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Introduction

This workshop deals with the evaluation of general-purpose vector representations for linguistic units
(morphemes, words, phrases, sentences, etc). What distinguishes these representations (or embeddings)
is that they are not trained with a specific application in mind, but rather to capture broadly useful features
of the represented units. Another way to view their usage is through the lens of transfer learning: The
embeddings are trained with one objective, but applied on others.

Evaluating general-purpose representation learning systems is fundamentally difficult. They can be
trained on a variety of objectives, making simple intrinsic evaluations useless as a means of comparing
methods. They are also meant to be applied to a variety of downstream tasks, which will place different
demands on them, making no single extrinsic evaluation definitive. The best techniques for evaluating
embedding methods in downstream tasks often require investing considerable time and resources in
retraining large neural network models, making broad suites of downstream evaluations impractical. In
many cases, especially for word-level embeddings, these constraints have led to the rise of dedicated
evaluation tasks like similarity and analogy which are not directly related either to training objectives or
to downstream tasks. Tasks like these can serve a valuable role in principle, but in practice performance
on these tasks has not been highly predictive of downstream task performance.

This workshop aims foster discussion of these issues, and to support the search for high-quality general
purpose representation learning techniques for NLP. The workshop will accept submissions through
two tracks: a proposal track will showcase submitted proposals for new evaluation techniques, and a
shared task will accept submissions of new general purpose sentence representation systems – for which
standard evaluations are notably absent – which will be evaluated on a sentence understanding task.
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Octavia-Maria Şulea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Recurrent Neural Network-Based Sentence Encoder with Gated Attention for Natural Language Infer-
ence

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang and Diana Inkpen . . . . . . . . . . . . . . . 36

Shortcut-Stacked Sentence Encoders for Multi-Domain Inference
Yixin Nie and Mohit Bansal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Character-level Intra Attention Network for Natural Language Inference
Han Yang, Marta R. Costa-jussà and José A. R. Fonollosa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Refining Raw Sentence Representations for Textual Entailment Recognition via Attention
Jorge Balazs, Edison Marrese-Taylor, Pablo Loyola and Yutaka Matsuo . . . . . . . . . . . . . . . . . . . . . . 51

LCT-MALTA’s Submission to RepEval 2017 Shared Task
Hoa Vu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vii





Conference Program

Friday, September 8, 2017

09:00–09:20 Opening Remarks

09:20–09:55 Shared task report

The RepEval 2017 Shared Task: Multi-Genre Natural Language Inference with Sen-
tence Representations
Nikita Nangia, Adina Williams, Angeliki Lazaridou and Samuel Bowman

09:55–10:30 Yejin Choi (University of Washington)

10:30–11:00 Coffee Break (set up posters)

11:00–11:35 Jakob Uszkoreit (Google Research)

11:35–12:10 Kyunghyun Cho (New York University)

12:10–12:30 Few Minutes Madness (Evaluation Proposals)

Traversal-Free Word Vector Evaluation in Analogy Space
Xiaoyin Che, Nico Ring, Willi Raschkowski, Haojin Yang and Christoph Meinel

Hypothesis Testing based Intrinsic Evaluation of Word Embeddings
Nishant Gurnani

Evaluation of word embeddings against cognitive processes: primed reaction times
in lexical decision and naming tasks
Jeremy Auguste, Arnaud Rey and Benoit Favre

Playing with Embeddings : Evaluating embeddings for Robot Language Learning
through MUD Games
Anmol Gulati and Kumar Krishna Agrawal

ix



Friday, September 8, 2017 (continued)

Recognizing Textual Entailment in Twitter Using Word Embeddings
Octavia-Maria Şulea
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Abstract

This paper presents the results of the
RepEval 2017 Shared Task, which eval-
uated neural network sentence represen-
tation learning models on the Multi-
Genre Natural Language Inference cor-
pus (MultiNLI) recently introduced by
Williams et al. (2017). All of the five
participating teams beat the bidirectional
LSTM (BiLSTM) and continuous bag
of words baselines reported in Williams
et al.. The best single model used stacked
BiLSTMs with residual connections to ex-
tract sentence features and reached 74.5%
accuracy on the genre-matched test set.
Surprisingly, the results of the competition
were fairly consistent across the genre-
matched and genre-mismatched test sets,
and across subsets of the test data rep-
resenting a variety of linguistic phenom-
ena, suggesting that all of the submit-
ted systems learned reasonably domain-
independent representations for sentence
meaning.

1 Introduction

The Second Workshop on Evaluating Vector
Space Representations for NLP (RepEval 2017)
features a shared task competition meant to evalu-
ate natural language understanding models based
on sentence encoders—that is, models that trans-
form sentences into fixed-length vector represen-
tations and reason using those representations.
Submitted systems are evaluated on the task of
natural language inference (NLI, also known as
recognizing textual entailment, or RTE) on the

Multi-Genre NLI corpus (MultiNLI; Williams
et al. 2017). Each example in the corpus con-
sists of a pair of sentences, and systems must pre-
dict whether the relationship between the two sen-
tences is entailment, neutral or contradiction in a
balanced three-way classification setting.

We selected the task of NLI with the intent to
evaluate as directly as possible the degree to which
each model can extract and manipulate distributed
representations of sentence meaning. In order for
a system to perform well at natural language in-
ference, it needs to handle nearly the full com-
plexity of natural language understanding,1 but its
framing as a sentence-pair classification problem
makes it suitable as an evaluation task for a broad
range of models, and avoids issues of sequence
generation, structured prediction, or memory ac-
cess that can complicate evaluation in other set-
tings.

The shared task includes two evaluations, a
standard in-domain (matched) evaluation in which
the training and test data are drawn from the same
sources, and a cross-domain (mismatched) eval-
uation in which the training and test data differ
substantially. This cross-domain evaluation tests
the ability of submitted systems to learn represen-
tations of sentence meaning that capture broadly
useful features.

This paper briefly introduces the task and
dataset, presents the rules and results of the com-
petition, and analyzes and compares the submitted
systems. All the submitted systems are broadly

1Entailment notably does not require a system to ground
its representations of sentence meaning to any outside repre-
sentational system, for better or worse. For related discussion
of entailment and natural language understanding see Chier-
chia and McConnell-Ginet (1991), Dagan et al. (2006), and
MacCartney (2009).
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Met my first girlfriend that way. FACE-TO-FACE
contradiction

I didn’t meet my first girlfriend until later.

He turned and saw Jon sleeping in his half-tent. FICTION
entailment

He saw Jon was asleep.

8 million in relief in the form of emergency housing. GOVERNMENT
neutral

The 8 million dollars for emergency housing
was still not enough to solve the problem.

Now, as children tend their gardens, they have a new
appreciation of their relationship to the land, their
cultural heritage, and their community.

LETTERS
neutral

All of the children love working in their gar-
dens.

At 8:34, the Boston Center controller received a
third transmission from American 11

9/11
entailment

The Boston Center controller got a third trans-
mission from American 11.

In contrast, suppliers that have continued to inno-
vate and expand their use of the four practices, as
well as other activities described in previous chap-
ters, keep outperforming the industry as a whole.

OUP
contradiction

The suppliers that continued to innovate in their
use of the four practices consistently underper-
formed in the industry.

I am a lacto-vegetarian. SLATE
neutral

I enjoy eating cheese too much to abstain from
dairy.

someone else noticed it and i said well i guess that’s
true and it was somewhat melodious in other words
it wasn’t just you know it was really funny

TELEPHONE
contradiction

No one noticed and it wasn’t funny at all.

For more than 26 centuries it has witnessed count-
less declines, falls, and rebirths, and today contin-
ues to resist the assaults of brutal modernity in its
time-locked, color-rich historical center.

TRAVEL
entailment

It has been around for more than 26 centuries.

If you need this book, it is probably too late’ unless
you are about to take an SAT or GRE.

VERBATIM
contradiction

It’s never too late, unless you’re about to take a
test.

Table 1: Randomly chosen examples from each genre of the MultiNLI development set.

similar, and incorporate bidirectional recurrent
neural networks as a key component. We find that
all systems performed fairly well, outperforming
a simple bidirectional LSTM (BiLSTM; Hochre-
iter and Schmidhuber, 1997) baseline. To our sur-
prise, no system performed dramatically worse on
the mismatched evaluation than on the matched
evaluation, and all systems performed reasonably
consistently across examples representing a range
of linguistic phenomena, suggesting that all were
able to produce systems for semantic representa-
tion which, while not perfect, were effective and
not tightly adapted to any particular style of lan-
guage or set of constructions.

2 Dataset

MultiNLI (Williams et al., 2017) consists of 393k
pairs of sentences from a broad range of genres of

written and spoken English, balanced across three
labels. Each premise sentence (the first sentence
in each pair) is derived from one of ten sources of
text, which constitute the ten genre sections of the
corpus. Each hypothesis sentence and pair label
was composed by a crowd worker in response to a
premise. MultiNLI was designed and collected in
the style of the Stanford NLI Corpus (SNLI; Bow-
man et al. 2015), but covers a broader range of
styles of text, rather than the relatively homoge-
neous captions used in SNLI.

Testing and development sets are available for
all genres, with 2000 examples per set per genre.
Only five genres have accompanying training sets.
So, for the matched development and test sets,
models are tested on examples derived from the
same sources as those in the training set, while for
the mismatched sets, the text source is not repre-
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sented in the training data.
Table 1 presents example sentences from the

corpus and Table 2 presents some key statistics.
For a detailed discussion of the corpus, refer to
Williams et al. (2017).

3 Shared Task Competition

The purpose of the shard task is to evaluate tech-
niques for training and using sentence encoders.
To this end, we require that all models create
fixed-length vectors for each sentence with no
explicitly-imposed internal structure. Alignment
strategies like attention that pass information be-
tween the two encoders handling the two input
sentences in a pair are not allowed. Memory
models that represent sentences as variable-length
sets or sequences of vectors are also not permit-
ted. While systems that use methods like atten-
tion and structured memory are effective for NLI
(Rocktäschel et al., 2016; Wang and Jiang, 2016;
Chen et al., 2017a; Williams et al., 2017, i.a.),
much of the variation across models of this kind
lies in the way that they explicitly or implicitly
align related sentences, rather than the way that
they extract representations for sentences. As a re-
sult, we expect that focusing our evaluation on a
restricted subset of models will yield conclusions
that are more generally applicable to work on nat-
ural language understanding than would have been
the case otherwise.

Additional Rules We provide competitors with
labeled training and development sets, and unla-
beled test sets for which they must submit labels.
The development sets are meant to be used for
hyperparameter tuning and model selection, and
training on the development sets is not allowed.
We place no limits on the use of outside train-
ing data and resources except that they be publicly
available. We specifically encourage the use of the
SNLI training set. Multiple submissions from the
same team are allowed, up to a limit of two per day
during the two-week evaluation period. Individual
participants (i.e., PIs) are permitted to join multi-
ple teams within reason, but only when each team
reflects a fully independent engineering effort and
each team has a different lead developer.

Evaluation Competitors had approximately ten
weeks, starting with the release of the MultiNLI
training and development sets, to develop their
systems and two additional weeks—the evaluation

period—to run their systems on the unlabeled test
sets and submit results. The shared task evalua-
tion was hosted through the Kaggle in Class plat-
form using two competition pages—one each for
the matched2 and mismatched3 sections of the cor-
pus. The public leaderboard, which was displayed
during the evaluation period, showed results on a
random 25% of the test set labels, and the final
results were computed by evaluating the two best
systems from each competitor (chosen from the
public leaderboard) on the remaining hidden 75%
of the test set labels.

4 Results and Leaderboard

The competition results are shown in Table 3. All
evaluated systems beat the BiLSTM baseline re-
ported in Williams et al.. Furthermore, there is
only a marginal gap between accuracy on matched
and mismatched test sets for all systems.

The best performing single model is by Nie and
Bansal, who achieve the best result on the matched
competition and tie with Chen et al. in the mis-
matched competition. The Nie and Bansal model
architecture uses stacked BiLSTMs with residual
connections and, unlike the other high perform-
ing models, does not use within-sentence atten-
tion. The best performing system overall is an en-
semble by Chen et al., which is based closely on
the Enhanced Sequential Inference Model (ESIM;
Chen et al., 2017a) but with attention only within
each sentence, rather than between the two.

Looking toward the future, we also made avail-
able non-time-limited Kaggle in Class competition
pages4 to allow for further fair evaluations on the
MultiNLI test sets. Note that since these evalu-
ation sites report results on 100% of the test set,
rather than the 75% used in the shared task, num-
bers reported on that site may differ slightly from
those seen in the competition.

5 Model Comparison

All of the submitted systems are based on bidi-
rectional LSTMs, but each system uses this core
tool in a somewhat different way. This section sur-

2https://inclass.kaggle.com/c/
multinli-matched-evaluation

3https://inclass.kaggle.com/c/
multinli-mismatched-evaluation

4Matched: https://inclass.kaggle.com/c/
multinli-matched-open-evaluation
Mismatched: https://inclass.kaggle.com/c/
multinli-mismatched-open-evaluation
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#Examples #Wds. ‘S’ parses
Genre Train Dev. Test Prem. Prem. Hyp. Agrmt. BiLSTM Acc.

SNLI 550,152 10,000 10,000 14.1 74% 88% 89.0% 81.5%

FICTION 77,348 2,000 2,000 14.4 94% 97% 89.4% 66.8%
GOVERNMENT 77,350 2,000 2,000 24.4 90% 97% 87.4% 68.0%
SLATE 77,306 2,000 2,000 21.4 94% 98% 87.1% 68.4%
TELEPHONE 83,348 2,000 2,000 25.9 71% 97% 88.3% 67.7%
TRAVEL 77,350 2,000 2,000 24.9 97% 98% 89.9% 66.8%

9/11 0 2,000 2,000 20.6 98% 99% 90.1% 68.5%
FACE-TO-FACE 0 2,000 2,000 18.1 91% 96% 89.5% 67.5%
LETTERS 0 2,000 2,000 20.0 95% 98% 90.1% 66.4%
OUP 0 2,000 2,000 25.7 96% 98% 88.1% 66.7%
VERBATIM 0 2,000 2,000 28.3 93% 97% 87.3% 67.2%

MultiNLI Overall 392,702 20,000 20,000 22.3 91% 98% 88.7% 67.4%

Table 2: Key statistics for the corpus broken down by genre, presented alongside figures from SNLI
for comparison. The first five genres represent the matched section of the development and test sets, and
the remaining five represent the mismatched section. The first three statistics shown are the number of
examples in each genre. #Wds. Prem. is the mean token count among premise sentences. ‘S’ parses is
the percentage of premises or hypotheses which the Stanford Parser labeled as full sentences rather than
fragments. Agrmt. is the percent of individual annotator labels that match the assigned gold label used
in evaluation. BiLSTM Acc. gives the test accuracy on the full test set for the BiLSTM baseline model
trained on MultiNLI and SNLI.

Team Name Authors Matched Mismatched Model Details

alpha (ensemble) Chen et al. 74.9% 74.9% STACK, CHAR, ATTN., POOL, PRODDIFF
YixinNie-UNC-NLP Nie and Bansal 74.5% 73.5% STACK, POOL, PRODDIFF, SNLI
alpha Chen et al. 73.5% 73.6% STACK, CHAR, ATTN, POOL, PRODDIFF
Rivercorners (ensemble) Balazs et al. 72.2% 72.8% ATTN, POOL, PRODDIFF, SNLI
Rivercorners Balazs et al. 72.1% 72.1% ATTN, POOL, PRODDIFF, SNLI
LCT-MALTA Vu et al. 70.7% 70.8% CHAR, ENHEMB, PRODDIFF, POOL
TALP-UPC Yang et al. 67.9% 68.2% CHAR, ATTN, SNLI
BiLSTM baseline Williams et al. 67.0% 67.6% POOL, PRODDIFF, SNLI

Table 3: RepEval 2017 shared task competition results. The Model Details column lists some of the key
strategies used in each system, using keywords: STACK: use of multilayer bidirectional RNNs, CHAR:
character-level embeddings, ENHEMB: embeddings enhanced with auxiliary features, POOL: max or
mean pooling over RNN states, ATTN: intra-sentence attention, PRODDIFF: elementwise sentence prod-
uct and difference features in the final entailment classifier, SNLI: use of the SNLI training set.

veys the key differences between systems, and the
Model Details column in Table 3 serves as a sum-
mary reference for these differences.

Depth Chen et al. and Nie and Bansal use three-
layer bidirectional RNNs, while others only used
single-layer RNNs. This likely contributes signif-
icantly to their good performance, as it is the most
prominent feature shared only by these two top
systems. They both use shortcut connections be-
tween recurrent layers to ease gradient flow, and
Nie and Bansal find in an ablation study that using
shortcut connections improves their performance
by over 1% on both development sets.

Embeddings Systems vary reasonably widely
in their approach to input encoding. Yang
et al. and Chen et al. use a combination of GloVe
embeddings (Pennington et al., 2014, not fine
tuned) and character-level convolutional neural
networks (Kim et al., 2016) to extract represen-
tations of words. Balazs et al. also use pre-trained
GloVe embeddings without fine tuning, but report
(contra Chen et al.) that an added character-level
feature extractor does not improve performance.

Vu et al. use pre-trained GloVe word embed-
dings augmented with additional feature vectors.
They create embeddings for part-of-speech (POS),
character level information, and the dependency
relation between a word and its parent, and con-
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catenate these with the embedding for each word.
They find that this supplies a small but nontriv-
ial improvement to their development set perfor-
mance, especially in the mismatched setting.

Nie and Bansal use the simplest strategy, ini-
tializing embeddings with GloVe vectors and fine-
tuning them.

Pooling Vu et al. make a surprisingly effective
change to the baseline BiLSTM model, motivated
by Conneau et al.’s (2017) findings, by using max
pooling rather than mean pooling when collecting
the hidden states of the bidirectional LSTM for use
as a sentence representation. They find that this
yields an improvement of over 2.5% on both de-
velopment sets.

While Vu et al. show that the choice of pooling
strategy is quite important, Balazs et al. do not find
a substantial effect in a similar comparison. This
may be because Balazs et al.’s model also makes
use of intra-sentence attention following the pool-
ing layer, which dramatically reduces the impor-
tance of pooling.

Intra-Sentence Attention Chen et al. and Bal-
azs et al. both use attention over the BiLSTM
states of each sentence to compute a final repre-
sentation for that sentence. Chen et al. in partic-
ular uses a novel gated attention formulation, in
which the BiLSTM gate values supply the atten-
tion weights over hidden states according to

vg =
n∑

i=1

‖gi‖2∑n
j=1‖gj‖2 hi

where gi is the BiLSTM input gate and hi is
the output from the BiLSTM encoder. They
find that their use of gated attention helps perfor-
mance somewhat relative to an unspecified base-
line, though only in the matched setting.

Sentence Pair Classifier Every system but
Yang et al.’s uses elementwise product and dif-
ference features, comparing the two sentence en-
codings as part of the input to the classifier MLP
that predicts the final relation label. In an ablation
study, Chen et al. find this to be highly important,
yielding more than a 3% gain in performance on
both development sets.

Data and SNLI We observe relatively little vari-
ation in the training data used in submitted sys-
tems. All systems are trained only on labeled NLI
data—either the MultiNLI training set alone, or

the MultiNLI and SNLI training sets combined.
While Williams et al. find that the combined
training set yields somewhat better results on the
MultiNLI test set, Chen et al. nonetheless reaches
state-of-the-art performance without using it.

Interim Discussion We were particularly struck
by the effectiveness of the max pooling strategy
as a simple and highly effective improvement to
the baseline BiLSTM sentence encoder. Less sur-
prisingly, depth and intra-sentence attention ap-
pear to be broadly effective, and product and dif-
ference features appear to be valuable when us-
ing sentence encoders for the task of NLI. The
results surrounding embeddings and input encod-
ing were less clear, though Nie and Bansal’s use
of pre-trained GloVe embeddings with fine tuning
appears to be a simple and effective approach.

