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Abstract

Neural machine translation (NMT) can-
not handle a larger vocabulary because
the training complexity and decoding
complexity proportionally increase with
the number of target words. This prob-
lem becomes even more serious when
translating patent documents, which
contain many technical terms that are
observed infrequently. Long et al. (2017)
proposed to select phrases that contain
out-of-vocabulary words using the sta-
tistical approach of branching entropy.
The selected phrases are then replaced
with tokens during training and post-
translated by the phrase translation table
of SMT. In this paper, we apply the
method proposed by Long et al. (2017)
to the WAT 2017 Japanese-Chinese
and Japanese-English patent datasets.
Evaluation on Japanese-to-Chinese,
Chinese-to-Japanese, Japanese-to-English
and English-to-Japanese patent sentence
translation proved the effectiveness of
phrases selected with branching en-
tropy, where the NMT model of Long
et al. (2017) achieves a substantial im-
provement over a baseline NMT model
without the technique proposed by Long
et al. (2017).

1 Introduction

Neural machine translation (NMT), a new
approach to solving machine translation, has
achieved promising results (Bahdanau et al.,
2015; Cho et al., 2014; Jean et al., 2014;
Kalchbrenner and Blunsom, 2013; Luong et al.,
2015a,b; Sutskever et al., 2014). An NMT system
builds a simple large neural network that reads

the entire input source sentence and generates
an output translation. The entire neural network
is jointly trained to maximize the conditional
probability of the correct translation of a source
sentence with a bilingual corpus. Although
NMT offers many advantages over traditional
phrase-based approaches, such as a small memory
footprint and simple decoder implementation,
conventional NMT is limited when it comes to
larger vocabularies. This is because the training
complexity and decoding complexity proportion-
ally increase with the number of target words.
Words that are out of vocabulary are represented
by a single “〈unk〉” token in translations, as
illustrated in Figure 1. The problem becomes
more serious when translating patent documents,
which contain several newly introduced technical
terms.
There have been a number of related studies

that address the vocabulary limitation of NMT
systems. Jean et al. (2014) provided an efficient
approximation to the softmax function to accom-
modate a very large vocabulary in an NMT sys-
tem. Luong et al. (2015b) proposed annotating
the occurrences of the out-of-vocabulary token in
the target sentence with positional information to
track its alignments, after which they replace the
tokens with their translations using simple word
dictionary lookup or identity copy. Li et al. (2016)
proposed replacing out-of-vocabulary words with
similar in-vocabulary words based on a similarity
model learnt from monolingual data. Sennrich et
al. (2016) introduced an effective approach based
on encoding rare and out-of-vocabulary words as
sequences of subword units. Luong and Manning
(2016) provided a character-level and word-level
hybrid NMT model to achieve an open vocabu-
lary, and Costa-jussà and Fonollosa (2016) pro-
posed an NMT system that uses character-based
embeddings.
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Figure 1: Example of translation errors when translating patent sentences with technical terms using
NMT

However, these previous approaches have lim-
itations when translating patent sentences. This
is because their methods only focus on address-
ing the problem of out-of-vocabulary words even
though the words are parts of technical terms. It
is obvious that a technical term should be con-
sidered as one word that comprises components
that always have different meanings and trans-
lations when they are used alone. An exam-
ple is shown in Figure 1, where the Japanese
word “ ”(bridge) should be translated to Chi-
nese word “ ” when included in technical term
“bridge interface”; however, it is always translated
as “ ”.

To address this problem, Long et al. (2016)
proposed extracting compound nouns as techni-
cal terms and replacing them with tokens. Long
et al. (2017) proposed to select phrase pairs us-
ing the statistical approach of branching entropy;
this allows the proposed technique to be applied to
the translation task on any language pair without
needing specific language knowledge to formulate
the rules for technical term identification. In this
paper, we apply the method proposed by Long et
al. (2017) to the WAT 2017 Japanese-Chinese and
Japanese-English patent datasets. On the WAT
2017 Japanese-Chinese JPO patent dataset, the
NMT model of Long et al. (2017) achieves an
improvement of 1.4 BLEU points over a baseline
NMT model when translating Japanese sentences
into Chinese, and an improvement of 0.8 BLEU
points when translating Chinese sentences into
Japanese. On the WAT 2017 Japanese-English
JPO patent dataset, the NMT model of Long et
al. (2017) achieves an improvement of 0.8 BLEU
points over a baseline NMT model when trans-
lating Japanese sentences into English, and an
improvement of 0.7 BLEU points when trans-
lating English sentences into Japanese. More-

over, the number of translation error of under-
translations1 by PosUnk model proposed by Lu-
ong et al. (2015b) reduces to around 30% by the
NMT model of Long et al. (2017).

