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Abstract

This work presents a framework for word
similarity evaluation grounded on cogni-
tive sciences experimental data. Word pair
similarities are compared to reaction times
of subjects in large scale lexical decision
and naming tasks under semantic priming.
Results show that GloVe embeddings lead
to significantly higher correlation with ex-
perimental measurements than other con-
trolled and off-the-shelf embeddings, and
that the choice of a training corpus is less
important than that of the algorithm. Com-
parison of rankings with other datasets
shows that the cognitive phenomenon cov-
ers more aspects than simply word related-
ness or similarity.

1 Introduction

Word representations have attracted a lot of inter-
est in the community and led to very useful ap-
plications in a range of domains of natural lan-
guage processing. Such representations are typ-
ically evaluated intrinsically on word similarity
tasks and extrinsically on their impact on NLP sys-
tems performance (Schnabel et al., 2015; Lai et al.,
2016; Ghannay et al., 2016).

A recent trend towards building more general
representations has looked at how similarities in
the representation space can predict the outcome
of cognitive experiments, such as human reaction
time in semantic priming experiments (Ettinger
and Linzen, 2016) or relying on eye tracking and
brain imaging data (Søgaard, 2016; Ruan et al.,
2016). The idea is that ground truth from uncon-
scious phenomena might be less prone to subjec-
tive factors of more traditional word similarity and
relatedness datasets.

In this paper, we describe an evaluation frame-
work based on comparing word embedding sim-
ilarity against reaction times from the Semantic
Priming Project (Hutchison et al., 2013). A set
of word embeddings is evaluated by computing its
Spearman rank correlation with average reaction
times obtained by submitting a set of subjects to a
prime (one word from the pair) and then perform
one of two tasks: lexical decision (decide whether
the second word is an existing word or not), and
naming (read aloud the second word).

Extending the ideas developed in (Ettinger and
Linzen, 2016), this paper describes the following
contributions:

• we create and distribute a package1 for word
embedding evaluation based on the SPP
primed reaction time data;

• in order to calibrate results from that evalua-
tion framework, we look at the effect of train-
ing corpus on a set of word embeddings;

• we also look at the correlation between SPP
reaction times and subjective similarity and
relatedness ratings from existing datasets.

2 Related Work

Intrinsic and extrinsic approaches have been pro-
posed for word embedding evaluation. The former
typically consist in collecting human judgment of
word similarity on a range of word pairs, and com-
puting the rank correlation of their averaged value
with the cosine similarity between the embeddings
of the words in the pair. Word analogy is also
evaluated but it has been proven to be equivalent
to a linear combination between cosine similari-
ties (Levy et al., 2014). In this work, we focus on

1Available at https://github.com/JomnTAL/
spp-wordsim
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intrinsic evaluation, and therefore do not detail ef-
forts for extrinsic evaluation of word embeddings.
More pointers can be found in (Schnabel et al.,
2015; Lai et al., 2016; Ghannay et al., 2016).

A number of datasets can be used to evalu-
ate word similarity based on human judgment.
Older datasets, such as RG (Rubenstein and Good-
enough, 1965) and MC (Miller and Charles, 1991)
shall not be used because differences between
correlations are not significant due to their small
size (Faruqui et al., 2016). While early datasets
contained judgments collected in-house, such as
WS-353 (Finkelstein et al., 2001; Agirre et al.,
2009), most recent ones are created through crowd
sourcing, with 10 to 20 annotations per word-
pair, filtered for outliers: MTurk-287 (Radinsky
et al., 2011), MTurk-771 (Halawi et al., 2012),
MEN (Bruni et al., 2012), RW (Luong et al.,
2013). Another trend is to address different syn-
tactic categories than noun, such as YP-130 (Yang
and Powers, 2006) and Verb (Baker et al., 2014)
which focus on verbs. While past studies did not
differentiate relatedness from semantic similarity,
SimLex (Hill et al., 2016) and SimVerb (Gerz
et al., 2016) explicitly promote the later. Em-
beddings can also be compared to lexical re-
sources (Tsvetkov et al., 2015), but it is hard to
balance the contribution of each linguistic phe-
nomenon. Existing similarity ratings are subjec-
tive because they are the result of a conscious pro-
cess while it seems desirable to directly evaluate
embeddings against basic processes that support
language in the brain.

In the cognitive sciences community, there has
been efforts to explain how word associations are
formed by introducing word embeddings in mod-
els. Pereira et al. (2016) look at how off-the-
shelf word embeddings predict free associations
(given a prime, say the first word that comes to
your mind), a conscious process while we are in-
terested in an unconscious process. The work by
Hollis and Westbury (2016), among other experi-
ments, compares word embedding principal com-
ponents to unprimed reaction times from the En-
glish Lexicon Project (ELP) and British Lexicon
Project (BLP). Both papers are interested in ex-
plaining cognitive behavior. There have also been
efforts to evaluate word embeddings against fMRI
recordings with the idea that embeddings can ex-
plain part of the neural activity (Søgaard, 2016).

