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Abstract

Language is compositional: we can generate and interpret novel sentences by having a notion of
meaning of their individual parts. Spatial descriptions are grounded in perceptional representations
but their meaning is also defined by what neighbouring words they co-occur with. In this paper we
examine how language models conditioned on perceptual features can capture the semantics of com-
posed phrases as well as of individual words. We generate a synthetic dataset of spatial descriptions
referring to perceptual scenes and examine how grounded language models built with deep neural
networks can account for compositionality of descriptions – by evaluating how the learned language
models can deal with novel grounded composed descriptions and novel grounded decomposed de-
scriptions, constituents previously not seen in isolation.

1 Introduction

Representing and reasoning with linguistic meaning is a central task in computational linguistics. Here
two kinds of meaning representations are used: (i) probabilistic language models and (ii) meaning rep-
resentations grounded in other, typically perceptual information. Recently, there have been several ap-
proaches in deep learning that deal with both, either independently or together.

The main goal of probabilistic language models is to estimate a probability distribution of sequences
of words based on observable samples from language production, typically by estimating conditional
probabilities of words with a categorical distribution. This gives language models means for representing
words as sequences with a measure of likelihood for each sequence. Neural language models perform this
objective by parametrising a probability density function with parametric representations of words and
functions which compose words into phrases (Bengio et al., 2003; Mnih and Hinton, 2007; Mikolov et al.,
2010). The gradient based learning in neural networks turns the modelling problem into an optimisation
problem, minimising the error or distance between a model prediction and an observable data over a list
of parameters:

1. parameters representing words with feature vectors known as word embeddings;

2. parameters of functions composing word features into a structure;

3. parameters of projections from final composed representations to categorical probabilities which
in sequential models are the next word predictions.

There have been many attempts to show that the learned word embeddings in vector spaces are good
representations of meaning. Basing the argument on the distributional hypothesis, if a probabilistic model
of words is conditioned on their context words (i.e. skip-grams or bag-of-words), the word embeddings
must encode semantic information by having learned distances in vector spaces which correspond to
semantic similarity scores obtained through relatedness tests performed by native speakers. These rep-
resentations were extended to word compositions by considering different compositional functions as
vector manipulations (Mitchell and Lapata, 2010; Coecke et al., 2010; Baroni et al., 2014). Our notion



of composition in a language model is broader than this: it involves (1) distributional models of words
estimated from word sequences as well as (2) their grounding into representations of physical space. This
extends the Montague’s notion of compositionality. Lexical representations and their compositions are
not dependent on meaning postulates and lexicalised constraints but rather perceptual evidence which is
(probabilistically) associated with them.

Harnad (1990); Roy (2005) define language grounding as a process of relating words with an agent’s
perception. The ambiguity and vagueness of grounded meanings as well as of syntactic structures suggest
that the connection between language and perception is gradient and therefore probabilistic. The main
approaches to probabilistic models of grounded language are probabilistic learning of grounded language
and grammar (Roy and Mukherjee, 2005; Matuszek et al., 2012), classifiers (Dobnik, 2009), and feature
representations in perceptual space such as colour (McMahan and Stone, 2015). Our proposal is in line
with all three approaches.

A grounded language model is a language model conditioned by perceptual representations that it
refers to. Ideally, the model should capture how each constituent in the composed phrase relates to
some perceptual representations. For example, in an image captioning task, a grounded language model
estimates a conditional probability of a word sequence w1:T given some image feature c that the words
refers to. A general way to model word sequences is to use the chain rule as follows. The model can
generate phrases and sentences step-by-step by predicting the next word in a sequence:

Pr(w1:T |c) =

T∏
t=1

Pr(wt|w1:t, c) (1)

