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Abstract

Detecting and analyzing stylistic variation
in language is relevant to diverse Natu-
ral Language Processing applications. In
this work, we investigate whether salient
dimensions of style variations are em-
bedded in standard distributional vector
spaces of word meaning. We hypothesize
that distances between embeddings of lex-
ical paraphrases can help isolate style from
meaning variations and help identify latent
style dimensions. We conduct a qualitative
analysis of latent style dimensions, and
show the effectiveness of identified style
subspaces on a lexical formality prediction
task.

1 Introduction

Automatically analyzing and generating natural
language requires capturing not only what is said,
but also how it is said. Consider the sentences
“he shot himself” and “he committed suicide”.
The first one is less formal than the second one,
and carries information beyond its literal meaning,
such as the situation in which it might be used.
Another example is “stamp show” vs. “philatelic
exhibition”, English learners with limited vocabu-
lary can use the former term since it is simpler.

As Natural Language Processing systems are
deployed in a variety of settings, detecting and
analyzing stylistic variations is becoming increas-
ingly important, and is relevant to applications
ranging from dialogue systems (Mairesse, 2008)
to predicting power differences in social interac-
tions (Danescu-Niculescu-Mizil et al., 2012).

In this work we aim to determine to what ex-
tent such stylistic variations are embedded in the
topology of distributional vector space models.
We focus on dense word embeddings, which pro-

vide a compact summary of word usage on the ba-
sis of the distributional hypothesis, and have been
showed to capture semantic similarity and other
lexical semantic relations (Mikolov et al., 2013;
Baroni et al., 2014; Levy and Goldberg, 2014).

We hypothesize that differences between em-
beddings of words that share the same meaning are
indicative of style differences. In order to test this
hypothesis, we introduce a method based on Prin-
cipal Component Analysis to identify salient di-
mensions of variations betwen word embeddings
of lexical paraphrases.

Applying our method to word embeddings
learned from two large corpora representing dis-
tinct genres, we conduct a qualitative analysis
of the principal components discovered. It sug-
gests that the principal components indeed dis-
cover variations that are relevant to style.

Second, we evaluate the style dimensions more
directly, using them to distinguish more formal
from less formal words. Formality is consid-
ered a key dimension of style variation (Hey-
lighen and Dewaele, 1999), and it encompasses a
range of finer-grained dimensions, including po-
liteness, serious-trivial, etc (Irvine, 1979; Brown
and Fraser, 1979).

The formality prediction task lets us evaluate
empirically the impact of different factors in iden-
tifying style-relevant dimensions, including di-
mensionality of the subspace and the nature of the
prediction method. We also conduct an error anal-
ysis revealing the limitation of predicting formal-
ity based on vector space models.

2 Background

Many studies of style variations have focused on
the corpus or sentence level. For instance, multidi-
mensional corpus analysis (Biber, 1995) relies on
statistical analysis to identify the salient linguistic

20



co-occurrence patterns that underlie register vari-
ations. More recently, richer combinations of fea-
tures have been used to predict style dimensions
such as formality: (Pavlick and Tetreault, 2016)
provide a thorough study of sentence-level formal-
ity and show that classifiers based on features in-
cluding POS tags and dependency parses can pre-
dict formality as defined by the collective intuition
of human annotators.

Here, we focus on identifying dimensions of
style variations at the lexical level, motivated by
the usefulness of word embeddings in many NLP
tasks (Mikolov et al., 2013; Baroni et al., 2014),
and by recent work that showed that meaningful
ultradense subspaces that capture dimensions such
as polarity and concreteness can be induced from
word embeddings in a supervised fashion (Rothe
and Schütze, 2016). Bolukbasi et al. (2016) in-
duced a gender subspace using 10 human-selected
gender pairs for reducing stereotypes. In contrast,
we aim to discover style relevant dimensions with-
out supervision, using instead lexical paraphrases
to discover dimensions of variations that are not
explained by semantic differences.

Prior work on evaluation of style factors at the
word level has used standard word embeddings as
features, and relied on external supervised meth-
ods to identify style relevant information in these
embeddings. Brooke et al. (2010) proposed to
score the formality of a word w by comparing its
meaning to that of seed words of known formal-
ity using cosine similarity (Turney and Littman,
2003). Other approaches include work by Pavlick
and Nenkova (2015) who used a unigram language
model to capture the difference between lexical
distributions across genres.