The work by Ettinger and Linzen (2016) is par-

ticularly relevant to our study in that the authors
also propose to evaluate embeddings against reac-
tion time data from the SPP dataset. Our work dif-
fers in that we provide an evaluation setup which
can be reused by other researchers, we propose a
different evaluation metric based on rank correla-
tion, and we perform an analysis in regard to dif-
ferent parameters, in particular the corpus used to
train embeddings.

3 Semantic priming

There is an extensive psychological literature con-
cerning the nature of semantic representations and
the influence of semantic or associative context on
word processing (McNamara, 2005). In this do-
main, the semantic priming paradigm is one of
the most popular experimental tool to study these
cognitive processes. In this task, participants are
presented with a prime (stimulus) word (e.g., cat)
immediately followed by either a related (e.g.,
dog) or an unrelated (e.g., truck) target word. A
speeded response is expected on the target word
(e.g., a lexical-decision, i.e., is it a word or not?)
and a response time is recorded. Semantic prim-
ing refers to the finding that people respond faster
to target words preceded by related, relative to un-
related, primes. This behavioral index therefore
provides information about the influence of a se-
mantic context (i.e., the prime word) on the pro-
cessing of the target word and is suitable for the
development of theories of semantic memory.

Due to the increasing precision of computa-
tional models of word processing, researchers are
now testing models by using large-scale databases
providing experimental data at the item level. The
Semantic Priming Project (SPP) (Hutchison et al.,
2013) is one of these recently collected databases.
It provides response times from 768 participants in
speeded naming (NT) and lexical decision (LDT)
tasks for 1,661 target words following related and
unrelated primes. The naming task consists in
reading aloud the target, while the lexical deci-
sion task consists in pressing one of two buttons to
specify if the target is a valid word or not. Aside
from the relatedness between the prime and the
target, the item data is also available for stimu-
lus onset asynchronies (SOA) between the prime
and target items of 200 and 1,200 ms. Stimu-
lus onset asynchrony is the time between the end
of showing the first (stimulus) word, and the tar-
get word in the reaction time experiments. Se-

22



mantic priming at shorter SOAs (e.g., under 300
ms) is thought to reflect automatic priming mecha-
nisms, whereas priming at longer SOAs (e.g., over
300 ms) presumably reflects additional intentional
strategies (Hutchison et al., 2001).

Reaction times observed in semantic priming
experiments can be explained by a range of lin-
guistic phenomena, such as relatedness, semantic
similarity, syntactic traits, or morphology. Un-
like Hill et al. (2016) who focus on one phe-
nomenon, we assume that word representations
should convey the full mixture of explaining
factors observed in unplanned human behavior.
Therefore we evaluate embeddings by computing
the correlation between the cosine similarity of
pairs of words and reaction times (RT). Shorter
RT indicate more priming effect, leading to neg-
ative correlations. In addition, non linguistic fac-
tors such as frequency are known to influence RT
measurements, so it is not expected that word em-
beddings explain the whole variance of the exper-
iment.

The SPP data is significantly larger than word
similarity datasets and consists of 6,637 word
pairs. The RT for each pair is an average over
the performance of 30 subjects. In addition to re-
action times, the dataset contains demographics,
proficiency and attention tests results.

4 Evaluation framework

Embeddings are evaluated by computing the co-
sine similarity between word pairs from the SPP
project, and look at their Spearman rank correla-
tion with the RT data. The results are given in
term of negative correlation. Significance of the
difference between correlations is calculated with
the Steiger test (Steiger, 1980).

In this evaluation framework, the word pairs
for the Lexical Decision Task (LDT) and Nam-
ing Task (NT) are split according to two partitions.
The first one (P1), used here, consists of a devel-
opment set of 1,328 pairs and a test set of 5,309
pairs. Parameters of the proposed approaches can
be tuned on the development set and performance
must be reported on the test set. Another parti-
tion (P2) is made available to also include data
for training algorithms. The Train set consists of
3,981 pairs, the Dev has 1,328 pairs and the Test
has 1,328 pairs. These partitions were obtained
by using 10 folds which are also available. We
didn’t create them with a particular goal in mind

but we made sure that the mean word frequency
and the standard deviation (SD) of each fold was
close to the mean word frequency and SD of the
full dataset. By standardizing the data splits, we
ensure that results presented in future work will
be comparable.

Experiments In a first set of experiments, we
benchmark a range of embeddings on the SPP
data. Four conditions are considered: LDT-200,
LDT-1200, NT-200, NT-1200 (for lexical deci-
sion task, and naming task, both with an on-
set of 200 ms and 1,200 ms). We compare
two categories of embeddings: a controlled set-
ting for which algorithms are trained on the same
dataset, and a selection of pretrained embeddings
available to the community. Due to space con-
straints, the pretrained embeddings considered2

are limited to: W2V Skip-gram (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), Multi-
lingual (Faruqui and Dyer, 2014), Dependency-
based (Levy and Goldberg, 2014), and Fast-
Text (Bojanowski et al., 2016).

For the embeddings with controlled settings,
we used two algorithms: W2V Skip-grams and
GloVe. We used three different corpora to train
these embeddings: Wikipedia 2013 (Wiki), Gi-
gaword3 (GW) and OpenSubtitles 2016 (OS). We
used a centered window of size 10 and generated
vectors with 100 dimensions for all 6 models.