6 Error Analysis

In the interest of better understanding both the
corpus and the submitted models, we annotate a
1,000-sample subset of the development set. We
also provide a set of probe sentences and ask par-
ticipating teams to submit vectors for all sentences
in the probe set and test set. This section surveys
our methods findings.

6.1 Annotations

The annotated subset of the development set was
released to competitors during the model develop-
ment period, and consists of 1,000 examples each
tagged with zero or more of the following labels.
Labels were assigned manually except where clear
keyword-spotting techniques sufficed.

• CONDITIONAL: Whether either sentence
contains a conditional.
Example: P: Laser-cutting equipment must
be totally enclosed to be safe for human op-
erators. H: Even if the laser machine is
fully contained within, there still exist some
amount of risk for the workers in the close
proximity.

• ACTIVE/PASSIVE: Whether there is an
active-to-passive (or vice versa) transforma-
tion from the premise to the hypothesis.
Example: P: Hani Hanjour, Khalid Al Mi-
hdhar, and Majed Moqed were flagged by
capps. H: Capps never flagged anyone.
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Annotation Tag Label Frequency BiLSTM Yang Balazs (S) Chen (S)

Matched

CONDITIONAL 5% 100% 100% 100% 100%
WORD OVERLAP 6% 50% 63% 63% 63%
NEGATION 26% 71% 75% 75% 75%
ANTO 3% 67% 50% 50% 50%
LONG SENTENCE 20% 50% 75% 75% 67%
TENSE DIFFERENCE 10% 64% 68% 68% 86%
ACTIVE/PASSIVE 3% 75% 75% 75% 88%
PARAPHRASE 5% 78% 83% 83% 78%
QUANTITY/TIME REASONING 3% 50% 50% 50% 33%
COREF 6% 83% 83% 83% 83%
QUANTIFIER 25% 64% 59% 59% 74%
MODAL 29% 66% 65% 65% 75%
BELIEF 13% 74% 71% 71% 73%

Mismatched

CONDITIONAL 5% 100% 80% 80% 100%
WORD OVERLAP 7% 58% 62% 62% 76%
NEGATION 21% 69% 73% 73% 72%
ANTO 4% 58% 58% 58% 58%
LONG SENTENCE 20% 55% 67% 67% 67%
TENSE DIFFERENCE 4% 71% 71% 71% 89%
ACTIVE/PASSIVE 2% 82% 82% 82% 91%
PARAPHRASE 7% 81% 89% 89% 89%
QUANTITY/TIME REASONING 8% 46% 54% 54% 46%
COREF 6% 80% 70% 70% 80%
QUANTIFIER 28% 70% 68% 68% 77%
MODAL 25% 67% 67% 67% 76%
BELIEF 12% 73% 71% 71% 74%

Table 4: This table shows the accuracy of different models for each tagged subset of our 1,000-example
development set sample. The ‘(S)’ indicates that results for the single model are shown. Some results
that stand out to us are shown in bold.

• PARAPHRASE: Whether the two sentences
are close paraphrases.
Example: P: Uh, lets see. H: Let us look.

• COREF: Whether the hypothesis contains a
pronoun or referring expression that needs to
be resolved using the premise.
Example: P: You and I, gentle reader, are ac-
credited members of the guild. H: We are
recognised as members of the guild.

• QUANTIFIER: Whether either sentence con-
tains one of the following quantifiers: much,
enough, more, most, less, least, no, none,
some, any, many, few, several, almost, nearly.
Example: P: We have provided an invoice
to facilitate your gift. H: There’s no invoice
available for your gift.

• MODAL: Whether either sentence contains
one of the following modal verbs: can, could,
may, might, must, will, would, should.
Example: P: Conversely, an increase in gov-
ernment saving adds to the supply of re-
sources available for investment and may put
downward pressure on interest rates. H: The
amount of resources available for investment

increases when government savings are in-
creased.

• BELIEF: Whether either sentence contains
one of the following belief verbs: know, be-
lieve, understand, doubt, think, suppose, rec-
ognize, recognize, forget, remember, imagine,
mean, agree, disagree, deny, promise.
Example: P: I trust that this is a fillip of
propaganda and not a serious query. H: I
believe this is to get attention and not a real
inquiry.

• NEGATION: Whether either sentence con-
tains negation.
Example: P: On reflection, the parts will hold
together. H: The parts will not hold together.

• ANTO: Whether the two sentences contain an
antonym pair.
Example: P: As united 93 left Newark, the
flight’s crew members were unaware of the
hijacking of American 11. H: As the flight
United 93 left Newark the crew members
were fully aware of the hijacking of American
11.
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• TENSE DIFFERENCE: Whether the two sen-
tences use different tenses on any verbs.
Example: P: Does she like what she does?
H: Does she like what she is doing?

• QUANTITY/TIME REASONING: Whether un-
derstanding the pair requires quantity or time
reasoning.
Example: P: The vice chairman joined the
conference shortly before 10:00; the secre-
tary, shortly before 10:30. H: The secretary
joined before the vice chairman.

• WORD OVERLAP: Whether the two sen-
tences share more than 70% of their tokens.
Example: P: Let’s look for paua shells! H:
Let’s look for sticks.

• LONG SENTENCE: Whether the premise or
hypothesis is longer than 30 or 16 words re-
spectively.
Example: P: As invested with its dignity,
since the seventeenth century just as the
crown has been used for the monarch, or the
oval office has come to stand for the president
of the United States. H: Nobody in Britain
associates the crown with the monarchy.

Table 4 shows model results on tagged ex-
amples for the BiLSTM baseline and for the
three systems for which we were able to ac-
quire example-by-example development set re-
sults (submission of these results was optional).
Among those tags that are frequent enough to
yield clearly interpretable numbers, none indicates
a subset of the corpus that is dramatically harder
or easier for the submitted models than is the cor-
pus overall. This suggests that—as is typical with
neural network models—these models do not rely
strongly on any particular structural properties of
the input texts to the exclusion of others.

We note that the submitted systems that use
intra-attention (the three shown) do relatively well
on the LONG SENTENCE and NEGATION tags.
This technique likely helps the encoders to recover
the structures of long sentences and to correctly
identify the scope of instances of negation. We
also note that all systems do relatively poorly on
the QUANTITY/TIME REASONING section, sug-
gesting that these simple sentence feature extrac-
tors are not well situated to learn quantitative rea-
soning in this setting.

Authors 1-NN Genre Accuracy

Chen et al. 67.3%
Nie and Bansal 74.0%
Balazs et al. 69.2%
Vu et al. 67.0%
Yang et al. 54.7%

Table 5: A thousand sentences are randomly sam-
pled from the matched test set and their pairwise
distances to all sentences in the test set (premises
and hypotheses) are calculated. This table shows
the percentage of times the first nearest neighbor
belongs to the same genre as the sample sentence.

6.2 Nearest Neighbors

Test Set Sentences The competition participants
were asked to submit sentence vectors for all
the premise and hypothesis sentences in the test
sets. We randomly sample 1,000 sentences from
the matched test set and, using cosine similarity,
calculate their pairwise distances against all sen-
tences in the matched test set. Table 5 shows the
percentage of times the first nearest neighbor be-
longs to the same genre as the chosen sentence.
All models score fairly highly on this metric, sug-
gesting that the learned representations are not
genre-agnostic, despite their effectiveness in un-
seen genres. The models with higher percentage
accuracy on the NLI task (see Table 3) show bet-
ter performance on this metric as well, suggesting
that this genre clustering property correlates with
the overall quality of the metric space that each
model uses to represent sentences.

The better models are also more interpretable.
Table 6 shows example sentences and their three
nearest neighbors for all models. It appears
that entity identity is important for the Nie and
Bansal model, though not it a way that is tied to
syntactic position. For the Critics loved Merchant-
Ivory example, we see matches to critics. In the
Students love the rich culture example, we simi-
larly see many matches to school and love. Since
for each premise sentence in the MultiNLI corpus,
there are 3 associated hypothesis sentences, it’s
not surprising to see that the first nearest neighbor
is often one of these associated sentences, like in
the Critics example where the first nearest neigh-
bor for all systems is the premise sentence. We
found that for some examples, the better perform-
ing systems like Nie and Bansal’s had all three as-
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Sample Model Nearest Neighbours

Students love the rich
culture and history of
the school. (TR.)

Chen TEL. my son loved learning about computers in high school
TR. Families love this city-within-a-city on the beach.
TR. The urban working class loved the new factories.

Nie TEL. my son loved learning about computers in high school
TEL. I really loved it when I was in middle school.
SL. A librarian and fellow patient kindled his love for literature more than school.

Balazs SL. School, more than anything else, was credited for his love of literature.
SL. A librarian and fellow patient kindled his love for literature more than school.
TEL. I really loved it when I was in middle school.

Vu SL. A librarian and fellow patient kindled his love for literature more than school.
TR. France’s oldest city is a wonderful destination, with rich history and extreme

beauty.
FIC. The rave had some of the best artists and celebrities.

Yang TR. The urban working class loved the new factories.
FIC. my son loved learning about computers in high school
TR. This area is a favorite of hikers who enjoy invigorating journeys through

dense forests and along the river valleys celebrated in the paintings of Gustave
Courbet.

Critics loved
Merchant-Ivory’s
final movie, which
was an adaption of
a novel written by
Kaylie Jones. (SL.)

Chen SL. Critics laud Merchant-Ivory’s exit from the 19th century in this adaptation of a
semiautobiographical novel by Kaylie Jones (daughter of novelist James Jones).

SL. I loved Begnigni’s movie!
SL. Mercer was the lifelong love of Franklin Roosevelt, and the revelation of their

affair nearly ended his marriage to Eleanor.

Nie SL. Critics laud Merchant-Ivory’s exit from the 19th century in this adaptation of a
semiautobiographical novel by Kaylie Jones (daughter of novelist James Jones).

SL. Critics find the book entertaining, praising digressions on gambling, laughing,
and love, as well as Pinker’s pop-culture references.

SL. Critics think that Lichtenstein was a contemporary genius.

Balazs SL. Critics laud Merchant-Ivory’s exit from the 19th century in this adaptation of a
semiautobiographical novel by Kaylie Jones (daughter of novelist James Jones).

TEL. The period of the civil war is very interesting to me, I’ve read about 3 novels
about that, including John Jakes ones.

SL. The most vivid moments in Kubrick’s films in the last 30 years have come
when he has turned his actor’s faces into Think of Malcolm McDowell in A
Clockwork Orange (1971), Jack Nicholson in The Shining (1980), and Vincent
D’Onofrio in Full Metal Jacket (1987).

Vu SL. Critics laud Merchant-Ivory’s exit from the 19th century in this adaptation of a
semiautobiographical novel by Kaylie Jones (daughter of novelist James Jones).

SL. Mercer was the lifelong love of Franklin Roosevelt, and the revelation of their
affair nearly ended his marriage to Eleanor.

SL. Critics find the book entertaining, praising digressions on gambling, laughing,
and love, as well as Pinker’s pop-culture references.

Yang SL. Critics laud Merchant-Ivory’s exit from the 19th century in this adaptation of a
semiautobiographical novel by Kaylie Jones (daughter of novelist James Jones).

TR. Visitors are encouraged to come during daylight hours, when the park is safer
and better patrolled by employees.

TR. All Ireland loves a horse, and County Kildare can claim to be at the heart of
horse country.

Table 6: Showing the three nearest neighbors for example sentences from a random 1,000-sample sub-
set of the matched test set. All results are for single (non-ensemble) models. The genres have been
abbreviated.
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Figure 1: A heatmap showing the cosine similarity between sentence vectors. The vectors were rendered
by the Nie and Bansal model. The plots for other systems are very similar.

sociated sentences as their top three nearest neigh-
bors.

Probe Sentences During the competition, we
additionally provided a set of automatically gen-
erated probe sentences meant to aid error analysis.
These probe sentences are produced to vary along
dimensions relevant to probing for semantic role
and negation information. We asked submitting
teams to supply vectors for these sentences in ad-
dition to those in the test set. Figure 1 shows the
cosine similarity between a subset of these sen-
tence vectors rendered by Nie and Bansal’s (2017)
system. We find that all systems (except that of
Balazs et al., who did not submit these vectors)
show similar behavior on these sentences, and we
do not observe a clear correlation between behav-
ior here and model performance. Perhaps unsur-
prisingly, we observe that sentences tend to be
more similar to one another the more structural
features they have in common. We observe this

clearly for negation, identity of the subject, and
tense, though continuous tenses are not reliably
differentiated from others.

7 Conclusion

We find that BiLSTM-based models with max
pooling or intra-sentence attention represent a
popular and effective strategy for sentence encod-
ing, and that systems based on this technique per-
form very well at the task of NLI.

We note that all submitted systems performed
reasonably well across the many subsets of the
data reflected by our supplementary tags, suggest-
ing that none of these models exploit any par-
ticular narrow feature of the task or data to per-
form well. We also note that model performance
does not vary much between the matched and mis-
matched sections of the test set. This means that
submitted systems are likely capturing reasonably
general strategies for extracting representations of
meaning from text. As the systems get better, and
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fit the training data more closely, the disparity be-
tween matched and mismatched sets may appear.
Both of these findings, though, bolster our expec-
tation that the best of the submitted systems rep-
resent some of the best general-purpose architec-
tures for sentence encoding available.

However, the task of NLI is far from being
solved, and no submitted system approaches hu-
man performance, suggesting that there is ample
room for further research on both the task and on
the more general problem of sentence represen-
tation learning. Since many of the examples in
MultiNLI require substantial commonsense back-
ground knowledge to solve fully, we suspect that
the use of large outside datasets and resources (la-
beled or otherwise) will be crucial to making sub-
stantial further progress in this setting.
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Abstract

In this paper, we propose an alternative
evaluating metric for word analogy ques-
tions (A to B is as C to D) in word vector
evaluation. Different from the traditional
method which predicts the fourth word by
the given three, we measure the similar-
ity directly on the “relations” of two pairs
of given words, just as shifting the rela-
tion vectors into a new analogy space. Co-
sine and Euclidean distances are then cal-
culated as measurements. Observation and
experiments shows the proposed analogy
space evaluation could offer a more com-
prehensive evaluating result on word vec-
tors with word analogy questions. Mean-
while, computational complexity are re-
markably reduced by avoiding traversing
the vocabulary.

1 Introduction

In recent years, word vector, or addressed as word
embedding or distributed vector representation of
word, achieves high popularity in NLP (Natural
Language Processing) applications. A word vec-
tor is a real-valued vector, which is quite low-
dimensional when comparing with traditional one-
hot representation of words. The theory behind is
believed to be the early concept of distributional
representation (Hinton, 1986), and modern word
vector derives from the training process of neural
language models (Bengio et al., 2003).

The usage of word vectors has been proven
highly efficient and successful by various NLP
tasks (Collobert et al., 2011), which further
spurs the technical developments to achieve word
vectors with better quality, such as Word2Vec
(Mikolov et al., 2013a), GloVe (Pennington et al.,
2014), Word2Vecf (Levy and Goldberg, 2014),

LexVec (Salle et al., 2016), FastText (Bojanowski
et al., 2016), etc.

However, discussion about how to evaluate the
quality of word vectors remains open. Except
for actual applications, most frequently used eval-
uation tasks are word similarity and word anal-
ogy. A word similarity task is to find the near-
est word in the vector space of the given word,
based on the theory that words with similar mean-
ings should gather together. Although it is widely
used, arguments are made to question its capabil-
ity (Batchkarov et al., 2016; Faruqui et al., 2016).

While in a word analogy test, three words A, B
and C are given and the goal is to find a fourth
word D, which logically conforms “A to B is as
C to D”. Word analogy test has a long history of
being used in examinations or IQ tests for human
(McClelland, 1973; Sternberg, 1985) and is intro-
duced into word vector evaluation by Mikolov et
al. (2013b). After that, it has been widely applied.

Efforts are made to improve the original anal-
ogy metric, such as using PAIRDIRECTION to re-
place 3COSADD in calculation (Levy et al., 2014)
or taking multiple word pairs into consideration
(Drozd et al., 2016), but the goal is still to find
word D from the vocabulary. Besides, Linzen
(2016) made a thorough assessment of word anal-
ogy test, and the most prominent finding is that if
not exclude three given words, the prediction of D
would almost always be C (91%) or B (5%), es-
pecially when the lineal offset between words is
small. This phenomenon would arouse the doubt,
that whether we are searching for a word D which
holds the same logic to C just as B to A, or ac-
tually searching for the nearest word of C? Fur-
thermore, the general accuracy decline in reversed
analogy also suggests the incertainty of current
analogy evaluation metric.

In this paper, we would dig deeper into the lim-
itations of current analogy evaluation metric in
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Table 1: Examples of Traditional Word Analogy Evaluation Result (Words in order of A, B, C & D)
Grammar-1 knowing knew selling sold

Predictions

thought 0.573 know 0.481 purchased 0.520 sold 0.568
know 0.504 knew 0.449 resold 0.506 sell 0.535

wanted 0.494 Knowing 0.441 selling 0.486 bought 0.528
knowing 0.489 figured 0.404 sale 0.484 buying 0.486

Grammar-2 looking looked shrinking shrank

Predictions

look 0.540 looked 0.536 shrinking 0.560 shrunk 0.618
looking 0.526 look 0.493 unexpectedly shrank 0.478 shrank 0.589

looks 0.521 looks 0.415 downwardly revised 0.468 dwindled 0.498
seemed 0.439 expecting 0.410 contraction 0.454 shrink 0.498

Section 2 and propose our simple alternative plan
in Section 3, which is called “Analogy Space Eval-
uation”. A significant difference of our approach
is that we avoid traversing vocabulary from time to
time. Experiments are presented in Section 4 and
finally come the conclusion and discussion.

2 Limitations of Traditional Metric

In traditional word analogy evaluation, by given
word pairs (A, B) and (C, D) with same syntactic
or semantic relation, the goal is to find the nearest
word to “C+B−A” in the vector space by Cosine
similarity and check whether the word obtained is
D. Practically some approaches use unit vector
of A, B and C in “C + B − A”, such as widely
used Word2Vec. Anyway, the return value of such
a word analogy question is in Boolean type.

Generally, evaluating word vectors requires
thousands of word analogy questions, which re-
turn thousands of Boolean values to calculate the
accuracy from a macro perspective: how many
supposed D have been successfully predicted.
However, if we treat each question as an indepen-
dent target in a micro aspect, result in Boolean
type suffers an unneglectable information loss:
true or false cannot quantitatively manifest the ex-
tent of how true or how false. For instance, it does
not matter whether D is the 2nd nearest word to
“C + B −A” or the 100th.

Another limitation of traditional metric is the
deficiency in comprehensiveness. In a typical “A
to B is as C to D” analogy, there are in fact 4 pre-
diction choices, although in some analogies like
“Nation-Currency” or “Nation-Language”, avail-
able choices could drop to 2, since in reverse logic
the answer is not unique. A single prediction on D
is not enough to represent the quality of all 4 word
vectors trained.

For better illustration, we run widely used
“GoogleNews-vectors-negative300.bin” on de-
fault Word2Vec English analogy test and extract
two examples to Table 1. All 4 words in exam-
ple analogy questions are predicted and top 4 re-
sults are presented accordingly. From Table 1, it is
clear that no matter with absolute value or average
ranking of desired word in predictions, situation
in Grammar-2 is apparently better than Grammar-
1. However, because only word D is predicted by
traditional metric, Grammar-1 would return a pos-
itive result while Grammar-2 is negative, which
obviously fails to correctly represent the quality
of corresponding word vectors trained.

In default Word2Vec analogy test, there is al-
ways another analogy question, which in fact pre-
dict word B of the original question. But there is
no reverse logic prediction for A and C. So in final
accuracy calculation, these two sets of words in
Table 1 contribute the same precision of 0.5, which
still cannot reflect the quality difference between
these two sets of word vectors trained. Perhaps, 4
analogy questions are needed, but that would lead
to another issue: higher complexity. Every time
when searching for a nearest word, cosine similar-
ity must be calculated with each word in the vo-
cabulary. When the testing set is large, it may take
quite a long time, and the time would be doubled
if all 4 possible questions are included. Moreover,
the majority of words in the vocabulary are actu-
ally unrelated with the prediction target. Calculat-
ing these words is simply wasting time.

