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Abstract

Concept maps can be used to provide concise and structured summaries of documents. Moti-
vated by their usefulness in many application scenarios, several approaches have been suggested for
concept map mining, the automatic extraction of concept maps from text. However, a major bottle-
neck of previous work is the common pattern-based approach used to extract concepts and relations
from documents which is either limited in coverage or requires a laborious definition of large sets
of patterns. Drawing upon recent advances in automatic predicate-argument analysis, we propose to
replace pattern-based extraction by using predicate-argument structures. Our experiments compare
three different representations with previous work and show that using predicate-argument structures
leads to a better extraction performance while being much easier to use.

1 Introduction

A concept map is a labeled graph showing concepts as nodes and relations between them as edges (Novak
and Gowin, 1984). They were invented by education researchers in the 1970s and have since been applied
in many scenarios, including the usage as a teaching tool (Edwards and Fraser, 1983; Roy, 2008), writing
assistance (Villalon, 2012), structure for information repositories (Briggs et al., 2004; Richardson and
Fox, 2005) and concise text representation (Valerio et al., 2012). Recently, they have also been proposed
as a representation in the context of multi-document summarization and document exploration (Falke
and Gurevych, 2017a,b). Their advantages are the concise presentation of central terms and the explicit
visualization of relationships. Figure 1 shows an example.

Concept map mining is the automatic generation of concept maps from natural language text. Several
approaches have been proposed (see §3). Typically, they extract a set of candidate concepts and relations
from given documents and then select a subset of them to construct a concept map. During the extraction,
most previous work applies hand-written patterns to extract labels from syntactic representations. As an
example, consider the following sentence:

(1) Joseph Novak invented concept maps.

To extract “Joseph Novak” and “concept maps” as concept labels, patterns extracting nsubj- and dobj-
dependencies are needed to find the relevant spans when a dependency representation is given. However,
these patterns cannot extract anything from the passive variant of the sentence because the relevant tokens
now have another grammatical function:

(2) Concept maps were invented by Joseph Novak.

An additional set of patterns would be necessary to handle (2). Due to the syntactic variety of natural lan-
guage, these pattern-based approaches are either limited in coverage or require a very large and carefully
designed set of patterns that covers every possible way in which a proposition can be expressed.
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Figure 2: Common concept map mining approach.

To eliminate the high manual effort associated with pattern definition, we propose to utilize semantic
instead of syntactic representations as they already abstract away from many syntactic variations. Contin-
uing the example, the binary predicate invented(Joseph Novak; concept maps) is a semantic representa-
tion for both (1) and (2), requiring no separate handling of the cases. Using such a unified representation
based on predicates and arguments, concept map mining approaches no longer need to carefully define
large sets of patterns, but can instead make use of existing semantic analysis tools.

In this work, we analyze three different representations that improve upon pure syntactic represen-
tations by different degrees: Open Information Extraction (OpenIE) (Banko et al., 2007), identifying
predicates and arguments in a sentence, PropS (Stanovsky et al., 2016), which additionally unifies a
certain amount of syntactic variations, and Semantic Role Labeling (SRL) (Hajič et al., 2009), mapping
predicates and arguments to an abstract, semantic representation.

We describe how these representations can be used and present several experiments comparing them
to previous work. As a result, we find that the suggested methods are competitive or even better while
requiring no patterns to be defined. This finding has the potential to drastically simplify the develop-
ment of concept map mining systems in the future, because they can rely on readily available tools for
predicate-argument analysis and can focus on subsequent pipeline tasks. In addition, to the best of our
knowledge, this is also the first comparative study of concept and relation extraction methods that have
been suggested for concept map mining in previous work.

2 Task

Given input documents and a size restriction, extractive concept map mining creates a concept map
M = (C,R) where every node in C represents a concept, designated by a unique label, and R contains
directed edges that connect pairs of concepts with a label such that the resulting proposition describes
the concepts’ relationship. A concept can be an object, event or abstract idea. All labels for concepts and
relations should be taken from the documents and the map has to satisfy the size restriction which defines
the maximal number of concepts and relations in the map. Under these constraints, the goal is to select
concepts and relations that describe a maximal amount of the document’s content. The size restriction
controls how much the information should be compressed.