2 Neural Machine Translation

NMT uses a single neural network trained
jointly to maximize the translation perfor-
mance (Bahdanau et al., 2015; Cho et al., 2014;
Kalchbrenner and Blunsom, 2013; Luong et al.,
2015a; Sutskever et al., 2014). Given a source sen-
tence x = (x1, . . . , xN ) and target sentence y
= (y1, . . . , yM ), an NMTmodel uses a neural net-
work to parameterize the conditional distributions

p(yz | y<z,x)

for 1 ≤ z ≤ M . Consequently, it becomes pos-
sible to compute and maximize the log probability
of the target sentence given the source sentence as

log p(y | x) =
M∑
l=1

log p(yz|y<z,x)

In this paper, we use an NMT model
similar to that used by Bahdanau et
al. (2015), which consists of an encoder
of a bidirectional long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997)
and another LSTM as decoder. In the model
of Bahdanau et al. (2015), the encoder consists
of forward and backward LSTMs. The forward
LSTM reads the source sentence as it is ordered
(from x1 to xN ) and calculates a sequence of
forward hidden states, while the backward LSTM
reads the source sentence in the reverse order

1 It is known that NMT models tend to have the prob-
lem of the under-translation. Tu el al. (2016) proposed
coverage-based NMT which considers the problem of the
under-translation.
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(from xN to x1) , resulting in a sequence of back-
ward hidden states. The decoder then predicts
target words using not only a recurrent hidden
state and the previously predicted word but also a
context vector as followings:

p(yz | y<z,x) = g(yz−1, sz−1, cz)

where sz−1 is an LSTM hidden state of decoder,
and cz is a context vector computed from both
of the forward hidden states and backward hidden
states, for 1 ≤ z ≤ M .

3 Phrase Pair Selection using Branching
Entropy

Branching entropy has been applied to
the procedure of text segmentation (e.g.,
(Jin and Tanaka-Ishii, 2006)) and key phrases
extraction (e.g., (Chen et al., 2010)). In this work,
we use the left/right branching entropy to detect
the boundaries of phrases, and thus select phrase
pairs automatically.

3.1 Branching Entropy
The left branching entropy and right branching en-
tropy of a phrase w are respectively defined as

Hl(w) = −
∑

v∈V w
l

pl(v) log2 pl(v)

Hr(w) = −
∑

v∈V w
r

pr(v) log2 pr(v)

where w is the phrase of interest (e.g.,
“ / ” in the Japanese sen-
tence shown in Figure 1, which means “bridge
interface”), V w

l is a set of words that are adjacent
to the left of w (e.g., “ ” in Figure 1, which is
a Japanese particle) and Vw

r is a set of words
that are adjacent to the right of w (e.g., “388” in
Figure 1). The probabilities pl(v) and pr(v) are
respectively computed as

pl(v) =
fv,w
fw

pr(v) =
fw,v

fw
(1)

where fw is the frequency count of phrase w,
and fv,w and fw,v are the frequency counts of
sequence “v,w” and sequence “w,v” respectively.
According to the definition of branching entropy,
when a phrasew is a technical term that is always
used as a compound word, both its left branch-
ing entropy Hl(w) and right branching entropy
Hr(w) have high values because many different

words, such as particles and numbers, can be adja-
cent to the phrase. However, the left/right branch-
ing entropy of substrings ofw have low values be-
cause words contained inw are always adjacent to
each other.

3.2 Selecting Phrase Pairs

Given a parallel sentence pair 〈Ss, St〉, all n-grams
phrases of source sentence Ss and target sentence
St are extracted and aligned using phrase transla-
tion table and word alignment of SMT according
to the approaches described in Long et al. (2016).
Next, phrase translation pair 〈ts, tt〉 obtained from
〈Ss, St〉 that satisfies all the following conditions
is selected as a phrase pair and is extracted:

(1) Either ts or tt contains at least one out-of-
vocabulary word.

(2) Neither ts nor tt contains predetermined stop
words.

