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Abstract

In this paper, we describe the approach of
the ItaliaNLP Lab team to native language
identification and discuss the results we
submitted as participants to the essay track
of NLI Shared Task 2017. We introduce
for the first time a 2-stacked sentence-
document architecture for native language
identification that is able to exploit both
local sentence information and a wide set
of general–purpose features qualifying the
lexical and grammatical structure of the
whole document. When evaluated on the
official test set, our sentence-document
stacked architecture obtained the best re-
sult among all the participants of the essay
track with an F1 score of 0.8818.

1 Introduction

Native Language Identification (NLI) is the task
of identifying the native language (L1) of a writer
based on their writing in another language. Since
the seminal work by Koppel et al. (2005), within
the Computational Linguistics community there
has been a growing interest in the NLP–based
Native Language Identification (henceforth, NLI)
task. However, so far, due to the unavailability of
balanced and wide–coverage benchmark corpora
and the lack of evaluation standards it has been dif-
ficult to compare the results achieved for this task
with different methods and techniques (Tetreault
et al., 2012). The First Shared Task on Native Lan-
guage Identification (Tetreault et al., 2013) was the
answer to these mentioned problems.

In this paper, we describe our approach to the
essay track of the 2017 Native Language Identi-
fication Shared Task (Malmasi et al., 2017). Par-
ticipating teams of this task were asked to clas-
sify the native language of writers of 1,100 En-

glish essays solely using the sample of their writ-
ings. 11,100 English essays from non-native En-
glish writing samples from a standardized, mean-
ingful, and authentic assessment context of En-
glish proficiency for academic purposes (the Test
Of English as a Foreign Language, TOEFL) (Blan-
chard et al., 2013) were provided as training data
and the 11 native languages covered by the corpus
are: Arabic, Chinese, French, German, Hindi, Ital-
ian, Japanese, Korean, Spanish, Telugu, and Turk-
ish. Each essay in the TOEFL11 is labeled with an
English language proficiency level.

Following the most common approaches and
starting from the work of (Cimino et al., 2013), we
tackled the Native Language Identification task as
a text classification problem. The main novelty of
our approach is the proposed classification archi-
tecture that combines a sentence and a document
classifier in a 2-stacked sentence-document archi-
tecture. This system is able to exploit both local
sentence information and a wide set of features
extracted from the whole document. The features
range across different levels of linguistic descrip-
tion, from lexical to morpho–syntactic and syntac-
tic information.

The proposed method was prompted by our
studies on sentence and document readability clas-
sification (Dell’Orletta et al., 2014), where we
shown differences between document and sen-
tence classification problems by focusing on the
role of the features and their importance. For ex-
ample, the classification of the readability of a sen-
tence requires a higher number of features, mainly
syntactic ones, and they have different weights
with respect to the weights used in the document
classification problem. In this work, we show how
sentence local information can be exploited also
in NLI task providing to the document classifier
fruitful local information, thus making some fea-
tures more effective.
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2 Related Work

Native Language Identification is most commonly
tackled as a multi-class supervised classification
task combining NLP–enabled feature extraction
and machine learning: see e.g. (Tetreault et al.,
2012), and (Malmasi and Dras, 2017). Among the
different machine learning algorithms used, sys-
tems based on Support Vector Machines obtain the
best accuracies. However, the most successful ap-
proaches made use of classifier ensemble meth-
ods to further improve performance. All recent
state-of-the-art systems have relied on some form
of multiple classifier system. Among the most
recent works, (Ionescu et al., 2014) used multi-
ple string kernels learning using only character n-
gram features, reporting an accuracy of 85.3 on the
TOEFL11 test set, 1.7 higher than the 2013 state
of the art obtained by (Jarvis et al., 2013) in the
first shared task on NLI (Tetreault et al., 2013).
More recently, (Malmasi and Dras, 2017) made a
systematic examination of ensemble methods. By
exploiting a classifier stacking architecture, the au-
thors obtained the current state-of-the-art results
on three datasets from different languages. As in
these previous works, the system presented in this
paper uses a stcked architecture, but differently
from the previous ones combines a sentence and
a document classifier and it is able to exploit in a
profitable way both local sentence information and
global document information.