The parametrisation of vision and language is often done by combining word-embeddings with mul-
timodal embeddings (Kiros et al., 2014; Socher et al., 2014). In the state of the art models for image
captioning with encoder-decoder architecture, the encoder module is trained under the assumption that
grounded words only denote features in subareas of an image, e.g bounding boxes (Karpathy and Fei-Fei,
2015) and pixel-wise mapping with attention models (Xu et al., 2015; Lu et al., 2016). Another example
of a visually grounded language model is a model that is used to demonstrate the compositionality of
colour descriptions in (Monroe et al., 2016) where linguistic descriptions are associated with areas of the
colour space. Similar to (McMahan and Stone, 2015), each observed instance is a colour term paired
with a colour code but instead of considering each description as a lexical entry, phrases are captured
by a grounded language model as in Equation 1. The qualitative human evaluation of how newly com-
posed colour words by this model refer to the colour space suggest that language models can capture
compositionality through gradient learning used with neural networks.

In this paper, we follow up and extend the work of (Monroe et al., 2016). We focus on recurrent neu-
ral language models of sequences of words conditioned by encoded locations that these words refer to in
visual scenes. Hence, we are interested in grounded semantic composition that is not only captured by
probabilistic models of words given their context words, but also by models of their relatedness to percep-
tual representations. An important and novel question we investigate is what these models are learning:
to what degree the representations of meaning (both collocational from vector spaces and grounded in
perception) are interpretable and therefore compositional in the sense of (Montague, 1974). We focus on
one domain of grounded meaning: spatial descriptions of various length and their grounding in spatial
templates of Logan and Sadler (1996). In particular we try to answer the following questions: (1) To
what extent are the language models that have been learned grounded in spatial representations? (2) Is
it possible to generate new, previously unseen grounded composed spatial descriptions from observing
their words only in other grounded composed phrases?

This paper is organised as follows. In Section 2 we describe the creation of an artificial dataset
of composed spatial templates and the associated descriptions based on the experimental work of (Lo-
gan and Sadler, 1996). In Section 3 we describe our neural network model which we use for training
our grounded language model. Section 4 describes an evaluation of the learned representations com-
pared to the original representations the system was learning from. Finally, Section 5 points to con-
clusions and further work. The code and results are available at https://github.com/GU-CLASP/



spatial-composition.

2 The dataset

In order to train a grounded language model we require samples of language use paired with locations
they are referring to. Considering the rationality of speakers and their observers (Grice, 1975), the
frequency of each co-occurring utterance–location corresponds to the appropriateness of such utterance
as a description of that location. One complication of judging the appropriateness of spatial terms this
way is that they are not only depended on the location they describe but also on other properties of the
situation such as the agreed frame of reference, object shape, and the function of the landmark and the
target objects involved, etc. (Herskovits, 1986; Dobnik and Cooper, 2017). However, these properties
will not be considered in the present study.

Logan and Sadler (1996) performed several psychological experiments related to the geometric ap-
prehension of spatial relations. For example, they collected acceptability ratings (1–9) for a set of spatial
relations per different locations of the target object in a 7 × 7 grid relative to the landmark object in the
centre (3, 3). The acceptability scores were collected from 32 informants through random presentation
and then averaged per location. The matrix of average acceptability scores per description is called a
spatial template and represents the appropriateness of each location in the process of interpreting that
spatial relation (Logan and Sadler, 1996). They collect spatial templates for the following spatial rela-
tions: right of, left of, below, under, over, above, near to, next to, far from, and away from which we
also apply in our work. Furthermore, in order to be able to explore the limits of the language models
for learning compositions, we extend this vocabulary with a few additional words. We describe how we
used them to synthesise the composed spatial templates for our training data in the following section.

