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Abstract

Question difficulty estimates guide test cre-
ation, but are too costly for small-scale test-
ing. We empirically verify that Bloom’s
Taxonomy, a standard tool for difficulty es-
timation during question creation, reliably
predicts question difficulty observed after
testing in a short-answer corpus. We also
find that difficulty can be approximated by
the amount of variation in student answers,
which can be computed before grading.

We show that question difficulty and its
approximations are useful for automated
grading, allowing us to identify the optimal
feature set for grading each question even
in an unseen-question setting.

1 Introduction

Testing is a core component of teaching, and many
tasks in NLP for education are concerned with cre-
ating good questions and correctly grading the an-
swers. We look at how to estimate question diffi-
culty from question wording as a link between the
two tasks.

From a test creation point of view, knowing ques-
tion difficulty levels is imperative: Too many easy
questions, and the test will be unable to distinguish
between the more able test-takers, who all achieve
equally good results. Too many hard questions,
and only the most able test-takers will be clearly
distinguishable from the (low-performing) rest.

In large-scale testing, question difficulty and
other measures of question quality are established
through prior norming (Downey, 2010), where the
questions are answered by a pool of test-takers in
a dry run before definitive use with a similar de-
mographic. Difficulty is then determined on the
basis of the observed results using probabilistic test
theory (PTT). Norming is usually not available in

automated question creation or in ad-hoc testing
in small classrooms, while the need for correctly
determining question difficulty of course remains.

In this situation, teachers often use Bloom’s Tax-
onomy (Bloom, 1956), a classification of the knowl-
edge dimensions and cognitive processes involved
in the completion of a test task, to formulate ques-
tions of appropriate difficulty. In the literature, the
difficulty of multiple-choice questions has been
successfully aligned with the cognitive process di-
mension of the Bloom hierarchy (Tiemeier et al.
(2011); Kim et al. (2012), but see also Kibble and
Johnson (2011)). In this paper, we empirically
evaluate the predictive power of both Bloom di-
mensions for estimating the empirically observed
difficulty of short-answer questions, which require
the test-taker to freely formulate one to three sen-
tence answers. We find that the Taxonomy allows
a useful approximation of question difficulty at the
time of question creation. We find clear empirical
evidence that the instructional context, that is the
teaching materials presented in instruction, has to
be taken into account when determining difficulty
using the Taxonomy.

Once test-taker answers are available, but be-
fore grading makes PTT analysis possible, another
predictor for question difficulty becomes available:
Answer variation, the average amount of variation
within the student answers for each question, is
computed based only on the answer strings.

We also look at question difficulty from the point
of view of improving automated short-answer grad-
ing (SAG). To date, the focus of research has been
on finding informative features, ranging from deep
processing (Zesch et al., 2013; Hahn and Meurers,
2012) through text-based similarity (Sultan et al.,
2016) to shallow, string-based approaches (Okoye
et al., 2013; Jimenez et al., 2013). Padó (2016) has
proposed to perform pre-grading model selection
by tailoring feature sets to the characteristics of
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different short-answer corpora. We refine this idea
and show that within the same corpus, questions
with different difficulty levels also profit from dif-
ferent feature sets, and that the Bloom Taxonomy
levels and student answer variation can be used
as stand-ins for feature set prediction if difficulty
estimates are not available. These results point to a
new avenue of research in SAG.

The paper is structured as follows: We begin
by providing some theoretical background on PTT
and Bloom’s Taxonomy in Section 2. Our first
set of analyses tests the reliability of the Bloom’s
Taxonomy question difficulty predictions for our
data set (Section 3). The second analysis in Sec-
tion 4 focuses on the relationship between answer
variation and question difficulty. Our final set of ex-
periments investigates the use of question difficulty
for question-level model selection in short-answer
grading (Section 5). We end with a discussion and
conclusions in Section 6.

2 Theoretical Background

Our analyses require defining ground truth question
difficulty. We use the Rasch model from probabilis-
tic test theory for this estimate. This Section also
introduces Bloom’s Taxonomy, a tool from the field
of education intended for analysing the cognitive
requirements for answering a question, and thereby
its difficulty.