Typically, the range of features used is wide
and includes characteristics of the linguistic struc-
ture underlying the L2 text, encoded in terms of
sequences of characters, words, grammatical cat-
egories or of syntactic constructions, as well as
of the document structure: note however that, in
most part of the cases, the exploited features are
task–specific. Differently, as in our first system
(Cimino et al., 2013), we resort to a wide set of
features ranging across different levels of linguis-
tic description (i.e. lexical, morpho–syntactic and
syntactic) without any a priori selection: the same
set of features was successfully exploited in dif-
ferent tasks focusing on the linguistic form rather
than the content of texts, such as readability as-
sessment (Dell’Orletta et al., 2014) or the classifi-
cation of textual genres (Dell’Orletta et al., 2012).

3 Description of the system

Our approach to the Native Language Identifica-
tion Task was implemented in a software proto-

type. The main novelty of our approach is the
use of a stack of two SVM classifiers, each one
operating on morpho–syntactically tagged and de-
pendency parsed texts. The first classifier is a L1
sentence classifier that is aimed at classifying the
native language of each sentence of a document.
The predictions of the L1 sentence classifier are
used as features by the L1 document classifier. In
addition to the sentence classifier predictions, the
second classifier exploits widely used features in
native language identification that are used to build
the final statistical model. This statistical model
is finally used to predict the L1 language of un-
seen documents. The highest score of the doc-
ument classifier represents the most probable L1
class. For this work we used LIBLINEAR (Fan
et al., 2008) as machine learning library both for
the sentence and the document classifiers. The
documents were automatically POS tagged by the
Part–Of–Speech tagger described in (Cimino and
Dell’Orletta, 2016) and dependency–parsed by the
DeSR parser (Attardi et al., 2009).

3.1 Training workflow

L1 Gold Labeled
Documents

L1 Gold Labeled
Sentences Generation

K-Fold L1 Sentence
Classifier Training

K-Fold Sentences
L1 Predictions

L1 Predicted
Sentences

L1 Document
classifier

Document
feature extraction

Final statistical model

Figure 1: The training workflow of the 2-stacked
sentence-document architecture.

Since the document classifier exploits the pre-
dictions of the sentence classifier in classification
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of unseen documents, we devised a specific train-
ing workflow that is shown in Figure 1. In the
first step of the workflow, the L1 gold labels of the
training documents are exploited to build an anno-
tated corpus of L1 sentences where each sentence
is labeled according to the label of its belonging
document. Once the L1 gold labeled sentence cor-
pus is generated, this is used to train the sentence
classifier and used to create the training set of the
document classifier. More precisely, the L1 sen-
tence corpus is divided in k different folds 1 where
each fold is used to provide the training examples
for the sentence classifier. By exploiting widely
used NLI features, the sentence classifier produces
a specific statistical model for each of the k folds.

The statistical models are then used to predict
the L1 language of the sentences that do not be-
long to the training examples of the generated
folds. For this work we used the LIBLINEAR L2-
regularized logistic regression as learning algo-
rithm since the LIBLINEAR implementation pro-
vides the confidence of belonging to a specific
class for unseen examples. In addition, features
with frequency lower than 2 in the corpus where
discarded. By merging the k folds of the L1 pre-
dicted sentences, a corpus of L1 predicted sen-
tences is obtained and it is used by the document
classifier during its training phase. The document
classifier by exploiting widely used NLI features
and the predictions of the sentence classifier pro-
duces its own statistical model that is finally used
to predict the L1 language of unseen documents.
The document classifier was trained using the LI-
BLINEAR L2-regularized L2-loss support vector
classification that (Jarvis et al., 2013) have shown
to have very good performances in NLI document
classification. Features with frequency lower than
3 in the corpus where discarded.