2.1 Spatial templates as probabilities

As stated earlier, the spatial templates of Logan and Sadler (1996) give us the average acceptability
scores on the scale 1–9 for each of 7 × 7 − 1 locations. In the process of grounding a description
(w1:T = w1w2 . . .wT ), a vector of scores representing its spatial template is used to rank the description’s
acceptability across all possible locations:

Tw1:T = {S core(w1:T , l)}l∈L (2)

Our goal is to find such representation for any composed phrase w1:T . We introduce the following
assumption to convert the acceptability scores to probabilities. The acceptability scores are an indicator
of a degree of belief (Ramsey, 1931) that a rational speaker would use a particular description (w1:T ) to
describe the landmark object at a certain location (c ∈ L). We therefore expect:

S core(w1:T , c) ∝ Pr(w1:T , c) (3)

where the Pr(w1:T , c) is the probability of observing a co-occurrence of a phrase w1:T and a location c.
In order to be able to compare spatial templates generated by the learned neural language models and the
original acceptability scores which were used to generate the training data, we assume that all locations
are equally accessible, then:

Pr(w1:T , c) = Pr(w1:T |c)Pr(c)
=⇒ S core(w1:T , c) ∝ Pr(w1:T |c)

(4)

We compare the generated probability scores by our neural language model, a vector of probabilities
over all locations, for a particular description with its expected spatial template. We use a correlation
coefficient to quantify the difference between a predicted and the “real” spatial template. A spatial
template gives us information about the applicability of each location. When choosing a location given a
description we would consider the ranking of locations by their applicability score. Hence, since we are



not interested in the actual scores but their ranking, Spearman’s rank correlation coefficient is a suitable
measure for comparing spatial templates.

Tw1:T = {S corew1:T ,l}l∈L

T̂w1:T = {Pr(w1:T |c)}l∈L

ρ(Tw1:T , T̂w1:T ) Spearman’s rank correlation coefficient
(5)

2.2 Synthesised data

Considering the assumptions from the previous section, using a simple min-max normalisation, the list
of scores in a spatial template can be translated to a Bernoulli probability of events:

Pr(w0:T , c) ≈ sw1:T ,c =
S core(w1:T , c) − 1

9 − 1
(6)

Using these probabilities, we synthesise instance events of locations and descriptions that make our
training dataset using the same method as (Coventry et al., 2004). Having normalised acceptability
ratings as probabilities, we can generate samples with a frequency corresponding to these probabilities.

f req(w0:T , c) = n × Pr(w0:T , c) (7)

For example, by choosing n = 5, for a location with normalised scores 0.58 for right o f , 0.15 for le f t o f
and 0.91 for next to, we generate 2, 0, 4 instances for each respective description.

(Logan and Sadler, 1996) present acceptability scores for spatial descriptions obtained experimen-
tally only for single-word spatial descriptions such as le f t and above. However, in our task we need their
composed representations. We take the assumption that all spatial templates compose with some known
function. For example for two spatial descriptions conjoined with an intersective and “{spatial term1}
and {spatial term2}”, Gapp (1994) discusses (but not experimentally evaluates) five compositional func-
tions for grounding spatial templates. More recently, Dobnik and Åstbom (2017) show that taking a
geometric mean over acceptability scores per location give highly correlated compositions with spatial
templates of composed descriptions obtained experimentally. Another study on representing binary be-
liefs with beta distributions (Jøsang and McAnally, 2005), shows that the product of scores has the best
approximation for conjoined opinions. We also take this as our compositional function to generate spatial
templates for composite descriptions as in Figure 1, here further defined as:

g∧ : (vi, v j)→ [vi, “and”, v j]
ŝg∧(vi,v j),c = svi,c × sv j,c

(8)

Where g∧ is a grammar rule for conjoined composition. Similarly, following (Jøsang and McAnally,
2005), logical OR-composition can be defined with co-multiplication:

g∨ : (vi, v j)→ [“either”, vi, “or”, v j]
ŝg∨(vi,v j),c = svi,c + sv j,c − svi,c × sv j,c

(9)

For negation “not {spatial term}” we take a complement of the acceptability scores as shown in Figure 1.

g¬ : v→ [“not”, v]
ŝg¬(v),c = 1 − sv,c

(10)

The resulting compositions are shown in Figure 1. One might object to the usage of such synthetic
data. It is important to note that the prime goal of this work is not to learn grounded models of spatial
language that would best approximate human intuitions but to test to what degree grounded neural lan-
guage models are capable of capturing grounded compositionality expressed as compositional functions
of various complexities which have been confirmed in the previous literature to work well. Hence, we are
interested in testing to what extent new machine learning models are capable of learning these functions.