Based on all above reasons, we aim to offer an
alternative metric for word analogy evaluation, by
constructing a new analogy space based on the re-
lation vectors achieved from analogy questions, in
order to solve existing limitations in quantifica-
tion, comprehensiveness and complexity.
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(a) Orignial Word Vector Space

(b) Relation Vectors

(c) Final Analogy Space

Figure 1: Analogy Space Illustration

3 Analogy Space Evaluation

Proposed analogy space shares same dimensional-
ity of original word vector space. For each anal-
ogy question, two relation vectors can be found in
original word vector space, just as the definition
of PAIRDIRECTION by Levy et al. (2014). Math-
ematically, the value of such a relation vector is
the same as the position of the ending point if we
take the starting point as the space origin. This is

Table 2: Analogy Space Evaluation (Micro)
Analogy Cos. Euc. N-Cos. N-Euc.

Grammar-1 0.114 0.334 0.115 0.332
Grammar-2 0.324 0.410 0.320 0.415
NC: US-CN 0.310 0.380 0.314 0.356
NC: US-DE 0.367 0.423 0.376 0.411
NC: DE-CN 0.496 0.492 0.508 0.495
NL: US-CN 0.452 0.420 0.451 0.405
NL: US-DE 0.438 0.430 0.441 0.418
NL: DE-CN 0.712 0.617 0.714 0.619

simply the new analogy space: shifting all relation
vectors to the space origin, so each point in this
new space represents a relation between a pair of
words given in the analogy question. Figure 1 il-
lustrates this process by several example words of
“Nation-Capital” and “Nation-Language” analo-
gies (extracted from same test of Table 1, visual-
ized by PCA).

Naturally, we expect relations with same or sim-
ilar logic gather together in the analogy space. In
order to quantitatively evaluate the similarity, we
prepare four different measurements, based on Co-
sine similarity or Euclidean distance respectively.
If we denote the vectors of word A, B, C and D
as a, b, c and d, then

Cos. =
(b− a) · (d− c)
‖b− a‖‖d− c‖ (1)

Euc. = 1− ‖(b− a)− (d− c)‖
‖b− a‖+ ‖d− c‖ (2)

while Cos. ∈ [−1, 1] and Euc. ∈ [0, 1]. N-Cos.
and N-Euc. have similar definitions, but using unit
word vectors in calculation. Table 2 shows the re-
sult of examples mentioned in Table 1 and Figure
1. Among them, “NC:DE-CN” and “NL:DE-CN”
succeed 2/2 in traditional nearest word evaluation,
while all others achieve 1/2.

It’s clear that proposed measurements could
better represent the quality of these involved
words or relations in a quantitative way. As al-
ready mentioned, words in Grammar-2 are con-
sidered better trained than Grammar-1, and this
difference can be captured by proposed measure-
ments only. And for NCs and NLs, traditional
metric reports exactly the same accuracy, but as
we can see, detailed similarities differ a lot. We
believe these phenomena could help word analogy
evaluation in the micro aspect.
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Table 3: Analogy Space Evaluation (Macro)

WV Set Voc.
Traditional Proposed SBD

Accu. Time Cos. Euc. N-Cos. N-Euc. Time 4C 2C
EN-w5-i5 1.8M 0.697 24’56” 0.325 0.419 0.325 0.420 0’38” 0.575 0.820

EN-w10-i10 1.8M 0.692 24’41” 0.314 0.414 0.315 0.415 0’37” 0.573 0.822
GoogleNews 3M 0.737 30’48” 0.352 0.431 0.352 0.431 1’09” 0.580 0.824
DE-w5-cbow 1.8M 0.465 92’39” 0.324 0.418 0.335 0.423 1’33” − −

DE-w5-sg 1.8M 0.434 92’09” 0.259 0.389 0.260 0.392 1’35” − −
DE-w10-cbow 1.8M 0.463 89’22” 0.318 0.416 0.331 0.422 1’37” 0.640 0.779

DE-w10-sg 1.8M 0.412 94’13” 0.251 0.385 0.254 0.389 1’34” 0.619 0.767

4 Macro Experiments

In this section, we would do some experiments on
complete analogy question sets and discuss com-
plexity. For English word vectors, we trained two
sets on Wikipedia dump with different window
size (w) and iteration (i) by Skip-Gram model,
with same dimensionality of 300. They would
further be compared with GoogleNews public set.
We will evaluate these sets with proposed mea-
surements, along with traditional analogy evalua-
tion result and the performances of a downstream
application: Sentence Boundary Detection (SBD).
Details of SBD implementation can be found in
references (Che et al., 2016a,b).

Beside of English test, we also conducted sev-
eral tests in German. Leipzig dataset (Goldhahn
et al., 2012) are used to training German word vec-
tors with Word2Vec toolkit. Then the vectors with
different training configurations are evaluated by a
set of analogy questions, which contains 2834 se-
mantic questions in 18 categories (including some
reverse logics) and 77886 syntactic questions in 9
categories. We have uploaded these analogy ques-
tions in German for public access1.

Table 3 shows the results and time expenditures
of these experiments. It is clear that proposed
measurements have same trend with traditional
metric, which means once set X achieves better
result than set Y in traditional test, it would also
do better in proposed alternatives. Performances
in downstream application SBD are also fit this
trend in general. Meanwhile, proposed evaluation
could significantly save time, approximately 95%.
These facts prove that we can achieve same per-
formance within way less time.

However, we also found some limitations. The
absolute difference between different vector sets

1https://drive.google.com/open?id=
0B13Cc1a7ebTuaE83NEtyemM4aGM

in proposed measurements is smaller, which make
it difficult to distinguish, especially with Euc. and
N-Euc. It is also unclear that which measurement
from the four proposed could be the optimized op-
tion.

5 Conclusion & Discussion

In this paper, we discuss some limitations of tra-
ditional word analogy evaluation metric in word
vector evaluation, and then propose a simple al-
ternative plan called “Analogy Space Evaluation”,
which directly measures the relation vectors be-
tween given pairs of words, instead of travers-
ing the vocabulary to seek the nearest word of
the target. Experiments shows that proposed ap-
proach serves as good as traditional metric in per-
formance, but reduces the computational complex-
ity significantly.

This effort can be simply applied on any exist-
ing word analogy tasks. Frankly speaking, we can-
not claim that our method outperforms the origi-
nal, except for the complexity part. But complex-
ity does matter. Currently analogy tasks generally
contain tens of thousands questions, so traditional
traversal-based evaluation can still manage. How-
ever, we would definitely want to test higher por-
tion of words in the vocabulary, and with the ef-
forts from the whole community, we may have a
“nearly optimized” test set someday with up to
million words involved. At that time, traversal-
free could be a highly desirable quality.

As far as we know, there is no widely acknowl-
edged benchmark which can be used to test new
evaluation methods, so our effort remains estima-
tion. In the future, we would attempt to implement
more real applications, just as SBD mentioned in
this paper, and take their performances as feed-
backs, in order to contribute in this dilemma of
“Evaluation of Evaluation”.
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Abstract

We introduce the cross-match test - an
exact, distribution free, high-dimensional
hypothesis test as an intrinsic evaluation
metric for word embeddings. We show
that cross-match is an effective means
of measuring distributional similarity be-
tween different vector representations and
of evaluating the statistical significance of
different vector embedding models. Ad-
ditionally, we find that cross-match can
be used to provide a quantitative measure
of linguistic similarity for selecting bridge
languages for machine translation. We
demonstrate that the results of the hypoth-
esis test align with our expectations and
note that the framework of two sample hy-
pothesis testing is not limited to word em-
beddings and can be extended to all vector
representations.

1 Introduction

Word embeddings obtained via specialized mod-
els (Brown et al., 1992; Pennington et al., 2014;
Mikolov et al., 2013a) or neural networks (Ben-
gio et al., 2003) have been successfully used to
address various natural language processing tasks
(Vaswani et al., 2013; Soricut and Och, 2015).
These embeddings provide a nuanced represen-
tation of words that can capture various syntac-
tic and semantic properties of natural language
(Mikolov et al., 2013b). Despite their effec-
tiveness in downstream applications, embeddings
have limited practical value as standalone items.
Consequently, an intrinsic evaluation metric must
provide insight on the downstream task the em-
beddings are designed for. In this work, we use
Cross-match (Rosenbaum, 2005) - an exact, dis-
tribution free, high-dimensional hypothesis test to

propose a novel approach for intrinsic evaluation
of word embeddings, one that provides insight on
tasks that depend on linguistic similarity.

Evaluating general purpose vector representa-
tions is difficult. They are trained using sim-
ple objectives and applied to a variety of down-
stream tasks, thus making no single extrinsic eval-
uation definitive. Often, due to computational con-
straints, direct downstream evaluations are also
impractical. In the case of word embeddings, these
constraints have led to the development of ded-
icated evaluation tasks like similarity and anal-
ogy (Rohde et al., 2006; Levy et al., 2015) which
are not directly related to training objectives or
to downstream tasks. Despite their ease of inter-
pretability, Faruqui et al. (2016) have shown that
these tasks do not correlate well with downstream
performance. In related work, Tsvetkov et al.
(2016) propose an evaluation measure QVEC-
CCA that is shown to correlate well with down-
stream semantic tasks where the objective is to
quantify the linguistic content of word embed-
dings by maximizing the correlation with a manu-
ally annotated linguistic resource.

In this work, we use the Cross-match hypoth-
esis test (Rosenbaum, 2005) to measure distri-
butional similarity between different word vec-
tor representations. Cross-match is an adjacency
based test traditionally used in clinical settings
where the goal is to assess no treatment effect
on a high-dimensional outcome in a randomized
experiment. In our setting, we assume there ex-
ists some unknown distribution W from which
our constructed word embeddings {w1, . . . ,wn}
are “sampled” from. Given two sets of word em-
beddings, cross-match tests whether the underly-
ing distribution from which the embeddings were
“sampled” are identical or not. The test uses op-
timal non-bipartite matching to pair vectors from
both sets of embeddings based on distance (e.g.
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a vector will be paired with it’s nearest neighbor
based on some distance metric). The cross-match
test statistic C is the number of times that a vec-
tor from one set is paired with a vector from an-
other. The null hypothesis assumes that the vec-
tors were sampled from the same distribution and
rejects for small values ofC. Thus, a large number
of cross-matches between two sets of word em-
beddings suggests that they are from the same em-
bedding distribution.

Using cross-match, we propose two illustrative
examples of intrinsic evaluation. First, we use pre-
trained word vectors (trained on Wikipedia using
the skip-gram model in Bojanowski et al. (2016))
from Facebook’s fastText library for several lan-
guages to calculate the cross-match statistic for
several language pairs. We hypothesize that for
linguistically similar languages, a larger statistic
will be observed. Secondly, we use cross-match
to assess the statistical significant of word em-
bedding models. We consider several well known
models trained on the same corpus and use cross-
match to assess whether the respective word vector
representations are statistically significantly dif-
ferent. We hypothesize that the number of cross-
matches between two different embedding models
is small, thus suggesting that they capture funda-
mentally different linguistic aspects of the corpus.

This paper is organized as follows: Section 2
introduces the cross-match test in detail. Experi-
ments on embedding similarity and evaluation are
described in Section 3. We discuss extensions and
conclude in Section 4.

2 Cross-Match Test

The cross-match test (Rosenbaum, 2005) is a
nonparametric goodness-of-fit test in arbitrary di-
mensions. It is an exact, distribution-free, two-
sample hypothesis test that measures whether two
distributions are equal or not. Formally, given
two independent samples w1, . . . , wn ∼ W and
v1, . . . , vm ∼ V , cross-match tests the null hy-
pothesis H0 : W = V versus the alternative hy-
pothesisH1 : W 6= V . The test has been tradition-
ally used in clinical settings, where the goal is to
assess no treatment effect on a high-dimensional
outcome between control and treated subjects in
a randomized experiment (Heller et al., 2010). In
the case of word embeddings, the goal is to test
whether two sets of word embedding vectors have
been “sampled” from the same distribution.

2.1 Definition of the Cross-Match Statistic

Let W,V denote two word embedding distri-
butions (distributions of word embedding vec-
tors over a corpus), suppose we obtain two
sets of word vectors {w1, . . . ,wn} ∼ W and
{v1, . . . ,vm} ∼ V . Assign the group la-
bels 0 and 1 to indicate which sample the
vectors are from such that the data are orga-
nized as follows: {(0,w1), . . . , (0,wn)} and
{(1,v1), . . . (1,vm)}.

The cross-match statistic C, is a function of the
word vectorsD = {w1, . . . ,wn,v1, . . . ,vn} and
the group labels G = {0, . . . , 0, 1, . . . , 1}. If
H0 : W = V is true, then all the word vectors
are i.i.d. “sampled” from W and the group labels
are meaningless. It’s as if the 0’s and 1’s were ran-
domly assigned.

The cross-match test is performed as follows.
For notational convenience ignore the group labels
and treat the data as one sample {z1, . . . , zn+m}
of size n+m = N (assume for simplicity thatN is
even). We define aN×N symmetric distance ma-
trix, with row k and column l giving the distance
(any distance metric can be used) between zk and
zl. Compute the optimal non-bipartite matching
of the z′s (match the vectors into non-overlapping
pairs) that minimizes the total distances between
the points in each pair.

Formally, we find a permutation σ̂ of
{1, . . . , N} that minimizes

Match(σ) =
N∑
i=1

d(Zi, Zσ(i))

where i 6= σ(i) and d is our chosen distance mea-
sure. The cross-match statistic C, is defined as
the number of pairs that have group labels (0,1) or
(1,0), the test rejects for small values of C.

If there is an odd number of word embedding
vectors, then a psuedo-vector is added to the dis-
tance matrix at zero distance from everyone else.
N
2 pairs are formed as before, and the pair contain-

ing the psuedo-vector is discarded (thus the least
matchable word vector is discarded).

2.2 Null Distribution of the Cross-Match
Statistic

One advantage of the cross-match test is that we
can compute the exact distribution of the statistic
C under the null hypothesis H0. Given N

2 paired
vectors, let c0 denote the observed number of the
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pairs with group labels (0,0), let c1 denote the ob-
served number of pairs with group labels (0,1) or
(1,0) (this is our observed cross-match statistic)
and finally let c2 denote the observed number of
pairs with group labels (1,1). The null distribution
of C in closed form is:

f(c1) = P (C = c1) =
2c1n!(N

n

)
c0!c1!c2!

where N
2 = c0 + c1 + c2. Having the null distri-

bution in closed form also allows us to compute
the exact p-value for our observed cross-match
statistic. The resulting p-value is equal to F (c1)
where

F (c1) = P (C ≤ c1) =
c1∑
c′1=0

f(c′
1)

A low p-value would suggests that we have evi-
dence to reject the null hypothesis (at a given level
of significance) that the word embedding vectors
were “sampled” from the same distribution.

3 Experiments

In the following experiments, we demonstrate two
different illustrative examples of the cross-match
test. Our objective is to show the effectiveness of
cross-match as a general tool for intrinsic evalua-
tion of word embedding vectors.

3.1 Embedding Similarity
A bridge language (also referred to as a pivot lan-
guage), is an artificial or natural language used
as an intermediary for translation between two
different languages. In machine translation, a
bridge language is useful in low-resource situa-
tions where a good parallel corpora is not avail-
able for the target language. In such cases, a
resource rich, linguistically similar language is
used as a proxy in order to perform the required
NLP task. For example in Tsvetkov and Dyer
(2015) the authors use Arabic, Italian and French
as bridge languages to perform Swahili-English,
Maltese-English and Romanian-English transla-
tions respectively.

Assessing whether languages are linguistically
similar is a reasonably difficult task and depends
on the notion of similarity one uses (lexical, mor-
phological etc.) In this experiment, we use cross-
match to provide a quantitative measure to assess
linguistic similarity between languages.

We use pre-trained word vectors (trained on
Wikipedia using the skip-gram model in Bo-
janowski et al. (2016)) from Facebook’s fastText
library for several languages and calculate the
cross-match statistic for several language pairs.
Specifically, we randomly select 100,000 word
vectors for each language (with the exception of
Maltese and Swahili which have only 26,000 and
52,000 vectors respectively). Then for each lan-
guage pair, we randomly sample 200 vectors and
calculate the number of cross-matches between
them using R’s crossmatch package (https://
github.com/cran/crossmatch). We re-
peat this 500 times for each language pair and re-
port the average cross-match statistic.

Language Pair Cross-Match
English-French 23.76
English-Italian 25.04
English-Spanish 23.36
English-Portuguese 18.44
English-Arabic 19.34
English-Maltese 7.84
English-Romanian 16.56
English-Swahili 17

Table 1: fastText vectors cross-match statistics
for English-pair languages

Language Pair Cross-Match
Maltese-English 7.84
Maltese-French 7.28
Maltese-Italian 9.20
Maltese-Spanish 6.76
Maltese-Portuguese 4.84
Maltese-Arabic 6.68
Maltese-Romanian 6.96
Maltese-Swahili 4.44

Table 2: fastText vectors cross-match statistics
for Maltese-pair languages

Tables 1 and 2 present the results of calcu-
lating the average number of cross-matches be-
tween several English-pair and Maltese-pair lan-
guages. We note that with a sample of 400 vec-
tors (200 from each language) the maximum pos-
sible number of cross-matches is 200. Given that
are our reported statistics are considerably lower
than 200 we can safely conclude that the dis-
tributions from which the word embedding vec-
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tors were generated are different for different lan-
guages. In table 1 we note that the number of
cross-matches between English and other romance
languages (French, Italian, Spanish, Portuguese,
Romanian) is noticeably higher than that between
English and non-romance languages (Arabic, Mal-
tese, Swahili). This corresponds with our notions
of linguistic similarity between the languages, we
certainly expect English to be more “similar” to
French than to Maltese. We also note that in table
2, the Maltese-Italian pair has the highest cross-
match statistic, thus supporting the choice of Ital-
ian as a bridge language for Maltese.

3.2 Embedding Evaluation

In this experiment, we use cross-match to as-
sess the statistical significance of word embedding
models. Despite the popularity of various different
embedding models (Mikolov et al., 2013a,b; Pen-
nington et al., 2014) it is not always clear whether
one model represents a statistically significant im-
provement to other existing models (it maybe that
all of them capture largely similar features of the
text).

We consider four popular word embedding
models: word2vec Skip-gram, word2vec CBOW,
Glove and fastText all trained on the same English
wikipedia corpus. Once again we take samples of
size 200 from each method, caluclate the p-value
between two pairs of methods using cross-match
and then report the average p-value across 500 re-
peated iterations.

Skip CBOW Glove FastText
Skip - 4.93e-26 2.39e-27 1.66e-23
CBOW 4.93e-26 - 9.42e-25 2.71e-22
Glove 2.39e-27 9.42e-25 - 1.13e-23
fastText 1.66e-23 2.71e-22 1.13e-23 -

Table 3: p-values calculated using Cross-match

The results in 3 show low p-values across all
pairs of word embedding methods thus suggesting
that they all seem to capture different aspects of
the corpus they are modeling. In other words, us-
ing cross-match we have evidence to reject the null
hypothesis that the vectors derived from any pair
of models come from the same word embedding
distribution.

Lastly, we note that there are at present some
computational constraints in performing the cross-
match test. There exists a bottleneck in the calcu-
lation of the optimal non-bipartite matching and

this makes performing the test for larger sample
sizes currently intractable. However, we feel con-
fident that this software issue can be easily over-
come by writing custom routines (as opposed to
using existing open-source code) and parallelizing
the problem. As a result of our limited sample
size, we not that it is possible that the power of our
hypothesis test is low and thus we may be making
type I errors (falsely rejecting the null). Nonethe-
less our initial results seem promising and are in
line with our expectations.