3 Related Work

Several attempts have been made to automatically construct concept maps as defined above (Qasim et al.,
2013; Villalon, 2012; Valerio and Leake, 2006, inter alia). Zubrinic et al. (2012) provide a comprehensive
survey of work on this task. Figure 2 shows the typical pipeline approach in previous approaches. First,
potential labels for concepts and relations are extracted from the documents. Then, they are scored or
ranked and a subset is selected and connected to build the final concept map.

In this work, we focus on the extraction part of the pipeline (bold in Figure 2), as this is the step
where predicate-argument structures can be leveraged to simplify the syntax-pattern-based strategies of
previous work. We briefly present the latter in the following sections.



Concept Extraction The goal of concept extraction is to create a set of potential concept labels, called
concept candidates. Ideally, this set is as small as possible while containing all desired phrases. Valerio
and Leake (2006) suggest to use constituency parse trees and extract minimal noun phrases from them,
i.e. noun phrases that do not cover shorter noun phrases. Both Qasim et al. (2013) and Villalon (2012)
work with dependency parse trees and defined patterns to extract phrases from them. While there are
slight differences between their patterns, all try to capture single noun tokens, noun compounds and
combinations of nouns with adjectives, prepositions and conjunctions. Similar patterns on syntax or
part-of-speech sequences were used in other work (Zouaq and Nkambou, 2009; Rajaraman and Tan,
2002; Kowata et al., 2010; Zubrinic et al., 2012).

Relation Extraction During relation extraction, phrases describing the relationship between pairs of
concept candidates have to be identified in the text. Following their concept extraction approach, Valerio
and Leake (2006) identify verb phrases that connect two concept candidates, whereas Villalon (2012)
uses tokens on the shortest path between the candidates in a simplified dependency graph. A pattern-
based extraction from dependencies and part-of-speech sequences was also suggested (Qasim et al.,
2013; Zouaq and Nkambou, 2009; Rajaraman and Tan, 2002). Olney et al. (2011) use the output of an
SRL system and are thus close to this work. However, they focus on a variant of the task where relations
are restricted to a fixed domain-specific set of 30 labels, creating less expressive concept maps.

In the next section, we show how the definition of these patterns for both concept and relation extraction
can be made obsolete by leveraging existing predicate-argument analysis tools.

4 Concept and Relation Extraction from Predicate-Argument Structures

The intuition for using predicate-argument structures is that a proposition formed by a relation and its
concepts in a concept map, e.g. concept map - has - concepts, is very similar to a predicate derived by a
predicate-argument analysis of a sentence. Therefore, we study how useful different predicate-argument
analysis tools are for the extraction of concepts and relations.

Given an input sentence, we want to derive a set P of binary predicates pred(arg1, arg2), each of
them representing a proposition. We use different existing systems to obtain this set and illustrate their
representations for the following example sentence:

(3) Concept maps, which were invented by Joseph Novak, represent concepts and their relationships.

OpenIE The first type of representation we consider is OpenIE. OpenIE systems extract tuples that
represent basic binary propositions from a given sentence. Every tuple consists of a relation phrase and
two arguments, making the representation very close to concepts and their relations. We use OpenIE-4,
a state-of-the-art system.1 With that system, the extracted tuples POIE obtained for (3) are:

1. were invented (concepts maps; by Joseph Novak)

2. represent (concept maps; concepts and their relationships)

PropS As a second approach, we use PropS, a rule-based converter that turns dependency trees into
typed predicate-argument graphs (Stanovsky et al., 2016). In addition to identifying predicates and
arguments, it also canonicalizes the representation of propositions, e.g. by unifying variations such as
active and passive or copula and appositive constructions. Note that the OpenIE approach does not go
that far and only identifies predicate-argument structures.

