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Abstract

In this paper, we develop a new way of creating sense vectors for any dictionary, by using an
existing word embeddings model, and summing the vectors of the terms inside a sense’s definition,
weighted in function of their part of speech and their frequency. These vectors are then used for
finding the closest senses to any other sense, thus creating a semantic network of related concepts,
automatically generated. This network is hence evaluated against the existing semantic network
found in WordNet, by comparing its contribution to a knowledge-based method for Word Sense Dis-
ambiguation. This method can be applied to any other language which lacks such semantic network,
as the creation of word vectors is totally unsupervised, and the creation of sense vectors only needs
a traditional dictionary. The results show that our generated semantic network improves greatly the
WSD system, almost as much as the manually created one.

1 Introduction

In Natural Language Processing (NLP), Word Sense Disambiguation (WSD) aims at assigning the most
probable sense of a word in a document, given a pre-defined sense inventory. State of the art methods
in WSD are often supervised systems, as stated by Navigli (2009), which are trained thanks to a great
quantity of sense usage examples coming from sense-annotated corpora. The trained model is then used
to tag a word with the sense that appears to be the most correct given its context. Unsupervised and
knowledge-based methods, on the other hand, have the advantage that they require much less resource
to work, and in particular no sense-annotated corpora. Hence they offer a wider coverage more easily, as
they do not need to learn a sense from an example in order to assign it to a word. In addition, unsuper-
vised and knowledge-based methods are generally the only usable systems to work for disambiguating
another language than English. Indeed, sense-annotated corpora are very expensive resources to produce,
and almost practically inexisting for every other languages 1. For this reason, this paper will focus on
a knowledge-based method, and on a novel approach that improves its performance in an unsupervised
manner, by using word embeddings.

Word embeddings are a set of methods which aim to represent words as vectors. Several recent state
of the art methods such as Mikolov et al. (2013)’s Word2Vec, Pennington et al. (2014)’s GloVe and Levy
and Goldberg (2014)’s dependency-based vectors have proven to be very useful in many NLP tasks, like
Machine Translation, Word Similarity tasks, and even in WSD, where word embeddings are also parts
of some recent methods, such as Chen et al. (2014), Iacobacci et al. (2016) or Yuan et al. (2016).

In this paper, we are going to produce sense embeddings, i.e. vectors which represent senses present
in the lexical database Princeton WordNet (Miller, 1995). The methodology used to create these vectors
is described in section 2. Other methods exist for computing sense embeddings, such as in Iacobacci et al.

1Less than ten different languages have at least one corpus sense annotated with WordNet, as listed in http://
globalwordnet.org/wordnet-annotated-corpora/
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(2015) for example, who learn a distributional representation of senses through sense-annotated corpora
and Word2Vec, but it presupposes a good WSD system, which is already able to sense-annotate precisely.
Our sense vectors are hence evaluated by comparing their performance when used as a semantic network
for a knowledge-based WSD system described in section 3.1.

The sense embeddings will be used for expanding the gloss of every sense in WordNet, by con-
catenating the gloss of the most related senses, in a similar way than Banerjee and Pedersen (2002)’s
Extended Lesk algorithm does, but instead of considering that two senses are related because they share
a lexical or semantic relation in the WordNet network, we consider two senses to be related if their
vector’s cosine similarity reaches a certain threshold. In the experiments in section 4, we evaluate our
method on two different English all-words disambiguation tasks: first, we learn the best value of the
similarity threshold on a task, then, this value is tested on the other task. The scores shown are hence the
ones we obtain for the latter task, and thereafter, we perform the opposite.

The method could be applied to any language for which it exists a dictionary and a set a unannotated
corpora. However, it is evaluated on an English task for at least two reasons: First, it will be easier
to compare our results to other systems, since the main WSD evaluation campaigns also use WordNet.
Second, we wanted to compare the benefits of different pre-existing word embeddings models to our
system, and the most popular ones are trained on English corpora.