From the experiment detailed in Table 1, it ap-
pears that GloVe leads to significantly larger neg-
ative correlation compared to other approaches,
both on the controlled and pretrained settings. On
the controlled setting, we notice that the choice of
the corpora doesn’t significantly affect the corre-
lation. Even if the correlation seems to be higher
with the NT-200 and NT-1200 datasets when using
the OpenSubtitles corpus, the Steiger test shows
that the difference in correlation when using the
other corpora is not significant in most cases.
However, the algorithms used do have a signifi-
cant impact on the correlations. In the future, it
would be interesting to look at the impact of vari-
ous other settings such as the size and position of
the window, or the dimension of the word vectors.

It can also noted that the correlations on the lex-
ical decision tasks are higher than on the naming
tasks which supports the idea that lexical decision

2URLs and descriptions available at https:
//github.com/JomnTAL/spp-wordsim.

3LDC2012T21
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Off-the-shelf embeddings Embeddings with controlled settings

GloVe W2V Multilingual Dependency FastText GloVe OS GloVe Wiki GloVe GW W2V OS W2V Wiki W2V GW

LDT-200 25.02 15.35∗ 13.88∗ 5.48∗ 14.48∗ 23.61 23.06 23.91 17.77∗ 16.75∗ 16.86∗

LDT-1200 18.91 11.21∗ 11.19∗ 3.76∗ 10.75∗ 17.65 17.88 18.17 12.86∗ 11.64∗ 11.35∗

NT-200 15.43 5.70∗ 6.43∗ -1.56∗ 3.73∗ 15.37 12.52∗ 13.67† 8.27∗ 6.30∗ 7.83∗

NT-1200 12.57 8.86∗ 7.58∗ 4.68∗ 8.30∗ 12.14 10.36† 11.78 9.42∗ 9.23∗ 9.30∗

Table 1: Spearman’s correlation4 between the test SPP datasets and word embedding models. Highest
results are in bold. Significativity of the figures compared to the best results according to Steiger test is
indicated by ∗(pval < 0.01) and †(pval ∈ [0.01, 0.05[).

Nb Pairs LDT-200 LDT-1200 NT-200 NT-1200

WS-353-ALL 16 0.40 -0.30 0.26 -0.51
MTurk-771 26 -0.08 0.23 -0.23 -0.28
MEN-TR-3k 71 0.21 -0.20 0.04 -0.02
SimLex-999 101 -0.03 0.06 0.06 0.02

Table 2: Spearman’s correlation between reac-
tion times from the SPP datasets and relation-
ship scores from other datasets (with more than 16
overlapping pairs).

seems to be a task less subject to variability from
production of the response (pressing a button vs
saying a word). Better correlations at an onset of
200 ms can be explained by the fact that subjects
are allowed more time to build an intent, leading
to more factors being involved. This also probably
means that most word embedding models are bet-
ter at capturing automatic priming mechanisms.

The second experiment detailed in Table 2 looks
at the characteristics of the SPP data in regard to
other available datasets. We calculated the cor-
relation between the reaction times in the SPP
datasets and the relationship scores in a set of
existing datasets, using the pairs of words that
are available in the two compared datasets (dif-
ferent pairs are compared for each dataset). We
only show the results for datasets that have 16
or more pairs in common with the SPP dataset.
The SimVerb dataset had 208 pairs in common but
since the words used were only verbs whereas in
the SPP dataset the part-of-speech wasn’t speci-
fied, we couldn’t really compare the two datasets.
It can be observed that the correlations are low
which probably means that evaluating on the SPP
data could outline different phenomena than what
is already covered by relatedness and similarity
oriented datasets. Additional work has to be done
to fully understand what factors are taken into ac-

4For readability, correlations have been multiplied by
−100

count by the SPP data.

5 Discussion

It is not clear what cognitive processes lead to
mental representations of words in the brain, and
it is not clear how these processes relate to lin-
guistic theories. However, reaction time in the
context of semantic priming seems to be a good
proxy for modeling word embeddings after cogni-
tive processes. The proposed framework addresses
some of the problems with word embedding evalu-
ation exposed in (Faruqui et al., 2016)5: (2.1) sub-
jectivity is addressed by looking at unconscious
phenomena, (2.2) the lexical decision and nam-
ing tasks are very general but they are affected
by other cognitive pipelines such as vision, (2.3)
we provide standardized splits, and (2.5) the size
of the dataset allows for significant differences be-
tween algorithms. However, we do not address the
problem of low correlation with extrinsic evalua-
tion (2.4), we do not account for frequency effects
(2.6) and polysemy (2.7). These aspects are left
for future work.

6 Conclusion

This work explores an evaluation target for word
embeddings: reaction time in lexical decision and
naming tasks from a semantic priming experiment.
Experiments show that this setting is dominated by
different factors than word relatedness or similar-
ity, and that the choice of algorithm is a stronger
predictor of correlation than the choice of training
corpora. In future work, we will leverage the non-
word data from the lexical decision task in order
to evaluate character-based word embeddings.
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5According to their section numbers
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