Once the document classifier is trained, for the
final settings the sentence classifier is trained using
all the sentences of the L1 Gold sentence corpus,
this in order to achieve the best possible accuracy
in classification of unseen sentences.

The prediction workflow of unseen documents,
shown in Figure 2, is similar to the training work-
flow with the exception that the k fold training pro-
cedure is not needed.

All the real valued features were scaled in the
range [0, 1] in order to reduce the training times
and to maximize the classification performances.

1for our runs we have chosen k = 5

Input Document

Sentences Generation

L1 Predicted
Sentences

L1 Document
classifier

Document
feature extraction

Predicted L1 Label

Figure 2: The test workflow of the 2-stacked
sentence-document architecture.

3.2 Sentence and Document Features

Here are described the features used both by the
sentence and the document classifiers. Hereafter
we regard documents and sentences as texts in
order to avoid ambiguities in the description of
the features. In the description below some fea-
tures are calculated as the normalized frequency
and other as the normalized logarithm of the fre-
quency. The choice was made according to empir-
ical evaluation on the development set.

Raw and Lexical Text Features
Text Length, calculated as the number of tokens.
Word Length, calculated as the average number
of characters per word.
Character n-grams, calculated as the logarithm
of the frequency of each character n-gram in the
text and normalized with respect to the text length.
A smoothing term is added to the frequency of
each n-gram in order to avoid 0 values for n-grams
with 1 frequency.
Function word n-grams, calculated as the fre-
quency of each function word n-gram in the text
and normalized with respect to the number of to-
kens in the text. In this work we considered the
words belonging to one of the following fine part-
of-speech categories: determiners, coordinating
conjunctions, preposition or subordinating con-
junctions, interjections.
Word n-grams, calculated as presence or absence
of a word n-gram in the text.
Lemma n-grams, calculated as the frequency of
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each lemma n-gram in the text and normalized
with respect to the number of tokens in the text.

Morpho–syntactic Features
Coarse grained Part-Of-Speech n-grams, calcu-
lated as the logarithm of the frequency of each
coarse grained PoS n-gram in the text and normal-
ized with respect to the number of tokens of the
text.
Coarse grained Part-Of-Speech - Lemma n-
grams: calculated as the frequency of the n-grams
of the Coarse grained Part-of-Speech of the cur-
rent token and its following token lemma. The fre-
quencies are normalized with respect to the num-
ber of tokens of the text.

Syntactic Features
Linear dependency types n-grams, calculated as
the frequency of each dependency n-gram in the
text with respect to the surface linear ordering of
words and normalized with respect to the number
of tokens in the text.
Hierarchical dependency types n-grams calcu-
lated as the logarithm of the frequency of each hi-
erarchy dependency n-gram in the text calculated
with respect to the hierarchical parse tree structure
and normalized with respect to the number of to-
kens in the text. In addition to the dependency re-
lationship, the feature takes into account whether
a node is a left or a right child with respect to its
parent.
Head-dependents of the syntax tree: the distri-
bution of head and its dependents in the syntax
trees.

3.3 Document Classifier Specific Features

In addition to the features described in 3.2, the
document classifier uses the following features.
Raw Features
Essay prompt, included in the TOEFL11 corpus.
Average sentence length and standard devia-
tion, calculated in terms of number of tokens for
each sentence in the document.
Type/Token Ratio. The Type/Token Ratio (TTR)
is a measure of vocabulary variation which has
shown to be a helpful measure of lexical variety
within a text as well as style marker in an author-
ship attribution scenario: a text characterized by
a low type/token ratio will contain a great deal of
repetition whereas a high type/token ratio reflects
vocabulary richness and variation. Due to its sen-
sitivity to sample size, the TTR has been computed

for different chunk lengths. In this work we con-
sidered the first 100, 200, 300 and 400 tokens.