PropS also classifies predicate-argument relations with a small set of labels such as subj and dobj.
Since it does not try to match any tokens against an inventory of senses or frames, the representation will

1https://github.com/knowitall/openie, state-of-the-art according to Stanovsky and Dagan (2016b)



always cover the full content of a given sentence, as opposed to the SRL representation discussed in the
next section. For (3), PropS yields the following representation:

Concept maps invented Joseph Novak represent concepts their relationships have

obj subj

subj

dobj

dobj

poss dobj
subj

To create the set of binary predicates PPropS , we traverse the graph from every predicate node and select
as its arguments the subgraphs of the directly connected argument nodes. We remove unary predicates
and break down higher-arity predicates by creating all possible pairs except if they have the same edge
label (e.g. two objects). Thus, we obtain the following binary predicates for (3):

1. invented (Joseph Novak; concept maps)

2. represent (concept maps; concepts)

3. represent (concept maps; their relationships)

SRL As the third method, we apply semantic role labeling using Mate Tools (Björkelund et al., 2009),
which is freely available and was one of the best in the CoNLL 2009 shared task (Hajič et al., 2009). We
prefer PropBank-style SRL (Palmer et al., 2005) over FrameNet and VerbNet because of its robustness
and maturity. In a sentence, it marks verbs with their PropBank frame, identifies subtrees in the depen-
dency representation of the sentence as arguments and labels them with a role:

Concept maps, which were invented by Joseph Novak, represent concepts and their relationships.
invent.01 represent.01 relationship.01

amod

nsubj
rcmod

nsubjpass
auxpass prep

pobj
nn dobj cc

conj
poss

R-A1 A0

A0
A1

A1
A0

This approach is the most sophisticated type of analysis in our study, trying to map a natural language
sentence to another layer of abstract semantic representation defined by the frame and role inventory.
While being the most powerful representation, it also has disadvantages: First, spans of roles are strictly
bound to full subtrees in the dependency parse, as shown in the example, where the relative clause
becomes part of the A0-role of “represent”. And second, predicates and arguments that are not covered
by the inventory of frames and roles cannot be represented.

To obtain the set of binary predicates PSRL, we ignore a predicate completely if it has just one
argument, otherwise, we form a binary predicate for every pair of arguments. For (3), this yields the
following predicates:

1. invented (concept maps; by Joseph Novak)

2. represent (concept maps which were invented by Joseph Novak; concepts and their relationships)

Given binary predicates Px derived from a predicate-argument structure x ∈ {OIE, SRL,PropS},
concept and relations can be extracted by simply using all arguments of the predicates as the set of
concept candidates Cx and the predicates themselves as relation candidates Rx, where each of the latter is
associated with two concept candidates as given by the predicate. We intentionally do not further reduce
or refine this set with any additional heuristics to assess the out-of-the-box applicability of predicate-
argument structures for concept map mining.



Gold Concept Maps Source per Map
Dataset Maps Concepts Length Relations Length Documents Length
EDUC 30 25.0± 0.0 3.2± 0.5 25.2± 1.3 3.2± 0.5 40.5± 6.8 97880
BIOLOGY 165 7.0± 4.1 1.2± 0.5 3.5± 3.0 1.9± 1.2 1.0± 0.0 2621
ACL 230 11.0± 5.5 1.8± 0.9 1.0± 0.0 4987

Table 1: Corpus statistics for the datasets used in experiments. All measures are averages per map and
corresponding standard deviations; length values are measured in number of tokens.

5 Datasets

In our experiments, we use corpora of documents paired with gold standard concept maps to evaluate the
extraction performance of different approaches. We utilize one recently published dataset and addition-
ally create two other by semi-automatically matching existing maps with corresponding documents.