(3) Entropies Hl(ts), Hl(tt), Hr(ts) and Hr(tt)
are larger than a lower bound, while the
left/right branching entropy of the substrings
of ts and tt are lower than or equal to the
lower bound.

Here, the maximum length of a phrase as well
as the lower bound of the branching entropy are
tuned with the validation set.2 All the selected
source-target phrase pairs are then used in the next
section as phrase pairs.

4 NMT with a Large Phrase Vocabulary

In this work, the NMT model is trained on a bilin-
gual corpus in which phrase pairs are replaced
with tokens. The NMT system is then used as a de-
coder to translate the source sentences and replace
the tokens with phrases translated using SMT.

2 Throughout the evaluations on patent translation of both
language pairs of Japanese-Chinese and Japanese-English,
the maximum length of the extracted phrases is tuned as 7.
The lower bounds of the branching entropy are tuned as 5 for
patent translation of the language pair of Japanese-Chinese,
and 8 for patent translation of the language pair of Japanese-
English. We also tune the number of stop words using the
validation set, and use the 200 most-frequent Japanese mor-
phemes and Chinese words as stop words for the language
pair of Japanese-Chinese, use the 100 most-frequent Japanese
morphemes and English words as stop words for the language
pair of Japanese-English.
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Figure 2: NMT training after replacing phrase pairs with token pairs 〈Ts
i , T t

i 〉 (i = 1, 2, . . .)

4.1 NMT Training after Replacing Phrase
Pairs with Tokens

Figure 2 illustrates the procedure for training the
model with parallel patent sentence pairs in which
phrase pairs are replaced with phrase token pairs
〈T s

1 , T t
1〉, 〈T s

2 , T t
2〉, and so on.

In the step 1 of Figure 2, source-target phrase
pairs that contain at least one out-of-vocabulary
word are selected from the training set using
the branching entropy approach described in Sec-
tion 3.2. As shown in the step 2 of Fig-
ure 2, in each of the parallel patent sentence
pairs, occurrences of phrase pairs 〈ts1, tt1〉, 〈ts2, tt2〉,
. . ., 〈tsk, ttk〉 are then replaced with token pairs
〈T s

1 , T t
1〉, 〈T s

2 , T t
2〉, . . ., 〈T s

k , T t
k〉. Phrase pairs

〈ts1, tt1〉, 〈ts2, tt2〉, . . ., 〈tsk, ttk〉 are numbered in the
order of occurrence of the source phrases ts1 (i =
1, 2, . . . , k) in each source sentence Ss. Here note
that in all the parallel sentence pairs 〈Ss, St〉, the
tokens pairs 〈Ts

1 , T t
1〉, 〈T s

2 , T t
2〉, . . . that are iden-

tical throughout all the parallel sentence pairs are
used in this procedure. Therefore, for example, in
all the source patent sentences Ss, the phrase ts1
which appears earlier than other phrases in Ss is
replaced with Ts

1 . We then train the NMT model
on a bilingual corpus, in which the phrase pairs are
replaced by token pairs 〈Ts

i , T t
i 〉 (i = 1, 2, . . .),

and obtain an NMT model in which the phrases
are represented as tokens.

4.2 NMT Decoding and SMT Phrase
Translation

Figure 3 illustrates the procedure for produc-
ing target translations by decoding the input
source sentence using the NMT model of Long et
al. (2017).
In the step 1 of Figure 3, when given an in-

put source sentence, we first generate its transla-

Table 1: Statistics of datasets
training validation test
set set set

ja↔ ch 998,054 2,000 2,000
ja↔ en 999,636 2,000 2,000

tion by decoding of SMT translation model. Next,
as shown in the step 2 of Figure 3, we automati-
cally extract the phrase pairs by branching entropy
according to the procedure of Section 3.2, where
the input sentence and its SMT translation are
considered as a pair of parallel sentence. Phrase
pairs that contains at least one out-of-vocabulary
word are extracted and are replaced with phrase
token pairs 〈Ts

i , T t
i 〉 (i = 1, 2, . . .). Consequently,

we have an input sentence in which the tokens
“T s

i ” (i = 1, 2, . . .) represent the positions of the
phrases and a list of SMT phrase translations of
extracted Japanese phrases. Next, as shown in the
step 3 of Figure 3, the source Japanese sentence
with tokens is translated using the NMT model
trained according to the procedure described in
Section 4.1. Finally, in the step 4, we replace
the tokens “T t

i ” (i = 1, 2, . . .) of the target sen-
tence translation with the phrase translations of the
SMT.