We create two datasets. In the first dataset all descriptions are grounded in spatial templates as
described above. In the second dataset additional words were added which we assume have no grounding



Figure 1: Spatial templates in a 7 × 7 grid: (a) and (b) are spatial templates for “above” and “right” from
(Logan and Sadler, 1996) collected from human judgements. (c-h) are their synthetic compositions. (c)
and (d) are intersective-AND compositions of two spatial templates using point-wise multiplication. (e)
and (f) represent the negation of (a) and (b) using a complement operation. (g) and (h) are logical-OR
compositions of two spatial templates using a point-wise co-multiplication.

in perception to test if the neural language model is able to distinguish them from the words sensitive
to grounding. For example: “{the object | it | the ball} is {spatial phrase} {the object | it | the box}”. The
following additional grammar rules were applied during the generation of the second dataset:

g1 : (v∗)→ [v∗]
g2 : (v∗)→ [“it”, “is”, v∗]
g3 : (v∗)→ [“it”, “is”, v∗, “the′′, “box′′]
g4 : (v∗)→ [“the”, “ball”, “is”, v∗, “the′′, “box′′]
g5 : (v∗)→ [“the”, “ob ject”, “is”, v∗, “the′′, “box′′]

(11)

Algorithm 1 Synthetic generator
1: n = 5
2: gcompositional = {g1, g¬, g∧, g∨}
3: gtextual = {g1, g2, g3, g4, g5}

4: procedure SyntheticGenerator(v∗, c, g)
5: f req← n × ŝg(v∗),c
6: for 1 to f req do
7: syntax← choose random(gtextual)
8: text ← syntax(g(v∗))
9: Generate(text, c)

In the generated descriptions, words such as and, not, the, box, ball, it, object, and is are not grounded in
locations individually but the phrases they occur in refer to locations on the map.

3 Neural network architecture

We use the Recurrent Neural Network (RNN) architecture for a language model (Graves, 2013) with
Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and a decoder architecture from
(Cho et al., 2014) which concatenates word-embeddings of each input word with an encoded location:



Figure 2: The diagram on the left illustrates the architecture of the model at word/time-step t using a
vocabulary size n. On the right, there is an unfolded example how a phrase like “not below” is paired
with a location c as in (w1:T , c) and fed as input to the LSTM decoder. In this setup, similar to (Graves,
2013), we train the model to predict the next word in a sequence and the chain of output probabilities is
taken to estimate the final probability. The sequence can be cut before reaching the end tag < /s >.

yt = Pr(wt|w1:t−1, c)
ht = fθ(ewt−1 ; c,ht−1)
ŷt = softmax(Wht + b)

(12)

where ŷt is the expected categorical probability at time t, f is a recurrent cell with parameters θ, ew is an
embedding vector for a word w, and c is an encoded location as a one-hot vector as shown in Figure 2.

The training set in a batch are pairs of word sequences and their corresponding location codes:
{(w(i)

1:T , c(i))}i∈D where D is our training dataset. The loss function used is the cross entropy distance
between predicted distribution and targeted distribution or log-loss. The observed true output y(i)

t is
represented with one-hot encodings. The training process can be summarised as follows:

y(i)
t = δw(i)

t

L(i)(Θ) = −
∑T+1

t=1 yT(i)
t log(ŷ(i)

t )
= −

∑T+1
t=1 log(ŷ(i)

t (w(i)
t ))

(13)

We train the network parameters with Adam stochastic gradient descent (Kingma and Ba, 2014) with
batch normalisation implemented as an optimiser in Keras (Chollet, 2015). On each mini-batch update
as (Θb ← Θb−1 + AdamS GD(∇ΘL)) the following parameters of the model (Θ) are updated:

{ew}w∈V Embedding vectors for all words
θ Parameters of the RNN cell, composed feature vectors
W,b Parameters of the final dense layer

(14)

3.1 Implementation

We implemented our model in Keras (Chollet, 2015) with TensorFlow (Abadi et al., 2015) as a back-end.
All parameters were initialised randomly with Keras recommendations. In the current implementation,
the size of the ht, the hidden unit of LSTM, is 15, and the parameters of the RNN cell have a dropout of
0.1. The dropout on embeddings is set to 0.3.