2.1 PTT Difficulty Estimation with the Rasch
Model

Test theory is concerned with determining test-
taker ability and analysing question quality and
difficulty. Probabilistic test theory formulates la-
tent trait models for these tasks. Latent trait models
assume that a student’s ability and a question’s dif-
ficulty are not directly observable, but depend prob-
abilistically on the observed scores. The two best-
known proponents are the Rasch model (Rasch,
1960) and the related Item Response Theory mod-
els1 (van der Linden, 2010).

The Rasch model fits a joint model of question
difficulty and student ability on the basis of the
manual grades awarded to student answers (i.e.,
after testing). The goal is to establish question dif-
ficulty independently of concrete test-takers and
vice versa. Concretely, the Rasch model estimates
question difficulty and student ability given the fol-

1The most fundamental one-parameter IRT model is math-
ematically equivalent to the Rasch model.

lowing relation (where Bn is the ability of student
n and Di is the difficulty of question i):

Pni(x = 1|Bn, Di) =
e(Bn−Di)

1 + e(Bn−Di)
(1)

Success (x = 1) of a student n on a question i
is linked to the difference between the student’s
ability and the question’s difficulty. If the ability
is greater than the difficulty, the student is likely
to succeed, or if the inverse is true, the student is
more likely to fail. Estimates of B and D are made
iteratively from the test results.

The resulting measures are returned in logits and
question difficulty is centered at 0, so that easy
items have low or negative difficulty estimates and
hard items have high difficulty estimates.

2.2 Bloom’s Taxonomy
Bloom’s Taxonomy (Bloom, 1956), revised by An-
derson and Krathwohl (2014), is a well-known tool
for creating and interpreting teaching objectives as
well as writing test questions and estimating their
difficulty. The Taxonomy has two independent di-
mensions: the Cognitive Process (CP) dimension
and the Knowledge dimension (KD). The Cogni-
tive Process dimension describes which type of
cognitive activity is necessary to complete a task,
in our case to answer a question. The least demand-
ing process is Remember, followed by Understand
(e.g., explain, compare, classify), Apply, Analyze
and, the most demanding, Create.

The second dimension of the revised Taxonomy
looks at the type of knowledge needed to com-
plete the task. The simplest knowledge type is
Factual (facts and terminology), followed by Con-
ceptual (categories, principles and models), Pro-
cedural (algorithms, techniques and criteria) and
Metacognitive (including strategic knowledge and
self-knowledge).

Anderson et al. explicitly recommend that Tax-
onomy users infer the dimension levels from the
question wording: Verbs like “compare” or “gener-
alize” indicate the Understand level, while “iden-
tify” or most simply “name” belong to the Remem-
ber level. To assess the Knowledge dimension level
needed to solve a task, Anderson et al. advise teach-
ers to look at the direct object of the verb describing
the required Cognitive Process. This explicit oper-
ationalization of level identification as analysis of
the question formulation indicates the possibility
of automating the process. Making these infer-
ences however is complex for questions which set
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Question Warum hat jede Klasse die Methode public String toString()?
Why does every class contain the method public String toString()?

Reference Answer Die Methode wird von der Klasse Object an alle Klassen in Java vererbt.
The method is inherited by all Java classes from class Object.

Bloom’s CP Understand Bloom’s KD Conceptual
Bloom’s CP text&question Remember Rasch Difficulty 0.89

Table 1: Example question with Bloom categories (original and re-assigned, see Section 3.3) and Rasch
difficulty (centered at 0, larger means harder)

concrete tasks. For example, for the question “Cal-
culate the voltage given I and R.”, we need to infer
that Ohm’s law, a generalization, will be applied to
a concrete problem to arrive at the Apply cognitive
process on the Conceptual level.

3 Bloom’s Taxonomy and Difficulty

We now empirically evaluate how accurately
Bloom’s Taxonomy (Bloom, 1956), revised by An-
derson and Krathwohl (2014), predicts question
difficulty as estimated from student performance in
a manually graded short-answer corpus. We check
whether questions on the different levels of the Tax-
onomy show different ground-truth difficulty, as
provided by a Rasch model.

