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Maximilian Köper, Evgeny Kim and Roman Klinger
Institut für Maschinelle Sprachverarbeitung

Universität Stuttgart, Germany
{maximilian.koeper,evgeny.kim,roman.klinger}@ims.uni-stuttgart.de

Abstract

Our submission to the WASSA-2017
shared task on the prediction of emotion
intensity in tweets is a supervised learning
method with extended lexicons of affective
norms. We combine three main informa-
tion sources in a random forrest regressor,
namely (1), manually created resources,
(2) automatically extended lexicons,
and (3) the output of a neural network
(CNN-LSTM) for sentence regression. All
three feature sets perform similarly well
in isolation (≈ .67 macro average Pearson
correlation). The combination achieves
.72 on the official test set (ranked 2nd out
of 22 participants). Our analysis reveals
that performance is increased by providing
cross-emotional intensity predictions. The
automatic extension of lexicon features
benefit from domain specific embeddings.
Complementary ratings for affective norms
increase the impact of lexicon features.
Our resources (ratings for 1.6 million
twitter specific words) and our imple-
mentation is publicly available at http:
//www.ims.uni-stuttgart.de/
data/ims_emoint.

1 Introduction

In natural language processing, emotion recogni-
tion is the task of associating words, phrases or doc-
uments with predefined emotions from psycholog-
ical models. Typical discrete categories are those
proposed by Ekman (Ekman, 1999) and Plutchik
(Plutchik, 2001), namely Anger, Anticipation, Dis-
gust, Fear, Joy, Sadness, Surprise und Trust. In
contrast to sentiment analysis with its main task to
recognize the polarity of text (e. g., positive, neg-
ative, neutral, mixed), only a few resources and

domains have been subject of analysis. Examples
are, e. g., tales (Alm et al., 2005), blogs (Aman and
Szpakowicz, 2007), and as a very popular domain,
microblogs on Twitter (Dodds et al., 2011). The
latter in particular provides a large resource of data
in the form of user messages (Costa et al., 2014).
A common source of weak supervision for train-
ing classifiers are hashtags, emoticons, or emojis,
which are interpreted as a weak form of author
“self-labeling” (Suttles and Ide, 2013). The classi-
fier then learns the association of all other words in
the message with the emotion (Wang et al., 2012).
An alternative to discrete models are continuous
models that map emotions to an n-dimensional
space with valence, arousal and dominance (VAD)
being usual dimensions. Previous works that rely
on the VAD-scheme focus mainly on extending
and adapting the affective lexicons (Bestgen and
Vincze, 2012; Turney and Littman, 2003), includ-
ing to historical texts (Buechel et al., 2016), and on
the prediction and extrapolation of affective ratings
(Recchia and Louwerse, 2015a; Hollis et al., 2017).

The WASSA-2017 shared task on the predic-
tion of emotion intensity in tweets (EmoInt) aims
at combining descrete emotion classes with dif-
ferent levels of activation. Given a tweet and an
emotion (anger, fear, joy, and sadness), the task
requires to determine the intensity expressed re-
garding a particular emotion. This score can be
seen as an approximation of the emotion intensity
felt by the reader or expressed by the author. For
a detailed task descriptions and background infor-
mation on the data collection see Mohammad and
Bravo-Marquez (2017).

2 System Description

In the following, we introduce all feature sets we
experimented with. We start with an analysis and
selection of features obtained from the baseline
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Rating Top 4 words

Concreteness fish, microphone, rope, toilet
Arousal #attack, scare, attack, exciting
Dominance #safe, #everydayhappy,

courageous, #Amoved
Happiness babygiggles, love, laughter,

lovelysmile
Anger soangry, comcastsucks,

#soangry, #comcastsucks
Fear #hyperventilation, #irra-

tionalfear, aerophobia, #anxiety
Sadness #greatloss, greatloss, sadsadsad,

cryinggame
Joy #peaceandharmony, #always-

bethankful, positiveenergy,
#youchoosehowtofeel

Table 1: Top four words for eight different rating
types based on our automatically generated ratings.

system AffectiveTweets, explain how we extend
resources to the domain of Twitter. Then, we ex-
plain our sentence regressor, which is based on
deep learning and pre-trained word embeddings.
Finally, we introduce two additional, manually de-
fined features.