We left-padded descriptions w1:T ′ with a starting token w0 =< s > and right-padded them with a
finishing token wT ′+1 =< /s > while the rest was padded with < pad > up to the maximum description



length of T + 1 as illustrated in Figure 2. The final yT+1 can be either < pad > or < /s >. The length of
the RNN chain has to be of the fixed size T + 1, the length of the longest possible sentence, in order to
be used with Keras and its implementation on graphic cards.

During each experiment, we trained the model until it reached an over-fitting point with equal training
and validation loss.

3.2 From the outputs of the RNN to probabilities of composed descriptions

The decoder architecture of RNNs is normally used as a generator which produces sequences of words
or characters from an encoded sequence, e.g. (Cho et al., 2014; Graves, 2013). This can be achieved by
applying Equation 1. The decoder predicts the most likely next word in a chain of softmax productions
ŷt. The unfolded RNN in Figure 2 shows how for a sequence of words as input vectors, ŷt are predicted
which represent categorical probabilities for all possible following words at a time step t. For a given
sequence, w1:T = vk1:kt , we estimate the probabilities using Equation 1 as follows:

Pr(wt = vkt |w1:t−1 = vk1:kt , c) = ŷt(vkt )
Pr(w1:T = vk1:kT |c) =

∏T
t=1 ŷt(vkt )

(15)

The estimated probability is then used to generate spatial templates as in Equation 5. The probabilities
over all possible locations on the map L for a given composition of words can be aggregated as follows:

T̂vk1:kT ′
= {Pr(w1:T ′ = vk1:kT ′ |c)}c∈L (16)

4 Evaluation

We evaluate the learning of composed grounded phrases by examining to what degree the spatial tem-
plates produced by the learned model correspond to the original spatial templates that were used in gen-
erating the training data, how successful is the learning with different kinds of compositions, and what
is the effect of adding distractor words. We ran two experiments, (1) on a simple synthetic dataset con-
taining short phrases where all words are grounded in locations, and (2) on a synthetic dataset generated
with five additional grammar rules from Equation 11, introducing words without spatial grounding or
distractor words. We test the learning of compositional phrases by training a language model on phrases
produced by individual composition types as well as all composition types in both synthetic datasets. A
comparison of the predicted spatial templates with the original spatial templates with Spearman’s rank
correlation coefficient (Equation 5) in Table 1 shows that there is high correlation between them. We
report the average Spearman’s ρ and their median p-values for statistical significance.

Simple phrases With distractors Untrained
AND-phrases 0.87 0.85 -0.00
NEG-phrases 0.72 0.82 0.03
OR-phrases 0.79 0.80 -0.03
SINGLE-word 0.92 0.91 -0.05
All previous 0.83 0.83 -0.01
All previous + distractors NaN 0.84 -0.03

Table 1: For each type of compositional phrases we calculate the average Spearman’s rank correlation
coefficient (ρ) between the predicted spatial templates and the templates used to generate the training
data. The median p-value of ρ of all trained models is < 0.001. The column Untrained indicates the
performance of the model with a random initialisation of weights.

For both Experiment 1 and 2 we created two variations: (1) learning of novel grounded compositions,
where different proportions of AND-phrases and OR-phrases are omitted from the dataset and therefore



hidden from the learner; (2) learning of novel single words from grounded compositions, where propor-
tions of single-word instances are omitted from the dataset and their representations can only be learned
from their occurrence in composed phrases with other words.