3.1 Data
We use the Computer Science Short Answers in
German corpus (CSSAG, Padó and Kiefer (2015)).
This corpus contains 31 content-assessment ques-
tions with reference answers as well as student
answers by highly-proficient speakers of German
(native or near-native). Anonymized student IDs
are available to track answers by the same person,
and there is sufficient person overlap between the
questions to allow consistent PTT analysis.

We exclude question 6 from our data set. Rasch
modelling uncovered an extreme mismatch of ex-
pected and actual difficulty, and further inspection
of the answers shows that the question was often
misunderstood and therefore skipped or answered
incorrectly. Uncovering questions like this is one
of the standard uses of PTT, so we feel justified in
excluding the question after careful analysis.

3.2 Method
For the empirical evaluation of Bloom’s Taxonomy
levels, we annotated the CSSAG questions with
the corresponding Cognitive Process and Knowl-
edge dimension. The author’s annotations were
verified by comparison to the level annotations of

two colleagues familiar with the Taxonomy and the
CSSAG subject matter, A and B.

The Cognitive Process annotations show sub-
stantial annotator agreement (UP-A: κ = 73.7;
UP-B: κ = 82.6; A-B: κ = 67.5). Literature re-
sults, which mostly consider multiple choice ques-
tions, are often not this robust (Kibble and Johnson
(2011): κ = 33.3, Cunnington et al. (1996): at
most κ = 48 for a binary decision).2

The Knowledge dimension is much less consis-
tent (UP-A: κ = 11.8; UP-B: κ = 24.9; A-B:
κ = 32.8). Analysis showed that the annotators
entertained substantially different interpretations of
the levels, making adjudication impossible. Classi-
fying the Knowledge levels involves the annotators’
private conceptualisations of the question topic do-
main (What comprises procedural knowledge in
Computer Science?), which leads to much greater
inconsistency than classifying the process verb for
the CP levels.

We use the author’s level annotations, with the
caveat that the Knowledge level annotations are
noisy. We found questions on the Remember (n =
10) , Understand (n = 17) and Apply (n = 3)
levels of the CP dimension and in the Factual (n =
10), Conceptual (n = 18) and Procedural (n = 2)
levels of the Knowledge dimension.

We also estimated question difficulties on the
basis of the student performance in the corpus.
Table 1 shows a question from CSSAG with its
reference answer and Bloom levels as well as its
estimated difficulty.

Since we are doing data analysis and not build-
ing predictive models, we used the whole corpus
without holding out test data.

For our analyses, we use the lm function in R3

to induce linear models for question difficulty, us-
2Kim et al. (2012) argue that level assignment is harder

for multiple choice questions because the answer choices may
provide clues to the students, effectively reducing higher-level
questions to Remember.

3www.r-project.org
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Estimate Std. Error Sig.
CP Remember -0.388 0.205 ns
CP Understand 0.632 0.247 *
CP Apply -0.780 0.473 ns

Table 2: Difficulty and the Cognitive Process lev-
els, re-assigned using instructional context: Linear
model coefficients. *: p < 0.05, ns: not significant.

ing the Bloom dimensions as factors. Since the
difficulty estimates are centered on 0, we force the
intercept to 0 in the models.

3.3 Analysis I: Bloom’s Cognitive Processes
and Difficulty

We begin by analysing the relationship between
Bloom’s CP dimension and ground-truth difficulty.

We train a linear model of difficulty, using the
three CP levels present in the data as factors. How-
ever, the linear model is not significant, and nei-
ther are the coefficients. From this first analysis, it
seems that Bloom’s Cognitive Process dimension
cannot predict observed question difficulties.

A closer look at the Taxonomy description re-
veals a problem. The Cognitive Process dimension
was first annotated taking only the question into ac-
count. However, Anderson and Krathwohl (2014)
(p.71) state that “If the assessment task is identical
to a task or example used during instruction, we
are probably assessing remembering, despite our
efforts to the contrary.” It is quite intuitive that,
beyond the specific wording of the question, in-
structional context influences question difficulty.
Therefore, we analysed the teaching materials (lec-
ture slides) used for instruction before the CSSAG
questions were answered in a test. The categories
were then re-assigned with the teaching materials
in mind: If for an Understand question, there was
text presented on a single slide (or on several slides
for a multi-component question) that would have
been graded as a correct answer given the reference
answer, the question was classified as Remember
instead, since no active knowledge transfer was re-
quired by the student in this case. We re-classified
six of originally 17 Understand questions as Re-
member (among them the example question in Ta-
ble 1). The new classification based on this closer
reading of Anderson et al. is called Bloom’s CP
text&question below.

