanish word
s with the English word e that maximizes t(e|s).

5 Evaluation

An advantage of the word alignment task is that
we can straightforwardly quantify the results via the
Alignment Error Rate (AER), defined as

AER = 1− 2P

p+ c
(3)

where P is the number of predicted alignments that
are correct, c is the number of alignments in the gold
standard, and p is the number of predicted align-
ments (where an alignment is defined as a connec-
tion between one Spanish word and one English
word). AER falls within the range of 0 to 1, where
it is best to be as close to 0 as possible.

6 Results and discussion

6.1 Cognate identification
The results at the cognate identification task are re-
ported in Table 3. The cognate-based results are re-
ported with d = 2, where d is the maximum edit dis-
tance between French/Italian, French/Portuguese,

Algorithm Accuracy
Levenshtein 0.314

Vowel-Consonant 0.316
More Features 0.320

Char2vec 0.312
Cognate 0.330

Table 3: Results on cognate identification.

and Italian/Portuguese cognate pairs used to train the
weights for edit distance operations, since d = 2
performed better than d = 1. This is likely because
increasing the maximum edit distance between cog-
nate pairs creates more pairs for the training set.

6.2 Word alignment

Table 4 shows the results at the word alignment task.
The first set of methods are included as baselines.
Random refers to randomly aligning each Spanish
word with one English word, while Diagonal refers
to aligning the ith Spanish word with the ith English
word for all i less than the minimum of the two
sentences’ lengths, so these two methods show how
well an extremely naive model can perform. Mean-
while, fast-align is a state-of-the-art word alignment
program from the cdec package (Dyer et al., 2010)
and was trained directly on the Spanish-English sec-
tion of Europarl; thus, its performance is indicative
of the best performance that can reasonably be ex-
pected on this task in a high-resource setting.

The second part of the table compares the various
edit distance algorithms. To scale each algorithm’s
set of penalties to a reasonable range of penalty ra-
tios, all algorithms were tested with each smoothing
factor λ in the set [0.01, 1, 5, 10, 50, 100], where
the smoothing factor in question was added to each
penalty used in the calculation of a word pair’s over-
all edit distance. Results are reported with the best-
performing smoothing factor for each algorithm.

The char2vec algorithm was tested both using the
CBOW and the skip-gram methods from Mikolov et
al. (2013a) as well as with window sizes of 3 and
5 (i.e., 1 character on either side of the target word
and 2 characters on either side of the target word).
CBOW and skip-gram performed comparably; be-
cause CBOW performed slightly better, results are
reported with it. The window size of 3 performed
significantly better than a window size of 5, so re-
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Edit distance algorithm λ Alignment model Pivot langauge AER
- - Random - 0.948
- - Diagonal - 0.819
- - fast-align - 0.288

Levenshtein 0.01 IBM M1 Portuguese 0.673
VC 100 IBM M1 Portuguese 0.670

More features 100 IBM M1 Portuguese 0.674
Char2vec 10 IBM M1 Portuguese 0.672
Cognate 1 IBM M1 Portuguese 0.663
Cognate 1 IBM M1 Portuguese 0.554
Cognate 1 HMM Portuguese 0.504
Cognate 1 IBM M3 Portuguese 0.548
Cognate 1 IBM M4 Portuguese 0.448

Levenshtein 0.01 IBM M4 Spanish 0.360
Levenshtein 0.01 IBM M4 Portuguese 0.500
Levenshtein 0.01 IBM M4 Italian 0.571
Levenshtein 0.01 IBM M4 French 0.613
Levenshtein 0.01 IBM M4 German 0.722
Levenshtein 0.01 IBM M4 Danish 0.732
Levenshtein 0.01 IBM M4 Finnish 0.776

Table 4: Smoothed word alignment results for various experimental settings.

sults are reported with this window size. This dif-
ference is likely because there are so few charac-
ters in the alphabet that considering characters in
a wider window ceases to uniquely characterize a
given character, since pretty much any character can
easily occur two letters away from pretty much any
other character. For the cognate-based edit distance,
as in Section 6.1, results are reported with d = 2.

Part 2 of this table only uses IBM Model 1. To
see whether more advanced models can improve
performance, the third section of Table 4 uses ba-
sic implementations of the higher IBM models from
Brown et al. (1993) and the HMM model from
Vogel et al. (1996). For each of these models,
the parameters from training on Portuguese-English
alignment were transferred directly to the Spanish-
English case. Note that, in this section, IBM M1 re-
ally refers to using the IBM Model 1 algorithm with
translation probabilities trained using IBM Model 4;
this is why the IBM Model 1 performs better in part
3 of the table than in part 2, because part 2 only uses
translation probabilities trained with IBM Model 1.