2 Creation of Sense Embeddings

Our model for representing a dictionary’s sense vector relies on an existing word embeddings model, and
on the sense’s definition in the dictionary. In practice, our method is very similar to the one presented
by Ferrero et al. (2017), who create sentence vectors for a cross-language semantic textual similarity
task. Our sense vector is computed as the normalized sum of all the terms’ vectors present in the sense’s
definition, weighed in function of their part of speech (noun, verb, adjective or adverb), and also weighed
by their inverse document frequency (IDF), i.e. the inverse of the number of occurrence in the entire
dictionary. More formally, we denote:

• D(S) = {w0, w1, w2, . . . , wn} the definition of sense S in the dictionary

• pos(wn) = {n, v, a, r} the part of speech of the term wn (noun, verb, adjective or adverb)

• weight(pos) the weight associated with a specific part of speech

• idf(wn) the IDF value of wn, computed as log( Ntot
N(wn)

), withNtot being the total number of defini-
tions in the dictionary (206,941 in WordNet 3.0), and N(wn) the number of definitions containing
at least one occurrence of the word wn.

The definition of the vector of the sense S, denoted φ(S) is hence the following:

φ(S) =
n∑

i=0

(φ(wn)× weight(pos(wn))× idf(wn))

φ(S) is then normalized, in order to be the same length as the vectors contained in the word embeddings
model (generally the length is 1). The chosen POS weights are the same that Ferrero et al. (2017) used
for representing English and Spanish sentences, but they can be trained as parameters of the model.

We generated five sense embeddings models, all created for every sense of WordNet 3.0, but exploit-
ing a different word embeddings model. The five word embeddings model that we used are:

1. The pre-trained word vectors available on the Web page of the original Mikolov et al. (2013)’s
Word2Vec 2. This model was trained on about 100 billion words from Google News datasets. The
vocabulary size is about 3 million words and phrases, and the vectors have a dimension of 300.

2. The pre-trained Pennington et al. (2014)’s GloVe 3, trained on 42 billion words from Common
2https://code.google.com/archive/p/word2vec/
3https://nlp.stanford.edu/projects/glove/
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Crawl. The vocabulary size is about 2 million words, and the vectors have a dimension of 300.

3. The pre-trained Levy and Goldberg (2014)’s dependency-based word embeddings 4. The training
was done on Wikipedia. The vocabulary size is about 175,000 words, and the dimension is 300.

4. The best predict vectors created in Baroni et al. (2014) 5. The vectors have a dimension of 400 and
the vocabulary size is about 300,000.

5. Finally, the best reduced count vectors also created in Baroni et al. (2014) 5, of dimension 500,
and with the same vocabulary than the previous model.

In the experiments section, we compare the performance of each of the embeddings model in our
WSD system extension. All five sense embeddings models are publicly released on our GitHub6.

3 Evaluation in Knowledge-Based WSD

The generated vector representation of senses will be evaluated on a WSD task, as a supplementary
resource for a knowledge-based method. The idea is to use the embeddings model as a semantic network,
which is able to fetch senses related to another sense. These related senses will then contribute to the
similarity measure used in the WSD system, in the same manner than Banerjee and Pedersen (2002)’s
usage of the semantic network integrated in WordNet.

3.1 Disambiguation Algorithm

The knowledge-based WSD system that is used to compare the performance of the semantic network is
built as two pieces: the Local Algorithm, which computes a score of similarity for a pair of senses, and
the Global Algorithm, which searches for the best combination of senses at the document level, using
the local algorithm.

The global algorithm is a heuristic that will avoid to compute every possible combination of senses
in the document, because this would lead to an uncomputable number of calls to the local algorithm (the
average number of senses per word, to the power of the number of words in the document).

The heuristic used in our system is an implementation of the Cuckoo Search Algorithm, as research
done by Vial et al. (2017) on Global Algorithms shows that it is among the best global algorithm for this
kind of knowledge-based WSD system. Our implementation uses as parameters a single cuckoo, a Levy
location of 5 and a Levy scale of 0.5, as described as the best parameters in Vial et al. (2017). In all
of our experiments, we set the number of iterations to be a very large number (300,000), so the results
do not differ notably from an execution to another. In addition, we compute the mean of 10 complete
executions when giving a score, and we ensure a low standard deviation (generally < 0.1) so the end
result is stable and reliable.