Beyond formality, analysis of stylistic varia-
tions from the point of view of the lexicon in-
cludes predicting term complexity, as annotated by
non-native speakers (Paetzold and Specia, 2016).
Preotiuc-Pietro et al. (2016) isolated stylistic dif-
ferences associated with user attributes (gender,
age) by using paraphrase pairs and word distribu-
tions similar to Pavlick and Nenkova (2015). Xu
et al. (2012) used a machine translation model to
paraphrasing Shakespeares plays into/from mod-
ern English.

3 Approach

Our approach to discovering stylistic variations in
vector space models is based on the assumption

that these variations cannot be explained by dif-
ferences in meaning, and they can be captured by
salient dimensions of variation in the distributional
spaces.

Lexical paraphrases should have the same
meaning, and therefore their embeddings should
be close to each other. When lexical paraphrases
are not in the same location in the vector space,
distances between them might be indicative of
latent style variations. We discover such latent
directions using Principal Component Analysis
(PCA).1

Concretely, suppose ei is the word embedding
in the vector space for word wi. Given pairs of
word embeddings (e1, e2) for lexical paraphrases
(w1, w2), we subtracted them to get the relative
direction d = e1 − e2.

For a given word pair, the difference vector
might capture many things besides style varia-
tions. We hypothesize that the regularities among
these differences for a large number of examples
will reveal stylistic variations. Therefore, we then
trained a PCA model on all directional vectors
to get principal components (pck) capturing latent
variations.

4 Qualitative Analysis of Latent Style
Dimensions

4.1 Models Settings

The approach outlined above requires two types of
inputs: (1) a word embedding space, and (2) a set
of lexical paraphrases.

Word Embeddings We used word2vec
(Mikolov et al., 2013) to build 300-dimensional
vector space models for two corpora representing
different genres. As suggested by Brooke et al.
(2010), we selected the ICWSM 2009 Spinn3r
dataset (English tier-1) as the training corpus
(Burton et al., 2009). It consists of about 1.6
billion words in 7.5 million English blogs and
is expected to have wide variety of language
genres. We also compared it with the pre-trained
300-dimensional model of Google News 2, which
represents an even larger training corpus but in a
narrower register. By working with two different

1Other algorithms for dimensionality reduction could also
be leveraged to discover latent variations. E.g. multidimen-
sional scaling (MDS) and t-distributed stochastic neighbor
embedding (t-SNE).

2https://code.google.com/archive/p/
word2vec/
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k Representative word pairs
ICWSM 2009 Spinn3r Blogs

1
annulling • canceling ‖ abolished • canceled ‖ centre • center ‖ emphasise • highlight
programme • program ‖ imperatives • essentials ‖ motorway • freeway ‖ labour • labor
organised • organize ‖ six-party • six-way ‖ tranquility • serenity ‖ tripartite • three-way

2
spendings • expenditures ‖ summons • subpoenas ‖ anti-malaria • antimalarial
doctor • physician ‖ falls • decreases ‖ banned • prohibiting ‖ fallen • decreased

3 decreased • receded ‖ decreased • fallen ‖ decreased • declined ‖ decreased • shrank

4
agreements • understandings ‖ unlimited • unbounded ‖ disruptions • perturbations
discriminatory • discriminative ‖ timetable • time-scale ‖ amended • altered ‖ ban • forbidden

5
underscored • underline ‖ eliminated • delete ‖ highlights • underline ‖ widened • expand
widened • broaden ‖ emphasises • underline ‖ decreased • reduce ‖ performed • fulfil

6
co-operate • collaborating ‖ interdomain • cross-domain ‖ cooperate • collaborating
origin • sourcing ‖ executions • implementations ‖ multifunctional • cross-functional

7
refusing • rebuffs ‖ stopped • halts ‖ stress • underlines ‖ inspected • reviewed
withdrawals • withdraws ‖ supervising • oversees ‖ stress • emphasises ‖ refused • rejects

8
restarting • revitalising ‖ co-operation • collaborations ‖ cooperation • collaborations
restart • resumes ‖ cleric • clergymen ‖ cooperates • collaborates ‖ expel • expulsions

9
obtain • gain ‖ multi-factor • multifactorial ‖ restricts • hampers ‖ retrieves • recovers
obstructs • hampers ‖ revoking • canceling ‖ contravened • breaches ‖ invalidated • canceled

10
delete • eliminate ‖ underline • stresses ‖ underline • emphasises ‖ schema • schemes
restarting • revitalising ‖ decreased • reduce ‖ underline • highlight ‖ permissions • permits
Google News

1
educator • educationist ‖ ousts • deposes ‖ exemptions • derogations ‖ educator • educationalist
legal • juridical ‖ truck • lorry ‖ exceptions • derogations ‖ accomplishments • attainments
roadway • carriageway ‖ prohibit • proscribe ‖ freeway • motorway ‖ lucrative • remunerative