Table 2 shows the results of another linear
model of ground-truth difficulty using the three

CP text&question levels as factors. The model is
significant on the p < 0.05 level, so the use of
instructional context yields a quantifiable relation-
ship between the Bloom levels and ground-truth
difficulty. This relationship is carried by the Un-
derstand level - this model coefficient is signifi-
cant and positive, meaning that Understand ques-
tions are predicted to have higher than average dif-
ficulty. The non-significant negative coefficient for
Remember indicates a tendency for these questions
to be less difficult than average. The estimate for
the Apply level is based on only three data points,
so the strong tendency for easier-than-average diffi-
culty must be taken with a grain of salt. Unlike the
findings for Remember and Understand, this last
observation is not in line with the predictions of the
Bloom Taxonomy. We return to this in Section 3.5.

In sum, the categories do show a significant dif-
ference in difficulty, but only if the explicit presen-
tation of material during instruction is considered.

The Bloom CP text&question categories are by
design strongly correlated with the existence of
the answer in the teaching materials: Questions
in category Remember always refer to explicitly
presented material, while questions in category Un-
derstand never do.4 Therefore, the predictive per-
formance of the CP question&text levels could in
principle be due just to the existence of the answer
in the teaching materials. We therefore trained a
linear model of difficulty using answer presented
(1 if the answer was shown on the lecture slides,
as defined for the category re-assignment above, 0
otherwise) as a factor. This model did not reach sig-
nificance. We conclude that the predictive power
of the Bloom dimensions (when assigned with the
teaching materials in mind) is in fact at the core of
our findings.

3.4 Analysis II: Bloom’s Knowledge
Dimension and Difficulty

We now turn to the Knowledge dimension of
Bloom’s Taxonomy. In the data, we find 10 ques-
tions on the Factual level, 18 on the Conceptual
level and two on the Procedural level. The KD lev-
els are not related to the answer presented measure:
While answering a question may require knowl-
edge that has been explicitly presented, the correct

4In category Apply, explicitly presented or inferrable facts
have to be applied to a new situation, so there is no a pri-
ori relationship between the category and the answer having
been presented. In our data, all Apply questions referred to
presented material.
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Estimate Std. Error Sig.
KD Factual -0.785 0.263 **
KD Conceptual 0.316 0.196 ns
KD Procedural 0.280 0.588 ns

Table 3: Difficulty and the Knowledge levels:
Linear model coefficients. **: p < 0.01, ns: not
significant.

answer need not have been.
Table 3 shows the coefficients of another linear

model of difficulty, now using the Knowledge di-
mension levels and again fixing the intercept at 0.
The model predictions are significantly correlated
with difficulty (p < 0.05). The significant coef-
ficient is Factual knowledge, which results in the
prediction of easier-than-average difficulty. This,
of course, agrees with the Bloom Taxonomy.

Despite the large disagreement between the three
annotators on this dimension, the annotated Knowl-
edge levels still hold relevant information with re-
gard to question difficulty, and that information is
in line with the predictions of the Bloom Taxon-
omy.

3.5 Analysis III: Both Bloom Dimensions and
Difficulty

Next, we analyse the relationship between the two
dimensions of Bloom’s Taxonomy, which are con-
ceptually independent. A linear model of difficulty
using the levels of both dimensions as factors is sig-
nificant. Factors CP Understand and KD Factual
remain significant as in the individual models, but
there are no significant interactions, probably due
to sparse data. The raw data still show interesting
patterns, though, which we will analyse next.

Table 4 shows the category difficulty means
across both Bloom dimensions. Where the table
cells are appropriately filled, the mean difficulties
reflect the assumptions of the Taxonomy:

CP Remember questions are a lot easier than CP
Understand questions (recall the coefficient esti-
mates in Table 2). Within the Remember dimension
(the only one to use all three Knowledge levels),
mean difficulty rises monotonically in accord with
the Knowledge dimension definition.

