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Abstract

We investigate the effects of incorporating visual signal from images into
unsupervised Semantic Textual Similarity (STS) measures. STS measures
exploiting visual signal alone are shown to outperform, in some settings,
linguistic-only measures by a wide margin, whereas multi-modal measures
yield further performance gains. We also show that selective inclusion of
visual information may further boost performance in the multi-modal setup.

1 Introduction

Semantic textual similarity (Agirre et al., 2012, 2015, inter alia) measures the degree
of semantic equivalence between short texts, usually pairs of sentences. Despite the
obvious applicability to sentence alignment for machine translation (MT) (Resnik
and Smith, 2003; Aziz and Specia, 2011) or plagiarism detection (Potthast et al.,
2011; Franco-Salvador et al., 2013), cross-lingual STS models were proposed only
recently (Agirre et al., 2016; Brychcı́n and Svoboda, 2016; Jimenez, 2016). These
are, however, essentially monolingual STS models coupled with full-blown MT
systems that translate sentences to English.

Although research in cognitive science (e.g., Lakoff and Johnson (1999); Louw-
erse (2011)) shows that our meaning representations are grounded in perceptual
system, the existing STS models (monolingual and cross-lingual alike) exploit only
linguistic signals, despite the fact that models using perceptual information outper-
form uni-modal linguistic models on tasks like detecting conceptual association and
word similarity (Silberer and Lapata, 2012; Bruni et al., 2014; Kiela and Bottou,
2014), predicting phrase compositionality (Roller and Schulte Im Walde, 2013),
recognizing lexical entailment (Kiela et al., 2015), and metaphor detection (Shutova
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et al., 2016). While still predominantly applied in monolingual settings, repre-
sentations originating from the visual modality are inherently language-invariable
(Bergsma and Durme, 2011; Kiela et al., 2015). As such, they could serve as a
natural cross-language bridge in cross-lingual STS.

In this work, we investigate unsupervised multi-modal and cross-lingual STS
models that leverage visual information from images alongside linguistic informa-
tion from textual corpora. We feed images retrieved for textual queries to the deep
convolutional network (CNN) for image classification and use the CNN’s abstract
image features as visual semantic representations of words and sentences.

We implement models that combine linguistic and visual information at different
levels of granularity – early fusion (word level), middle fusion (sentence level), and
late fusion (fusing similarity scores). Results of an evaluation on two cross-lingual
STS datasets (mutually very different in terms of text genre and average sentence
length) show that (1) the proposed multi-modal STS models outperform uni-modal
models relying only on visual or linguistic input and (2) in several experimental
runs, purely visual STS models outperform purely linguistic STS models. We obtain
further performance gains by selectively exploiting visual information, conditioned
on the dispersion of retrieved images.

2 Related Work

We provide an overview of two different lines of research: (1) existing STS methods,
which exploit linguistic information only and (2) multi-modal semantic representa-
tions used in other applications.

Semantic Textual Similarity. Despite the existence of earlier models (Islam and
Inkpen, 2008; Oliva et al., 2011), the true explosion of STS research efforts is
credited to the SemEval-2012 Pilot on Semantic Textual Similarity (Agirre et al.,
2012). The most successful systems (Bär et al., 2012; Šarić et al., 2012) were
methodologically similar – they employed a supervised regression model to learn
the optimal combination of many different sentence-comparison features.

Subsequent STS shared tasks witnessed successful unsupervised STS models,
based on aligning words between sentences and counting the number of aligned
pairs. Han et al. (2013) use LSA-based and WordNet-based measures of word
similarity to find the pairs of semantically aligned words. Sultan et al. (2014)
further employ NER and dependency parsing to better align the words between the
sentences. These models depend on language-specific resources and tools, which
are fairly expensive to build and exist only for a handful of languages.

The cross-lingual STS has been tackled only in the most recent edition of
the SemEval STS shared task (Agirre et al., 2016). The best performing systems
(Brychcı́n and Svoboda, 2016; Jimenez, 2016), with over 90% correlation with
human similarity scores, directly employ full-blown MT systems and next apply
monolingual STS measures. Besides being as resource-intensive as monolingual

2



STS models, the applicability of this methodology is limited to language pairs for
which a robust MT model exists.

The multi-modal STS measures proposed in this work are resource-light and
do not require any language-specific resources and tools. For a given language, our
models require only (1) reasonably large corpora to obtain linguistic representations
(i.e., word embeddings) and (2) an image-retrieval system to obtain visual repre-
sentations (i.e., image embeddings). In the cross-lingual STS setting, the models
additionally require a reasonably small set of word translation pairs to learn a shared
cross-lingual vector space (Mikolov et al., 2013).