5 Evaluation

5.1 DataSets
We evaluated the effectiveness of the NMT model
of Long et al. (2017) on the WAT 2017 Japanese-
Chinese and Japanese-English JPO dataset.3 Out
of the training set of the WAT 2017 Japanese-
Chinese JPO dataset, we used 998,954 patent sen-
tence pairs, whose Japanese sentences contain

3 http://lotus.kuee.kyoto-u.ac.jp/WAT/
patent/index.html
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Figure 3: NMT decoding with tokens “Ts
i ” (i = 1, 2, . . .) and the SMT phrase translation

fewer than 100 morphemes, Chinese sentences
contain fewer than 100 words. Out of the train-
ing set of the WAT 2017 Japanese-English JPO
dataset, we used 999,636 sentence pairs whose
Japanese sentences contain fewer than 100 mor-
phemes and English sentences contain fewer than
100 words. In both cases, we used all of the sen-
tence pairs contained in the development sets of
the WAT 2017 JPO datasets as development sets,
and we used all of the sentence pairs contained in
the test sets of the WAT 2017 JPO datasets as test
sets. Table 1 show the statistics of the dataset.

According to the procedure of Section 3.2,
from the Japanese-Chinese sentence pairs of the
training set, we collected 102,630 occurrences of
Japanese-Chinese phrase pairs, which are 69,387
types of phrase pairs with 52,786 unique types
of Japanese phrases and 67,456 unique types of
Chinese phrases. Within the total 2,000 Japanese
patent sentences in the Japanese-Chinese test set,
266 occurrences of Japanese phrases were ex-
tracted, which correspond to 247 types. With
the total 2,000 Chinese patent sentences in the
Japanese-Chinese test set, 417 occurrences of Chi-
nese phrases were extracted, which correspond to
382 types.

From the Japanese-English sentence pairs of the
training set, we collected 38,457 occurrences of
Japanese-English phrase pairs, which are 35,544
types of phrase pairs with unique 34,569 types
of Japanese phrases and 35,087 unique types of
English phrases. Within the total 2,000 Japanese
patent sentences in the Japanese-English test set,
249 occurrences of Japanese phrases were ex-
tracted, which correspond to 221 types. With
the total 2,000 English patent sentences in the

Japanese-English test set, 246 occurrences of En-
glish phrases were extracted, which correspond to
230 types.

5.2 Training Details
For the training of the SMT model, including the
word alignment and the phrase translation table,
we used Moses (Koehn et al., 2007), a toolkit for
phrase-based SMT models. We trained the SMT
model on the training set and tuned it with the val-
idation set.
For the training of the NMT model, our train-

ing procedure and hyperparameter choices were
similar to those of Bahdanau et al. (2015). The
encoder consists of forward and backward deep
LSTM neural networks each consisting of three
layers, with 512 cells in each layer. The decoder
is a three-layer deep LSTM with 512 cells in each
layer. Both the source vocabulary and the target
vocabulary are limited to the 40K most-frequently
used morphemes / words in the training set. The
size of the word embedding was set to 512. We
ensured that all sentences in a minibatch were
roughly the same length. Further training details
are given below: (1) We set the size of a minibatch
to 128. (2) All of the LSTM’s parameter were
initialized with a uniform distribution ranging be-
tween -0.06 and 0.06. (3) We used the stochas-
tic gradient descent, beginning at a fixed learning
rate of 1. We trained our model for a total of 10
epochs, and we began to halve the learning rate
every epoch after the first seven epochs. (4) Simi-
lar to Sutskever et al.(2014), we rescaled the nor-
malized gradient to ensure that its norm does not
exceed 5. We trained the NMT model on the train-
ing set. The training time was around two days
when using the described parameters on a 1-GPU
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Table 2: Automatic evaluation results (BLEU)
System ja→ ch ch→ ja ja→ en en→ ja
Baseline SMT (Koehn et al., 2007) 30.0 36.2 28.0 29.4
Baseline NMT 34.2 40.8 43.1 41.8
NMT with PosUnk model (Luong et al., 2015b) 34.5 41.0 43.5 42.0
NMT with phrase translation by SMT 35.6 41.6 43.9 42.5(Long et al., 2017)

Table 3: Human evaluation results of pairwise evaluation
System ja→ ch ch→ ja ja→ en en→ ja
NMT with PosUnk model (Luong et al., 2015b) 13 12.5 9.5 14.5
NMT with phrase translation by SMT 23.5 22.5 15.5 19(Long et al., 2017)

machine.
We compute the branching entropy using the

frequency statistics from the training set.