Sentence classifier predictions. Since the sen-
tence classifier provides for each sentence the
probability score of each L1 class, the following
55 features were calculated for each document:
for each L1 language the i) average probability,
ii) the standard deviation of the probabilities, iii)
the probability product, iiii) the maximum proba-
bility and iiiii) the minimum probability of all the
sentences.

3.4 Models

In order to test the performances of the pro-
posed two-stacked sentence-document classifier,
we conducted several experiments exploiting dif-
ferent configurations of our system. Table 1
reports the configurations selected for the offi-
cial runs in terms of features and values of n-
grams used. Stacked1 and Stacked2 use both the
2-stack classifier architecture, but the Stacked2
model does not include the Functional word n-
gram features and the head-dependents features.
Not-stacked1 and Not-stacked2 reflect the previ-
ous two configurations with the exception that the
sentence classifier features were not introduced.
The selection of these models was guided by the
tuning performed on the official NLI Shared Task
2013 and 2017 test sets. Tables 2 and 3 report the
results achieved by the selected models on the of-
ficial 2013 test set and the 2017 development set.

Model Prec. Recall F1-Score
Jarvis (2013) - - 0.836
Cimino (2013) - - 0.779
Stacked1 0.853 0.851 0.851
Not-stacked1 0.850 0.848 0.848
Stacked2 0.851 0.849 0.849
Not-stacked2 0.850 0.847 0.847

Table 2: Results obtained by our models on the
NLI Shared Task 2013 official test set compared
to the overall best run and our best run submitted
in the NLI Shared Task 2013 edition.
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Feature Feature-Configuration Stacked1 Stacked2 Not-stacked1 Not-stacked2
Sentence Classifier and Document Classifier features

Character n-grams up to 8 3 3 3 3
Word n-grams up to 4 3 3 3 3
Lemma n-grams up to 4 3 3 3 3
CPOS n-grams up to 4 3 3 3 3
LEMMA-CPOS n-grams up to 4 3 3 3 3
Functional word n-grams up to 3 3 7 3 7
Linear dependency n-grams up to 4 3 3 3 3
Hierarchical dependency n-grams up to 4 3 3 3 3
Text Length NA 3 3 3 3
Head-Dependents NA 3 7 3 7

Document Classifier specific features
Type Token Ratio 100,200,300,400 3 3 3 3
Essay Prompt NA 3 3 3 3
Average Sentence Length NA 3 3 3 3
Standard Deviation Sentence Length NA 3 3 3 3
Average Sentence L1 Confidence NA 3 3 7 7
Std. Dev. Sentence L1 Confidence NA 3 3 7 7
Product of Sentence L1 Confidences NA 3 3 7 7
Maximum Sentence L1 Confidence NA 3 3 7 7
Minimum Sentence L1 Confidence NA 3 3 7 7

Table 1: Configurations of our system used to train our classifier for the evaluation of the NLI Shared
Task 2017 test set.

Model Prec. Recall F1-Score
Stacked1 0.8551 0.8527 0.8525
Stacked2 0.8567 0.8545 0.8544
Not-stacked1 0.8552 0.8527 0.8526
Not-stacked2 0.8524 0.8500 0.8498

Table 3: Results obtained by our models on the
NLI Shared Task 2017 official development set.

4 Results

Table 4 reports the F1-Score and the overall ac-
curacy achieved by our stacked architecture with
the feature configuration described in section 3.4
on the NLI Shared Task 2017 official test set. In
addition the table reports the results achieved by
two different baselines provided by the shared task
organizers2: a random baseline and a classifier
that uses only word unigrams as features. Figure
3 reports the confusion matrix of our best model
(Stacked2) on the official NLI essay test set. In
addition, Table 5 reports the results obtained by
the non stacked version of our architecture. These
runs were submitted to the organizers of the task
after the official evaluation period.

2A more detailed description of the baseline system is re-
ported in (Malmasi et al., 2017).