4 Conclusion

In this work we introduced the cross-match test,
an exact, distribution free, high-dimensional hy-
pothesis test as an intrinsic evaluation metric for
word embeddings. We were able to demonstrate
on two illustrative examples that the test performs
reasonably in line with our expectations and can
potentially be a useful tool in assessing bridge
languages for machine translation. Despite the
initially promising results, much further work re-
mains to be done in order to confirm the efficacy
of cross-match in the context of word embeddings.

We posit that our main contribution is the in-
troduction of the hypothesis testing framework as
a method for intrinsic evaluation of vector repre-
sentations. We observe that there is nothing no-
table about word embeddings or the cross-match
test and our experiments could be extended for
other vector representations (sentence, phrase etc.)
using other modern two-sample hypothesis tests
such as the popular maximum mean discrepancy
(Gretton et al., 2012). Given the rich literature on
hypothesis testing in statistics, there is certainly
much to be explored here.

For future work we aim to focus solely on the
problem of bridge languages in machine transla-
tion. Our objective is to conduct a larger scale
study that is able to definitively show a strong cor-
relation between the results of a hypothesis test
on word embedding vectors, and their subsequent
performance on the downstream machine transla-
tion task.
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Abstract

This work presents a framework for word
similarity evaluation grounded on cogni-
tive sciences experimental data. Word pair
similarities are compared to reaction times
of subjects in large scale lexical decision
and naming tasks under semantic priming.
Results show that GloVe embeddings lead
to significantly higher correlation with ex-
perimental measurements than other con-
trolled and off-the-shelf embeddings, and
that the choice of a training corpus is less
important than that of the algorithm. Com-
parison of rankings with other datasets
shows that the cognitive phenomenon cov-
ers more aspects than simply word related-
ness or similarity.

1 Introduction

Word representations have attracted a lot of inter-
est in the community and led to very useful ap-
plications in a range of domains of natural lan-
guage processing. Such representations are typ-
ically evaluated intrinsically on word similarity
tasks and extrinsically on their impact on NLP sys-
tems performance (Schnabel et al., 2015; Lai et al.,
2016; Ghannay et al., 2016).

A recent trend towards building more general
representations has looked at how similarities in
the representation space can predict the outcome
of cognitive experiments, such as human reaction
time in semantic priming experiments (Ettinger
and Linzen, 2016) or relying on eye tracking and
brain imaging data (Søgaard, 2016; Ruan et al.,
2016). The idea is that ground truth from uncon-
scious phenomena might be less prone to subjec-
tive factors of more traditional word similarity and
relatedness datasets.

In this paper, we describe an evaluation frame-
work based on comparing word embedding sim-
ilarity against reaction times from the Semantic
Priming Project (Hutchison et al., 2013). A set
of word embeddings is evaluated by computing its
Spearman rank correlation with average reaction
times obtained by submitting a set of subjects to a
prime (one word from the pair) and then perform
one of two tasks: lexical decision (decide whether
the second word is an existing word or not), and
naming (read aloud the second word).

Extending the ideas developed in (Ettinger and
Linzen, 2016), this paper describes the following
contributions:

• we create and distribute a package1 for word
embedding evaluation based on the SPP
primed reaction time data;

• in order to calibrate results from that evalua-
tion framework, we look at the effect of train-
ing corpus on a set of word embeddings;

• we also look at the correlation between SPP
reaction times and subjective similarity and
relatedness ratings from existing datasets.

2 Related Work

Intrinsic and extrinsic approaches have been pro-
posed for word embedding evaluation. The former
typically consist in collecting human judgment of
word similarity on a range of word pairs, and com-
puting the rank correlation of their averaged value
with the cosine similarity between the embeddings
of the words in the pair. Word analogy is also
evaluated but it has been proven to be equivalent
to a linear combination between cosine similari-
ties (Levy et al., 2014). In this work, we focus on

1Available at https://github.com/JomnTAL/
spp-wordsim
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intrinsic evaluation, and therefore do not detail ef-
forts for extrinsic evaluation of word embeddings.
More pointers can be found in (Schnabel et al.,
2015; Lai et al., 2016; Ghannay et al., 2016).

A number of datasets can be used to evalu-
ate word similarity based on human judgment.
Older datasets, such as RG (Rubenstein and Good-
enough, 1965) and MC (Miller and Charles, 1991)
shall not be used because differences between
correlations are not significant due to their small
size (Faruqui et al., 2016). While early datasets
contained judgments collected in-house, such as
WS-353 (Finkelstein et al., 2001; Agirre et al.,
2009), most recent ones are created through crowd
sourcing, with 10 to 20 annotations per word-
pair, filtered for outliers: MTurk-287 (Radinsky
et al., 2011), MTurk-771 (Halawi et al., 2012),
MEN (Bruni et al., 2012), RW (Luong et al.,
2013). Another trend is to address different syn-
tactic categories than noun, such as YP-130 (Yang
and Powers, 2006) and Verb (Baker et al., 2014)
which focus on verbs. While past studies did not
differentiate relatedness from semantic similarity,
SimLex (Hill et al., 2016) and SimVerb (Gerz
et al., 2016) explicitly promote the later. Em-
beddings can also be compared to lexical re-
sources (Tsvetkov et al., 2015), but it is hard to
balance the contribution of each linguistic phe-
nomenon. Existing similarity ratings are subjec-
tive because they are the result of a conscious pro-
cess while it seems desirable to directly evaluate
embeddings against basic processes that support
language in the brain.

In the cognitive sciences community, there has
been efforts to explain how word associations are
formed by introducing word embeddings in mod-
els. Pereira et al. (2016) look at how off-the-
shelf word embeddings predict free associations
(given a prime, say the first word that comes to
your mind), a conscious process while we are in-
terested in an unconscious process. The work by
Hollis and Westbury (2016), among other experi-
ments, compares word embedding principal com-
ponents to unprimed reaction times from the En-
glish Lexicon Project (ELP) and British Lexicon
Project (BLP). Both papers are interested in ex-
plaining cognitive behavior. There have also been
efforts to evaluate word embeddings against fMRI
recordings with the idea that embeddings can ex-
plain part of the neural activity (Søgaard, 2016).

The work by Ettinger and Linzen (2016) is par-

ticularly relevant to our study in that the authors
also propose to evaluate embeddings against reac-
tion time data from the SPP dataset. Our work dif-
fers in that we provide an evaluation setup which
can be reused by other researchers, we propose a
different evaluation metric based on rank correla-
tion, and we perform an analysis in regard to dif-
ferent parameters, in particular the corpus used to
train embeddings.

3 Semantic priming

There is an extensive psychological literature con-
cerning the nature of semantic representations and
the influence of semantic or associative context on
word processing (McNamara, 2005). In this do-
main, the semantic priming paradigm is one of
the most popular experimental tool to study these
cognitive processes. In this task, participants are
presented with a prime (stimulus) word (e.g., cat)
immediately followed by either a related (e.g.,
dog) or an unrelated (e.g., truck) target word. A
speeded response is expected on the target word
(e.g., a lexical-decision, i.e., is it a word or not?)
and a response time is recorded. Semantic prim-
ing refers to the finding that people respond faster
to target words preceded by related, relative to un-
related, primes. This behavioral index therefore
provides information about the influence of a se-
mantic context (i.e., the prime word) on the pro-
cessing of the target word and is suitable for the
development of theories of semantic memory.

Due to the increasing precision of computa-
tional models of word processing, researchers are
now testing models by using large-scale databases
providing experimental data at the item level. The
Semantic Priming Project (SPP) (Hutchison et al.,
2013) is one of these recently collected databases.
It provides response times from 768 participants in
speeded naming (NT) and lexical decision (LDT)
tasks for 1,661 target words following related and
unrelated primes. The naming task consists in
reading aloud the target, while the lexical deci-
sion task consists in pressing one of two buttons to
specify if the target is a valid word or not. Aside
from the relatedness between the prime and the
target, the item data is also available for stimu-
lus onset asynchronies (SOA) between the prime
and target items of 200 and 1,200 ms. Stimu-
lus onset asynchrony is the time between the end
of showing the first (stimulus) word, and the tar-
get word in the reaction time experiments. Se-
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mantic priming at shorter SOAs (e.g., under 300
ms) is thought to reflect automatic priming mecha-
nisms, whereas priming at longer SOAs (e.g., over
300 ms) presumably reflects additional intentional
strategies (Hutchison et al., 2001).

Reaction times observed in semantic priming
experiments can be explained by a range of lin-
guistic phenomena, such as relatedness, semantic
similarity, syntactic traits, or morphology. Un-
like Hill et al. (2016) who focus on one phe-
nomenon, we assume that word representations
should convey the full mixture of explaining
factors observed in unplanned human behavior.
Therefore we evaluate embeddings by computing
the correlation between the cosine similarity of
pairs of words and reaction times (RT). Shorter
RT indicate more priming effect, leading to neg-
ative correlations. In addition, non linguistic fac-
tors such as frequency are known to influence RT
measurements, so it is not expected that word em-
beddings explain the whole variance of the exper-
iment.

The SPP data is significantly larger than word
similarity datasets and consists of 6,637 word
pairs. The RT for each pair is an average over
the performance of 30 subjects. In addition to re-
action times, the dataset contains demographics,
proficiency and attention tests results.

4 Evaluation framework

Embeddings are evaluated by computing the co-
sine similarity between word pairs from the SPP
project, and look at their Spearman rank correla-
tion with the RT data. The results are given in
term of negative correlation. Significance of the
difference between correlations is calculated with
the Steiger test (Steiger, 1980).

In this evaluation framework, the word pairs
for the Lexical Decision Task (LDT) and Nam-
ing Task (NT) are split according to two partitions.
The first one (P1), used here, consists of a devel-
opment set of 1,328 pairs and a test set of 5,309
pairs. Parameters of the proposed approaches can
be tuned on the development set and performance
must be reported on the test set. Another parti-
tion (P2) is made available to also include data
for training algorithms. The Train set consists of
3,981 pairs, the Dev has 1,328 pairs and the Test
has 1,328 pairs. These partitions were obtained
by using 10 folds which are also available. We
didn’t create them with a particular goal in mind

but we made sure that the mean word frequency
and the standard deviation (SD) of each fold was
close to the mean word frequency and SD of the
full dataset. By standardizing the data splits, we
ensure that results presented in future work will
be comparable.

Experiments In a first set of experiments, we
benchmark a range of embeddings on the SPP
data. Four conditions are considered: LDT-200,
LDT-1200, NT-200, NT-1200 (for lexical deci-
sion task, and naming task, both with an on-
set of 200 ms and 1,200 ms). We compare
two categories of embeddings: a controlled set-
ting for which algorithms are trained on the same
dataset, and a selection of pretrained embeddings
available to the community. Due to space con-
straints, the pretrained embeddings considered2

are limited to: W2V Skip-gram (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), Multi-
lingual (Faruqui and Dyer, 2014), Dependency-
based (Levy and Goldberg, 2014), and Fast-
Text (Bojanowski et al., 2016).

For the embeddings with controlled settings,
we used two algorithms: W2V Skip-grams and
GloVe. We used three different corpora to train
these embeddings: Wikipedia 2013 (Wiki), Gi-
gaword3 (GW) and OpenSubtitles 2016 (OS). We
used a centered window of size 10 and generated
vectors with 100 dimensions for all 6 models.

From the experiment detailed in Table 1, it ap-
pears that GloVe leads to significantly larger neg-
ative correlation compared to other approaches,
both on the controlled and pretrained settings. On
the controlled setting, we notice that the choice of
the corpora doesn’t significantly affect the corre-
lation. Even if the correlation seems to be higher
with the NT-200 and NT-1200 datasets when using
the OpenSubtitles corpus, the Steiger test shows
that the difference in correlation when using the
other corpora is not significant in most cases.
However, the algorithms used do have a signifi-
cant impact on the correlations. In the future, it
would be interesting to look at the impact of vari-
ous other settings such as the size and position of
the window, or the dimension of the word vectors.

It can also noted that the correlations on the lex-
ical decision tasks are higher than on the naming
tasks which supports the idea that lexical decision

2URLs and descriptions available at https:
//github.com/JomnTAL/spp-wordsim.

3LDC2012T21
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Off-the-shelf embeddings Embeddings with controlled settings

GloVe W2V Multilingual Dependency FastText GloVe OS GloVe Wiki GloVe GW W2V OS W2V Wiki W2V GW

LDT-200 25.02 15.35∗ 13.88∗ 5.48∗ 14.48∗ 23.61 23.06 23.91 17.77∗ 16.75∗ 16.86∗

LDT-1200 18.91 11.21∗ 11.19∗ 3.76∗ 10.75∗ 17.65 17.88 18.17 12.86∗ 11.64∗ 11.35∗

NT-200 15.43 5.70∗ 6.43∗ -1.56∗ 3.73∗ 15.37 12.52∗ 13.67† 8.27∗ 6.30∗ 7.83∗

NT-1200 12.57 8.86∗ 7.58∗ 4.68∗ 8.30∗ 12.14 10.36† 11.78 9.42∗ 9.23∗ 9.30∗

Table 1: Spearman’s correlation4 between the test SPP datasets and word embedding models. Highest
results are in bold. Significativity of the figures compared to the best results according to Steiger test is
indicated by ∗(pval < 0.01) and †(pval ∈ [0.01, 0.05[).

Nb Pairs LDT-200 LDT-1200 NT-200 NT-1200

WS-353-ALL 16 0.40 -0.30 0.26 -0.51
MTurk-771 26 -0.08 0.23 -0.23 -0.28
MEN-TR-3k 71 0.21 -0.20 0.04 -0.02
SimLex-999 101 -0.03 0.06 0.06 0.02

Table 2: Spearman’s correlation between reac-
tion times from the SPP datasets and relation-
ship scores from other datasets (with more than 16
overlapping pairs).

seems to be a task less subject to variability from
production of the response (pressing a button vs
saying a word). Better correlations at an onset of
200 ms can be explained by the fact that subjects
are allowed more time to build an intent, leading
to more factors being involved. This also probably
means that most word embedding models are bet-
ter at capturing automatic priming mechanisms.

The second experiment detailed in Table 2 looks
at the characteristics of the SPP data in regard to
other available datasets. We calculated the cor-
relation between the reaction times in the SPP
datasets and the relationship scores in a set of
existing datasets, using the pairs of words that
are available in the two compared datasets (dif-
ferent pairs are compared for each dataset). We
only show the results for datasets that have 16
or more pairs in common with the SPP dataset.
The SimVerb dataset had 208 pairs in common but
since the words used were only verbs whereas in
the SPP dataset the part-of-speech wasn’t speci-
fied, we couldn’t really compare the two datasets.
It can be observed that the correlations are low
which probably means that evaluating on the SPP
data could outline different phenomena than what
is already covered by relatedness and similarity
oriented datasets. Additional work has to be done
to fully understand what factors are taken into ac-

4For readability, correlations have been multiplied by
−100

count by the SPP data.

5 Discussion

It is not clear what cognitive processes lead to
mental representations of words in the brain, and
it is not clear how these processes relate to lin-
guistic theories. However, reaction time in the
context of semantic priming seems to be a good
proxy for modeling word embeddings after cogni-
tive processes. The proposed framework addresses
some of the problems with word embedding evalu-
ation exposed in (Faruqui et al., 2016)5: (2.1) sub-
jectivity is addressed by looking at unconscious
phenomena, (2.2) the lexical decision and nam-
ing tasks are very general but they are affected
by other cognitive pipelines such as vision, (2.3)
we provide standardized splits, and (2.5) the size
of the dataset allows for significant differences be-
tween algorithms. However, we do not address the
problem of low correlation with extrinsic evalua-
tion (2.4), we do not account for frequency effects
(2.6) and polysemy (2.7). These aspects are left
for future work.

6 Conclusion

This work explores an evaluation target for word
embeddings: reaction time in lexical decision and
naming tasks from a semantic priming experiment.
Experiments show that this setting is dominated by
different factors than word relatedness or similar-
ity, and that the choice of algorithm is a stronger
predictor of correlation than the choice of training
corpora. In future work, we will leverage the non-
word data from the lexical decision task in order
to evaluate character-based word embeddings.

Acknowledgements Research supported by
grants ANR-15-CE23-0003 (DATCHA), ANR-
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5According to their section numbers
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Abstract

Acquiring language provides a ubiquitous
mode of communication, across humans
and robots. To this effect, distributional
representations of words based on co-
occurrence statistics, have provided sig-
nificant advancements ranging across ma-
chine translation to comprehension. In this
paper, we study the suitability of using
general purpose word-embeddings for lan-
guage learning in robots. We propose us-
ing text-based games as a proxy to evaluat-
ing word embedding on real robots. Based
in a risk-reward setting, we review the
effectiveness of the embeddings in navi-
gating tasks in fantasy games, as an ap-
proximation to their performance on more
complex scenarios, like language assisted
robot navigation.

1 Introduction

Language provides a natural interface for humans
to communicate with robots. With their increasing
public presence, from self-driving cars and rescue
operations to warehouses, it is imperative to re-
duce this barrier of communication, by improving
language learning in mobile robots. For instance,
in search and rescue operations one might want to
instruct the agents to ”Reach the third floor of the
blue building”. Given the nature of the tasks, it is
essential for the agent to accurately infer its cur-
rent state and parse natural language instructions
to corresponding actions.

In recent years, learning continuous represen-
tations of words and symbols have become cen-
tral to dealing with several key problems in natural

∗Equally contributed to the project. Author names listed
in alphabetical order.

Figure 1: An example of environment generated
in the MUD environment. While the blue blob de-
notes the start state, the red blobs denote deter-
ministic intermediate negative rewards. The green
blob on the right denotes positive reward on com-
pletion of quest.

language understanding. Usually trained to maxi-
mize the likelihood of next utterance, these models
effectively learn co-occurrence statistics based on
corpora, motivated by the distributional hypothe-
sis (Harris, 1954). This objective function, often
organizes objects and actions with similar seman-
tic information, to close neighborhoods in the cor-
responding embedding space. Here, the similarity
between words is often defined by some metric for
similarity of the word vectors.

Though evidently successful across several
tasks, common general purpose word embeddings
with fixed dimensions are often inadequate in their
representation capacity. In recent works, (Gau-
thier and Mordatch, 2016; Lucy and Gauthier,
2017) argue that language learning grounded in
perception, motion or actions, are important to
learn meaningful representations corresponding to
consequences of actions on objects. Specifically,
in a scenario where robots are deployed in real
world, it is important to distinguish even between
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Fantasy Environment
You are standing very close to the bridges
eastern foundation. If you go east you will
be back on solid ground ...
The bridge sways in the wind.

MARCO dataset (Chen and Mooney, 2011)
face the octagon carpet. move until you
see red brick floor to your right.
turn and walk down the red brick until you get
to an alley with grey floor. you should be two alleys
away from a lamp and then an easel beyond that.

Table 1: Examples of instructions from MUD vs
MARCO dataset for navigation.

similar actions based context and their effect in a
given situation.

In this paper, we address this task of evaluating
word embeddings for language learning in robots
by introducing text-based MUD games (Curtis,
1992) as a proxy. Traditionally in robotics, elab-
orate simulators have been used to evaluate motor
control policies of motion planning for the physi-
cal agents. In a similar spirit, MUD games provide
a rich playground for define complex scenarios
solely with textual descriptions. Based on these,
the agents are required to take certain actions with
the objective of clearing the quest. (Fig. 1)

To evaluate, we train a LSTM-DQN follow-
ing (Narasimhan et al., 2015), in a reinforcement
learning framework. The agent is trained to learn
control policies, with the objective of maximizing
the rewards obtained. We demonstrate that using
general purpose embeddings improve on the aver-
age rewards per quest.

2 Multi-User Dungeon Games

A Multi-User Dungeon Game, as defined in
(Curtis, 1992) ”is a network-accessible, multi-
participant, user-extensible virtual reality whose
user interface is entirely textual”. In essence, it
describes an elaborate environment with multiple
characters and tasks for the player, the only con-
straint being that all interactions with the game are
purely textual.

In (Amir and Doyle, 2002), the authors elabo-
rately elucidate the richness of such environments,
with insights specific to robotics. Primarily in our
context of robot language learning, we make the
following observations :

• The environment is partially observable, with

stochasticity depending on the actions taken
by the agent. This inherently allows us to cast
the problem as an MDP, and studying it in the
light of recent advances in Deep Reinforce-
ment Learning.