Multi-modal semantics. While research in cognitive science clearly suggests
that human meaning representations are grounded in our perceptual system and
sensori-motor experience (Harnad, 1990; Lakoff and Johnson, 1999; Louwerse,
2011, inter alia), previous STS models relied exclusively on linguistic processing
and textual information. To the best of our knowledge, there has not yet been an STS
method that leveraged visual information and combined linguistic and visual input
into a visually-informed multi-modal STS system. However, such visually-informed
models have been successfully used in other tasks such as selectional preferences
(Bergsma and Goebel, 2011), detecting semantic similarity and relatedness (Silberer
and Lapata, 2012; Bruni et al., 2014; Kiela and Bottou, 2014), recognizing lexical
entailment (Kiela et al., 2015), and metaphor detection (Shutova et al., 2016), to
name only a few.

Another important property of visual data is their expected language invari-
ance,1 exploited in recent work on multi-modal modeling in cross-lingual settings
(Bergsma and Durme, 2011; Kiela et al., 2015; Vulić et al., 2016; Specia et al.,
2016). Supported by these findings, in this work we show that our multi-modal STS
framework may be straightforwardly extended to cross-lingual settings.

3 Multi-Modal Concept Representations

Our multi-modal STS measures combine – at different fusion levels – linguistic
and visual concept representations. We obtain linguistic and visual representations
for unigrams and then derive sentence representations by aggregating unigram
representations. This was a pragmatic decision, as we were unable to consistently
retrieve images for whole sentences as queries.

3.1 Linguistic Representations

We use the ubiquitous word embeddings as the linguistic representations of words.
Aiming to make our approach language-independent, we opted for embedding
models that require nothing but the large corpora as input. Due to the common

1Using a simple example from Vulić et al. (2016), bicycles resemble each other irrespective of
whether we call them bicycle, vélo, fiets, bicicletta, or Fahrrad; see also Fig. 1
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usage, we chose the Skip-Gram (Mikolov et al., 2013) and GloVe (Pennington et al.,
2014) embeddings.

For the cross-lingual STS setting, the words of the two languages have to be
projected to the same embedding space. To achieve this, we employ the translation
matrix model of Mikolov et al. (2013), who have shown that the linear mapping
can be established between independently trained embedding spaces. Given a set
of translation pairs {si, ti}ni=1, si ∈ Rds , ti ∈ Rdt (with ds and dt being the sizes
of source and target embeddings, respectively), we obtain the translation matrix
M ∈ Rds×dt by minimizing the sum:

n∑
i=1

‖siM − ti‖2

Once learned, the matrix M is used to project the embeddings of the whole source
language vocabulary to the embedding space of the target language.

3.2 Visual Representations

Image embeddings. We use a standard procedure to obtain visual representations
for words, e.g., (Kiela et al., 2015, 2016): we first retrieve n images for the word
via Bing image search (n = 20 in all experiments).2 Example images for the four
languages we consider in our experiments (cf. Section 5) are shown in Figure 1.

We next run a deep convolutional neural network (CNN) pre-trained on the
ImageNet classification task (Russakovsky et al., 2015) and extract the 4096-
dimensional vector from the pre-softmax layer to represent each image. We opt for
the VGG network (Simonyan and Zisserman, 2014) which, according to Kiela et al.
(2016), has a slight edge on the two other alternatives – AlexNet (Krizhevsky et al.,
2012) and GoogLeNet (Szegedy et al., 2015). We used the MMFeat toolkit (Kiela,
2016) to facilitate the process of image retrieval and CNN-based feature extraction.

Visual similarity. Because we retrieve more than one image per word, our visual
representation of the word is a set of image embedding vectors. This allows for
different visual similarity measures taking as input two sets of image embeddings
(Kiela et al., 2015), given in Table 1.