System F1-Score Accuracy
Random Baseline 0.0909 0.0909
Organizers baseline 0.7104 0.7109
Stacked1 0.8800 0.8800
Stacked2 0.8818 0.8818

Table 4: Results of our submitted models for the
essay track on the NLI Shared Task 2017 official
test set.
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Figure 3: Confusion Matrix of the Stacked2 model
on the NLI Shared Task 2017 official test set.
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System F1-Score Accuracy
Not-stacked1 0.8727 0.8729
Not-stacked2 0.8764 0.8765

Table 5: Results of our not-stacked systems for the
essay track on the NLI Shared Task 2017 official
test set.

4.1 Discussion

We tested different configurations of our archi-
tecture in order to evaluate the contribution on
the accuracy of: i) the single components of the
2-stacked sentence-document architecture, ii) the
lexical information and iii) the syntactic informa-
tion. We carried out different experiments on the
official NLI Shared Task 2017 development set
and on the official NLI Shared Task 2013 test set
that reflect the questions we wanted to answer,
more specifically the questions are:

• (a) what are the performance obtained by us-
ing the 2-stacked sentence-document archi-
tecture and by using the sentence and docu-
ment classifiers separately?

• (b) what is the contribution of the Lexical in-
formation on the stacked architecture and on
the single components?

• (c) what is the contribution of the Syntactic
information on the stacked architecture and
on the single components?

In order to answer to these questions, we de-
vised 3 different feature configurations: All fea-
tures, that uses all the features described in sec-
tion 3.2; No Lexical, that does not use the word
n-grams features and the character n-grams fea-
tures; No Syntax, that does not use the features
extracted from the dependency syntax trees. For
each configuration three different classifiers were
trained: the Stacked classifier, the Document clas-
sifier (Not-Stacked) and the Sentence classifier
(Sent). We tested the Sentence classifier in the
document classification task by using two different
approaches to assign the most probable L1 class
of a document according to the predictions of the
sentence classifier. The first is a vote approach
(VOTE), where we decided to assign to a docu-
ment the most frequent L1 predicted class among
all the sentences of the document. The second
is an average approach (AVG): since the sentence
classifier assigns for each L1 class its confidence,

we took as L1 document class the one that had the
highest average among all the probabilities of each
sentence. In addition, we tested the accuracy of
the Sentence classifier on sentence classification
using as test sets the sentences belonging to the
documents of the NLI 2017 development set and
of the NLI 2013 test set.

2017 NLI development set
Model Prec. Recall F1-Score

All Features
Stacked 0.8551 0.8527 0.8525
NotStacked 0.8552 0.8527 0.8526
Sent. (AVG) 0.7968 0.7900 0.7886
Sent. (VOTE) 0.7516 0.7436 0.7405

No Lexical
Stacked 0.8070 0.8036 0.8033
Not-stacked 0.7947 0.7927 0.7923
Sent. (AVG) 0.7345 0.7182 0.7148
Sent. (VOTE) 0.6592 0.6409 0.6343

No Syntax
Stacked 0.8545 0.8527 0.8526
Not-stacked 0.8519 0.8500 0.8498
Sent. (AVG) 0.8017 0.7936 0.7925
Sent. (VOTE) 0.7472 0.7409 0.7384

Table 6: Results of our experiments on the NLI
Shared Task 2017 development set.

2013 NLI test set
Model Prec. Recall F1-Score

All features
Stacked 0.8537 0.8518 0.8516
NotStacked 0.8502 0.8482 0.8480
Sent. (AVG) 0.7983 0.7909 0.7896
Sent. (VOTE) 0.7474 0.7418 0.7393

No Lexical
Stacked 0.8042 0.8018 0.8014
Not-stacked 0.7840 0.7818 0.7814
Sent. (AVG) 0.7325 0.7200 0.7160
Sent. (VOTE) 0.6515 0.6373 0.6311

