
Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems, pages 59–60
Copenhagen, Denmark, September 8, 2017. c©2017 Association for Computational Linguistics

Strawman: an Ensemble of Deep Bag-of-Ngrams for Sentiment Analysis

Kyunghyun Cho
Courant Institute & Center for Data Science,

New York University
kyunghyun.cho@nyu.edu

Abstract

This paper describes a builder entry,
named “strawman”, to the sentence-level
sentiment analysis task of the “Build It,
Break It” shared task of the First Work-
shop on Building Linguistically General-
izable NLP Systems. The goal of a builder
is to provide an automated sentiment an-
alyzer that would serve as a target for
breakers whose goal is to find pairs of
minimally-differing sentences that break
the analyzer.

1 Data and Preprocessing

Data The organizers of the shared task provided
two distinct types of training sets. The first set
consists of usual sentences paired with their cor-
responding sentiment labels (+1 for positive and
-1 for negative) and confidences (a real value be-
tween 0 and 1.) The other set consists of phrases
paired similarly with sentiment labels and confi-
dences. In the latter case, the sentiment label may
be either -1, 1 or 0 which indicates neutral. There
are 6920 sentences and 166,737 phrases.

As the goal of “strawman” is to build the most
naive and straightforward baseline for the shared
task, I have decided to use all the examples from
both of the training sets whose sentiment labels
were either -1 or 1. In other words, any phrase
labelled neutral was discarded. The confidence
scores were discarded as well.

The combined data was shuffled first, and then
the first 160k examples were used for training and
the last 10k examples for validation. I have de-
cided to ignore 3,657 examples in-between.

Vocabulary The training dataset was lower-
cased in order to avoid an issue of data sparsity,
as the size of the dataset is relatively small. Since

the provided training examples were already tok-
enized to a certain degree, I have not attempted
any further tokenization, other than removing a
quotation mark “””. In the case of blind devel-
opment and test sets, I used spaCy1 for automatic
tokenization. At this stage, a vocabulary was built
using all the n-gram’s with n up to 2 from the en-
tire training set. This resulted in a vocabulary of
102,608 unique n-gram’s, and among them, I de-
cided to use only the 100k most frequent n-grams.

2 Model and Training

The “strawman” is an ensemble of five deep bag-
of-ngrams classifiers. Each classifier is a multi-
layer perceptron consisting of an embedding layer
which transforms one-hot vector representations
of words into continuous vectors, averaging pool-
ing, a 32-dim tanh hidden layer and a binary soft-
max layer. The classifier is trained to minimize
cross-entropy loss using Adam (Kingma and Ba,
2014) with the default parameters. Each train-
ing run was early-stopped based on the validation
accuracy and took approximately 10-20 minutes
on the author’s laptop which has a 2.2 GHz In-
tel Core i7 (8 cores) and does not have any GPU
compute capability. The output distributions of
all the five classifiers, which were initialized us-
ing distinct random seeds, were averaged to form
an ensemble. The entire code was written in
Python using PyTorch.2 The implementation is
publicly available at https://github.com/
kyunghyuncho/strawman.

3 Result and Thoughts

Despite its simplicity and computational effi-
ciency, the “strawman” fared reasonably well. The
“strawman” was ranked first in terms of the aver-

1https://spacy.io/
2http://pytorch.org/
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age F1 score on all the breakers’ test cases, out-
performing more sophisticated systems based on a
recursive deep network (Builder Team 5, (Socher
et al., 2013)) as well as a convolutional network
(Builder Team 6, (Kalchbrenner et al., 2014)).
When measured by the proportion of the test cases
on which the system was broken (i.e., the system
is correct only for one of the minimally difference
sentences and wrong for the other), the “straw-
man” was ranked fourth out of six submissions,
although the margin between the “strawman” and
the best ranking system (Builder Team 2) was only
about 1% out of 25.43% broken case rate, corre-
sponding to 6 cases.

Although we must wait until the breakers’ re-
ports in order to understand better how those
broken cases were generated, there are a few
clear holes in the proposed “strawman”. First,
if any word is replaced so that a new bigram
disappears from the predefined vocabulary of n-
grams, the “strawman” could easily be thrown off.
This could be addressed by character-level mod-
elling (Ling et al., 2015; Kim et al., 2015) or a hy-
brid model (Miyamoto and Cho, 2016). Second,
the “strawman” will be easily fooled by any non-
compositional expression that spans more than
two words. This is inevitable, as any expression
longer than two words could only be viewed as a
composition of multiple uni- and bi-grams. Third,
the obvious pitfall of the “strawman” is that it was
trained solely on the provided training set consist-
ing of less than 7k full sentences. The “strawman”
would only generalize up to a certain degree to any

expression not present in the training set.
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