The first dataset, called EDUC, provides manually created concept maps for clusters of web docu-
ments on educational topics. It was created using crowdsourcing and expert annotators and has been
recently published by Falke and Gurevych (2017a). In contrast to the other datasets used in this study,
this corpus represents a multi-document concept map mining setting, with on average 41 documents and
a consequently high number of tokens as the input for a single concept map.

For the second dataset, BIOLOGY, we followed Olney et al. (2011) and used a collection of 464 con-
cept maps produced by experts as teaching materials for biology.2 The maps were created independently
from a text. We matched them automatically with corresponding articles in Wikipedia and manually cor-
rected wrong assignments. Every map is a star-like graph centered around a central concept, e.g. protein,
and hence has a similar topical focus as an encyclopedic article.

As the third dataset, ACL, we used the ACL RD-TEC 2.0 corpus (QasemiZadeh and Schumann,
2016). It consists of 300 abstracts taken from papers in the ACL Anthology in which two annotators
marked terms with a specialized meaning. As abstracts are usually good summaries of a paper, these
terms tend to be the central concepts discussed in the papers. We used Apache Tika3 to extract the full
texts, excluding the abstracts, from the PDF version of the corresponding papers. These texts were then
used with the annotated concepts as the gold concepts. Note that we cannot use this corpus to evaluate
relation extraction, as such annotations are not available.

Table 1 compares the introduced datasets. EDUC represents a multi-document setting, while the other
two only have one document per map. However, as this study is focused on the extraction part of concept
map mining, this difference is of minor importance. The table also shows that EDUC has the biggest
concepts maps with also slightly longer labels for concepts and relations, while the other two datasets,
with smaller maps, offer more instances due to the automatic creation approach.

6 Experiments

We conducted several experiments to study the usefulness of the presented predicate-argument analysis
tools. In the first two experiments we focus on the recall of different methods during extraction and
then turn to the subsequent selection step and corresponding precision evaluations. For all experiments,
we preprocessed the documents with components of DKPro Core (Eckart de Castilho and Gurevych,
2014), using tokenization, part-of-speech tagging and constituency parsing from the Stanford NLP tools
and Snowball for stemming. Constituency parse trees were converted into collapsed and propagated
dependencies (de Marneffe and Manning, 2008).

2http://web.archive.org/web/20120106232123/http://www.biologylessons.sdsu.edu/ta/
toc.html (see Lesson SemNet for the different topics)

3https://tika.apache.org/



BIOLOGY ACL EDUC
Approach Yield Recall % Length Yield Recall % Length Yield Recall % Length
Noun Tokens 51.53 75.61 1.0 48.99 42.48 1.0 167.38 25.07 1.0
Valerio/Leake 69.50 69.60 2.2 77.53 62.21 2.3 406.53 55.73 2.4
Qasim et al. 74.61 61.46 2.3 78.04 74.39 2.3 467.15 48.13 2.4
Villalon 60.75 76.37 2.3 69.10 76.09 2.3 351.85 51.20 2.5
OpenIE 44.53 41.80 4.9 41.99 28.67 5.3 277.70 58.00 5.9
SRL 66.28 50.99 4.2 77.21 44.14 5.0 481.59 46.93 6.5
PropS 76.55 73.50 3.2 55.87 58.41 3.7 451.20 46.27 4.3

Table 2: Concept extraction performance by dataset. For a definition of the metrics, please refer to the
text. Bold indicates best recall per group. Concept length given as average number of tokens.

6.1 Concept Extraction

Experimental Setup To evaluate the coverage of different concept extraction strategies, we compared
their sets of concept candidates C with the concepts CG of the gold maps. For every approach, we
measured the covered gold concepts with recall R = |C ∩ CG|/|CG| and used candidate yield Y =
|C|/|CG| to indicate over-generation and thus selection difficulty.4 Metrics are averages over maps.
Concept labels are matched after stemming to allow for morphological variants, e.g. concept map and
concept maps. As a baseline, we applied a strategy that extracts all noun tokens. From previous work,
we included the noun phrase strategy of Valerio and Leake (2006) and, as representatives for dependency
patterns, the patterns of Qasim et al. (2013) and Villalon (2012) (see §3).