The local algorithm is the central element of the system and this is where the usage of the semantic
network will occur. As a baseline, we are going to use the original Lesk measure, also called gloss
overlap measure. This algorithm returns, as a similarity score, the number of words in common in the
two senses’ definition. Formally, if we denote D(S) = {w1, w2, . . . , wn} the definition of S, then the
Lesk measure between sense S1 and sense S2, denoted Lesk(S1, S2) is the following:

Lesk(S1, S2) = |D(S1) ∩D(S2)|

As a second baseline, and in order to compare the quality of our produced semantic network, we will
also use the Extended Lesk measure, described in Banerjee and Pedersen (2002). This measure consider
not only the definition of the target sense, but also the definition of every sense that have a relation to the

4https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/
5http://clic.cimec.unitn.it/composes/semantic-vectors.html
6https://github.com/getalp/WSD-IWCS2017-Vialetal
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target sense (hyperonymy, hyponymy, etc.). Let’s denote rel(S) the set of senses related to S, through
an explicit link in WordNet, then the Extended Lesk measure between sense S1 and sense S2, denoted
ExtLesk(S1, S2) is the following:

ExtLesk(S1, S2) = |(D(S1) ∪D(rel(S1))) ∩ (D(S2) ∪D(rel(S2)))|

3.2 Gloss Expansion Through Sense Embeddings

Our method for using our sense embeddings model produced in section 2 is to extend the Lesk algorithm
in a way similar to Banerjee and Pedersen (2002), that is by also considering the related senses when
computing the similarity of two senses.

Because our sense vectors are created from the vectors of the terms used in the dictionary’s glosses,
the impact of these terms is huge. This is why for our expansion, we will take into account the most
similar senses not using solely the cosine similarity, because this would blindly fetch some unrelated
senses that are described using the same kind of wording. We also filter on the lemma’s vector of the
target sense in the word embeddings space, so the fetched senses will also be close to the idea of the
sense’s lemma, as captured by the word embeddings model. As a recall, operations between a sense
vector and a word vector are possible because the sense vector is, in essence, only a weighted sum of
word vectors.

Let’s denote rel(S, δ1, δ2) the set of senses related to S. δ1 is the threshold cosine similarity value
on the lemma’s vector, below which we do not consider a sense as related. δ2 is the threshold cosine
similarity value on the sense’s vector, below which we do not consider a sense as related. Senses is the
set of all the senses in the dictionary. cosine is the cosine similarity operator. The formula for computing
rel(S, δ1, δ2) is the following:

rel(S, δ1, δ2) = {S′ | cosine(φ(lemma(S)), φ(S′)) > δ1, cosine(φ(S), φ(S
′)) > δ2}

Finally, the formula for our new local algorithm for the WSD system, which we will be denoted as
V ecLesk(S1, S2, δ1, δ2), can be written almost exactly as the Extended Lesk:

V ecLesk(S1, S2, δ1, δ2) = |(D(S1) ∪D(rel(S1, δ1, δ2))) ∩ (D(S2) ∪D(rel(S2, δ1, δ2))|

In the following section, we are going to evaluate this new local algorithm on two WSD all-words tasks,
in regards with the Lesk and the Extended Lesk baselines.

4 Experiments

In order to see how our sense embeddings model performs as a semantic network, we use it for a lexical
expansion of the dictionary’s glosses, for improving the Lesk local algorithm of our WSD system.

Our expansion considers the related senses regarding two cosine similarity threshold: δ1, filtering out
senses based on their similarity with the target sense’s lemma vector, and δ2, filtering out senses based
on their similarity with the target sense vector.

These two parameters have to be set in some way, so we chose two WSD tasks: SemEval 2007 task
7 (Navigli et al., 2007), and SemEval 2015 task 13 (Moro and Navigli, 2015), and we estimated the best
set of parameters on a task, then tested this set of parameters on the other. The reason why we chose
these two tasks is that they are of the same nature, i.e. both all-words WSD tasks, and that the task 7 of
SemEval 2007 is largely used in most WSD articles, so it is easier to put the results in perspective.

All five word embeddings models mentioned in section 2 are evaluated separately. And the parame-
ters δ1 and δ2 have been estimated by testing every values in the range [0.5, 0.9] with steps of 0.1.

The results of the best parameters estimation on SemEval 2007 task 7 and on SemEval 2015 task 13
is in Table 1. The comparison of our method on both tasks in regards with the baselines and a state of
the art system is in Table 2.