We now see that the reason for Apply questions
overall appearing twice as easy as Remember ques-
tions may be the lack of Apply questions using
Conceptual and Procedural knowledge. This seems
more likely than an effect of noise, since all three

Apply questions are at most of difficulty−0.5, with
an average of −0.78, which is clearly on the easy
side of the spectrum.

It is also striking that there is an effect of
CP level beyond Knowledge dimension for Con-
ceptual, but not Factual questions: The Apply-
Factual questions are as difficult on average
as the Remember-Factual questions, while the
Understand-Conceptual questions are much harder
than the Remember-Conceptual questions. Fur-
ther investigation with a larger data base and more
closely standardized Knowledge level annotation
would certainly be interesting given this pattern.

In the Knowledge Dimension grand averages,
the Taxonomy is clearly mirrored: Questions us-
ing Factual knowledge are easier than questions
using Conceptual knowledge (this corresponds to
the model coefficients shown in Table 3 above).
Questions for Procedural knowledge (with an n of
just 2) appear overall a little too easy. Keep in mind,
though, that the level annotations for the Knowl-
edge dimension must be assumed to be noisy given
the low inter-annotator κ values.

In sum, both dimensions of Bloom’s Taxonomy
taken together categorize the CSSAG questions
into four categories of monotonously increasing
difficulty in the raw data (ignoring for the moment
the Apply-Factual category): Remember-Factual,
Remember-Conceptual, Remember-Procedural and
Understand-Conceptual. The data confirm that
Bloom categories are predictive of question dif-
ficulty before testing, allowing teachers and test
creators to balance their tests before or even with-
out norming. Vitally, however, the instructional
context of the question has to be taken into account
for categorization.

4 Answer Variation

Our analyses so far have looked at predicting ques-
tion difficulty solely from properties of the question
(and instructional context), prior to testing. Once
the question has been answered, but before grad-
ing, another potentially informative predictor of
question difficulty becomes available: Answer vari-
ation, measured either as the average similarity of
student answers among themselves or their average
similarity with the reference answer.

We hypothesize a link between answer variation
and question difficulty based on the assumption
that easy questions (e.g. on the Bloom Remember-
Factual levels) have clear-cut answers that many
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Factual Conceptual Procedural Grand Avg
Remember −0.79 (n = 7) −0.18 (n = 7) 0.28 (n = 2) −0.39
Understand – 0.63 (n = 11) – 0.63
Apply −0.78 (n = 3) – – −0.78
Grand Avg −0.79 0.37 0.28

Table 4: Cognitive Process text&question and Knowledge dimensions, Rasch difficulty averages (number
of questions).

Model Adjusted R2 Model Sig.
KD + CP text & question 0.290 *
Avg. SAV 0.246 *
SAV + KD + CP text & question 0.312 *

Table 5: Difficulty predicted by the Bloom Knowledge dimension (KD) and Cognitive Process (CP)
levels and SAV (student answer variation): Linear model R2 values and significances. *: p < 0.05.

students know. This should lead to many highly
similar student answers (mirroring the reference an-
swer). Difficult questions that require understand-
ing of conceptual knowledge should show higher
variation in the phrasing of the correct answer as
well as more incorrect answers, leading to higher
answer variation both among student answers and
with regard to the reference answer.

If such a link indeed exists, then discrepancies
between a question’s intended difficulty and its ob-
served answer variation would help identify prob-
lematic questions even before grading.

We model average student answer variance
through the Greedy String Tiling (GST) similar-
ity measure (Wise, 1996), which ranges between
0 and 1 (where 0 indicates no overlap between
the strings – high variation, and 1 indicates per-
fect overlap – low variation). Comparing the (non-
empty) student answers and the reference answer is
straightforward. For the average similarity within
all non-empty student answers, we use each student
answer in turn as the point of comparison since
GST is non-symmetric. We use the same corpus as
before (see Section 3.1).