No Syntax
Stacked 0.8571 0.8555 0.8553
Not-stacked 0.8513 0.8491 0.8489
Sent. (AVG) 0.7957 0.7891 0.7880
Sent. (VOTE) 0.7429 0.7373 0.7346

Table 7: Results of our experiments on the official
NLI Shared Task 2013 test set.
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Model Prec. Recall F1-Score
2017 NLI development set

Baseline 0.3533 0.3531 0.3515
All features 0.3937 0.3948 0.3936

2013 NLI test set
Baseline 0.3541 0.3536 0.3519
All features 0.3946 0.3956 0.3946

Table 8: Performances of the sentence classifier
on sentences belonging to the official NLI Shared
Task 2017 development set and on the official NLI
Shared Task 2013 test set.

Tables 6, 7 and 8 report the results of all the
experiments. With the exception of the results
obtained by the All features model on the 2017
development set, the stacked architecture always
outperforms the not-stacked architecture in all the
feature configurations used, showing that our de-
vised stacked architecture is effectively able to ex-
ploit some information hidden in L2 sentences that
are not fully captured at document level. For what
concerns the sentence classifier when used as a
document classifier, the average approach (AVG)
always outperforms the results of VOTE version
in all the configuration tested. We can see also
that for each feature configuration there is a drop
of only 5-6 points with respect to the 2-stacked
classifier.

Table 8 reports the performances of the stan-
dalone sentence classifier on the L1 sentence clas-
sification task. For each dataset we report a base-
line result calculated by using only word unigrams
features. We have chosen this baseline following
the approach used by NLI Shared Task organizers
for calculating their baseline system. The baseline
results are compared with the results achieved by
the All Features configuration. As expected, the
L1 sentence classification task is extremely more
difficult than the L1 document classification task:
the results achieved by the baseline system on the
document classification task are extremely higher
than the ones on the sentence classification task
(+35% in terms of F1-Score). An interesting re-
sult to notice is the contribution in the sentence
and document classification tasks of the features
we used to develop our system. While we can ob-
serve an improvement of almost 14% (F1-Score)
with respect to the baseline system on the L1 doc-
ument classification task, only 4% (F1-Score) of
improvement are achieved on the sentence clas-
sification task, confirming the complexity of the

sentence classification task and the need of a spe-
cific process of feature selection for this task.

For what concerns question (b), we can observe
that the lexical features (word n-grams and charac-
ter n-grams) are extremely relevant for NLI. Both
the All Features Stacked configuration and the No
Syntax Stacked configuration report an accuracy
of approximately 0.85% on the performed exper-
iments, which is almost 5 points more than the
results obtained by using the No Lexical Stacked
configuration. The same drop in classification per-
formance can be also observed when using the not-
stacked architecture and the sentence classifier as
document classifier with the AVG and the VOTE
approaches.

Finally, for what concerns question (c) we can
observe that surprisingly the syntax features bring
almost or no contribution when joined with all the
other features we used. When the results of the
stacked, non-stacked and sentence rows achieved
by the All Features configuration are compared
with the respective ones achieved by the No Syn-
tax configuration, no statistical difference in ac-
curacy can be observed. In our opinion, this re-
sult is due to the correlation of lexical information
and part-of-speech tag information, but a more in
depth analysis would be required to analyze these
results.

5 Conclusions

In this paper, we reported the results of our par-
ticipation to the essay track of the Second Native
Language Identification Shared Task. By resorting
to a novel 2-stacked sentence-document architec-
ture and to a set of general purpose features qual-
ifying the lexical and grammatical structure of a
text, we achieved very promising results and the
first position in this shared task.

We have shown that our novel stacked architec-
ture outperforms the results achieved by a single
document classifier, showing that sentence local
information is useful for NLI.

In future works, we would like to carry out a
more in depth study of the sentence level clas-
sifier, focusing in particular on the features that
most maximize its accuracy on L2 sentences. In
addition, we want to investigate the combination
of different sentence-document models in order to
deepen the study of the interaction between the
sentence and document levels in the task of native
language identification.
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