In all experiments we hold out 10% of the dataset for validation. In Experiment 1 we iterated the
training over 64 epochs using a batch size 8. In Experiment 2, using a batch size 256, we stopped learning
iterations before 1024 epochs if the validation loss became equal to the training loss.

4.1 Experiment 1: Learning composition of short phrases

In this experiment the training data is generated for single spatial words, AND-compositions, OR-
compositions, and negated phrases without additional distractor words save “and”, “either”, “or”, and
“not”.

4.1.1 Learning of novel grounded compositions

The training data contains synthesised samples of all single words and their negations. However, different
proportions of AND-phrases and OR-phrases are removed from the training set to test if the model can
learn unseen composed phrases. Table 2 shows the average of Spearman’s ρ correlation coefficient for
different portions of held-out phrases. Figure 3 illustrates some predicted novel grounded compositions
where 50% of complex phrases were held out. The ρ scores lower than 0.6 may not be trustworthy, e.g.
“above and left of” with ρ = 0.5 in Figure 3.

Proportions of 90 combinations 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
AND-phrases 0.84 0.8 0.78 0.76 0.71 0.67 0.64 0.53 0.45 0.29
OR-phrases 0.74 0.73 0.69 0.67 0.56 0.57 0.54 0.38 0.23 -0.23

Table 2: Spearman’s ρ for held-out proportions of phrases up to 80% have a median p-value < 0.001 and
p-value > 0.05 for higher proportions.

Figure 3: The predicted spatial templates are shown on the top and the original spatial templates in the
bottom.

The results indicate that the model can produce spatial templates for novel compositions. However,
the learning of composed phrases is dependent on the size and the variety of training instances. Some
phrases are more difficult to train than others. For example, OR phrases correspond to regions that are
more spread out across the 48 locations which makes them more difficult to learn, e.g. an extreme case
such as “either far from or next to”.



10% 20% 30% 40%
AND-phrases 0.86 0.8 0.77 0.81
NEG-phrases 0.83 0.64 0.59 0.43
OR-phrases 0.73 0.78 0.68 0.69
SINGLE-word 0.9 0.9 0.84 0.87

Figure 4: The average Spearman’s ρ for dif-
ferent proportions of unseen examples. Figure 5: The predicted and the original spatial template.

4.1.2 Learning of novel single words from grounded compositions

In this experiment we omit identical proportions of all description types, thus also single word descrip-
tions and negated descriptions. In this case, the predicted novel spatial templates are learned solely
based on observing these words in combination with other words. As before, we conduct the test with
different sizes of held-out data. The results are shown in Figure 4. When omitting up to 4 single de-
scriptions (right of, over, far from and under) the average ρ on grounded SINGLE-word descriptions
decreases only by 0.05 (from 0.92, Table 1). This means that their grounding is successfully learned
from grounded composed expressions. Figure 5 shows a novel learned spatial template for “above”.

4.1.3 Qualitative observations

A qualitative examination of the predicted spatial templates shows that spatial templates with the lowest
ρ are those with no points in space (“right of and left of”) or those with a uniform spread of points
across space (“either far from or next to”) which in our scenario includes a number of training instances
as rules from Section 2.2 were applied to all combinations of spatial templates. We get the highest ρ with
compositions such as “over and above”, possibly because the two spatial templates overlap and result in
a simplified composed representation.

4.2 Experiment 2: Adding distractor words with no spatial grounding

In Experiment 2 we train and measure the performance of the model on grounded descriptions which also
include non-grounded distractor words, for example: “the ball is not left of the box” or “it is above and
right of the object”. The words such as “ball”, “object”, “box”, “it” and “is” provide no contribution to
the grounded meaning (location). In this dataset the number of possible composed phrases increases from
200 to 1,000. Algorithm 1 in Section 2.2 ensures that in the 1,000 possible phrases the same number of
instances is generated as before, now per each of the five permutation rules introducing distractors. The
held-out proportions of spatial descriptions are created before Algorithm 1 is applied so permutations
including these are not generated.