Rasch question difficulty (the assumed ground
truth) is indeed correlated with the average vari-
ation between student and reference answers at
Spearman’s ρ = −0.372, p < 0.05 and with the
average variation of student answers among them-
selves at Spearman’s ρ = −0.668, p < 0.001. For
both measures, difficulty is low when answer sim-
ilarity is high (and therefore, answer variation is
low). Perhaps surprisingly, the variation of answers
among themselves is a much stronger predictor

than variation with regard to the reference answer.
This may be because the similarity measure does
not account for valid paraphrases (e.g., by technical
terms in the reference answer). Relying just on the
student answers is more elegant in any case, as no
assumptions are made about the quality (or even
existence) of the reference answer.

Next, we train a linear model predicting diffi-
culty, just as before, but using student answer varia-
tion (SAV) as a factor. Table 5 compares the results
for SAV to a model using the Bloom KD and CP
text&question levels. We also combine SAV and
both Bloom dimensions. We find that all three
models significantly predict difficulty. At n = 30,
there were no significant differences between the
models in an ANOVA. We do see some indication
of differences between the models in the R2 values,
however, which reflect how much of the variance in
the variable difficulty the model accounts for. For
the combination of the Bloom dimensions, R2 is
somewhat higher than for SAV alone, but combin-
ing all factors yields another small increase.

We conclude that the Bloom levels, if known, are
the best predictors of question difficulty. However,
it can be difficult to assign the levels for existing
questions if instructional materials are not available.
In this case, the amount of within-answer variation
for each question can be used to estimate ques-
tion difficulty before grades and PTT estimates are
available, or if the PTT assumptions are not met.

Results from Dueñas et al. (2015) suggest that
flat features such as word and length information
from the question and reference answer are also
useful in predicting difficulty; for them, simplified
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taxonomy categories worked better than Bloom
categories. Note that they had no information on
the instructional materials used and so could not
adjust the CP categories (see Section 3.3).

5 Automated Grading: Features and
Difficulty

Having looked at difficulty and its predictability
from the point of view of test creation in the pre-
vious section, we now turn to an analysis of the
usefulness of question difficulty information for
automated grading.

In Padó (2016), we found that on the corpus
level, there are optimal feature combinations for dif-
ferent data sets. Learner corpora of text comprehen-
sion questions (lower on the Bloom hierarchy) can
be graded well with shallow features close to the
string level, while corpora for content assessment
of native speakers (containing questions higher on
the Bloom hierarchy) require features derived from
syntactic and semantic analysis. Following this
lead, we investigate the link between question dif-
ficulty and optimal feature sets for grading on the
question level. We show that question difficulty
can indeed be used for question-level model selec-
tion (of the optimal feature set). Since question
difficulty is often not known at grading time, we
also look at Bloom’s Taxonomy levels and SAV as
predictors for model selection.

5.1 Automated Grading Model and Features

For reasons of comparability, we use the automated
binary grading model from Padó (2016). It consists
of a decision tree algorithm that considers features
from five feature groups. Table 6 lists them in order
of increasing complexity of the linguistic analysis
necessary to compute them. We will refer to the
NGram as well as the Similarity features (consist-
ing of the Greedy String Tiling, Cosine, and Leven-
shtein Edit Distance similarity algorithms) as shal-
low features, because only the character strings of
the answers and possibly lemmatization are needed.
The deep features are the overlap between student
and reference answer in terms of Dependency re-
lations or Lexical Resource Semantics (LRS) com-
ponents (Richter and Sailer, 2004), as well as the
output of the Excitement Open Platform Textual
Entailment system (Magnini et al., 2014).

5.2 Method

We train the grading model in the leave-one-
question-out setting on the CSSAG corpus (Sec-
tion 3.1). This means the test questions and an-
swers are completely unseen during training. We
do five training and test runs for each question:
First with only the NGram features, then adding
the Similarity features and so on, until the full fea-
ture set is used. We then determine for each ques-
tion which feature sets yield the best performance.
We report per-question prediction accuracy, which
ranges between 50 and 88.9%.