• Intermediate rewards provide feedback to the
agent, as proxy for a human in a real-life set-
ting. This allows the agent to learn from con-
sequences and formulating the problem in a
risk-reward setting.

• Language based symbolic interface for inter-
action with the environment. Since language
remains consistent across simulator and real
world, we assume that the text-world is an ac-
curate replica of the real environment.

Among others, the above characteristics suggest
that MUD games provide an ideal sandbox for
evaluating word-embeddings for robot language
learning.

3 Dataset

We propose using text-based MUD games as
proxy for evaluating language learning in robotics.
As illustrated in (Table 1) the nature of instructions
generated by the game environment are quite sim-
ilar when compared to real datasets, in this case
(Chen and Mooney, 2011).

In this work, we use the Evennia1game environ-
ment, an open-source library to build online tex-
tual MUD games. Evennia allows users to cre-
ate complex environments with elaborate textu-
ral descriptions, by simply writing a batch file to
describe the objects, actions and possible inter-
actions in the environment. Compared to other
available datasets for navigation, the MUD envi-
ronment provides a risk-reward scenario, where
the environment can also be designed to have de-
terministic negative feedback to represent undesir-
able outcomes.

To provide feedback on the action taken, the
agents are provided positive/negative rewards de-
pending on the state of the game. In case of quest
completion, the agents are provided a large pos-
itive reward, while predefined bad intermediate
checkpoints like colliding with walls, or falling
off bridges are penalized with negative rewards.
Building on extensive literature in reward shaping
in the Deep Reinforcement Learning framework,

1http://www.evennia.com/
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Figure 2: Evaluating agents trained across various
embeddings based on average reward (log scale).
Pretrained word-vectors outperform random ini-
tialized LSTM-DQN and BOW-DQN.

more complex environment can also be easily con-
structed to evaluate the generalizing capability of
the embeddings.

4 Model Architecture

Formulating the problem in a reinforcement learn-
ing setting, we train the agent to learn a good Q-
value functionQ(s, a), for all possible state-action
pairs. More concretely the agent iteratively opti-
mizes the Bellman objective

Qi+1(s, a) = E[r + γmax
a′

Qi(s′, a′)|s, a] (1)

where, γ is the discount factor. With the changing
distribution on Q-values the agent decides action
a to maximize the future rewards.

In this regard, we follow the LSTM-DQN
model by (Narasimhan et al., 2015) which builds
on recent developments in Deep Q-Learning
(Mnih et al., 2015).

4.1 LSTM-DQN

The input to the agent is the textual description
of the current state of the environment. However,
the model is required to keep a track over previous
states, as well generate a compact representation
for the same. Therefore we define a representa-
tion generator (φR), which is an LSTM module
to keep a track of the current state of the environ-
ment. The individual time step rollouts are further
aggregated (φA) to convert the textual description
into compact vector representation (s).

Following the context, the model is required to
choose an action(a) to be taken, and an object(o)

on which the action is applied in the MUD envi-
ronment. As a result, we define two Q-value func-
tions Q(s, a) and Q(s, o), which share the same
state, and generate distributions on actions and ob-
jects respectively. This (a, o) tuple, together de-
fines the action executed by the game environment
to update it’s state. For detailed description of the
model please refer (Narasimhan et al., 2015).

5 Evaluation

We experiment on the Fantasy World following
the environment in (Narasimhan et al., 2015). The
vocabulary consists of 1340 unique tokens, with
100 different descriptions for the room. Visiting
the room provides random sequence of description
as developed by the designers. Average length of
descriptions in the rooms was 65 words per de-
scriptions. The possible actions per state average
to 222 per state. Please refer (Narasimhan et al.,
2015) for elaborate game statistics.

To evaluate the performance of agents when us-
ing different word-embeddings, different metrics
could be defined depending on the requirement of
the task. In the particular case of evaluating the
performance of the agent on navigation task, we
follow common defined metrics as in (Narasimhan
et al., 2015)

• cumulative reward per episode averaged over
the number of episodes.

• fraction of quests successfully completed by
the agent.

Considering the task as an downstream proxy for
the actual environment, this does not evaluate
the individual embeddings by similarity metrics,
rather the generalization across environments. In
this work we compare word2vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014) general
use embeddings against a BOW-DQN baseline
and LSTM-DQN trained with random initializa-
tion (Fig 2). The baseline here (BOW-DQN) uses
a simple bag-of-words model to represent the tex-
tual description.

We observe that using pre-trained embeddings
generally improve the performance of the model.
The rewards in our primary models have high vari-
ance due to the stochastic nature of the policy. In
further work, we wish to build on recent advance-
ments in Deep Reinforcement Learning literature,
for training better models.
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6 Discussion and Future Work

Using continuous vector representations of words
for language learning in mobile robots poses the
question of choice of embeddings which capture
task specific semantics. In this work we propose
using MUD games as proxy for this task, rather
than elaborate testing on robotic platforms.

Similar to real world situation, all interac-
tions between the agent and the environment are
through language, without any other supervision.
The rewards provide the models with required su-
pervision of tuning the word embeddings to com-
plete the quest. Preliminary evaluation on stan-
dard embeddings show that average rewards for
pretrained embeddings are better than BOW mod-
els and randomly initialized LSTM embeddings.

In future work we wish to extensively evaluate
the model on more standard word-embeddings and
against real datasets to establish empirical correla-
tion between the proposed proxy and actual task.
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Human Language Technologies Research Center,

Faculty of Mathematics and Computer Science, University of Bucharest,
Academiei 14, 010014, Bucharest
mary.octavia@gmail.com

Abstract

In this paper, we investigate the applica-
tion of machine learning techniques and
word embeddings to the task of Recog-
nizing Textual Entailment (RTE) in Social
Media. We look at a manually labeled
dataset (Lendvai et al., 2016) consisting of
user generated short texts posted on Twit-
ter (tweets) and related to four recent me-
dia events (the Charlie Hebdo shooting,
the Ottawa shooting, the Sydney Siege,
and the German Wings crash) and test
to what extent neural techniques and em-
beddings are able to distinguish between
tweets that entail or contradict each other
or that claim unrelated things. We obtain
comparable results to the state of the art
in a train-test setting, but we show that,
due to the noisy aspect of the data, results
plummet in an evaluation strategy crafted
to better simulate a real-life train-test sce-
nario.

1 Introduction

The ability to automatically deduce how the mean-
ing of text flows from one sentence to the next is
a central part of Natural Language Understanding
(NLU) and highly important in many Natural Lan-
guage Processing tasks (NLP). Recognizing Tex-
tual Entailment (RTE), started as a challenge in
2004 from this very need and reaching its 8th it-
eration in 2013 at SemEval1, falls at the intersec-
tion between NLU, NLP, Information Extraction,
and Information Retrieval (Dagan et al., 2006). Its
goal is, given a pair of sentences dubbed text and
hypothesis, to determine whether the meaning of
either (traditionally, of the hypothesis) entails the

1https://www.cs.york.ac.uk/
semeval-2013/task7/

meaning of the other, contradicts it, or whether
nothing can be said of the relationship between
the two sentences. Here, the notion of entailment
and contradiction are not necessarily related to the
linguistic notions, where entailment is always ex-
plained in contrast with presupposition and some-
times implicature(Sauerland, 2007), but are out-
lined in (de Marneffe et al., 2008).

Interest in this task was amplified with the cre-
ation of the SNLI corpus (Bowman et al., 2015)
which lead to a few studies using Deep Neu-
ral Networks (DNN) (Wang and Jiang, 2016;
Rocktäschel et al., 2015). Previous to this, the
Excitement Open Platform 2 was considered the
state-of-the-art model.

On the hand, interest in ways to represent text
in order to improve performance in text classifi-
cation (Lilleberg et al., 2015; Joulin et al., 2016),
machine translation (Zou et al., 2013; Sulea et al.,
2016) or question answering tasks (Sharp et al.,
2016) has been rekindled with the introduction of
the highly cited word2vec model (Mikolov et al.,
2013) and the avenue of deep neural word embed-
dings (Palangi et al., 2016).

Our present research revolved around three
questions:

• Can we apply state of the art neural methods
created for large datasets or longer texts to
small datasets containing very short texts?

• Will these methods work for fine grained con-
tradictions?

• Can word embeddings, which were success-
fully used for word-level semantic tasks, im-
prove performance in tasks pertaining to dis-
course level semantics?

2http://hltfbk.github.io/
Excitement-Open-Platform/
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2 Approach

In this paper we investigate the application of sev-
eral state-of-the art approaches to the RTE task in
the social media domain and investigate the use
of word embeddings for what is essentially a dis-
course level semantic task. We use neural net-
works and compare our results with the results
obtained previously using classical ”feature engi-
neering” methods.

2.1 Data
The data we used was presented in (Lendvai et al.,
2016). It contains around 5000 Tweet pairs, dis-
tributed over four recent media events, reported in
the press. These pairs were hand labeled as be-
ing either in a relationship of entailment, meaning
that the underlying sense of each of the two text
snippets was effectively the same, a relationship
of contradiction, meaning that information in one
of the tweets as minor as the number of victims
or location of the event at hand contradicted the
information expressed in the other tweet, or the
two tweets were labeled to be in an unknown rela-
tionship, meaning that their underlying stories did
not entail nor contradict each other, although they
were referring to the same event. The dataset was
slightly unbalanced, with the majority class per-
taining to that of the unknown relationship and the
minority class to the contradiction relationship.

Since the contradiction manifested between
tweet pairs labeled was very fine grained, we ex-
pected bag of word models to perform poorly and
confusion between entailment and contradiction
to be high. Also, since, for each event, all three
classes were represented, there was an expecta-
tion that BOW and similarity measures based on
BOW would also fail, since pairs of tweets talk-
ing about the same event, but being in completely
different relationships were abundant. Indeed, as
can be seen from the results reported in (Lendvai
et al., 2016), the f1 measure is slightly above the
random baseline when using such features.

2.2 Classifier Implementation and Settings
For the implementation of the Multi Layer Percep-
tron classifier, we used the python library Keras
3 which wraps over the Deep Learning library
for Python, Theano (Theano Development Team,
2016). The pre-trained word2vec model offered
by Google was loaded into our system using the

3https://keras.io

Gensim library (Řehůřek and Sojka, 2010). For
the word-mover distance, we used pyemd 4, a
Python wrapper for Pele and Werman’s implemen-
tation of the Earth Mover’s Distance metric (Pele
and Werman, 2008).

The neural network was trained using several
settings for the hyper-parameters (batch size and
number of epochs) and we report the results for a
batch size of 50 over 100 epochs. We also investi-
gated several ways of representing the t and h text
pairs.

2.3 Feature Representation

The first choice in representing the sentence pairs
was to sum the 300-sized vector representation for
each word in each of the two sentences separately
and then concatenate the resulting 300-sized vec-
tors into one. This lead to one 600-sized vecto-
rial representation of the sentence pair. The sec-
ond strategy lead to a 900-sized vector: the first
300 elements represented the sum of the vectors
of words in the t text, the following 300 elements
were 0s representing the separation vector, and the
final 300 positions in the vector represented the
sum of the vector for each word in the h text.

We also applied different similarity measures,
including cosine and word mover’s distance (Kus-
ner et al., 2015), over the vectorial representations
of the tweets. Ultimately, in terms of feature rep-
resentation, we wanted to test two things:

• whether distance metrics between vecto-
rial representations (weather one-hot or
word2vec) of tweets are sufficient in predict-
ing the RTE class

• whether inserting a separation vector be-
tween the two vectors for each of the texts
in the pair leads to better results.

2.4 Event-based Cross Validation

In order to have a testing setup as close to a real-
life scenario as possible, we employed the event-
based cross validation, as proposed in (Lendvai
et al., 2016). This effectively meant that, for each
of the four events, we kept the tweets related to the
other three events for training and used the tweets
from the fourth event for testing. This meant that
we had a 4-fold cross validation, where, for each
fold, the train-test split was based on the event

4https://github.com/wmayner/pyemd
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each pair belonged to. This in turn meant that, al-
though the event label was never directly used as a
feature or as the predicted label, it was indirectly
used in cross-validation. This strategy was em-
ployed to simulate a real-life scenario where the
end user of such an RTE system (e.g. a journal-
ist trying to make sense of a large set of tweets on
one event), would already have at their disposal
a classification model pre-trained on other, possi-
bly unrelated, events. We compared the results of
event based cross-validation with typical train-test
split results.

3 Results

Table 1 show the event-based cross validation re-
sults for the 3-way classification task when the fea-
tures used are cosine distance between the sum
of word2vec representation of the words in each
tweet and word mover distance. More precisely,
the cosine value and the word-mover distance
value were concatenated to form a Nx2 feature
matrix, where N was the number of input exam-
ples.

Model Method P R F
SVM avg. 0.45 0.52 0.45
LR avg. 0.46 0.52 0.45

Base avg. 0.33 0.33 0.33
SVM cont 0.38 0.49 0.40
LR cont 0.43 0.53 0.46

Base cont 0.26 0.31 0.28

Table 1: Event-based CV results using cosine sim-
ilarity and word mover distance on the minority
class and averaged

As can be seen from Figure 1, the distance met-
rics on occurrence vectors and word2vec summa-
tion vector are not good features to separate the
three classes.

Logistic regression performed similar to Linear
SVC when applied to the word2vec representation
coupled with the word mover distance and aver-
aging the event-based cross-validation results over
all three classes. However, for the minority class
contradiction, LR seemed to perform slightly bet-
ter, although the standard deviation computed over
each fold was higher.

For the 600 and 900 dimensional vector repre-
sentation, the event-based CV results were slightly
lower, as can be seen from Table 2.

Model Method P R F
MLP avg. 0.41 0.34 0.30
LR avg. 0.42 0.47 0.41

Dummy avg. 0.35 0.35 0.35

Table 2: Event Based CV results for 900 dimen-
sional vectors

Table 3 shows the train-test split results for the
MLP and LR models over 900 dimensional vector

Model Method P R F
MLP avg. 0.91 0.90 0.90
LR avg. 0.78 0.78 0.78

Dummy avg. 0.33 0.33 0.33
MLP cont 0.87 0.77 0.82
LR cont 0.62 0.60 0.61

Dummy cont 0.26 0.26 0.26

Table 3: Train-Test Split results for LSTM and Lo-
gistic Regression

4 Conclusions and Future Work

In this paper we’ve investigated the use of current
day classification tools for the task of recognizing
textual entailment in Twitter data. We’ve shown
that the same neural network models successfully
used in the same task but on larger datasets per-
form similarly well (with only a small drop in per-
formance) in a train-test split evaluation setting,
but they perform as poorly as any other classi-
fier in the event-based cross validation setting, a
novel evaluation strategy, which was previously
proposed to better simulate real life scenarios of
RTE systems on Twitter.

We’ve also seen that using only the distance (co-
sine, word mover) between vector representations
of the tweets, be those bow or sum of word2vec,
was not enough to distinguish the minority class
in the event-based cross validation setting and that
using concatenation of word2vec leads to minor
improvements in the same setting, but consider-
able in the train-test one.
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Figure 1: Plot of cosine distance on occurrence vector representation and word mover distance on
word2vec summation representation for h and t; the horizontal axis represents the three classes and
the vertical represents the distance values
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Abstract

The RepEval 2017 Shared Task aims to
evaluate natural language understanding
models for sentence representation, in
which a sentence is represented as a fixed-
length vector with neural networks and the
quality of the representation is tested with
a natural language inference task. This
paper describes our system (alpha) that is
ranked among the top in the Shared Task,
on both the in-domain test set (obtain-
ing a 74.9% accuracy) and on the cross-
domain test set (also attaining a 74.9%
accuracy), demonstrating that the model
generalizes well to the cross-domain data.
Our model is equipped with intra-sentence
gated-attention composition which helps
achieve a better performance. In addi-
tion to submitting our model to the Shared
Task, we have also tested it on the Stan-
ford Natural Language Inference (SNLI)
dataset. We obtain an accuracy of 85.5%,
which is the best reported result on SNLI
when cross-sentence attention is not al-
lowed, the same condition enforced in
RepEval 2017.

1 Introduction

The RepEval 2017 Shared Task aims to evaluate
language understanding models for sentence rep-
resentation with natural language inference (NLI)
tasks, where a sentence is represented as a fixed-
length vector.

Modeling inference in human language is very

challenging but is a basic problem in natural lan-
guage understanding. Specifically, NLI is con-
cerned with determining whether a hypothesis
sentence h can be inferred from a premise sen-
tence p.

Most previous top-performing neural network
models on NLI use attention models between a
premise and its hypothesis, while how much in-
formation can be encoded in a fixed-length vec-
tor without such cross-sentence attention deserves
some further understanding. In this paper, we
describe the model we submitted to the RepEval
2017 Shared Task (Nangia et al., 2017), which
achieves the top performance on both the in-
domain and cross-domain test set.

2 Related Work

Natural language inference (NLI), also named rec-
ognizing textual entailment (RTE) includes a large
bulk of early work on rather small datasets with
more conventional methods (Dagan et al., 2005;
MacCartney, 2009). More recently, the large
datasets are available, which makes it possible to
train natural language inference models based on
neural networks (Bowman et al., 2015; Williams
et al., 2017).

Natural language inference models based on
neural networks are mainly separated into two
kind of ways, sentence encoder-based models and
cross-sentence attention-based models. Among
them, Enhanced Sequential Inference Model
(ESIM) with cross-sentence attention represents
the state of the art (Chen et al., 2016b). How-
ever, in this paper we principally concentrate on
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sentence encoder-based model. Many researchers
have studied sentence encoder-based model for
natural language inference (Bowman et al., 2015;
Vendrov et al., 2015; Mou et al., 2016; Bowman
et al., 2016; Munkhdalai and Yu, 2016a,b; Liu
et al., 2016; Lin et al., 2017). It is, however, not
very clear if the potential of the sentence encoder-
based model has been well exploited. In this pa-
per, we demonstrate that proposed models based
on gated-attention can achieve a new state-of-the-
art performance for natural language inference.

3 Methods

We present here the proposed natural language in-
ference networks which are composed of the fol-
lowing major components: word embedding, se-
quence encoder, composition layer, and the top-
layer classifier. Figure 1 shows a view of the archi-
tecture of our neural language inference network.

Figure 1: A view of our neural language inference
network.

3.1 Word Embedding

In our notation, a sentence (premise or hypothe-
sis) is indicated as x = (x1, . . . , xl), where l is
the length of the sentence. We concatenate em-
beddings learned at two different levels to rep-
resent each word in the sentence: the character
composition and holistic word-level embedding.
The character composition feeds all characters of
each word into a convolutional neural network
(CNN) with max-pooling (Kim, 2014) to obtain
representations c = (c1, . . . , cl). In addition, we
also use the pre-trained GloVe vectors (Penning-
ton et al., 2014) for each word as holistic word-
level embedding w = (w1, . . . , wl). Therefore,
each word is represented as a concatenation of the

character-composition vector and word-level em-
bedding e = ([c1;w1], . . . , [cl;wl]). This is per-
formed on both the premise and hypothesis, re-
sulting into two matrices: the ep ∈ Rn×dw for a
premise and the eh ∈ Rm×dw for a hypothesis,
where n and m are the length of the premise and
hypothesis respectively, and dw is the embedding
dimension.