Finally, the fourth part of Table 4 shows results
with various pivot languages that vary in their level
of relatedness to Spanish. Spanish itself is included

in this section as a baseline for the best possible per-
formance under the pivot-based framework.

6.3 Discussion

For word alignment, feature-based edit distance did
not beat the Levenshtein baseline, while the vowel-
consonant based edit distance led to a modest im-
provement. These results may arise from the fact
that the only edit distance neighbors being consid-
ered are the words that actually occur in the Por-
tuguese corpus, which means that creating a more
phonologically-informed model might not do much
good because all candidates are already phonologi-
cally well-formed. For example, the feature-based
edit distance algorithm would strongly indicate that
blanco and branco are more likely to be cognates
than blanco and bkanco; but there is no real need to
make this distinction since no word like bkanco will
occur in the Portuguese corpus anyway.

The char2vec method also led to modest improve-
ments; its performance may have been hindered by
its assumption that distributional similarity implies
phonological similarity, when in fact there are some
reasons to suppose the contrary. For example, a lan-
guage might have voicing assimilation of all conso-
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nants in a cluster. This would mean that [t] and [d]
would never appear next to the same consonants as
each other and would thus have quite different dis-
tributions, despite only differing in voicing.

Cognate-based edit distance had the strongest per-
formance. Since it was only trained on cognate pairs
using Romance languages other than Spanish, while
it was tested on Spanish words, this result justifies
our assumption that facts about the phonological re-
latedness of Spanish’s relatives can also be used to
learn useful information about Spanish. The cognate
identification task corroborates the word alignment
results in indicating that cognate-based edit distance
is the best-performing algorithm for bootstrapping
information from a high-resource language to one
of its low-resource relatives.

The second part of Table 4 shows that three
more linguistically informed algorithms presented
here (particularly cognate-based edit distance) out-
perform the less-informed basic Levenshtein algo-
rithm. These results broadly suggest that incorpo-
rating linguistic information can be of significant
benefit to NLP applications with low-resource lan-
guages, since it was helpful here to utilize informa-
tion about the phonological relatedness between lan-
guages rather than using the flat distribution of the
basic Levenshtein algorithm. Though the alignment
results in the second part of Table 4 are not impres-
sive at an absolute level, the results in the third part
of the table show that alignment performance can
be significantly improved by preserving the same
pivot-based setup but using more advanced align-
ment algorithms, so there is hope that refining the
alignment algorithms more could further improve
performance. Finally, the bottom segment of Table
4 shows that alignment performance generally im-
proves as the pivot language becomes more closely
related to Spanish, corroborating the claim that it
is language relatedness that fuels the success of the
pivot-based alignment method. (Figure 1 shows a
family tree of the pivot languages used.)

7 Conclusions and future work

We have presented three new techniques for com-
puting edit distance. All of these make use of more
linguistic information (specifically, cross-linguistic
phonological information) than the baseline of Lev-

Figure 1: Family tree of the pivot languages used; language

groups were derived from Ethnologue (Lewis et al., 2009).

enshtein edit distance, and all of them perform at
least as well as Levenshtein edit distance at low-
resource cognate identification and word alignment.
In particular, cognate-based edit distance brings the
greatest performance improvements in these tasks
compared to Levenshtein edit distance. This work
focuses on the IBM alignment models, so future
work could explore more advanced algorithms relat-
ing to word alignment and machine translation, such
as neural machine translation (Collobert and We-
ston, 2008; Cho et al., 2014; Bahdanau et al., 2015),
or phrase-based machine translation (Koehn et al.,
2003; Och and Ney, 2004) to bring alignment perfor-
mance improvement. In addition, the edit distance
algorithms could be refined to encode more phono-
logical information. For example, separate penal-
ties could be assigned based on the environment in
which changes occur since environment is highly
significant in phonological changes both within and
across languages. Another refinement specific to the
cognate-based algorithm would be training on a list
of likely cognates to choose weights and then us-
ing those weights to choose an updated list of likely
cognates, and iterating this process until the weights
converge; the algorithm as presented here only rep-
resents one iteration of such a process, but further
iterations might yield better weights.
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