Recall and Yield Table 2 reports results on the three datasets. Out of the different tools used to obtain
predicate-argument structures, we observe the highest recall using PropS on two datasets and OpenIE
on the other. From previous work, Villalon’s method shows the best results on two datasets, while Vale-
rio/Leake’s method is best on EDUC. Overall, we conclude that concept extraction based on predicate-
argument structure is competitive, giving slightly better (EDUC) or slightly worse (BIOLOGY) results,
except for the performance on the ACL datasets. With regard to yield, predicate-argument structures are
even more competitive, producing less candidate concepts in most cases. For all approaches, the yield
correlates with the size of the input documents, producing most concepts on the EDUC dataset.

One interesting fact is that on EDUC the best performing method, among previous work as well as
predicate-argument structures, differs from the one on the other two datasets. The reason is that the con-
cept labels in this corpus tend to be longer, including more complex noun phrases and also verbal phrases
describing activities, while concept labels are mostly single nouns in BIOLOGY or noun compounds in
ACL. This explains the generally lower recall and better performance of approaches focusing on full
noun phrases rather than nouns and noun compounds.

Analyzing the results on the ACL corpus, we found that the automatic extraction of text from the
PDFs produced very data, causing a lot of the dependency parses to be of low quality due to wrong sen-
tence segmentation. Interestingly, while this reduced the performance of all approaches using predicate-
argument structures, it did not influence the methods from previous work. We hypothesize that these
approaches are more robust against these parsing errors because they only extract from dependencies lo-
cally, while the other approaches globally process the full parse to derive predicate-argument structures.

Added Concepts We further compared the concept candidate set extracted by the best approach from
previous work with those produced by predicate argument structures. To assess whether the latter iden-
tified previously uncaptured concepts, we joined both sets and compared the combined recall against
the method from previous work alone. In all cases, predicate-argument structures extract at least some
concepts that are not covered by previous approaches, with the best approach adding 6.90 (BIOLOGY),

4At the current pipeline step, all potential concepts in the text are extracted, while a subset of reasonable size is selected
later (Figure 2). Hence, precision and F-scores are rather meaningless; we only report yield. We focus on precision in §6.3.
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Figure 3: Concept extraction recall for inclusive matches at increasing thresholds k.

5.81 (ACL) and 15.20 (EDUC) points of recall. This shows the predicate-argument structures are not
only competitive but can also be used to extend the coverage of previous methods.

Concept Length Finally, we looked at the length of extracted concept labels. As Table 2 shows, the
extractions made by previous work tend to be around 2.3 tokens long, while the arguments of predicate-
argument structures are up to three times as long. In order to assess whether missing concepts might be
present in these longer arguments, we defined a new evaluation metric: An extracted concept c and gold
concept cG match inclusively at k if cG is contained in c and c is at most k · |cG| token long. Figure 3
shows the corresponding recall when increasing k. For all three approaches, but especially for SRL and
OpenIE, the recall increases dramatically when considering longer arguments. This indicates that the
concept extraction performance could be further improved by learning how to reduce longer arguments
to the desired parts. Corresponding techniques have been studied, e.g. (Stanovsky and Dagan, 2016a;
Stanovsky et al., 2016), however, this step is not trivial as it has to be truth-preserving.

6.2 Relation Extraction

Experimental Setup In our second experiment, we analogously evaluated different relation extraction
approaches. To ensure a fair comparison independent of concept extraction, all strategies, including
previous work, used gold concepts. Again, we computed candidate recall and yield as our metrics,
counting relations that were extracted with a correct label for the correct pair of gold concepts. To
account for the fact that some approaches extract complex phrases, e.g. including prepositions, while
others extract only single tokens, we used a lenient matching criterion, requiring that the stemmed heads
of the relation phrases have to match. Hence, is located in and located are considered a match. From
previous work, we included the verb phrase extraction of Valerio and Leake (2006), the shortest path
method of Villalon (2012) and the pattern-based approach of Qasim et al. (2013) (see §3).