3.2 Sequence Encoder
To represent words and their context in a premise
and hypothesis, sentence pairs are fed into sen-
tence encoders to obtain hidden vectors (hp and
hh). We use stacked bidirectional LSTMs (BiL-
STM) as the encoders. Shortcut connections are
applied, which concatenate word embeddings and
input hidden states at each layer in the stacked
BiLSTM except for the bottom layer.

hp = BiLSTM(ep) ∈ Rn×2d (1)

hh = BiLSTM(eh) ∈ Rm×2d (2)

where d is the dimension of hidden states of
LSTMs. A BiLSTM concatenate a forward and
backward LSTM on a sequence ht = [

−→
ht ;
←−
ht ],

starting from the left and the right end, respec-
tively. Hidden states of unidirectional LSTM (

−→
ht

or
←−
ht) are calculated as follows,

it
ft

ut

ot

 =


σ
σ

tanh
σ

 (Wxt + Uht−1 + b) (3)

ct = ft � ct−1 + it � ut (4)

ht = ot � tanh(ct) (5)

where σ is the sigmoid function, � is the element-
wise multiplication of two vectors, and W ∈
R4d×dw , U ∈ R4d×d, b ∈ R4d×1 are weight matri-
ces to be learned. For each input vector xt at time
step t, LSTM applies a set of gating functions—
the input gate it, forget gate ft, and output gate ot,
together with a memory cell ct, to control message
flow and track long-distance information (Hochre-
iter and Schmidhuber, 1997) and generate a hid-
den state ht at each time step.

3.3 Composition Layer
To transform sentences into fixed-length vector
representations and reason using those representa-
tions, we need to compose the hidden vectors ob-
tained by the sequence encoder layer (hp and hh).
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We propose intra-sentence gated-attention to ob-
tain a fixed-length vector. Illustrated by the case
of hidden states of premise hp,

vp
g =

n∑
t=1

‖it‖2∑n
j=1 ‖ij‖2

hp
t (6)

or vp
g =

n∑
t=1

‖1− ft‖2∑n
j=1 ‖1− fj‖2h

p
t (7)

or vp
g =

n∑
t=1

‖ot‖2∑n
j=1 ‖oj‖2h

p
t (8)

where it, ft, ot are the input gate, forget gate,
and output gate in the BiLSTM of the top layer.
Note that the gates are concatenated by forward
and backward LSTM, i.e., it = [

−→
it ;
←−
it ], ft =

[
−→
ft ;
←−
ft ], ot = [−→ot ;←−ot ]. ‖∗‖2 indicates l2-norm,

which converts vectors to scalars. The idea of
gated-attention is inspired by the fact that human
only remember important parts after they read sen-
tences. (Liu et al., 2016; Lin et al., 2017) proposed
a similar “inner-attention” mechanism but it’s cal-
culated by an extra MLP layer which would re-
quire more computation than us.

We also use average-pooling and max-pooling
to obtain fixed-length vectors va and vm as in Chen
et al. (2016b). Then, the final fixed-length vector
representation of premise is vp = [vp

g ; v
p
a; v

p
m]. As

for hidden states of hypothesis hh, we can obtain
vh through similar calculation procedure. Conse-
quently, both the premise and hypothesis are fed
into the composition layer to obtain fixed-length
vector representations respectively (vp, vh).

3.4 Top-layer Classifier
Our inference model feeds the resulting vectors
obtained above to the final classifier to determine
the overall inference relationship. In our mod-
els, we compute the absolute difference and the
element-wise product for the tuple [vp, vh]. The
absolute difference and element-wise product are
then concatenated with the original vectors vp and
vh (Mou et al., 2016).

vinp = [vp; vh; |vp − vh|; vp � vh] (9)

We then put the vector vinp into a final multi-
layer perceptron (MLP) classifier. The MLP has
2 hidden layers with ReLu activation with short-
cut connections and a softmax output layer in our
experiments. The entire model (all four compo-
nents described above) is trained end-to-end, and

the cross-entropy loss of the training set is mini-
mized.

4 Experimental Setup

Data RepEval 2017 use Multi-Genre NLI cor-
pus (MultiNLI) (Williams et al., 2017), which
focuses on three basic relationships between a
premise and a potential hypothesis: the premise
entails the hypothesis (entailment), they contradict
each other (contradiction), or they are not related
(neutral). The corpus has ten genres, such as fic-
tion, letters, telephone speech and so on. Training
set only has five genres of them, therefore there
are in-domain and cross-domain development/test
sets. SNLI (Bowman et al., 2015) corpus can
be used as an additional training/development set,
which includes content from the single genre of
image captions. However, we don’t use SNLI as
an additional training/development data in our ex-
periments.

Training We use the in-domain development
set to select models for testing. To help replicate
our results, we publish our code at https:
//github.com/lukecq1231/enc_nli
(the core code is also used or adapted for
a summarization (Chen et al., 2016a) and a
question-answering task (Zhang et al., 2017)).
We use the Adam (Kingma and Ba, 2014) for
optimization. Stacked BiLSTM has 3 layers, and
all hidden states of BiLSTMs and MLP have 600
dimensions. The character embedding has 15
dimensions, and CNN filters length is [1,3,5],
each of those is 100 dimensions. We use pre-
trained GloVe-840B-300D vectors (Pennington
et al., 2014) as our word-level embeddings and
fix these embeddings during the training process.
Out-of-vocabulary (OOV) words are initialized
randomly with Gaussian samples.

5 Results

Table 1 shows the results of different models. The
first group of models are copied from Williams
et al. (2017). The first sentence encoder is based
on continuous bag of words (CBOW), the second
is based on BiLSTM, and the third model is En-
hanced Sequential Inference Model (ESIM) (Chen
et al., 2016b) reimplemented by Williams et al.
(2017), which represents the state of the art on
SNLI dataset. However, ESIM uses attention be-
tween sentence pairs, which is not a sentence-
encoder based model.
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Model In Cross
CBOW 64.8 64.5
BiLSTM 66.9 66.9
ESIM 72.3 72.1
TALP-UPC∗ 67.9 68.2
LCT-MALTA∗ 70.7 70.8
Rivercorners∗ 72.1 72.1
Rivercorners (ensemble)∗ 72.2 72.8
YixinNie-UNC-NLP∗ 74.5 73.5
Our ESIM 76.8 75.8
Single∗ 73.5 73.6
Ensembled∗ 74.9 74.9
Single (Input Gate)∗ 73.5 73.6
Single (Forget Gate) 72.9 73.1
Single (Output Gate) 73.7 73.4
Single - Gated-Att 72.8 73.6
Single - CharCNN 72.9 73.5
Single - Word Embedding 65.6 66.0
Single - AbsDiff/Product 69.7 69.2

Table 1: Accuracies of the models on MultiNLI.
Note that ∗ indicates that the model participate in
the competition on June 15th, 2017.

The second group of models are the results of
other teams which participate the RepEval 2017
Share Task competition (Nangia et al., 2017).

In addition, we also use our implementation of
ESIM, which achieves an accuracy of 76.8% in the
in-domain test set, and 75.8% in the cross-domain
test set, which presents the state-of-the-art results.
After removing the cross-sentence attention and
adding our gated-attention model, we achieve ac-
curacies of 73.5% and 73.6%, which ranks first
in the cross-domain test set and ranks second in
the in-domain test set among the single models.
When ensembling our models, we obtain accura-
cies 74.9% and 74.9%, which ranks first in both
test sets. Our ensembling is performed by averag-
ing the five models trained with different parame-
ter initialization.

We compare the performance of using different
gate in gate-attention in the fourth group of Ta-
ble 1. Note that we use attention based on input
gate on all other experiments.

To understand the importance of the different
elements of the proposed model, we remove some
crucial elements from our single model. If we
remove the gated-attention, the accuracies drop
to 72.8% and 73.6%. If we remove character-
composition vector, the accuracies drop to 72.9%
and 73.5%. If we remove word-level embedding,
the accuracies drop to 65.6% and 66.0%. If we re-

Model Test
LSTM (Bowman et al., 2015) 80.6
GRU (Vendrov et al., 2015) 81.4
Tree CNN (Mou et al., 2016) 82.1
SPINN-PI (Bowman et al., 2016) 83.2
NTI (Munkhdalai and Yu, 2016b) 83.4
Intra-Att BiLSTM (Liu et al., 2016) 84.2
Self-Att BiLSTM (Lin et al., 2017) 84.2
NSE (Munkhdalai and Yu, 2016a) 84.6
Gated-Att BiLSTM 85.5

Table 2: Accuracies of the models on SNLI.

move absolute difference and element-wise prod-
uct of the sentence representation vectors, the ac-
curacies drop to 69.7% and 69.2%.

In addition to testing on this shared task, we
have also applied our best single system (with-
out ensembling) on the SNLI dataset; our model
achieve an accuracy of 85.5%, which is best re-
sult reported on SNLI, outperforming all pre-
vious models when cross-sentence attention is
not allowed. The previous state-of-the-art sen-
tence encoder-based model (Munkhdalai and Yu,
2016b), called neural semantic encoders (NSE),
only achieved an accuracy of 84.6% on SNLI. Ta-
ble 2 shows the results of previous models and pro-
posed model.

6 Summary and Future Work

We describe our system that encodes a sentence
to a fixed-length vector for natural language in-
ference, which achieves the top performances on
both the RepEval-2017 and the SNLI dataset. The
model is equipped with a novel intra-sentence
gated-attention component. The model only uses
a common stacked BiLSTM as the building block
together with the intra-sentence gated-attention in
order to compose the fixed-length representations.
Our model could be used on other sentence encod-
ing tasks. Future work on NLI includes exploring
the usefulness of external resources such as Word-
Net and contrasting-meaning embedding (Chen
et al., 2015).
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Abstract

We present a simple sequential sentence
encoder for multi-domain natural lan-
guage inference. Our encoder is based on
stacked bidirectional LSTM-RNNs with
shortcut connections and fine-tuning of
word embeddings. The overall supervised
model uses the above encoder to encode
two input sentences into two vectors, and
then uses a classifier over the vector com-
bination to label the relationship between
these two sentences as that of entailment,
contradiction, or neural. Our Shortcut-
Stacked sentence encoders achieve strong
improvements over existing encoders on
matched and mismatched multi-domain
natural language inference (top single-
model result in the EMNLP RepEval 2017
Shared Task (Nangia et al., 2017)). More-
over, they achieve the new state-of-the-
art encoding result on the original SNLI
dataset (Bowman et al., 2015).

1 Introduction and Background

Natural language inference (NLI) or recogniz-
ing textual entailment (RTE) is a fundamental se-
mantic task in the field of natural language pro-
cessing. The problem is to determine whether
a given hypothesis sentence can be logically in-
ferred from a given premise sentence. Recently
released datasets such as the Stanford Natural Lan-
guage Inference Corpus (Bowman et al., 2015)
(SNLI) and the Multi-Genre Natural Language
Inference Corpus (Williams et al., 2017) (Multi-
NLI) have not only encouraged several end-to-end
neural network approaches to NLI, but have also
served as an evaluation resource for general repre-
sentation learning of natural language.

Depending on whether a model will first en-
code a sentence into a fixed-length vector without
any incorporating information from the other sen-
tence, the several proposed models can be catego-
rized into two groups: (1) encoding-based mod-
els (or sentence encoders), such as Tree-based
CNN encoders (TBCNN) in Mou et al. (2015) or
Stack-augmented Parser-Interpreter Neural Net-
work (SPINN) in Bowman et al. (2016), and (2)
joint, pairwise models that use cross-features be-
tween the two sentences to encode them, such as
the Enhanced Sequential Inference Model (ESIM)
in Chen et al. (2017) or the bilateral multi-
perspective matching (BiMPM) model Wang et al.
(2017). Moreover, common sentence encoders can
again be classified into tree-based encoders such
as SPINN in Bowman et al. (2016) which we men-
tioned before, or sequential encoders such as the
biLSTM model by Bowman et al. (2015).

In this paper, we follow the former approach of
encoding-based models, and propose a novel yet
simple sequential sentence encoder for the Multi-
NLI problem. Our encoder does not require any
syntactic information of the sentence. It also does
not contain any attention or memory structure. It
is basically a stacked (multi-layered) bidirectional
LSTM-RNN with shortcut connections (feeding
all previous layers’ outputs and word embeddings
to each layer) and word embedding fine-tuning.
The overall supervised model uses these shortcut-
stacked encoders to encode two input sentences
into two vectors, and then we use a classifier
over the vector combination to label the relation-
ship between these two sentences as that of en-
tailment, contradiction, or neural (similar to the
classifier setup of Bowman et al. (2015) and Con-
neau et al. (2017)). Our simple shortcut-stacked
encoders achieve strong improvements over exist-
ing encoders due to its multi-layered and shortcut-
connected properties, on both matched and mis-
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Figure 1: Our encoder’s architecture: stacked biLSTM with shortcut connections and fine-tuning.

matched evaluation settings for multi-domain nat-
ural language inference, as well as on the origi-
nal SNLI dataset. It is the top single-model (non-
ensemble) result in the EMNLP RepEval 2017
Multi-NLI Shared Task (Nangia et al., 2017), and
the new state-of-the-art for encoding-based results
on the SNLI dataset (Bowman et al., 2015).
Github Code Link: https://github.com/
easonnie/multiNLI_encoder

2 Model

Our model mainly consists of two separate compo-
nents, a sentence encoder and an entailment classi-
fier. The sentence encoder compresses each source
sentence into a vector representation and the clas-
sifier makes a three-way classification based on
the two vectors of the two source sentences. The
model follows the ‘encoding-based rule’, i.e., the
encoder will encode each source sentence into
a fixed length vector without any information
or function based on the other sentence (e.g.,
cross-attention or memory comparing the two sen-
tences). In order to fully explore the generalization
of the sentence encoder, the same encoder is ap-
plied to both the premise and the hypothesis with
shared parameters projecting them into the same
space. This setting follows the idea of Siamese
Networks in Bromley et al. (1994). Figure 1 shows

the overview of our encoding model (the standard
classifier setup is not shown here; see Bowman
et al. (2015) and Conneau et al. (2017) for that).

2.1 Sentence Encoder

Our sentence encoder is simply composed of mul-
tiple stacked bidirectional LSTM (biLSTM) layers
with shortcut connections followed by a max pool-
ing layer. Let bilstmi represent the ith biLSTM
layer, which is defined as:

hi
t = bilstmi(xi

t, t), ∀t ∈ [1, 2, ..., n] (1)

where hi
t is the output of the ith biLSTM at time t

over input sequence (xi
1, x

i
2, ..., x

i
n).

In a typical stacked biLSTM structure, the
input of the next LSTM-RNN layer is simply
the output sequence of the previous LSTM-RNN
layer. In our settings, the input sequences for
the ith biLSTM layer are the concatenated out-
puts of all the previous layers, plus the original
word embedding sequence. This gives a shortcut
connection style setup, related to the widely used
idea of residual connections in CNNs for computer
vision (He et al., 2016), highway networks for
RNNs in speech processing (Zhang et al., 2016),
and shortcut connections in hierarchical multitask-
ing learning (Hashimoto et al., 2016); but in our
case we feed in all the previous layers’ output se-
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quences as well as the word embedding sequence
to every layer.

Let W = (w1, w2, ..., wn) represent words in
the source sentence. We assume wi ∈ Rd is a
word embedding vector which are initialized us-
ing some pre-trained vector embeddings (and is
then fine-tuned end-to-end via the NLI supervi-
sion). Then, the input of ith biLSTM layer at time
t is defined as:

x1
t = wt (2)

xi
t = [wt, h

i−1
t , hi−2

t , ...h1
t ] (for i > 1) (3)

where [] represents vector concatenation.
Then, assuming we have m layers of biLSTM,

the final vector representation will be obtained by
applying row-max-pool over the output of the last
biLSTM layer, similar to Conneau et al. (2017).
The final layer is defined as:

Hm = (hm
1 , hm

2 , ..., hm
n ) (4)

v = max(Hm) (5)

where hm
i , v ∈ R2dm , Hm ∈ R2dm×n, dm is the

dimension of the hidden state of the last forward
and backward LSTM layers, and v is the final vec-
tor representation for the source sentence (which
is later fed to the NLI classifier).

The closest encoder architecture to ours is that
of Conneau et al. (2017), whose model consists of
a single-layer biLSTM with a max-pooling layer,
which we treat as our starting point. Our exper-
iments (Section 4) demonstrate that our enhance-
ments of the stacked-biRNN with shortcut connec-
tions provide significant gains on top of this base-
line (for both SNLI and Multi-NLI).

2.2 Entailment Classifier
After we obtain the vector representation for the
premise and hypothesis sentence, we apply three
matching methods to the two vectors (i) concate-
nation (ii) element-wise distance and (iii) element-
wise product for these two vectors and then con-
catenate these three match vectors (based on the
heuristic matching presented in Mou et al. (2015)).
Let vp and vh be the vector representations for
premise and hypothesis, respectively. The match-
ing vector is then defined as:

m = [vp, vh, |vp − vh| , vp ⊗ vh] (6)

At last, we feed this final concatenated result m
into a MLP layer and use a softmax layer to make
final classification.

Layers and Dimensions Accuracy
#layers bilstm-dim Matched Mismatched

1 512 72.5 72.9
2 512 + 512 73.4 73.6
1 1024 72.9 72.9
2 512 + 1024 73.7 74.2
1 2048 73.0 73.5
2 512 + 2048 73.7 74.2
2 1024 + 2048 73.8 74.4
2 2048 + 2048 74.0 74.6
3 512 + 1024 + 2048 74.2 74.7

Table 1: Analysis of results for models with dif-
ferent # of biLSTM layers and their hidden state
dimensions.

Matched Mismatched
without any shortcut connection 72.6 73.4
only word shortcut connection 74.2 74.6

full shortcut connection 74.2 74.7

Table 2: Ablation results with and without shortcut
connections.

Word-Embedding Matched Mismatched
fixed 71.8 72.6

fine-tuned 72.7 72.8

Table 3: Ablation results with and without fine-
tuning of word embeddings.

# of MLPs Activation Matched Mismatched
1 tanh 73.7 74.1
2 tanh 73.5 73.6
1 relu 74.1 74.7
2 relu 74.2 74.7

Table 4: Ablation results for different MLP classi-
fiers.

3 Experimental Setup

3.1 Datasets

As instructed in the RepEval Multi-NLI shared
task, we use all of the training data in Multi-
NLI combined with 15% randomly selected sam-
ples from the SNLI training set resampled at each
epoch) as our final training set for all models;
and we use both the cross-domain (‘mismatched’)
and in-domain (‘matched’) Multi-NLI develop-
ment sets for model selection. For the SNLI test
results in Table 5, we train on only the SNLI train-
ing set (and we also verify that the tuning deci-
sions hold true on the SNLI dev set).

3.2 Parameter Settings

We use cross-entropy loss as the training objective
with Adam-based (Kingma and Ba, 2014) opti-
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Model Accuracy
SNLI Multi-NLI Matched Multi-NLI Mismatched

CBOW (Williams et al., 2017) 80.6 65.2 64.6
biLSTM Encoder (Williams et al., 2017) 81.5 67.5 67.1

300D Tree-CNN Encoder (Mou et al., 2015) 82.1 – –
300D SPINN-PI Encoder (Bowman et al., 2016) 83.2 – –
300D NSE Encoder (Munkhdalai and Yu, 2016) 84.6 – –
biLSTM-Max Encoder (Conneau et al., 2017) 84.5 – –

Our biLSTM-Max Encoder 85.2 71.7 71.2
Our Shortcut-Stacked Encoder 86.1 74.6 73.6

Table 5: Final Test Results on SNLI and Multi-NLI datasets.

mization with 32 batch size. The starting learning
rate is 0.0002 with half decay every two epochs.
The number of hidden units for MLP in classifier
is 1600. Dropout layer is also applied on the out-
put of each layer of MLP, with dropout rate set to
0.1. We used pre-trained 300D Glove 840B vec-
tors (Pennington et al., 2014) to initialize the word
embeddings. Tuning decisions for word embed-
ding training strategy, the hyperparameters of di-
mension and number of layers for biLSTM, and
the activation type and number of layers for MLP,
are all explained in Section 4.

4 Results and Analysis

4.1 Ablation Analysis Results

We now investigate the effectiveness of each of the
enhancement components in our overall model.
These ablation results are shown in Tables 1, 2, 3
and 4, all based on the Multi-NLI development
sets. Finally, Table 5 shows results for different
encoders on SNLI and Multi-NLI test sets.