2.1 Baseline Features

The baseline system AffectiveTweets1 which has
been provided to participants together with the
training and development data includes a huge va-
riety of different features and configurations. The
different feature types can be classified into a),
SparseFeatures, which refer to word and character
n-grams from tweets, b), LexiconFeatures, which
are taken from several emotion and sentiment lists
(we consider the SentiStrength-based feature to be
part of this), and c), the EmbeddingsFeature, which
comprise a tweet-level feature representation that
can incorporate any pre-trained word embeddings.

2.2 Extending and Adding Norms

The baseline system builds on top of a variety of
different lexical resources (Hu and Liu, 2004; Wil-
son et al., 2005; Svetlana Kiritchenko and Moham-
mad; Mohammad and Turney, 2013; Mohammad
and Kiritchenko, 2015; Baccianella et al., 2010;
Bravo-Marquez et al., 2016; Nielsen, 2011). Such

1https://github.com/felipebravom/
AffectiveTweets

resources are naturally limited in coverage and of-
ten focus on words that are closely associated with
a certain emotion or sentiment (e. g., the word “hate”
with the emotion anger).

At the same time, social media data is typically
rich in lexical variations, and hence, tend to contain
a great deal of out-of-vocabulary words. We ad-
dress this with three separate approaches, namely
by i) applying a supervised method to extend these
lexicons to larger Twitter specific vocabulary ii),
learning a new rating score for every word and
not just highly associated terms and iii), including
novel rating categories that provide complementary
and potential useful information, such as valence,
arousal, dominance and concreteness.

Several approaches have been proposed to com-
bine distributional word representations with super-
vised machine learning methods to extend affective
norms (Turney et al., 2011; Tsvetkov et al., 2014;
Recchia and Louwerse, 2015b; Vankrunkelsven
et al., 2015; Köper and Schulte im Walde, 2016;
Sedoc et al., 2017). Köper and Schulte im Walde
(2017) compared various supervised methods and
showed that a feed forward neural network together
with low dimensional distributed word representa-
tions (embeddings) obtained the highest correlation
with human annotated ratings for concreteness.

Following these findings, we apply the same
methodology. For a given emotion or norm we
train a feed forward neural network with two hid-
den layers, each having 200 neurons. The input of
the network is a single word representation (300
dimensions) and the output is one numerical value
trained to correspond to the human annotated (gold)
rating for the given input word. We apply the model
to predict a rating score for every word representa-
tion in our distributional space (which includes the
training data).

This method strongly depends on the underlying
word representation. We therefore conduct multi-
ple experiments using different word embeddings
(shown in Section 4.2). We apply this procedure
for 13 different lexicons using the following re-
sources: NRC Hashtag Emotion Lexicon (Moham-
mad and Kiritchenko, 2015) containing ratings for
17k words with associations to anger, anticipa-
tion, disgust, fear, joy, sadness, surprise and trust.
Additionally, we use the 14k ratings for valence,
arousal, and dominance collected by Warriner et al.
(2013). For concreteness we rely on the collection
of 40k ratings from Brysbaert et al. (2014). Finally,

51



we use the 10k ratings for happiness from Dodds
et al. (2011). These 13 ratings correspond to an au-
tomatic extension to 1.6 million word types with≈
21 million new word ratings. We map the ratings to
an interval of [0, 10]. Table 1 shows the top words
for eight ratings. For the emotion intensity pre-
diction in our predictive model, we represent each
rating with seven feature dimensions per tweet:

1. Average rating score across all words
2. Average rating score across all nouns
3. Average rating score across all adjectives
4. Average rating score across all verbs
5. Average rating score across all hashtags
6. Maximum rating score
7. Standard deviation of all rating scores

2.3 Tweet Regression

The tweet regression feature relies on the anno-
tated training samples. We train a neural network
based on word embeddings to predict the emotion
intensity for each tweet.

Convolutional neural networks (CNNs), trained
on top of pre-trained word vectors, have been
shown to work well for sentence-level classifica-
tion tasks (Kim, 2014). We apply a similar method
here, combining CNNs and LSTMs (Hochreiter
and Schmidhuber, 1997). The final architecture
used by IMS is shown in Figure 1. Each tweet is
represented by a matrix of size 50× 300 (padded
where necessary, embedding dimension is 300, the
maximal token sequence in a tweet is set to 50).
We apply dropout with a rate of 0.25. The matrix
is then the input for a convolutional layer with a
window size of 3, followed by a maxpooling layer
(size 2) and an LSTM to predict a numerical output
for each tweet.