Results As shown in Table 3, the shortest path method of Villalon is the best performing method from
previous work, however, it also creates a comparably large candidate set. Using predicate-argument
structures, we see a substantial improvement on both datasets, and again, PropS performs well on BI-
OLOGY and OpenIE on EDUC. Note that on both datasets even the other method is on par with Villalon
while producing a substantially smaller amount of candidates. We found that the low recall of Vale-
rio/Leake and Qasim’s method is due to the small coverage of the patterns, whereas Vilallon’s method
is very noisy and extracts many meaningless relation phrases. On the other hand, predicate-argument
structures benefit from their main advantage in this evaluation: Since all extractions are made on the
level of propositions, every concept has at least one meaningful relation to another concept.

With regard to the length of the extracted relation labels (not shown in the table), we found a similar
picture: Villalon’s method provides very long labels (4.5 token), as it extracts arbitrarily long paths from
the dependency structure. SRL yields the shortest labels (1.0), since predicates are restricted to a single



BIOLOGY EDUC
Approach Yield Recall % Yield Recall %
Valerio/Leake 2.02 17.75 2.70 8.32
Qasim et al. 1.43 8.08 2.24 3.30
Villalon 9.64 32.34 17.28 21.53
OpenIE 3.52 31.63 6.47 25.76
SRL 4.22 17.57 11.60 17.97
PropS 6.48 40.95 11.62 21.20

Table 3: Relation extraction performance.

BIOLOGY ACL EDUC
Precision@k Precision@k Precision@k

29.46 17.75 15.07
24.99 19.47 14.27
32.60 20.34 14.80
21.52 10.45 15.33
24.11 14.67 13.20
28.86 16.61 14.27

Table 4: Concept selection performance (in %).

token by design, while PropS finds a bit longer ones (1.5), including additional auxiliaries and light-verb
constructions, and OpenIE extracts the longest labels (2.86), also containing prepositions as in was made
for. Considering both recall and the style of labels, we found OpenIE to be most useful for this step.

6.3 Concept Selection

Finally, we present a third experiment on concept scoring. While we found predicate-argument structures
to be superior for relation extraction in terms of both recall and yield, the picture is less clear for concepts.
By analyzing selection performance, we try to shed more light on how useful certain trade-offs between
recall and yield are.

Experimental Setup We used the concept candidate sets obtained with the different methods studied
in §6.1, assigned a score to each candidate, selected the top-k candidates and compared them to the gold
concepts. We set k to the number of gold concepts |CG| and measured Precision@k. As the score,
we use the frequency of the label in the documents, a metric that has been previously proposed to find
important concepts (Valerio and Leake, 2006). Note that we are mainly interested in the difference
between candidate sets and not the absolute selection performance. Before scoring the candidates, we
grouped them by comparing stemmed labels and chose the most frequent label as the representative.

Results Table 4 shows the selection precision of all extraction methods. As expected, the performance
closely resembles the picture obtained from the extraction experiment: If the recall is higher after extrac-
tion, precision is also higher after the selection. However, an interesting exception is for example PropS
and SRL on EDUC: While SRL has a slightly higher extraction recall (46.93 vs. 46.27), PropS selects
more relevant concepts (13.20 vs. 14.37), which might be due to the lower extraction yield of PropS.

7 Conclusion

We compared the usefulness of three different approaches for predicate-argument analysis for concept
map mining. Comparing them to several previous methods specifically developed for concept map min-
ing, we found that they substantially improve relation extraction while being very competitive with regard
to concept extraction. PropS representations are particularly good to capture short noun-focused concepts
whereas longer and more complex concepts are more reliably extracted with OpenIE. Considering the
good performance and the ease of use – as opposed to manually defining syntactic patterns – future work
on concept map mining should rely on ready-to-use predicate-argument analysis for extraction.
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