First, Table 1 shows the performance changes
for different number of biLSTM layers and their
varying dimension size. The dimension size of
a biLSTM layer is referring to the dimension of
the hidden state for both the forward and back-
ward LSTM-RNNs. As shown, each added layer
model improves the accuracy and we achieve a
substantial improvement in accuracy (around 2%)
on both matched and mismatched settings, com-
pared to the single-layer biLSTM in Conneau et al.
(2017). We only experimented with up to 3 lay-
ers with 512, 1024, 2048 dimensions each, so the
model still has potential to improve the result fur-
ther with a larger dimension and more layers.

Next, in Table 2, we show that the shortcut
connections among the biLSTM layers is also
an important contributor to accuracy improve-
ment (around 1.5% on top of the full 3-layered
stacked-RNN model). This demonstrates that sim-
ply stacking the biLSTM layers is not sufficient

to handle a complex task like Multi-NLI and it is
significantly better to have the higher layer con-
nected to both the output and the original input of
all the previous layers (note that Table 1 results are
based on multi-layered models with shortcut con-
nections).

Next, in Table 3, we show that fine-tuning the
word embeddings also improves results, again for
both the in-domain task and cross-domain tasks
(the ablation results are based on a smaller model
with a 128+256 2-layer biLSTM). Hence, all our
models were trained with word embeddings being
fine-tuned. The last ablation in Table 4 shows that
a classifier with two layers of relu is preferable
than other options. Thus, we use that setting for
our strongest encoder.

4.2 Multi-NLI and SNLI Test Results

Finally, in Table 5, we report the test results
for MNLI and SNLI. First for Multi-NLI, we
improve substantially over the CBOW and biL-
STM Encoder baselines reported in the dataset pa-
per (Williams et al., 2017). We also show that
our final shortcut-based stacked encoder achieves
around 3% improvement as compared to the 1-
layer biLSTM-Max Encoder in the second last
row (using the exact same classifier and optimizer
settings). Our shortcut-encoder was also the top
singe-model (non-ensemble) result on the EMNLP
RepEval Shared Task leaderboard.

Next, for SNLI, we compare our shortcut-
stacked encoder with the current state-of-the-art
encoders from the SNLI leaderboard (https://
nlp.stanford.edu/projects/snli/).
We also compare to the recent biLSTM-Max
Encoder of Conneau et al. (2017), which served
as our model’s 1-layer starting point.1 The results
indicate that ‘Our Shortcut-Stacked Encoder’ sur-

1Note that the ‘Our biLSTM-Max Encoder’ results in the
second-last row are obtained using our reimplementation of
the Conneau et al. (2017) model; our version is 0.7% better,
likely due to our classifier and optimizer settings.
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passes all the previous state-of-the-art encoders,
and achieves the new best encoding-based result
on SNLI, suggesting the general effectiveness
of simple shortcut-connected stacked layers in
sentence encoders.

5 Conclusion

We explored various simple combinations and
connections of biLSTM-RNN layered architec-
tures and developed a Shortcut-Stacked Sentence
Encoder for natural language inference. Our
model is the top single result in the EMNLP RepE-
val 2017 Multi-NLI Shared Task, and it also sur-
passes the state-of-the-art encoders for the SNLI
dataset. In future work, we are also evaluating
the effectiveness of shortcut-stacked sentence en-
coders on several other semantic tasks.
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Abstract

Natural language inference (NLI) is a
central problem in language understand-
ing. End-to-end artificial neural networks
have reached state-of-the-art performance
in NLI field recently.

In this paper, we propose Character-
level Intra Attention Network (CIAN) for
the NLI task. In our model, we use
the character-level convolutional network
to replace the standard word embedding
layer, and we use the intra attention to cap-
ture the intra-sentence semantics. The pro-
posed CIAN model provides improved re-
sults based on a newly published MNLI
corpus.

1 Introduction

Natural language inference in natural language
processing refers to the problem of determining
a directional relation between two text fragments.
Given a sentence pair (premise, hypothesis), the
task is to predict whether hypothesis is entailed by
premise, hypothesis is contradicted to premise, or
whether the relation between premise and hypoth-
esis is neutral.

Recently, the dominating trend of works in nat-
ural language processing is based on artificial neu-
ral networks, which aims at building deep and
complex encoder to transform a sentence into en-
coded vectors. For instance, there are recur-
rent neural network (RNN) based encoders, which
recursively concatenate each word with its pre-
vious memory, until the whole information of
a sentence has been derived. The most com-
mon RNN encoders are Long Short-Term Mem-
ory Networks (LSTM; Hochreiter and Schmidhu-
ber, 1997) and Gated Recurrent Unit (Chung et al.,
2014). RNNs have surpassed the performance of

traditional baselines in many NLP tasks (Dai and
Le, 2015). There are also convolutional neural net-
work (CNN; LeCun et al., 1989) based encoders,
which concatenate the sentence information by ap-
plying multiple convolving filters over the sen-
tence. CNNs have achieved state-of-the-art results
on various NLP tasks (Collobert et al., 2011).

To evaluate the quality of the NLI model,
the Stanford Natural Language Inference (SNLI;
Bowman et al., 2015) corpus of 570K sentence
pairs was introduced. It serves as a standard
benchmark for NLI task. However, most of the
sentences in SNLI corpus are short and simple,
which limit the room for fine-grained comparisons
between models. Currently, a more comprehen-
sive Multi-Genre NLI corpus (MNLI; Williams
et al., 2017) of 433K sentence pairs was released,
aiming at evaluating large-scale NLI models. Au-
thors gave out some baseline results accompa-
nied by the publish of MNLI corpus, the BiLSTM
model achieves an accuracy of 67.5, and the En-
hanced Sequential Inference Model (Chen et al.,
2016) achieves an accuracy of 72.4.

Among those encoders for NLI task, most of
them use word-level embedding, and initialize the
weight of the embedding layer with pre-trained
word vectors such as GloVe (Pennington et al.,
2014). The pre-trained word vectors helps the en-
coders to catch richer semantic information. How-
ever, it also has its downside. As the growth of vo-
cabulary size in the modern corpus, there will be
more and more out-of-vocabulary (OOV) words
that are not presented in the pre-trained word em-
bedding vector. As the word-level embedding is
blind to subword information (e.g. morphemes), it
leads to high perplexities for those OOV words.

In this paper, we use the BiLSTM model
from (Williams et al., 2017) as the baseline model
for the evaluation of the MNLI corpus. To aug-
ment the baseline model, firstly, a character-level
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convolutional neural network (CharCNN; Kim
et al., 2016) is applied. We use the CharCNN to
replace the word embedding layer in the baseline
model, which will be computed from the charac-
ters of corresponding word. Secondly, the intra
attention mechanism introduced by (Yang et al.,
2016) will be applied, to enhance the model with
a richer information of substructures of a sentence.

2 Model Development

2.1 BiLSTM Baseline
The baseline model we used here is introduced
by (Williams et al., 2017) accompanied with the
publication of MNLI corpus. It has a 5-layer struc-
ture which is shown in Figure 1.

Figure 1: BiLSTM model architecture

In the baseline model, a word embedding layer
initialized with pre-trained GloVe vectors (840B
token version) is implemented to transform the
input text into sequence of word vectors. OOV
words are initialized randomly. Then, the sentence
representation vector h is produced by implement-
ing an average pooling over the BiLSTM hidden
states [h0, h1, · · · , hn]. Finally, the concatenation
of encoded premise and hypothesis representation
vector is passed through a tanh layer followed by
a three-way softmax classifier to attain the label
prediction.

2.2 Character-level Convolutional Neural
Network

In the baseline model, the input xt to the BiLSTM
encoder layer at time t is sequence of pre-trained
word embeddings. Those pre-trained word em-
beddings can boost the performance of the model.
However, it is limited to the finite-size of vocabu-
lary. Here we replace the word embedding layer
with a character-level convolutional neural net-
work (CharCNN; Kim et al., 2016) for language

modeling, which also achieved success in machine
translation (Costa-Jussà and Fonollosa, 2016).

We define the text sentence input as vectorCk ∈
Rd×l, where k ∈ K is the k-th word in a sentence,
d is the dimensionality of character embeddings,
l is the length of characters in k-th word. Then a
set of narrow convolutions between Ck and filter
H is applied, followed with a max-over-time (max
pooling) as shown in Equation 1-2.

fk[i] = tanh(〈Ck[∗, i : i+ ω − 1], H〉+ b) (1)

yk = max
i
fk[i] (2)

The concatenation of those max pooling values yk

provides us with a representation vector y of each
sentence. Then, a highway network is applied
upon y, as shown in Equation 3, where g is a non-
linear transformation, t = σ(WT y + bT ) is called
the transform gate, and (1 − t) is called the carry
gate. Highway layers allow for training of deep
networks by adaptively carrying some dimensions
of the input y directly to the output z.

z = t� g(WHy + bH) + (1− t)� y (3)

Experiment conducted by (Kim et al., 2016) has
shown that the CNN layer can extract the ortho-
graphic features of words (e.g. German and Ger-
many). It has also been shown that highway layer
is able to encode semantic features that are not dis-
cernable from orthography alone. For instance, af-
ter highway layers the nearest neighbor word of
you is we, which is orthographically distinct from
you.

2.3 Intra Attention Mechanism

In the baseline model, the BiLSTM encoder takes
an average pooling over all its hidden states to pro-
duce a single representation vector of each sen-
tence. However, this has its bottleneck as we in-
tuitively know that not all words (hidden states)
contribute equally to the sentence representation.
To augment the performance of RNN based en-
coder, the concept of attention mechanism was in-
troduced by (Bahdanau et al., 2014) for machine
translation. Attention mechanism is a hidden layer
which computes a categorical distribution to make
a soft-selection over source elements (Kim et al.,
2017). It has recently demonstrated success on
tasks such as parsing text (Vinyals et al., 2015),
sentence summarization (Rush et al., 2015) and
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also on a wide range of NLP tasks (Cheng et al.,
2016).

Here we implemented the Intra Attention mech-
anism introduced by (Yang et al., 2016) for docu-
ment classification. We define the hidden states
as the output of the BiLSTM encoder as ht ∈
[h0, h1, · · · , hn], the intra attention is applied upon
the hidden states to get the sentence representation
vector h, specifically,

ut = tanh(Wωht + bω) (4)

αt =
exp(uT

t uω)∑
t exp(uT

t uω)
(5)

h =
∑

t

αtht (6)

It first feed all hidden states ht through a nonlin-
earity to get ut as the hidden representation of ht.
Then it uses a softmax function to catch the nor-
malized importance weight matrix αt. After that,
the sentence representation vector h is computed
by a weighted sum of all hidden states ht with the
weight matrix αt. The context vector uω can be
seen as a high-level representation of the impor-
tance of informative words.

2.4 Character-level Intra Attention Network

The overall architecture of the Character-level In-
tra Attention Network (CIAN) is shown in Figure
2. The CIAN model is consisted with 7 layers, of
which the first and the last layers are the same with
our baseline model. The 4 layers in middle are our
augmented layers that has been introduced in this
section.

Figure 2: CIAN model architecture

The input text is firstly set to lower-
case, then it is vectorized according to the
tokenization list [abcdefghijklmnopqrstu-
vwxyz0123456789,;.!?:’”()[]{}]. Those charac-
ters not in the list are initialized with a vector of
zero. After that we use 7 filters in CIAN model’s
CNN layer. The widths of the CNN filters are
w = [1, 2, 3, 4, 5, 6, 7], and the corresponding
filters’ size are [min{200, 50 · w}]. Two highway
layers are implemented following the CNN layer.
The attention layer uses weighted sum of all
hidden states ht with the attention weight matrix
αt to encode each sentence into a fixed-length
sentence representation vector. Finally a ReLU
layer and a three-way softmax classifier use those
representation vectors to conduct the prediction.

3 Experiments

3.1 Data

We evaluated our approach on the Multi-Genre
NLI (MNLI) corpus, as a shared task for RepE-
val 2017 workshop (Nangia et al., 2017). We train
our CIAN model on a mixture of MNLI and SNLI
corpus, by using a full MNLI training set and a
randomly selected 20 percent of the SNLI training
set at each epoch.

3.2 Hyper Parameters

The BiLSTM encoder layer use 300D hidden
states, thus 600D as its a bidirectional en-
coder. Dropout (Srivastava et al., 2014) is im-
plemented with a dropout rate of 0.2 to prevent
the model from overfitting. Parameter weights
for premise encoder and hypothesis encoder are
shared using siamese architecture. The Adam op-
timizer (Kingma and Ba, 2014) is used for training
with backpropagation.

The model has been implemented using Keras
and we have released the code 1. The training took
approximately one hour for one epoch on GeForce
GTX TITAN, and we stopped training after 40
epochs as an early stopping regularization.

3.3 Result

We compared the results of CIAN model with
the results of BiLSTM model given by (Williams
et al., 2017). Table 1 shows that the accuracy is
improved by 0.9 percent in matched test set, and
0.6 percent in mismatched test set.

1https://github.com/yanghanxy/CIAN
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Model Matched Mismatched
BiLSTM 67.0 67.6
CIAN 67.9 68.2

Table 1: Test set accuracies (%) on MNLI corpus.

Matched Mismatched
Tag BiLSTM CIAN BiLSTM CIAN
CONDITIONAL 100 48 100 62
WORD OVERLAP 50 79 57 62
NEGATION 71 71 69 70
ANTO 67 82 58 70
LONG SENTENCE 50 68 55 63
TENCE DIFFERNCE 64 65 71 72
ACTIVE/PASSIVE 75 87 82 90
PARAPHRASE 78 88 81 89
QUANTITY/TIME 50 47 46 44
COREF 84 67 80 72
QUANTIFIER 64 63 70 69
MODAL 66 66 64 70
BELIEF 74 71 73 70

Table 2: Accuracies (%) on matched and mis-
matched expert-tagged development data.

We conducted error analysis based on expert-
tagged development data released by the orga-
nizers of RepEval 2017 shared task. The re-
sults are shown in Table 2. From the re-
sults, it can be seen that the accuracy for
WORD OVERLAP, LONG SENTENCE, AC-
TIVE/PASSIVE and PARAPHRASE have been
improved significantly in both matched and mis-
matched development set. While the accuracy
for CONDITIONAL and COREF haven been de-
creased in both development set.

We also conducted visualization on the attention
weights αt of the intra attention layer. By doing
so, we we can understand how the model judges
the NLI relation between two sentences.

Figure 3 is visualizations of attention weights
for 2 sentence pairs, with premise at left and hy-
pothesis at right. Each word is attained with a
color block. The darker the color, the greater the
attention weight, which means the higher impor-
tance contributed to the sentence representation.

From the Visualization, it could be seen that the
model has more attention on words with similar
semantic meaning (e.g. love and enjoy), and the
model applies more attention on overlapped words
(e.g. efficiencies and efficiencies).

4 Conclusion

In this paper, we presented a Character-level In-
tra Attention Network (CIAN) for the task of
natural language inference. Experimental results

Figure 3: Visualization of attention weights of
sentence pair 254941e (top) and 192997e (bottom)

demonstrate that our model slightly outperforms
the baseline model upon the MultiNLI corpus.
The CharCNN layers helps the model to capture
rich semantic and orthographic features. The in-
tra attention layer augment the model’s ability to
efficiently encode long sentences, and it enhances
the models’ interpretability by visualizing the at-
tention weights.

In general, the model presented in this paper is
a sequence encoder that do not need any specific
pre-processing or outside data like pre-trained
word embeddings. Thus, it can be easily applied to
other autoencoder architecture tasks such as lan-
guage modeling, sentiment analysis and question
answering.
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Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12:2493–2537.
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Abstract

In this paper we present the model used by
the team Rivercorners for the 2017 RepE-
val shared task. First, our model sep-
arately encodes a pair of sentences into
variable-length representations by using
a bidirectional LSTM. Later, it creates
fixed-length raw representations by means
of simple aggregation functions, which are
then refined using an attention mechanism.
Finally it combines the refined representa-
tions of both sentences into a single vec-
tor to be used for classification. With
this model we obtained test accuracies of
72.057% and 72.055% in the matched and
mismatched evaluation tracks respectively,
outperforming the LSTM baseline, and
obtaining performances similar to a model
that relies on shared information between
sentences (ESIM). When using an ensem-
ble both accuracies increased to 72.247%
and 72.827% respectively.

1 Introduction

The task of Natural Language Inference (NLI)
aims at characterizing the semantic concepts of
entailment and contradiction, and is essential in
tasks ranging from information retrieval to seman-
tic parsing to commonsense reasoning, as both en-
tailment and contradiction are central concepts in
natural language meaning (Katz, 1972; van Ben-
them, 2008).

The aforementioned task has been addressed
with a variety of techniques, including those based
on symbolic logic, knowledge bases, and neu-
ral networks. With the advent of deep learning
techniques, NLI has become an important test-
ing ground for approaches that employ distributed

word and phrase representations, which are typical
of these models.

In this context, the Second Workshop on Eval-
uating Vector Space Representations for NLP
(RepEval 2017) features a shared task meant to
evaluate natural language understanding models
based on sentence encoders by the means of NLI
in the style of a three-class balanced classifica-
tion problem over sentence pairs. The shared task
includes two evaluations, a standard in-domain
(matched) evaluation in which the training and
test data are drawn from the same sources, and
a cross-domain (mismatched) evaluation in which
the training and test data differ substantially. This
cross-domain evaluation is aimed at testing the
ability of submitted systems to learn representa-
tions of sentence meaning that capture broadly
useful features.

2 Proposed Model

Our work is related to intra-sentence attention
models for sentence representation such as the
ones described by Liu et al. (2016) and Lin et al.
(2017). In particular, our model is based on the
notion that, when reading a sentence, we usually
need to re-read certain portions of it in order to
obtain a comprehensive understanding. To model
such phenomenon, we rely on an attention mech-
anism able to iteratively obtain a richer and more
expressive version of a raw sentence representa-
tion. The model’s architecture is described below:

Word Representation Layer: This layer is in
charge of generating a comprehensive vector rep-
resentation of each token for a given sentence. We
construct this representation based on up to two
basic components:

• Pre-trained word embeddings: We take pre-
trained word embeddings and use them to
generate a raw word representation. This can
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be seen as a simple lookup-layer that returns
a word vector for each provided word index.

• Character embeddings: We generate a
character-based representation of each word,
which we concatenate to the word vectors as
returned by the previous component. We start
by generating a randomly initialized charac-
ter embedding matrix C. Then, we split each
word into its component characters, get their
corresponding character embedding vectors
from C and feed them into a unidirectional
Long Short-Term Memory Network (LSTM)
(Hochreiter and Schmidhuber, 1997). We
then choose the last hidden state returned by
the LSTM as the fixed-size character-based
vector representation for each token. Our em-
bedding matrix C is trained with the rest of
the model (Wang et al., 2017).

Context Representation Layer: This layer
complements the vectors generated by the Word
Representation Layer by incorporating contextual
information into them. To do this, we utilize a
bidirectional LSTM that reads through the em-
bedded sequence and returns the hidden states for
each time step. These are context-aware represen-
tations focused on each position. Formally, let S
be a sentence such as S = {x1, . . . ,xn}, where
each xi is an embedded word vector as returned
by the previous layer, then the context-rich word
representation hi is calculated as follows for each
time step i = 1, . . . , n:

−→
h i = LSTM(xi,

−→
h i−1) (1)

←−
h i = LSTM(xi,

←−
h i+1) (2)

hi = [
−→
h i;
←−
h i] (3)

Where
−→
h i is the forward contextual vector rep-

resentation of xi,
←−
h i the backward one, and

[ · ; · ] represents the concatenation of two vec-
tors. The output of this layer is a variable-length
sentence representation for both the premise and
hypothesis. We then define a pooling layer in
charge of a generating a raw fixed-size represen-
tation of each sentence.

Pooling Layer: This layer is in charge of gener-
ating a crude sentence representation vector by re-
ducing the sequence dimension using one of four
simple operations, all of which are fed the context-
aware token representations obtained previously:

h̄ =
1
n

n∑
i=1

hi (4)

h̄ =
n∑

i=1

hi (5)

h̄ = [
−→
h n;
←−
h 1] (6)

h̄ = max
i=1...n

hi (7)

These operations correspond to the mean of the
word representations (eq. 4), their sum (eq. 5),
the concatenation of the last hidden state for each
direction (eq. 6), and the maximum one (eq. 7).