5.3 Evaluation Results

In this work, we calculated automatic evaluation
scores for the translation results using a popular
metrics called BLEU (Papineni et al., 2002). As
shown in Table 2, we report the evaluation scores,
using the translations by Moses (Koehn et al.,
2007) as the baseline SMT and the scores using
the translations produced by the baseline NMT
system without the approach proposed by Long
et al. (2017) as the baseline NMT. As shown in
Table 2, the BLEU score obtained by the NMT
model of Long et al. (2017) is clearly higher than
those of the baselines. Here, as described in Sec-
tion 3, the lower bounds of branching entropy
for phrase pair selection are tuned as 5 through-
out the evaluation of language pair of Japanese-
Chinese, and tuned as 8 throughout the evalua-
tion of language pair of Japanese-English, respec-
tively. On the WAT 2017 Japanese-Chinese JPO
patent dataset, when compared with the baseline
SMT, the performance gains of the NMT model
of Long et al. (2017) are approximately 5.6 BLEU
points when translating Japanese into Chinese and
5.4 BLEUwhen translating Chinese into Japanese.
On the WAT 2017 Japanese-English JPO patent
dataset, when compared with the baseline SMT,
the performance gains of the NMT model of Long
et al. (2017) are approximately 15.9 BLEU points
when translating Japanese into English and 13.1
BLEU when translating English into Japanese.

When compared with the result of the baseline
NMT, the NMT model of Long et al. (2017)
achieved performance gains of 1.4 BLEU points
on the task of translating Japanese into Chinese
and 0.8 BLEU points on the task of translating
Chinese into Japanese. When compared with the
result of the baseline NMT, the NMT model of
Long et al. (2017) achieved performance gains
of 0.8 BLEU points on the task of translating
Japanese into English and 1.4 BLEU points on the
task of translating English into Japanese.

Furthermore, we quantitatively compared our
study with the work of Luong et al. (2015b). Ta-
ble 2 compares the NMT model with the Po-
sUnk model, which is the best model proposed by
Luong et al. (2015b) The NMT model of Long
et al. (2017) achieves performance gains of 0.9
BLEU points when translating Japanese into Chi-
nese, and performance gains of 0.6 BLEU points
when translating Chinese into Japanese. The
NMT model of Long et al. (2017) achieves per-
formance gains of 0.4 BLEU points when translat-
ing Japanese into English, and performance gains
of 0.5 BLEU points when translating English into
Japanese

In this study, we also conducted two types
of human evaluations according to the work of
Nakazawa et al. (2015): pairwise evaluation and
JPO adequacy evaluation. In the pairwise eval-
uation, we compared each translation produced
by the baseline NMT with that produced by the
NMT model of Long et al. (2017) as well as
the NMT model with PosUnk model, and judged
which translation is better or whether they have
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Table 4: Human evaluation results of JPO adequacy evaluation
System ja→ ch ch→ ja ja→ en en→ ja
Baseline SMT (Koehn et al., 2007) 3.1 3.2 2.9 3.0
Baseline NMT 3.6 3.6 3.7 3.7
NMT with PosUnk model (Luong et al., 2015b) 3.8 3.9 3.9 3.9
NMT with phrase translation by SMT 4.1 4.1 4.2 4.1(Long et al., 2017)

Table 5: Evaluation results from WAT 2017
Evaluation System ja→ ch ch→ ja ja→ en en→ ja
Automatic Baseline (PBSMT) 32.1 38.5 30.8 34.3
evaluation NMT with phrase translation by SMT 33.2 40.5 37.3 41.1(BLEU) (Long et al., 2017)
Pairwise NMT with phrase translation by SMT 21.8 40.1 51.5 49.5evaluation (Long et al., 2017)
JPO adequacy NMT with phrase translation by SMT 4.1 3.9 4.2 4.3evaluation (Long et al., 2017)