This architecture captures sequential information
in a compact way. For comparison, we conduct ex-
periments using a variety of different architectures
(shown in Section 4.3) including linear regression,
multilayer perceptron (MLP), two stacked LSTMs
and the proposed CNN-LSTM architecture.

2.4 Additional Features

In addition to regression and lexical features, we
add two hand-crafted features. The first is a
Boolean feature which holds if and only if an ex-
clamation mark is present in the tweet. The sec-
ond represents the overall number of tokens in the
tweet.

Input Embedding
50×300

Convolution
strides: 3
48×300

MaxPooling
size: 2
24×300

I’m
not

really
happy

I’m
quite
sad
...

LSTM

Figure 1: CNN-LSTM Architecture used for tweet
regression.

3 Implementation Details

As a source for our in-domain embeddings, we
use a corpus from 2016 retrieved with the Twit-
ter streaming and rest APIs with emotion hash-
tags and popular general hashtags. It consists of
≈50 million tweets and ≈800 million tokens. Af-
ter removing words with less than 10 occurrences,
the resource contains 1.6 million word types. The
300 dimensional word representations are obtained
with word2vec2 (Mikolov et al., 2013). To study
the impact of the training domain, we addition-
ally conduct experiments with the public available
GoogleNews-vectors that were trained on a 100b
words corpus of news texts. Both word embed-
dings are used to extend the emotion lexicons (Sec-
tion 2.2) as well as input embeddings in our tweet
regression model (Section 2.3).

We use TweetNLP3 (Owoputi et al., 2013) as
tokenizer. In the case of observing only out-of-
vocabulary words (no rating available) we set the
score to the median value of the corresponding
category.

The regressor based on the tweet text is imple-
mented with keras (Chollet et al., 2015). We train
one model for each of the four emotions separately.
Furthermore, we provide the output of all four
emotion-specific regression models in all emotion
intensity prediction tasks.4

Finally, for the full system IMS, we combine
features in a random forest classifier using weka
(Witten et al., 1999). We use 800 trees (called
iterations in Weka). We estimate one model for
each of the four target emotions.

2Hyperparameters were set to window:5, min-count:10,
neg-samples:15, dim:300, iteration:5.

3http://www.cs.cmu.edu/˜ark/TweetNLP/
4To provide this feature for the within-emotion training

data (e. g., anger-regression output for anger training dataset),
we split the training data into 20 folds – training on 19 and
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Feature Model a f j s Avg

3 Lexicons
7 SVM .62 .62 .62 .62 .62

3 RF .67 .69 .66 .66 .67

7 Sparse
7 SVM .58 .61 .63 .52 .58

7 RF .53 .57 .61 .53 .56

7 Embd.
7 SVM .48 .50 .55 .53 .51

7 RF .53 .53 .61 .49 .54

7 Comb
7 SVM .64 .64 .66 .64 .64

7 RF .63 .64 .66 .63 .64

Table 2: Baseline features across training data us-
ing support vector machines (SVM) and random
forest (RF). Pearson correlation based on 10-fold
cross validation. The column names denote anger
(a), fear (f), joy (j), sadness (s).

4 Feature Subset Selection and Analysis

Feature selection and analysis was performed on
annotated training and development data. All ex-
periments were carried out using 10-fold cross val-
idation. We report results following the official
shared task evaluation measure to predict a value
between 0 and 1, namely Pearson correlation for
each emotion separately as well as a macro average
over all emotions. Features that were finally used
in IMS are marked with 3 and respectively 7 for
features that were disregarded.

4.1 Baseline Feature Engineering
We start with feature engineering based solely on
the baseline features (see Section 2.1). Table 2
shows our observation when exploring the differ-
ent options from AffectiveTweets using default pa-
rameters. The embeddings (Embd.) are the rec-
ommended 400 dimensional Twitter embeddings
available from the baseline system’s homepage.

As we see in this table, an average performance
of .67 is already obtained when relying only on
a random forest in combination with the lexicon
features. The other features, as well as the combina-
tion, result in inferior performance. In addition, the
lexicon-based system is comparably simple with
only 45 feature dimensions. We therefore only use
the lexicon features from the baseline system.

4.2 Lexicons and Extended Lexicons
As a next feature, we explore various settings for
the automatic extension of the lexicon features. Ta-

providing the predictions for the remaining.