3.3 Multi-Modal Representations

In order to compute multi-modal STS scores, one can combine linguistic and visual
embeddings of words and sentences in a number of ways. Here, we explore three
different levels of combining visual and linguistic representations, to which we refer
as early fusion, middle fusion, and late fusion. We also experiment with selective

2Our choices were based on the findings from a recent systematic study on visual representation
for multi-modal semantics (Kiela et al., 2016): (1) Visual representations from images obtained via
Google and Bing image search are of similar quality. We opted for Bing for logistic reasons; (2) The
performance of multi-modal models in semantic tasks typically saturates for n in the interval [10, 20].
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Figure 1: Example images (Bing image search)

Measure Computation

AVG-MAX 1
n

∑
ei∈I(wi)

max
ej∈I(wj)

cos(ei, ej)

MAX-MAX max
ei∈I(wi)

max
ej∈I(wj)

cos(ei, ej)

SIM-AVG cos

(
1
n

∑
ei∈I(wi)

ei,
1
n

∑
ej∈I(wj)

ej

)
SIM-MAX cos (maxel I(wi),maxel I(wj))

Table 1: Visual similarity measures for two sets of n images. I(w) is the set of
image embeddings of word w. Function maxel computes the single element-wise
maximum of the input vectors.

inclusion of visual information into the multi-modal representations, based on the
measure of image dispersion.

Early fusion. This type of fusion concatenates (‖) the visual and linguistic em-
beddings of words:

eef (w) = ev(w) ‖ et(w) (1)

where ev(w) is the visual embedding of the word w, computed either by averaging
or element-wise maxing of word’s image embeddings, and et(w) is the linguistic
embedding of the word w. The similarity of two words is then simply computed as
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the cosine similarity of their fused multi-modal vectors.

Middle fusion. This type of fusion is performed at the sentence level. We first
independently compute the aggregate linguistic representation and the aggregate
visual representation for the whole sentence by averaging linguistic embeddings
and visual embeddings of its words, respectively. The middle-fusion sentence
representation is then the concatenation of the aggregated linguistic and visual
representations. Let S be the set of words of a sentence. The middle-fusion sentence
representation is then given as follows:

emf (S) =

(
1

|S|
∑
w∈S

ev(w)

)
‖

(
1

|S|
∑
w∈S

et(w)

)
(2)

Note that the middle-fusion representation of each sentence equals to averaging the
early-fusion representations of its constituent words.

Late fusion. The late fusion combines the visual and linguistic signal at the level
of similarity scores rather than at the embedding level. Thus, it may be applied
both for computing word and sentence similarities. Let simv be the similarity
measure (cf. Section 4) for two words or sentences computed using their visual
representations, and let simt be their similarity computed using their linguistic rep-
resentations. The late-fusion similarity is then computed as the linear combination
of the uni-modal similarities, i.e., as a · simv + b · simt. The default late-fusion
model uses a = b = 0.5.

Selective inclusion of visual information. Previous studies (Hill et al., 2013;
Kiela et al., 2014) show that visual signal does not improve the semantic representa-
tion equally for all concepts. In fact, the inclusion of visual information deteriorates
semantic representations for abstract concepts (e.g., honesty, love, freedom). In
order to selectively include the visual information, we need a measure reflecting the
quality of the visual signal. To this end, we use the image dispersion score (Kiela
et al., 2014). A concept’s image dispersion is the cosine distance between image
embeddings, averaged over all pairs of images obtained for the concept w:

id(w) =
1(I(w)
2

) ∑
ei,ej∈I(w)

i6=j

1− cos(ei, ej) (3)

High image dispersion indicates that the images obtained for the concept are diverse.
This means that the concept does not have a standard visual representation due to,
e.g., its abstractness or its inherent polysemous nature.

We extend our middle-fusion and late-fusion models with selective inclusion of
visual information. For the middle fusion, we measure the average image dispersion
of all the words in a sentence. If the larger of the image dispersions of sentences
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in comparison scores above treshold τ ,3 we compare only the linguistic sentence
embeddings. Otherwise, we compare the “middle-fused” multi-modal embeddings
of the two sentences. For the late fusion, we compute the linear combination
coefficients a and b as functions of image dispersions (the formula is given for
words, but we also apply it to sentences in an analogous manner):

sim lf (wi, wj) = (1− id(wi, wj)) · simv(wi, wj)

+ id(wi, wj) · simt(wi, wj)
(4)

where id(wi, wj) represents the larger of the image dispersions of the words wi and
wj .4

4 Unsupervised STS Measures

In the previous section we explained the different levels at which we may combine
visual and linguistic representations. However, we still have to define the actual STS
measures that compute similarity scores for given pairs of sentences. We propose
two simple unsupervised scores for measuring textual similarity. Both scores are
agnostic of the actual modality used: this means that we can swap linguistic, visual,
and multi-modal vectors as desired without altering the actual STS measure.