2 standardize • standardizing ‖ intercept • intercepting ‖ evacuate • evacuating ‖ isolate • isolating
3 destroys • demolishing ‖ solves • resolving ‖ impedes • obstructing ‖ examines • investigating
4 falls • decreases ‖ widens • increases ‖ spends • expenditures ‖ shrinks • decreases

5
infeasible • impracticable ‖ impossible • impracticable ‖ earmarks • allocates
unworkable • impracticable ‖ confines • restricts ‖ impractical • impracticable

Table 1: Representative word pairs for top principal components (indexed by k) are listed for both blogs
and news corpora. A mixed variation of formality and American-British English (grey-boxed) can be
characterized by the first principal component, but the following principal components seem vaguer in
terms of interpreting stylistic variations.

corpora, we aim to discover whether they share
some common stylistic variations even though
they have distinct word distributions.

Lexical Paraphrases PPDB 2.0 (Pavlick et al.,
2015) provides automatically extracted lexical
paraphrases with entailment annotations. We use
the S-size pack and extracted word pairs with
Equivalence entailment relation, which repre-
sent a cleaner subset of the original PPDB. This
process yields 9427 paraphrase pairs found in the
vocabulary of the blogs embeddings and 6988
pairs found in the vocabulary of the Google news

embeddings.

4.2 Analysis
We illustrate the principal components discovered
in Table 1. For each of the k-th principal com-
ponents, we can identify the most representative
word pairs for that component by projecting all
word pairs on pck and ranking pairs based on
d · pck.

The first observation is that the first principal
components for both blogs and news corpora cap-
ture the pattern of American/British-English vari-
ations (grey-boxed in the Table). These might also
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be related to the formality dimension of style, as
British-English can be regarded to be more formal
than American-English (Hurtig, 2006). However,
not all representative word pairs fall in that cate-
gory, and the nature of the variation between e.g.,
“annulling” and “canceling” is harder to charac-
terize.

We can observe clues of stylistic variations in
the subsequent (2nd+) principal components, but
in general it is difficult to interpret each group.
Several word pairs can be seen as illustrating
formality variations (e.g., “falls” ↔ “decrease”,
“delete”↔ “eliminate”). Many word pairs are lit-
erally exchangeable but either one is preferred un-
der certain context, such as “summons” vs. “sub-
poenas”, “decreased” vs. “fallen”, etc. Some prin-
cipal components simply capture groups of words
having semantic correlations, such as third PC of
blogs and fourth PC of news (all contain “de-
crease/increase”), due to the biased word distribu-
tion of PPDB.

Although blogs and news corpora are expected
to have different word distributions, they share the
stylistic variation patterns mentioned above. One
key difference between the principal components
discovered int these two embedding spaces can be
found in the second and third principal component
of the news corpus, where “base (verb)↔ present
participle” is a dominant pattern, while it cannot
be found in the top principal components of the
blogs corpus.

Overall, this manual inspection suggests that the
principal components do capture information that
is relevant to style variations, even if they do not
directly align to clear-cut style dimensions. Iden-
tifying how many top PCs are style-related (i.e.
form a style subspace) is subjective and difficult.
Therefore, we now turn to a quantitative evalua-
tion.

5 Extrinsic Evaluation: Lexical
Formality Scoring

We evaluate the usefulness of the latent dimen-
sions discovered in Section 4 on a lexical formality
prediction task. If the dimensions discovered are
relevant to style, they should help predict formal-
ity with high accuracy.

5.1 Identifying A Style Subspace
5.1.1 Experimental Setup
Task Following Brooke et al. (2010), we used
a list of 399 synonym pairs from a writing man-
ual – Choose the Right Word (CTRW) (Hayakawa,
1994) – to evaluate the formality model. Given a
pair of words, such as “hurry” vs. “expedite”, the
task is to predict which is the more formal of the
two.

Ranking method The predictions were made by
linear SVM classifiers (similar to the method pro-
posed by Brooke and Hirst (2014)). They were
trained on 105 formal seed words and 138 in-
formal seed words used by Brooke et al. (2010).
Each word was represented by a feature vector in
word2vec spaces or their subspaces. When rank-
ing two words, we actually compared their dis-
tances to the separating hyperplane, i.e. w · e− ρ,
where w, e and ρ are weight, embedding and bias.

Embedding spaces We first trained word2vec
(W2V) models of blogs corpus with different space
sizes (dimensionality=1-10, 15, 20, 25, 30, 35, 40,
45, 50, 100, 150, 200, 250, 300, 350, 400, 450,
500). We then fixed the space size of word2vec
models to 300 since it provides large enough orig-
inal vector space and is a routinely used setting.
All subspaces would be extracted from these 300-
dimensional original spaces.