5.3 Feature Sets and Model Selection

We find that for 12 out of the 30 available questions,
the best performance is only reached using deep
features in addition to the shallow features. For the
remaining 18 questions, the best performance is
already reached using just the NGram or NGram
and Similarity features. In seven of these 18 cases,
model performance even declines when the deep
features are added, for the remaining 11 cases, ei-
ther feature set yields optimal performance. These
results show that there is room for question-level
feature optimization.

The short-answer grading model with the full
feature set (the best choice for the corpus accord-
ing to Padó (2016)) reaches an overall accuracy
of 73.11%. If we choose the best-performing fea-
ture set for each question instead of the full model,
overall accuracy increases to 74.35%.

These results indicate that automatic grading can
be improved by choosing the best-performing grad-
ing model for each question instead of relying on
a per-corpus choice. We expect greater improve-
ments with fine-tuned features, because the feature
implementations from Padó (2016) were left in-
tentionally vanilla so the results would generalize
more easily over the range of corpora used there.

5.4 Model Selection by Difficulty

We continue our analyses with the 19 questions
with optimal behaviour for just one feature set. For
the other 11 questions, either feature set works well,
so they carry limited information for us. To ver-
ify that difficulty is indeed related to the optimal
feature set for grading, we train a linear model of
difficulty using the feature set (deep or shallow)
that shows optimal performance for each question.
The resulting model significantly (p < 0.01) pre-
dicts difficulty.
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Feature Group Features
NGram Unigram, Bigram, Trigram overlap of student and reference answer
Similarity Greedy String Tiling, Cosine, Levenshtein measures
Dependency Dependency triple overlap of student and reference answer
Semantics LRS component overlap of student and reference answer
TE Textual Entailment of reference answer by student answer

Table 6: Overview of the feature set for automated grading

Accuracy
Frequency Baseline 63.2
Difficulty 78.9

Table 7: Model Selection: Accuracy of predicting
the best-performing feature set

We now change tasks and evaluate the useful-
ness of difficulty for model selection. We evaluate
how well the best-performing feature set (shallow
or deep) for each question can be predicted by a
logistic regression model (R cv.glm) using dif-
ficulty as its only feature.5 We use leave-one-out
cross-validation.

Table 7 shows the classification accuracy of pre-
dicting when the shallow feature set will outper-
form the deep feature set. Using only ground-truth
difficulty, the prediction is correct for roughly 80%
of the 19 questions. This clearly outperforms the
frequency baseline (always predict the deep feature
set). Difficulty therefore is very informative with
regard to the most useful features for SAG.

5.5 Model Selection: Bloom Levels and SAV

If difficulty estimates are not available, Bloom
levels or SAV may still be obtainable. We have
shown above that both can be used to predict dif-
ficulty. In the case of Bloom levels, we also see
a promising pattern in the raw data: There is a
clear tendency for questions low on the Bloom
hierarchy to be optimally gradable with shallow
features, while questions higher on the Bloom hier-
archy require deep features. For three out of four
Remember-Factual questions (out of the 19 ques-
tions with one optimal feature set), optimal grad-
ing performance is reached with shallow features.
For the five Remember-Conceptual questions, two
show optimal performance with shallow and three
with deep features. Six out of seven Understand-

5Note that our result is strictly speaking an upper bound,
since difficulty was originally inferred using all questions.

Conceptual questions require deep features, and
there is one Remember-Procedural question, also
optimally graded with deep features. (The two
Apply-Factual questions are split between deep and
shallow features, in keeping with their estimated
difficulty, see Section 3.5).

We therefore use the Bloom levels to train a
logistic regression models to predict the optimal
feature set, just as above. A second model uses SAV.
The left-hand side of Table 8 shows that for our
small data set, these factors perform practically at
chance level, much below the frequency baseline.6

This pessimistic result is not the whole picture.
We also evaluate three simple, conservative heuris-
tics based on the Taxonomy, SAV and difficulty,
respectively, that do not require training. The re-
sults are on the right-hand side of Table 8.

The Bloom heuristic predicts the shallow feature
set for all Remember-Factual questions, and the
deep feature set otherwise. Its accuracy of 74%
clearly outperforms the frequency baseline.