Optimal aligment similarity. Following the ideas from successful unsupervised
STS models (Han et al., 2013; Sultan et al., 2014), we aim to align words between
the two sentences at hand. Aiming to devise language-independent STS models
(i.e., language-specific tools that could help better align the words are off-limits),
we can resort to word similarity measures as the sole information source guiding the
alignment process. This STS measure is based on the optimal alignment between the
words of the two input sentences. Given the similarity scores for all pairs of words
between the sentences S1 and S2, we are looking for an alignment {(wi

S1
, wi

S2
)}Ni=1

(N is the number of aligned pairs, equal to the number of words in the shorter of
the sentences) that maximizes the sum of the pairwise similarities, i.e.:

max
{wi

S1
,wi

S2
}Ni=1

N∑
i=1

sim(wi
S1
, wi

S2
) (5)

As this is a prototypical assignment problem, we find the optimal word alignment
using the Hungarian algorithm (Kuhn, 1955), which provides the solution in poly-
nomial time.5 Because pairs of longer sentences will be assigned larger similarity
scores on the account of more aligned word pairs simply due to length, we normalize
the above sum of similarities with the length of each of the two input sentences,

3In all experiments, we set the treshold to the middle of the image dispersion range, i.e., τ = 0.5.
4We also experimented with b = 1, but it yielded inferior performance. This implies that the

contribution of the “useful” (i.e., non-dispersed) visual signal should outweigh the linguistic signal.
5The time complexity of the algorithm, also known as the Kuhn-Munkres algorithm, is O(n3).
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respectively. Finally, the optimal alignment similarity is the average of these two
length-normalized similarity scores.

Aggregation similarity. In order to compute the aggregation similarity, we first
compute the aggregate vector representation for each of the two sentences and then
compare these aggregate sentence vectors. The aggregate vector representation of
the sentence S is computed simply as the mean of the vectors of its words, i.e.,
e(S) = 1

|S|
∑

w∈S e(w). The aggregation similarity score is then computed as the
cosine similarity between the aggregate vector representations of the two sentences,
i.e., simagg = cos(e(S1), e(S2)). Note that, for multi-modal STS models, the
aggregation similarity based on early-fusion word vectors is equivalent to the
similarity of middle-fused sentence representations.

5 Evaluation

In this section, we provide all details relevant to the evaluation of our unsupervised
multi-modal STS models, from the description of datasets to the discussion of the
experimental results.

Datasets. We use two different STS datasets to evaluate all models: we opt for
very different STS datasets to gain more insight about the effectiveness of visually-
informed STS models in different settings. The first dataset is the evaluation portion
of the Microsoft Research video captions dataset (MSRVID) from the SemEval 2012
STS challenge Agirre et al. (2012). MSRVID consists of 750 pairs of short English
sentences containing rather concrete concepts (people and animals performing
simple actions, e.g., “A woman is slicing onions”). We couple the MSRVID dataset
with the cross-lingual English-Spanish STS dataset (NEWS-16) from the SemEval
2016 STS shared task Agirre et al. (2016). NEWS-16 comprises 301 pairs of long
sentences taken from news stories.

Considering (1) that MSRVID is a monolingual English dataset and NEWS-16
considers only one language pair and (2) that we aim to evaluate cross-lingual
STS models on several language pairs, we derived other cross-lingual versions of
these datasets. In addition to the standard monolingual English evaluation on the
MSRVID dataset, we perform cross-lingual evaluations for three different language
pairs: English-Spanish (EN-ES), English-Italian (EN-IT), and English-Croatian
(EN-HR). We selected Spanish because of a readily available ES-EN NEWS-16
dataset and Italian because we had access to native speakers.

To test the claim that the proposed approach is language-independent, we also
include an under-resourced language in the evaluation. As for Italian, we chose
Croatian because we had access to a native speaker of that language. We created
the additional cross-lingual datasets (all three language pairs for MSRVID; EN-IT
and EN-HR for NEWS-16) by: (1) translating one of the sentences from each pair
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MSRVID NEWS-16

Language ASL AID ASL AID

English 3.42 0.51 17.0 0.68
Spanish 3.59 0.58 17.2 0.65
Italian 4.66 0.66 20.9 0.70
Croatian 3.54 0.70 17.7 0.71

Table 2: Statistics of the STS evaluation datasets.

to another language via Google translate and (2) having native speakers fix the
machine translation errors.6

We depict the differences between the datasets in terms of the average sentence
length in number of words (ASL) and the average image dispersion of words (AID)
in Table 2, for all four languages. The average image dispersion is much lower
on the MSRVID dataset (especially for English), which implies that the NEWS-
16 dataset has larger portion of concepts that simply do not have a standardized
visual representation. A closer manual inspection of the two datasets revealed that
NEWS-16, besides having more abstract concepts than MSRVID, contains also a
much larger number of polysemous words. This is not surprising considering the
news-story origin of the sentences in NEWS-16. The differences in average image
dispersion between the languages on the MSRVID dataset imply that Bing image
search does not perform equally well for all languages.