Style subspaces Next, we identified style sub-
spaces (i.e. top PCs) using the PCA method intro-
duced in Section 3. We examined every possible
subspace size in the range of [1, 300] and denoted
this method as PCA-PPDB.

For comparison, we also trained PCA subspaces
using the seed words (PCA-seeds). Since seed
words are not paraphrases, the PCA model was
simply applied on word vectors. This method is
based on the assumption that representative for-
mal/informal words principally vary along the di-
rection of formality.

5.1.2 Results
As illustrated in Figure 1, *** train indicates
the training accuracy of SVM classifiers while
*** test indicates the CTRW-pairs test accu-
racy.

The test accuracy of W2V curve has two peaks
when dimensionality=10 (accuracy=0.798) and di-
mensionality=300 (accuracy=0.792). Consider-
ing the near-monotonicity of the training accuracy
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Figure 1: Train accuracy of formal/informal words classification and test accuracy of CTRW word-
pair ranking v.s. the (sub)space dimensionality. An SVM-based formality model achieved the best test
performance on subspaces identified by PCA on PPDB data.

curve, we attribute the trough around dimension-
ality=45 to over-fitting (increasing number of fea-
tures) while attribute the rebound after that to more
formality-related dimensions introduced.

Recall that we fixed the original spaces to 300
dimensions. The accuracy curve provides another
reason to choose this number: 300-dimensional
original spaces can model formality well by itself
and the performance converges when dim ≥ 300.

Comparing PCA-PPDB test and W2V
test, we can observe clear advantage of using
subspaces that capture latent lexical variations.
Even a single first principle dimension surpassed
original word2vec models of any size, including
the full 300-dimensional space which yielded a
test accuracy of 0.792. Further improvements
were achieved when 9th-21st principle dimen-
sions were introduced (max accuracy=0.826) –
back to Table 1, we can notice additional clues of
formality variations from 9th PC.

The accuracy curves of PCA-seeds indicate
that this model can fit the training set better with
fewer dimensions than PPDB-based model but
does not generalize as well to unseen test data.
However, PCA-seeds still surpassed original
word2vec models of any size.

5.2 SVM-based Ranking vs. Other Formality
Models

We have discussed the effectiveness of modeling
formality using a subspace of small size (1 for
good results and ∼20 for best results). All analy-

ses so far were based on linear SVM, but can other
sophisticated methods perform even better on the
style-embedded subspaces?

5.2.1 Formality Models
We compare SVM with state-of-the-art lexical for-
mality models based on vector space models, such
as SimDiff (Brooke et al., 2010) and DENSIFIER

(Rothe et al., 2016).
SimDiff (Brooke et al., 2010) scores the for-

mality of a word w by comparing its meaning to
that of seed words of known formality.3 Intu-
itively, w is more likely formal if it is semantically
closer to formal seed words than to informal seed
words. Formally, given a formal word set Sf and
an informal word set Si, SimDiff scores a word
w by

score(w) =
1
|Sf |

∑
v∈Sf

ew · ev − 1
|Si|

∑
v∈Si

ew · ev

Further manipulations such as score de-biasing
and normalization were also introduced in
(Brooke et al., 2010), but they would not affect
rankings examined by our evaluation.

DENSIFIER (Rothe et al., 2016) is a supervised
learning algorithm that transforms word embed-
dings into pre-defined ultra-dense orthogonal di-
mensions such as sentiment and concreteness. Un-
der the formality ranking scenario, it optimizes a

3While Brooke et al. (2010) used cosine to measure the
similarity in LSA spaces, we found that dot product yields
better results with word2vec embeddings.
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Figure 2: Test accuracy of CTRW word-pair ranking v.s. the subspace dimensionality. All formality
models achieved similar performance on subspaces of size 9-21 identified by PCA-PPDB.