Feat a f j s Avg

3 Lexicons(=BL) .67 .69 .66 .66 .67
7 ACVH-Lexicons .48 .45 .59 .35 .47
7 Ext.News .52 .52 .60 .44 .52
3 Ext.Twitter .65 .69 .65 .68 .67

7 ACVH-Lexicons+BL .66 .67 .67 .64 .66
7 Ext.News+BL .65 .66 .67 .64 .65
3 Ext.Twitter+BL .68 .71 .68 .69 .69

Table 3: Performance of lexicons and our automat-
ically extended lexicons. Results are based on the
random forest classifier. Top part compares perfor-
mance of lexicon features in isolation. Ext.News
and Ext.Twitter build on top of the baseline lex-
icons and the ACVH lexicons. The bottom part
shows performance in combination with the origi-
nal lexicons provided by the baseline (=BL).

ble 3 compares the baseline lexicon against the lex-
icons we add without extension (ACVH-Lexicons)
as well as the automatically extended resources
(Ext.*). ACVH-Lexicons contains the unmodified
ratings for arousal, concreteness, valency and hap-
piness (ACVH), which were not part of the baseline
system. For Ext.* we present results based on un-
derlying news (Ext.News) and Twitter (Ext.Twitter)
embeddings. In addition we present results for each
lexicon-feature in isolation, as well as in combina-
tion with the baseline lexicons (Lexicons(=BL)). It
can be seen that the ACVH lexicons without auto-
matic extension (ACVH-Lexicons) perform poorly
and provide no performance gain when combined
with the baseline (ACVH-Lexicons+BL). We assume
that the poor coverage on Twitter data is the main
reason. On the other hand, the automatically ex-
tended ratings perform well, and the choice of em-
beddings here has a high impact on the quality of
the resulting ratings. In more detail, the in-domain
embeddings (Ext.Twitter) create ratings that are
extrinsically evaluated superior to the out-domain
embeddings (Ext.News) with an average score .52
against .67.

The information of existing lexicons and ex-
tended norms is not redundant. The combina-
tion ( Ext.Twitter+BL) increases average correlation
across all four emotions by +.02 points, from .67
→ .69..

To get a further understanding of the automat-
ically extended norms, Figure 2 shows the evalu-
ation performance of the thirteen extended norm
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Figure 2: Pearson’s correlation of single rating cat-
egories (Y-Axis) on each target emotion (X-Axis).
Numbers in brackets refer to training size used to
extend the norms. Evaluation based on 10-fold
cross validation using the full training data and
random forest.

Feature a f j s Avg

7 Linear Reg. (BoW) .48 .49 .44 .36 .44
7 MLP (BoW) .59 .64 .60 .56 .60
7 Stacked LSTMs .58 .66 .61 .61 .61
3 CNN-LSTM .66 .68 .66 .65 .67

Table 4: Comparing the performance of Tweet Re-
gression Architectures.

categories separately. Especially the extended rat-
ings from the new lexicons perform well: happi-
ness, dominance and valency. However, we also
see that the number of training samples might have
a big impact, e. g., the automatical ratings of joy
are only trained on 3.4k samples while the size of
the happiness training data is larger.

4.3 Tweet Regression Architectures

In addition to the CNN-LSTM architecture used in
the final system (see Section 2.3), we experimented
with different models for tweet regression. Table 4
shows results using various machine learning algo-
rithms to directly predict the emotion intensity.

We use the in-domain Twitter embeddings as in-
put. We observe that our architecture, introduced
in Section 2.3, performs superior to other meth-
ods. Remarkable, the CNN-LSTM feature, as well

Feature Name # Features

AffectiveTweets-Lexicons 45
Aut. Ext. Lexicons (Twitter) 91
Tweet Regression (CNN-LSTM) 4
Manual Features 2

Total 142

Table 5: Overview IMS full system, features, fea-
ture counts.

Full IMS-Train
a f j s Avg

.71 .74 .71 .71 .72

Table 6: Final official system on training data (10
fold cross validation).

as our Ext.Twitter lexicons and the baseline Lex-
icons(=BL) obtain a score of ≈ .66 when used in
isolation.

4.4 Full System Combination

A combination of all features leads to the best per-
formance, they provide complementary informa-
tion. An overview is given in Table 5 and Table 6.