Word Embeddings Model baroni c baroni p deps glove word2vec
Parameters δ1 δ2 δ1 δ2 δ1 δ2 δ1 δ2 δ1 δ2

Best values on SemEval 2007 0.6 0.6 0.5 0.5 0.6 0.8 0.5 0.6 0.5 0.6
Best values on SemEval 2015 0.5 0.8 0.5 0.6 0.6 0.8 0.5 0.7 0.5 0.6

Table 1: Estimation of parameters δ1 and δ2 on SemEval 2007 task 7 and SemEval 2015 task 13.

System SemEval 2007 F1 score SemEval 2015 F1 score

Chen et al. (2014) 75.80%7

Lesk baseline 68.70% 50.65%
ExtLesk baseline 78.01% 61.42%

VecLesk (baroni c) 75.29% 58.02%
VecLesk (baroni p) 73.52% 53.46%
VecLesk (deps) 73.02% 56.40%
VecLesk (glove) 73.00% 59.01%
VecLesk (word2vec) 73.30% 57.00%

Table 2: Comparison of our results on SemEval 2007 task 7 and SemEval 2015 task 13 for each word embeddings
model used, in regards with the Lesk and Extended Lesk baselines and a state of the art method that uses similar
resources than us. The parameters δ1 and δ2 used in VecLesk are taken from the parameter estimation of Table 1
from the other task, not the one that is tested.

The results show that our extension improves greatly the score of the Lesk measure, which is at least
around +5% for the worst combination of word embeddings model and parameters, on SemEval 2007,
and around +7% for the best combination. On SemEval 2015, the worst extension still improves the
score by +3%, and the best one gives +9%. Our extension does not reach the score of the Extended Lesk
baseline however. Which is a sign that our semantic network is probably less relevant than the explicit
links found in WordNet.

An interesting data is the difference of score obtained by the different word embeddings model. The
best result on SemEval 2007 uses Baroni et al. (2014)’s count vectors, and the score is 2% higher than
the second best word embeddings model’s score (using Baroni et al. (2014)’s predict vectors). This tends
to show that the “older” approach of word embeddings creation, i.e. counting-based vectors, are in some
cases a better choice than the predicting models. However, on SemEval 2015, the best model is GloVe.
Baroni’s count vectors is a close second though. The fluctuation of the results in function of the model
used may be because of the different natures of the word embeddings models, or due to the different
corpora they were trained on. In any cases, our extension works with any model, systematically raising
the score from the Lesk baseline.

The comparison of our system to the best existing method to our knowledge that uses the same kind
of resources than us (i.e. a dictionary and unannotated corpora), shows that our extension achieves state
of the art results on methods using such few resources. The score achieved by Chen et al. (2014) has to be
treated with caution, because they learned a threshold parameter δ similarly to us, for their construction
of vectors, however they estimated their best parameter and tested on the same corpus, leading to an
obvious bias. Note that in the same conditions, when we use the best set of parameters learned on this
same task, our method reaches a score of 77.08% on SemEval 2007.

7The referenced article’s score is biased, since the authors’ system learns a parameter δ ∈ [−0.1, 0.3] comparable to our,
but directly during the testing phase. The score ranges from 72.10% to 75.80% depending on the value of their δ.



5 Conclusion

In this article, we created a Sense Embeddings model, representing every sense of a dictionary, based
on the words contained in their gloss and using an existing Word Embeddings model. Our method of
construction essentially computes the sum of the gloss terms’ vectors, weighted in function of their part
of speech and their inverse frequency. We created five sense embeddings models, each one of them
relying on different word embeddings model. They are available publicly on our GitHub8.

The models are then used as a semantic network for improving a knowledge-based WSD system,
based on the Lesk algorithm. The idea is to take into account the closest senses to a target sense in our
semantic network, in order to disambiguate it, in the same manner as Banerjee and Pedersen (2002) do
using the related senses information built in WordNet.

The resulting extended WSD system performs systematically better than its unextended baseline
counterpart, improving the score from about +3% for the worst extension, to about +9% for the best one.

This article uses WordNet as a dictionary, and evaluations are performed on two English all-words
WSD tasks, because it is easier to compare the performance and the robustness of the method, as the
majority of the researches in WSD uses this language. However, the whole process of sense embeddings
creation and Lesk extension can be easily adapted to many language, requiring only a set of unannotated
corpora, and a typical dictionary, thus, giving the possibility to create an efficient WSD system, even for
a poorly resourced language.

8https://github.com/getalp/WSD-IWCS2017-Vialetal
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