comparable quality. In contrast to the study con-
ducted by Nakazawa et al. (2015), we randomly
selected 200 sentence pairs from the test set for hu-
man evaluation, and both human evaluations were
conducted using only one judgement. Table 3 and
Table 4 show the results of the human evalua-
tion for the baseline SMT, baseline NMT, NMT
model with PosUnk model, and the NMT model
of Long et al. (2017). We observe that the NMT
model of Long et al. (2017) achieves the best per-
formance for both the pairwise and JPO adequacy
evaluations when we replace the tokens with SMT
phrase translations after decoding the source sen-
tence with the tokens.
Moreover, Table 5 shows the results of

automatic evaluation, pairwise evaluation
and JPO adequacy evaluation from the WAT
2017 (Nakazawa et al., 2017).4 We observe that
the NMT model of Long et al. (2017) achieves
a substantial improvement over the WAT 2017
baseline.
For the test sets, we also counted the num-

bers of the untranslated words of input sentences.
As shown in Table 6, the number of untranslated
words by the baseline NMT reduced to around
65% by the NMT model of Long et al. (2017).
This is mainly because part of untranslated source
words are out-of-vocabulary, and thus are untrans-

4 http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/

lated by the baseline NMT. The NMT model of
Long et al. (2017) extracts those out-of-vocabulary
words as a part of phrases and replaces those
phrases with tokens before the decoding of NMT.
Those phrases are then translated by SMT and in-
serted in the output translation, which ensures that
those out-of-vocabulary words are translated.

Figure 4 compares an example of correct trans-
lation produced by the NMT model of Long et
al. (2017) with one produced by the baseline NMT.
In this example, the translation is a translation er-
ror because the Japanese word “ (quench-
ing)” is an out-of-vocabulary word and is erro-
neously translated into the “〈unk〉” token. The
NMT model of Long et al. (2017) correctly trans-
lated the Japanese sentence into Chinese, where
the out-of-vocabulary word “ ” is correctly
selected by the approach of branching entropy as
a part of the Japanese phrase “ (quench-
ing agent)”. The selected Japanese phrase is then
translated by the phrase translation table of SMT.
Figure 5 shows another example of correct trans-
lation produced by the NMT model of Long et
al. (2017) with one produced by the baseline NMT.
As shown in Figure 5, the translation produced
by baseline NMT is a translation error because
the out-of-vocabulary English words “eukaryotic”
and “promoters” are untranslated words and their
translations are not contained in the output trans-
lation of the baseline NMT. The NMT model of

116



Table 6: Numbers of untranslated morphemes / words of input sentences
System ja→ ch ch→ ja ja→ en en→ ja
NMT with PosUnk model (Luong et al., 2015b) 1,112 846 1,031 794
NMT with phrase translation by SMT 736 581 655 571(Long et al., 2017)

Figure 4: An example of correct translations produced by the NMT model of Long et al. (2017) when
addressing the problem of out-of-vocabulary words (Japanese-to-Chinese)

Figure 5: An example of correct translations produced by the NMT model of Long et al. (2017) when
addressing the problem of under-translation (English-to-Japanese)

Long et al. (2017) correctly translated those En-
glish words into Japanese because those English
words “eukaryotic” and “promoters” are selected
as an English phrase “Eukaryotic promoters” with
branching entropy and then are translated by SMT.

6 Conclusion

Long et al. (2017) proposed selecting phrases that
contain out-of-vocabulary words using the branch-
ing entropy. These selected phrases are then re-
placed with tokens and post-translated using an
SMT phrase translation. In this paper, we ap-
ply the method proposed by Long et al. (2017)
to the WAT 2017 Japanese-Chinese and Japanese-
English patent datasets. We observed that the
NMTmodel of Long et al. (2017) performed much
better than the baseline NMT system in all of
the language pairs: Japanese-to-Chinese/Chinese-

to-Japanese and Japanese-to-English/English-to-
Japanese. One of our important future tasks is
to compare the translation performance of the
NMT model of Long et al. (2017) with that based
on subword units (e.g. (Sennrich et al., 2016)).
Another future work is to integrate the rerank-
ing framework for minimizing untranslated con-
tent (Goto and Tanaka, 2017) into the NMTmodel
of Long et al. (2017), which is expected to further
reduce the number of untranslated words. This fu-
ture work is roughly based on the observation re-
ported in Kimura et al. (2017), where the NMT
model of Long et al. (2017) is not only effective
in reducing the untranslated content without any
specific framework of minimizing the untranslated
content, but also successfully reduced the esti-
mated volumes of the untranslated content, which
was proposed by Goto and Tanaka (2017).
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