Another interesting observation is found with re-
spect to the usage of cross-emotional intensity pre-
dictions: IMS trains a classifier for each emotion
in isolation. Similarly, the tweet regression feature
is trained emotion-wise but for each instance we
also provide the intensity prediction from all other
emotion models (therefore, 4 features). Without the
cross-emotion information, we yield only a macro
average across all emotions of .707 (vs. .719). Fig-
ure 3 shows how the emotion intensity predictions
of these models correlate. It can be seen that fear,
sadness and anger are slightly correlated while joy
is negatively correlated with all three emotions. In-
terestingly, a combined model (Comb), which is
trained on all emotions also leads to a high correla-
tion for each emotion and especially sadness. Note
that the classifier trained on all emotions (Comb) is
not used by the final system IMS.

Finally, we want to mention that the impact of
the two manual defined features is very little, we
found that they increase performance on joy by
+.01 and we therefore decided to keep them.

5 Official Results – Analysis Test Data

Table 7 shows the official results (Full IMS-Test)
and the performance using only a subset of the
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0.62

Figure 3: Pairwise Pearson correlation based on
the output of our emotion-wise Tweet regression
feature.

Feat a f j s Avg

Lexicons(=BL) .65 .66 .60 .70 .65

Ext.Twitter+BL .68 .72 .66 .74 .70
CNN-LSTM+BL .69 .69 .67 .76 .70

Full IMS-Test .71 .73 .69 .77 .72
Best-Competitor .73 .76 .73 .76 .75

Table 7: Overview IMS full and partial System
performance on Test data.

entire features. For comparison, we also show
the results of the best performing system (Best-
Competitor). our baseline, using only the lexi-
con features and a random forest classifier obtains
a competitive Pearson correlation of .65, which
would have been ranked as the 8th best system.

Both of our core features, namely the extended
resources, as well as the CNN-LSTM tweet regres-
sion architecture, increase performance by +.05
points when combined with the baseline lexicons
(Lexicons(=BL)). Their performance is similar for
anger and joy, but the ratings seem more useful for
fear, and the regression more useful for sadness.
The result of Ext.Twitter+BL with .70 would have
ranked the 4th best system.

The final combination of all our features results
in an increase of ≈ +.020 correlation points. The
performance of IMS on the test set without the two
manually defined features is .719. Furthermore, we
observe that our submission on the test data is on
average very close to the estimated performance
on the training data (both .72), but when looking
at individual emotions our system is performing
better on sadness and slightly worse on fear.

5.1 Error Analysis
Based on a manual inspection of individual tweets
with a large gap between prediction and gold rating,
we found that the model’s prediction often depends
on single words and ignores larger contexts. An
example case with a high error for fear is:

“Most people never achieve their goals
because they are afraid to fail.”
(fear, G: .22, P: .55)

Here, the gold emotion intensity for fear is com-
parably low, but our model predicts a high fear
intensity. Similarly, in the tweet with high joy in-
tensity

“Just died from laughter after seeing
that.”
(joy, G: .92, P: .50)

our model predicts a low joy intensity.
Another challenge are modifications as in

“After this news Im supposed to be so
damn happy and rejoicing but Im here
like §”
(joy, G: .07, P: .53)

Here, the gold annotation is very low, but our model
predicts a medium intensity for joy.

6 Conclusion

Our system IMS, submitted to the EmoInt-2017
shared task, combines existing lexicons with auto-
matically extended norms and a CNN-LSTM neu-
ral network based on embeddings. Our findings
show that each of the three main components per-
forms equally well, but the highest performance
is achieved in combination. In addition, we found
that extending existing emotion lexicons and affec-
tive norms improves performance over the original
resources. We also showed that the impact of un-
derlying word representation is important. In par-
ticular in-domain embeddings (trained on twitter
data) perform superior to other embeddings. A par-
ticularly interesting observation is that providing
cross-emotional intensity predictions benefits the
performance.

7 Acknowledgement

The research was supported by the DFG Collabora-
tive Research Centre SFB 732 and the German Min-
istry for Education and Research (BMBF) within
the Center for Reflected Text Analytics (CRETA).
We thank the anonymous reviewers for their com-
ments and Jeremy Barnes for helpful suggestions.

55



References
Cecilia Ovesdotter Alm, Dan Roth, and Richard Sproat.

2005. Emotions from Text: Machine Learning for
Text-based Emotion Prediction. In Proceedings of
HLT-EMNLP, pages 579–586, Vancouver, BC.

Saima Aman and Stan Szpakowicz. 2007. Identifying
expressions of emotion in text. In Proceedings of
TSD, pages 196–205, Plzeň, Czech Republic.
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