Incorrect Examples Correct Examples
w1 w2 s1 s2 s2 − s1 w1 w2 s1 s2 s2 − s1
crony friend ‡† 0.667 -1.414 -2.081 grill ‡ interrogate -1.370 1.212 2.581
conceit vanity ‡ 1.107 -0.697 -1.804 excuse ‡ remit -0.608 2.001 2.609
present † gift 1.017 -0.732 -1.749 gardening ‡† tillage -0.846 1.795 2.641
shiv knife ‡ 0.681 -0.863 -1.543 get ‡† obtain -1.435 1.296 2.731
quotation quote ‡ 0.910 -0.594 -1.504 hurry ‡ expedite -1.632 1.174 2.806
frighten scare ‡ 0.157 -1.244 -1.400 catch ‡† apprehend -1.443 1.381 2.824
phony fake † 0.237 -1.100 -1.337 watch ‡ observe -1.628 1.264 2.892
parched dehydrated † 0.173 -1.035 -1.209 loud ‡† clamorous -1.304 1.819 3.123
punish ‡ chasen 0.260 -0.697 -0.956 quote ‡‡ adduce -0.594 2.529 3.123
penetrating ‡ perspicacious 1.527 0.644 -0.883 beach ‡† littoral -1.116 2.143 3.259

Table 2: Top (mis-)predicted CTRW word pairs, where si is the SVM (formality) score for word wi. w2

is supposed to be more formal than w1. † This word is more frequent than the other in a pair according
to the blogs corpus. (‡/ ‡ †/ ‡ ‡ means at least 10/100/1000 times more.)

formality dimension (transition vector) that aims
at separating words in Sf and words in Si, and
grouping words in the same set.

5.2.2 Results
All three formality scoring models (i.e. linear
SVM, SimDiff and DENSIFIER) were applied
to subspaces extracted from 300-dimensional
word2vec spaces using PCA on PPDB data. Fig-
ure 2 shows that three models achieves nearly
identical accuracy on subspaces with size smaller
than 28.4 Furthermore, we also compared the for-
mality directions discovered by linear SVM (co-
efficient w) and Densifier (transition vector). For
any dimensionality, the cosine similarity between
them are larger than 0.8. It is even larger than 0.9

4SVM could also have similar accuracy curve after di-
mension=28 if an RBF kernel was used.

when dim ≥ 21. These suggest that the choice
of ranking models has marginal impact, therefore
identifying the style subspace plays a more critical
role in modeling formality.

5.3 Error Analysis
Identified subspaces capture formality decently in
terms of ranking lexical formality – as high as
0.826 accuracy in the CTRW dataset (based on the
best performing model, i.e. a linear SVM trained
on a 20-dimensional subspace identified by PCA-
PPDB). The question then arises: what types of
errors contribute to the incorrect predictions?

Top (mis-)predicted CTRW word pairs are
listed in Table 2, where si is the SVM (formal-
ity) score for word wi. w2 is supposed to be more
formal than w1.

One category of errors roots in the mechanism
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of vector space models such as word2vec: they are
all based on word co-occurrence patterns, which
sometimes introduce unwanted biases. For ex-
ample, “crony” itself is an informal synonym of
“friend” in our dataset. However, “crony capital-
ism” is a tightly glued economy term. For compar-
ison, the formality score of “capitalism” is 0.966,
which is very close to 0.667 of “crony”.

Ambiguity is another key factor that influences
the formality scoring based on vector space mod-
els. Arora et al. (2016) pointed out that in the vec-
tor space, a word having multiple meanings lies
in middle of its senses. Consequently, its formal-
ity score is also controlled by all its senses. We
can find many ambiguous words in the list of in-
correct examples, such as “vanity” (clothing store,
singer), “present”, “shiv” (Hindu god), “parched”
(film), “chasen” (surname, band), etc.

Last but not least, word frequency is a strong
signal of predicting formality, but predictions can
easily be stereotyped. We used word frequencies
in the blogs corpus to rank CTRW word pairs and
got an accuracy as high as 0.771 (by arguably
treating more frequent as less formal). Project-
ing to the top (in)correct examples, a † symbol is
placed behind the more frequent word in a pair.
We can observe that top correctly ranked pairs fol-
lowed the more-frequent-less-formal rule. How-
ever, this rule also biased the prediction to some
incorrectly ranked pairs. Frequency information is
not designed to be embedded into Word2vec mod-
els, but it still can be partially reconstructed (Rothe
et al., 2016).

In a nutshell, formality models based on vec-
tor space models suffers from the limitation that a
word representation is affected by word associa-
tion, word sense and word frequency.

6 Conclusion

We presented an approach to discovering stylis-
tic variations in distributional vector spaces using
lexical paraphrases. Qualitative analysis suggests
that the principle components discovered by PCA
indeed capture variations related to style. Evalu-
ation on a formality prediction task demonstrates
the benefits of the induced subspace to detect style
variations. We also compared the impact of dif-
ferent factors in identifying style-relevant dimen-
sions such as the training data for PCA, the di-
mensionality of subspaces and the nature of pre-
diction methods. Finally, the error analysis indi-

cated some intrinsic limitation of comparing style
(formality) based on vector space models.
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