Linguistic embeddings. We used the readily available word vectors for English
(200-dimensional GloVe vectors trained on 6B tokens corpus), Spanish (300-
dimensional Skip-Gram vectors trained on a 1.5B tokens corpus), and Italian (300-
dimensional Skip-Gram vectors trained on a 2B tokens corpus). For Croatian, we
trained 200-dimensional Skip-Gram embedding vectors on the 1.2B token version
of the hrWaC corpus (Ljubešić and Erjavec, 2011).

To train the translation matrices, we selected the 4200 most frequent English
words and translated them to the other three languages via Google translate, as done
in prior work (Mikolov et al., 2013; Vulić et al., 2016). Native speakers of target
languages fixed incorrect machine translations. We learned the optimal values of
the translation matrices stochastically with the Adam algorithm (Kingma and Ba,
2014) on the 4000 word translation pairs. The obtained results of the evaluation
of the translation quality on the remaining 200 test pairs – 58.8% P@5 for EN-ES,
56.3% for EN-IT, and 56.2% for EN-HR – are comparable to those reported in the
original study from Mikolov et al. (2013).

STS Models in Evaluation. Our general approach includes several methods for
measuring visual similarity (Table 1), different types of multi-modal information

6We make the STS datasets and the multi-modal STS code freely available at http://tinyurl.
com/jc8rd57.
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MSRVID NEWS-16

Model EN-EN EN-ES EN-IT EN-HR EN-ES EN-IT EN-HR

Linguistic-only

TXT-OA 74.9 57.3 50.6 55.3 82.7 79.2 78.8
TXT-AGG 74.7 54.9 42.9 51.1 57.3 48.1 54.5

Visual-only

VIS-OA-AVG-MAX 76.5 70.4 63.1 45.0 56.9 57.5 47.7
VIS-AGG-SIM-AVG 77.6 71.8 63.1 38.2 18.0 12.4 4.4

Multi-modal

EF-OA-AVG 77.0 71.5 59.7 33.3 52.8 48.9 41.7
MF-AVG 77.8 72.0 63.8 38.9 19.1 14.8 1.3
LF-WORD-OA 76.6 67.9 60.9 58.3 78.1 74.9 71.0
LF-SENT 80.8 73.1 65.4 59.2 78.0 74.0 71.3

Multi-modal with selective inclusion of visual information

MF-AVG-ID 78.1 70.6 50.0 53.9 57.4 50.2 54.5
LF-WORD-OA-ID 77.3 64.3 56.9 58.8 82.7 79.3 78.6
LF-SENT-ID 81.0 71.8 63.4 61.0 83.1 79.6 79.5

Table 3: STS performance on the MSRVID and NEWS-16 datasets (Pearson ρ).

fusion (Section 2) and two STS measures (Section 4). For brevity, we present results
only for the following models:

i) Linguistic-only models employ linguistic embeddings with optimal alignment
or aggregation similarity (TXT-OA and TXT-AGG);

ii) Visual-only models use optimal alignment or aggregation similarity with the
visual similarities from Table 1 that yield the best performance (VIS-OA-AVG-MAX

and VIS-AGG-SIM-AVG);

iii) Multi-modal models exploit both the linguistic and visual signal by com-
bining early or middle fusion with the averaged image embedding (EF-OA-AVG

and MF-AVG). Additionally, LF-WORD-OA performs the late fusion at the word
level with optimal alignment similarity, whereas LF-SENT model computes the
average of the similarity scores produced by the best-performing linguistic-only
model and the best-performing visual-only model on the respective dataset. For the
last three models we also evaluate variants with image dispersion-based weighting
(MF-AVG-ID, LF-WORD-OA-ID and LF-SENT-ID).

Results and Discussion. Results using Pearson correlation between human and
automatic similarity scores are shown in Table 3.
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i) Multi-modal vs. uni-modal. The visual-only models tend to outperform the
linguistic-only models on MSRVID. The multi-modal models further improve
the performance of the visual-only models. We believe that this is the result of
good visual representations we are able to obtain for concrete concepts, which are
abundant in MSRVID. In the multi-modal landscape, the late fusion at the level of
similarity scores (i.e., the LF-SENT model) seems to be the best way to combine
visual and linguistic information.