Inner Attention Layer: To refine the represen-
tations generated by the pooling strategy, we use
a global attention mechanism (Luong et al., 2015;
Vinyals et al., 2015) that compares each context-
aware token representation hi with the raw sen-
tence representation h̄. Formally,

ui = v> tanh(W [h̄; hi]) (8)

αi =
expui∑n

k=1 expuk
(9)

h̄′ =
n∑

i=1

αihi (10)

Where both v and W are trainable parameters and
h̄′ is the refined sentence representation1.

Aggregation Layer: We apply two matching
mechanisms to aggregate the refined sentence rep-
resentations, which are directly aimed at extract-
ing relationships between the premise and the hy-
pothesis. Concretely, we concatenate the repre-
sentations of the premise h̄′P and hypothesis h̄′H
in addition to their element-wise product (�) and
the absolute value (| · |) of their difference, obtain-
ing the vector r. These last two operations, first
proposed by Mou et al. (2015), can be seen as a
sentence matching strategy.

hmul = h̄′P � h̄′H (11)

hdif = |h̄′P − h̄′H | (12)

r = [h̄′P ; h̄′H ; hmul; hdif ] (13)

Dense Layer: Finally, r is fed to a fully-
connected layer whose output is a vector contain-
ing the logits for each class, which are then fed to

1The refined sentence representation h̄′ for both premise
and hypothesis is the final representation in which both are
treated as separate entities. The representations produced
by our best-performing model are available in https://
zenodo.org/record/825946.
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a softmax function for obtaining their probability
distribution. The class with the highest probabil-
ity is chosen as the predicted relationship between
premise and hypothesis.

3 Experiments

To make our results comparable to the baselines
reported in the Kaggle platform we randomly sam-
pled 15% of the SNLI corpus (Bowman et al.,
2015) and added it to the MultiNLI corpus.

We used the pre-trained 300-dimensional GloVe
vectors trained on 840B tokens (Pennington et al.,
2014). These embeddings were not fine-tuned dur-
ing training and unknown word vectors were ini-
tialized by randomly sampling from the uniform
distribution in (−0.05, 0.05).

Each character embedding was initialized as
a 20-dimensional vector and the character-level
LSTM output dimension was set to 50. The word-
level LSTM output dimension was set to 300,
which means that after concatenating word-level
and character-level representations the word vec-
tors for each direction are 350-dimensional (i.e.,
hi ∈ R700).

For the Inner Attention Layer we defined the pa-
rameterW as a square matrix matching the dimen-
sion of the concatenated vector [h̄; hi] (i.e., W ∈
R1400×1400), and v as a vector matching the same
dimension (i.e., v ∈ R1400). Both W and v were
initialized by randomly sampling from the uni-
form distribution on the interval (−0.005, 0.005).

The final layer was created as a 3-layer MLP
with 2000 hidden units each, and with ReLU acti-
vations.

Additionally, we used the Rmsprop optimizer
with a learning rate of 0.001. We applied dropout
of 0.25 only between the MLP layers of the Dense
Layer.

Further, we found out that normalizing the cap-
italization of words by making all characters low-
ercase, and transforming numbers into a specific
numeric token improved the model’s performance
while reducing the size of the embedding ma-
trix. We also ignored the sentence pairs with a
premise longer than 200 words during training (for
improved memory stability), and those without a
valid label (“-”) both during training and valida-
tion.

Since one of the most conceptually important
parts of our model was the raw sentence represen-
tation created in the Pooling Layer, we used four

different methods for generating it (eqs. 4 – 7).
Results are reported in Table 1.

We also tried using other architectures that rely
on some sort of “inner” attention such as the self-
attentive model proposed by Lin et al. (2017) and
the co-attentive model by Xiong et al. (2016), but
our preliminary results were not promising so we
did not invest in fine-tuning them.

All the experiments were repeated without us-
ing character-level embeddings (i.e., hi ∈ R600).

4 Results

Table 1 presents the results of using different pool-
ing strategies for generating a raw sentence repre-
sentation vector from the word vectors. We can
observe that that both the mean method, and pick-
ing the last hidden state for both directions per-
formed slightly better than the two other strategies,
however at 95% confidence we cannot assert that
any of these methods is statistically different from
one another.

This could be interpreted as if any of the four
methods was good enough for capturing the over-
all meaning of the sentence, and the heavy lifting
was done by the attention mechanism. It would
be interesting to test these four strategies without
the presence of attention to see whether it really
plays an important role in this task or whether the
predictive power lies within the sentence matching
mechanism.

Method w/o. chars w. chars
mean 71.3 ± 1.2 71.3 ± 0.7
sum 70.7 ± 1.0 70.9 ± 0.8
last 70.9 ± 0.6 71.0 ± 1.2
max 70.6 ± 1.1 71.0 ± 1.1

Table 1: Mean matched validation accuracies (%)
broken down by type of pooling method and pres-
ence or absence of character embeddings. Confi-
dence intervals are calculated at 95% confidence
over 10 runs for each method.

Another interesting result, as shown by Table 1
and Table 2, is that the model seemed to be insen-
sitive to the usage of character embeddings, which
was surprising because in our experiments with
more complex models relying on shared informa-
tion between premise and hypothesis, such as the
one presented by Wang et al. (2017), the usage of
character embeddings had a considerable impact
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Method w/o. chars w. chars
mean 72.3 71.8
sum 71.6 71.6
last 71.4 72.1
max 71.1 71.6

Table 2: Best matched validation accuracies (%)
obtained by each pooling method in presence and
absence of character embeddings.

in model performance2.
In Table 3 we report the accuracies obtained

by our best model in both matched (first 5 gen-
res) and mismatched (last 5 genres) development
sets. We can observe that our implementation per-
formed like ESIM overall, however ESIM relies
on an attention mechanism that has access to both
premise and hypothesis (Chen et al., 2017), while
our model’s treats each one separately. This sup-
ports the notion that inner attention is a powerful
concept.

Genre CBOW ESIM InnerAtt
Fiction 67.5 73.0 73.2
Government 67.5 74.8 75.2
Slate 60.6 67.9 67.2
Telephone 63.7 72.2 73.0
Travel 64.6 73.7 72.8
9/11 63.2 71.9 70.5
Face-to-face 66.3 71.2 74.5
Letters 68.3 74.7 75.4
Oup 62.8 71.7 71.5
Verbatim 62.7 71.9 69.5
MultiNLI Overall 64.7 72.2 72.3

Table 3: Validation accuracies (%) for our best
model broken down by genre. Both CBOW and
ESIM results are reported as in (Williams et al.,
2017).

We picked the best model based on the best val-
idation accuracy score obtained on the matched
development set (72.257%). This model is as de-
scribed in the previous section but without using
character embeddings3.

In addition, we created an ensemble by training
4 models as described earlier but initialized with
different random seeds. The prediction is made
by averaging the probability distributions returned

2This type of models were not allowed in this competition
which is why we do not report further on them.

3Without the use of character embeddings, the sentence
representations are 600-dimensional.

by each model and then picking the class with the
highest probability for each example. This im-
proved our best test results, as reported by Kaggle,
from 72.057% to 72.247% in the matched evalu-
ation track, and from 72.055% to 72.827% in the
mismatched evaluation track.

5 Conclusions and Future work

We presented the model used by the team River-
corners in the 2017 RepEval shared task. De-
spite being conceptually simple and not relying on
shared information between premise and hypothe-
sis for encoding each sentence, nor on tree struc-
tures, our implementation achieved results as good
as the ESIM model.

As future work we plan to incorporate part-
of-speech embeddings to our implementation and
concatenate them at the same level as we did with
the character embeddings. We also plan to use pre-
trained character embeddings to see whether they
have any positive impact on performance.

Additionally, we think we could obtain bet-
ter results by fine-tuning some hyperparameters
such as the character embedding dimensions, the
character-level LSTM encoder output dimension,
and the Dense Layer architecture.

Further, we would like to see how different
types of attention affect the overall performance.
For this implementation we used the concat scor-
ing scheme (eq. 8), as described by Luong et al.
(2015), but there are several others that could pro-
vide better results.

Finally, we would like to exploit the structured
nature of dependency parse trees by means of re-
cursive neural networks (Tai et al., 2015) to enrich
our initial sentence representations.

6 Resources

The code for replicating the results presented
in this paper is available in the following
link: https://github.com/jabalazs/
repeval_rivercorners.
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Abstract

We present in this paper our team LCT-
MALTA’s submission to the RepEval 2017
Shared Task on natural language infer-
ence. Our system is a simple system
based on a standard BiLSTM architec-
ture, using as input GloVe word embed-
dings augmented with further linguistic in-
formation. We use max pooling on the
BiLSTM outputs to obtain embeddings for
sentences. On both the matched and the
mismatched test sets, our system clearly
beats the shared task’s BiLSTM baseline
model.

1 Introduction

The RepEval 2017 Shared Task aims to evalu-
ate fixed-length vector representations (or embed-
dings) of sentences on the basis of a natural lan-
guage understanding task, viz. natural language
inference (NLI), also known as recognising tex-
tual entailments. Given two sentences, the first
being the premise and the second the hypothe-
sis, the goal of NLI is to train a classifier to pre-
dict whether the relation of the hypothesis to the
premise is one of entailment, contradiction or a
neutral relation. The training and test data for
this 3-way classification task at RepEval 2017 are
drawn from the Multi-Genre NLI, or MultiNLI
corpus (see Williams et al. (2017) for details).
Task participants are provided with both training
and development datasets, where parts of the de-
velopment data match the training data in terms of
genre, topic etc. (referred to as matched examples)
and other parts do not (referred to as mismatched
examples).

This paper presents Team LCT-MALTA’s sub-
mission to the shared task. In line with previous
research, we obtain a single vector which is the

combined representation of both the premise and
the hypothesis and feed it into a Multilayer Per-
ceptron (MLP) for the actual 3-way classification.

2 Related Work

Various works in recent years have dealt with
the creation of distributed sentence representa-
tions, typically based on existing word embed-
dings such as word2vec (Mikolov et al., 2013)
or GloVe (Pennington et al., 2014). The base-
line models at the shared task use GloVe vec-
tors and present three approaches to obtaining sen-
tence embeddings (Williams et al., 2017): a) tak-
ing the sum of the embeddings of all the words in
the sentence (continous bag of words, CBOW); b)
taking the average of the hidden state outputs of
a bidirectional LSTM (BiLSTM; Hochreiter and
Schmidhuber 1997) across all the words; and c)
the Enhanced Sequential Inference Model (ESIM)
by (Chen et al., 2017), which, however, relies on
cross-sentence attention, which submissions to the
shared task may not make use of.

Instead of the BiLSTM architecture, Tai et al.
(2015) propose a tree-structured LSTM to capture
the hierarchical structure of natural language sen-
tences. Conneau et al. (2017) use BiLSTM with
max pooling and achieve state-of-art results when
testing their sentence representations on an NLI
task based on the Stanford Natural Language In-
ference (SNLI) dataset (Bowman et al., 2015). Lin
et al. (2017) introduce a self-attention mechanism
with multiple hops of attention on top of BiLSTM,
where the different hops attend to different parts
of the input sentence. Their approach represents
sentence embeddings as 2-D matrices instead of
vectors.
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3 Our Approach

We present in our submission a simple BiLSTM-
based approach related to the second baseline
model. Crucially, however, we add the following
alterations:

• Our input word vectors are enhanced with
part-of-speech (POS), dependency and word
character information.

• Instead of taking the average of the BiLSTM
outputs across all words (mean pooling), we
use max pooling.

3.1 Enhanced Word Embeddings

A central component of our approach is the en-
hancement of the pre-trained GloVe vectors with
additional linguistic information. The main mo-
tivation is the following: BiLSTM proceeds lin-
early, processing an input sentence word by word.
The structure of natural language sentences, how-
ever, is hierarchical in nature 1. We wish to
encode some information on linguistic structure
while keeping the simple, standard BiLSTM ar-
chitecture. Therefore, we attach such additional
information to the representations of individual
words.

In conrete terms, we initialise our model with
300-D pre-trained GloVe vectors (as is done in the
BiLSTM baseline model) and enhance them with
the following content:

3.1.1 POS-tag Embeddings
Part-of-speech (POS) tagging is a common first
step in syntactic sentence processing. We postu-
late that explicit knowledge of a the input words’
syntactic categories might help representing the
meaning of the input sentence. Thus, using mod-
ules from UDPipe (Straka et al., 2016), we to-
kenise and tag input sentences with universal POS-
tags. We then generate randomly-initialised, 20-D
embeddings for all POS-tags.

3.1.2 Dependency Label Embeddings
Dependency parsing captures the binary depen-
dency relation between words in a sentence and
determines the central word of an input sentence
(the head word of the sentence) (Kübler et al.,
2009). In particular, it is enable to encode longer

1As mentioned in section 2, Tai et al. (2015) propose a
tree-structured LSTM for similar reasons

dependencies across multiple words. As such, de-
pendency parsing provides vital information on
the sentence’s structure.

Hence, we apply UDPipe’s (Straka et al., 2016)
state-of-the-art dependency parser to the input sen-
tence and subsequently equip each pre-trained
word embedding with that word’s dependency in-
formation, which in turn consists of the word’s
head word and its dependency relation to the head.
In concrete terms, for each word wi, we map the
embedding of its head word wj to a 50-D vector
and generate a 50-D randomly initialised embed-
ding for the dependency relation from wi to its
head. We then take the element-wise product be-
tween these two 50-D vectors to obtain the full de-
pendency embedding for the word wi. Formally,
the dependency embedding wid for any token wi

is computed as follows:

wid = Ed[dij ]� (Wd ∗ wj) (1)

where dij is the dependency relation between to-
ken wi and the head token wj , Ed is the 50-D em-
bedding of that dependency relation, Wd is a ma-
trix of size 50x300 which maps wj (originally a
300-D GloVe vector) to a 50-D vector, and � is
the element-wise product.

3.1.3 Character Embeddings
The usage of character embeddings is mainly
inspired by various works which incorporate
character-level embeddings into the distributed
representation of words to yield improved word
embeddings (Santos and Zadrozny, 2014; Bo-
janowski et al., 2016; Kim et al., 2016). For each
token, we employ LSTMs to compute embeddings
for each of its characters. The LSTM input at each
time step is one character, i.e. one letter, and the
output is a 100-D hidden state. The last 100-D hid-
den state vector is then considered the full charac-
ter embedding for that token.

3.1.4 Final Input Word Embeddings
Finally, for each word, we concatenate its
original GloVe embeddings with all of the
above-mentioned additional linguistic informa-
tion. Thus, our final embedding for each word,
which we input to the BiLSTM to compute sen-
tence embeddings, consists of the concatenation
of the word’s 300-D Glove embedding, its 20-D
POS-tag embedding, its 50-D dependency embed-
ding and 100-D character embedding. As men-
tioned, all of the embeddings except for the GloVe
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Figure 1: Our enhanced word embedding

word embeddings are randomly initialized. Figure
1 illustrates an instance of our final enhanced word
embeddings.

3.2 BiLSTM Sentence Embedding with Max
Pooling

The enhanced word embeddings described above
are fed into a standard BiLSTM architecture, with
a 100-D hidden state output vector for each unidi-
rectional LSTM. Concatenating the forward (

−→
ht)

and backward (
←−
ht) output vectors for each node,

we obtain n hidden state vectors
−→
h , where n is the

number of words in the input sentence and
−→
h is a

200-D vector corresponding to one word.

−→
ht = −−−−→LSTM(wt,

−−→
ht−1) (2)

←−
ht =←−−−−LSTM(wt,

←−−
ht−1) (3)

Conneau et al. (2017) examine various super-
vised methods of obtaining general-purpose sen-
tence embeddings, with their conclusion favouring
a BiLSTM architecture combined with max pool-
ing. We follow their findings and use max pool-
ing on the n BiLSTM hidden outputs

−→
h . Indeed,

our own experiments shall show the superiority of
max pooling over average pooling (see section 4).
Hence, for each dimension d of the 200 dimen-
sions, we take the maximum among the values of
all hidden outputs at d. The result is a single 200-
D vector embedding of the input sentence.

3.3 Combining Premise and Hypothesis
Representations

We separately obtain the previously described sen-
tence embeddings for the premise and the hypoth-
esis. Mou et al. (2015) examine multiple heuris-
tics for combining the same-length embeddings
of two sentences in NLI tasks, including concate-
nating the two vectors and taking their element-
wise difference or product. We use a combina-
tion of some of these heuristics. More specif-
ically, we concatenate the two sentence embed-
dings, then further concatenate a) their element-
wise maximum and b) their element-wise product

enhanced word
embeddings

enhanced word
embeddings

BiLSTM encode
the premise

BiLSTM encode
the hypothesis

u v

(u, v, u*v, max(u,v))

Fully connected layer

3-way classification

max-pooling max-pooling

Figure 2: Architecture of our final submission

to the concatenation of the two sentence embed-
dings. Hence, we obtain as a result a single 800-D
vector that is the combined representation of the
premise and the hypothesis.

3.4 Classification

Finally, we feed the single vector representation
of the two sentences to a tanh layer with a softmax
layer on top of it to perform the 3-way classifica-
tion to the classes entailment, contradiction, and
neutral. Our complete model is illustrated in Fig-
ure 2.

4 Experiments & Results

We experimented with BiLSTM-based sentence
encoders including and excluding our enhanced
word embeddings as well as in combination with
max pooling and average pooling. We use L2 reg-
ularization and set dropout rate to 0.1 to prevent
overfitting. The models are trained in 10 epoches
using Adam optimizer with learning rate 10−3.
The models having the best performance on de-
velopment set are selected to evaluate on test set.

Furthermore, we implemented two systems pre-
sented in literature, viz. (Lin et al., 2017)’s self-
attentive embeddings approach and (Kim, 2014)’s
convolutional neural network (CNN) approach,
and compared their performance with that of our
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Method Matched Mismatched
Dev Test Dev Test

BiLSTM + average pooling (baseline) 66.9 66.9
BiLSTM + max pooling 67.23 67.18

CNN (Kim, 2014) 67.3 68.0
Automatically learned self-attentive embeddings (Lin et al., 2017) 67.89 67.69

BiLSTM + enhanced embedding + average pooling 68.3 67.8
BiLSTM + enhanced embedding + max pooling 70.8 70.7 71.1 70.8

Table 1: System performances on MultiNLI dataset in order of ascending accuracy scores.

system. In their original work, Lin et al. (2017)
use 30 hops of attention for each sentence. In our
implementation of their algorithm, we deemed 10
hops to be sufficient due to the limited length of
the sentences in our MultiNLI database.

The results of our experiments are shown in Ta-
ble 1, in order of ascending accuracy scores. In
our experiments, our final submission, i.e. the
BiLSTM-encoder with enhanced word embed-
dings and max pooling, as described in section 3,
performed best, obtaining accuracy scores of 70.8
and 71.1 on the matched and mismatched dev set,
respectively. Its final results on the full shared task
test set are 70.7 for matched and 70.8 for mis-
matched data.

5 Discussion

Our results favour max pooling over average pool-
ing, which is in agreement with findings by Con-
neau et al. (2017). Moreover, our enhanced word
embeddings are shown to be effective. Their ad-
dition alone produces the accuracy scores superior
to what the incorporation of (Lin et al., 2017)’s
automatically learned self-attention matrix yields.
The combination of max pooling and enhanced
word embeddings, which are extremely simple al-
terations to the BiLSTM baseline, yield results
which clearly beat the baseline.

Thus, our submitted system to the RepEval
2017 shared task demonstrates that simple alter-
ations to the standard BiLSTM architecture for
computing sentence embeddings can obtain visi-
ble improvements. In particular, linguistic infor-
mation is shown to be useful for the present NLI
task. Therefore, with respect to distributed rep-
resentations of sentence meaning, more sophisti-
cated systems which take into account linguistic
and grammatical relationships are worth further
investigation.
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