The SAV heuristic predicts the shallow feature
set for the 20% of questions with the lowest stu-
dent answer variation (i.e., highest within-answer
similarity). We chose 20% for the boundary based
on the observation that there are five Bloom di-
mension combinations present in the data and the
Bloom heuristic assigns the shallow feature set for
only one of them. The SAV heuristic performs at
the level of the frequency baseline.

The difficulty heuristic predicts the shallow fea-
ture set for the easiest 20% of questions. At 84%
accuracy, this prediction model even outperforms
the linear difficulty model from Section 5.4.

The results underscore the usefulness of diffi-
culty for model selection. In parallel to Sections 3
and 4 above, we find that difficulty can be approxi-
mated well by the levels of the Bloom Taxonomy,

6For the Bloom Taxonomy evaluation, one dimension level
was represented only once, so the corresponding data point
was unpredictable and was excluded, yielding n = 18 and a
frequency baseline of 61.1.
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Accuracy Accuracy
Frequency Baseline 63.2 Frequency Baseline 63.2
Difficulty 78.9 Difficulty heuristic 84.2
Bloom KD & CP 55.6 Bloom KD + CP heuristic 73.7
SAV 52.6 SAV heuristic 63.2

Table 8: Model Selection: Accuracy of predicting the best-performing feature set. Left: Logistic model,
right: Heuristic

and to a degree by the variation within student an-
swers, if the levels are not available. While for
small data sets such as ours, learning a selection
model may not be possible, difficulty and its stand-
in measures contain sufficient information to for-
mulate an informative, yet simple heuristic model.

6 Discussion and Conclusions

Question difficulty is important in test creation and
question analysis (as our discovery and exclusion
of an unsuitable question in Section 3.1 demon-
strates). We have shown that is also an informative
factor in optimizing automated grading: Question
difficulty quite accurately predicts which feature set
allows best grading performance. This insight al-
lows us to use question difficulty to tailor models to
specific questions and optimize SAG performance.

Difficulty, however, can only be estimated af-
ter grading, making it impractical to use in many
SAG settings. We have shown that difficulty can be
approximated by the question’s levels on Bloom’s
Taxonomy, a standard tool in education, or, to a
somewhat lesser extent, by SAV, the amount of
variation present in student answers, measured in
string similarity. These approximations are avail-
able before testing (Bloom) and grading (SAV).

In this context, we can refine the hypothesis put
forward in Padó (2016) that the grading perfor-
mance variation of different feature sets over dif-
ferent corpora is primarily due to differences in
answer variation. Padó (2016) attributes these dif-
ferences to different student populations (language
learners have less ability to paraphrase than native
or near-native speakers), which co-varied with elic-
itation tasks (learner reading understanding versus
native content assessment). Our results here zoom
in on native-level speakers in content assessment.
We found a strong relationship between preferred
grading features and question difficulty, while diffi-
culty is partially expressed in answer variation.

The link between Bloom hierarchy levels and dif-
ficulty that we found provides more insight: Ques-

tions low on the Bloom hierarchy tend to be eas-
ier and are optimally graded with shallow features
(close to the text level). Questions higher on the
Bloom hierarchy require deep features (more exten-
sive syntactic and semantic analysis). This matches
the corpus-level results from Padó (2016) (on top
of the effect of language ability): The corpora best
graded with shallow features were learner corpora
of text comprehension questions. Most of these
questions are low on the Bloom hierarchy, since
they ask the reader to repeat knowledge explicitly
presented in the text.7 On the other hand, content
assessment corpora (such as CSSAG) contain more
and higher Bloom levels and therefore more ques-
tions that require deep processing for grading.

An avenue for future work is the automatic in-
ference of Bloom Taxonomy levels. In addition to
facilitating SAG, knowing question difficulty lev-
els without norming would increase the quality of
manually created ad-hoc tests as well as automati-
cally generated question sets. The guidelines from
Anderson and Krathwohl (2014) suggest that the
levels can be inferred from the question wording
by Textual Entailment methods. Given the nec-
essary inference steps and the patterns of human
annotation consistency for the two dimensions, the
Cognitive Process dimension lends itself more to
automated assignment than the Knowledge dimen-
sion. Finally, we have shown that it is vital to
identify cases of recall of instructional materials in
level prediction.
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