The performance of the visual-only models on NEWS-16 is, however, much
lower than the performance of the linguistic-only models. We believe that this is
the direct consequence of obtaining rather noisy visual signal for the majority of
concepts in this dataset. We observe that only 17.9% of English words from NEWS-
16 have the image dispersion score below 0.5 (the statistics is 38.7% on MSRVID).
The number is even lower for the other three languages. Therefore, the direct
multi-modal models (i.e., without the selective inclusion of visual information) also
perform worse than the linguistic-only models.

Aggregation-based models (TXT-OA, VIS-AGG-AVG, and MF-AVG) perform
comparably to their respective optimal alignment counterparts (TXT-OA, VIS-
OA-AVGMAX, and EF-OA-AVG) on MSRVID, but display drastically lower
performances on NEWS-16. The explanation for this is rather intuitive – it is harder
to aggregate the meaning of a sentence from the meaning of its words for long than
for short sentences. On the other hand, by aligning pairs of words and accounting
for the number of alignments, the optimal alignment similarity is not affected by
the sentence length.

ii) Monolingual vs. cross-lingual. The performance gap on MSRVID in favor
of visual-only and multi-modal models is significantly larger in the cross-lingual
settings than in the monolingual English setting. On one hand, the cross-lingual
linguistic-only models suffer from the imperfect mappings between monolingual
embedding spaces. On the other hand, the visual signal seems not to deteriorate
as much in quality for other languages. The performance of visual-only and multi-
modal models is naturally lower for language pairs with languages for which more
dispersed visual signals are used (IT and HR, see the scores in Table 2).

iii) Selective inclusion of visual information. The models that selectively in-
clude visual information do not consistently improve the results of the direct multi-
modal models on MSRVID. Since the impact of the visual signal is scaled according
to the the larger of the image dispersions, the selection model might discard useful
visual information for a word/sentence on one side, because of the poor visual
information on the other side. On the other hand, we have less informative visual
representations across the board on NEWS-16: here, a selective inclusion of visual
information in the similarity-level late fusion model (LF-SENT-ID) has a slight edge
on the linguistic-only model (TXTOA). This improvement is small due to a shortage
of concepts with sufficiently coherent visual representations in NEWS-16. This
suggests that more sophisticated image extraction and content selection methods
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are required in future work.

iv) Comparison with state-of-the-art. For the monolingual English MSRVID

dataset and the cross-lingual EN-ES NEWS-16 dataset, we also compare our results
with the best-performing systems from the corresponding SemEval shared tasks.
Šarić et al. (2012) reach 88% correlation on MSRVID, which is 7% better than our
LF-SENT-ID model. The system of Brychcı́n and Svoboda (2016) achieves the
correlation score of 91% on the EN-ES NEWS-16, 8% above the performance of
LF-SENT-ID. We find these gaps in performance to be reasonably low, given that
both state-of-the-art systems use a set of expensive language-specific tools (e.g.,
dependency parsers, NER). Moreover, the system of Šarić et al. (2012) is supervised,
whereas the Brychcı́n and Svoboda (2016) require a full-blown MT system.

6 Conclusion

Semantic representations of meaning that combine signals from visual and linguistic
input tend to outperform uni-modal models exploiting only linguistic information
across a variety of semantic tasks. In this work, we have investigated the effects
of leveraging visual information in measuring semantic textual similarity (STS)
of short texts. We have retrieved images for single-word concepts and extracted
visual embeddings via a transferred deep CNN (VGG). We fused visual and lin-
guistic signals at three different levels of granularity and plugged the variety of
representations (linguistic, visual, multi-modal) into two simple unsupervised STS
measures. In addition, we investigated the selective inclusion of visual information
in multi-modal STS models based on image dispersion.

Experimental results suggest that the visual-only models outperform the linguistic-
only models by a wide margin on datasets containing a large number of concrete
concepts, especially in the cross-lingual setting. Moreover, the multi-modal STS
models with selective inclusion of visual information seem to provide a performance
boost even for the dataset for which the visual signal is dispersed.

The experiments show that the performance of visual-only and multi-modal
models highly depends on the quality (dispersion) of images obtained for the
concepts. Our future efforts will thus aim to devise methods for extracting and
selecting better visual representations for visually dispersed concepts (e.g., by
clustering the retrieved images by similarity and considering only images from the
largest cluster).
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