4.2.1 Learning of novel grounded compositions

Although now the training data includes longer sequences and several distractors which make these
compositions harder to learn, the results are only slightly weaker than in Experiment 1 as shown by a
comparison of Table 3 with Table 2.

Proportions of 90 combinations 10% 20% 30% 40% 50% 60% 70% 80%
AND-phrases 0.82 0.79 0.75 0.78 0.73 0.69 0.66 0.45
OR-phrases 0.78 0.69 0.67 0.66 0.59 0.59 0.44 0.33

Table 3: The average Spearman’s ρ with the median p-value of < 0.001. After 80% of held-out phrase
types the ρ values are not statistically significant.



10% 20% 30% 40%
AND-phrases 0.82 0.60 0.71 0.81
NEG-phrases 0.75 0.66 0.45 0.30
OR-phrases 0.76 0.76 0.71 0.64
SINGLE-word 0.88 0.43 0.73 0.84

Figure 6: The average Spearman’s correlations de-
composition task Experiment 2. Figure 7: The learning curve for Experiment 3.

4.2.2 Learning of novel single words from grounded compositions

The results of this task on the dataset from Experiment 2 are shown in Figure 6. The ρ are nearly
identical or only slightly lower for SINGLE-words compared to Experiment 1 (Figure 4). There is an
unusual drop in ρ at 20% of held-out descriptions which requires further investigation. Overall, we can
conclude that the system successfully learned omitted single words from their grounded compositions
even with distractor words.

4.3 Experiment 3: How much grounding?

In Experiment 3, we examine how the amount of training corresponds to the groundedness of expressions
in spatial templates. In particular, we examine the learning curve across several epochs at which more
of the same data is presented incrementally to the learner and how well does the currently learned model
corresponds to the target spatial templates. Typically, the performance of the learner at each epoch is es-
timated by a loss function, here the cross-entropy (log-loss). We compare the loss at each epoch with the
average Spearman’s ρ between the predicted templates and the original templates for 110 possible com-
binations of descriptions from Experiment 1 (excluding OR-phrases). Here, we only run the experiment
with 20% omission of the dataset. Figure 7 shows how average ρ corresponds to the learning progress.
The figure shows that even after the training and the validation loss are only slightly decreasing between
epochs the groundedness is increasing at a higher rate. This can be explained by the fact that the network
is not only predicting locations but also sequences of descriptions which adds a further complexity to
learning which is reflected in the loss.

5 Conclusion and future work

We have presented a grounded language model with recurrent deep neural networks. The objective of our
task was to examine to what extent our neural network architecture can learn a grounded language model
that generated the training data and whether a word that is grounded as a part of a phrase can “carry
over” its grounding to another phrase not observed in the training data. In our view this is the ultimate
test that grounding is compositional. We conduct two learning experiments. In the first experiment we
learn a grounded language model where all descriptions in a sequence are grounded. In the subsequent
sub-experiments we test the success of the grounded language models where some word compositions
are omitted from training. We show that the model is capable of grounding novel compositions and also
predicting grounding of single words while only learning from compositions. However, the degree of
success, while on overall high, is dependent on the amount of the absent information and the coverage
of the training instances. In the second experiment, we add words to our grounded language model
that have no grounding and test whether the system is able to learn different grounding sensitivities of
different words. We show that our language model is capable of recognising the contribution of each
constituent to the meaning of the entire grounded composition. Finally, in the third experiment we



examine grounding related to the log-loss success rate of learning. Overall, we conclude that our deep
neural architecture successfully learns grounded spatial descriptions in a way that the learned functions
are similar to the ones that generated the data. This is a useful result which points towards the fact that
language is compositional both at the level of word sequences and the portions of scenes that they refer
to, thus confirming the result in (Dobnik and Åstbom, 2017). In the future work we will focus on the
effects of the varying dataset sizes on the rate of learning and test the learning setup on more complex
perceptual representations (in terms of the expected irregularities) such as images.
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