
Proceedings of the Third Workshop on Discourse in Machine Translation, pages 36–46,
Copenhagen, Denmark, September 8, 2017. c©2017 Association for Computational Linguistics.

Treatment of Markup in Statistical Machine Translation

Mathias Müller
Institute of Computational Linguistics, University of Zurich

mmueller@cl.uzh.ch

Abstract

We present work on handling XML
markup in Statistical Machine Translation
(SMT). The methods we propose can be
used to effectively preserve markup (for
instance inline formatting or structure) and
to place markup correctly in a machine-
translated segment. We evaluate our ap-
proaches with parallel data that naturally
contains markup or where markup was in-
serted to create synthetic examples. In
our experiments, hybrid reinsertion has
proven the most accurate method to han-
dle markup, while alignment masking and
alignment reinsertion should be regarded
as viable alternatives. We provide imple-
mentations of all the methods described
and they are freely available as an open-
source framework1.

1 Introduction

It is very common for machine translation to be
used in workflows where the source documents
contain XML markup. If a document was origi-
nally written in Microsoft Word, then in a line like

Ich bitte Sie, sich zu einer
Schweigeminute zu erheben.

[Please rise, then, for this
minute’s silence.]

the inline formatting (boldface) will internally be
represented as inline XML markup, similar to:

Ich bitte Sie, sich zu einer
Schweigeminute zu erheben.

1https://gitlab.cl.uzh.ch/mt/mtrain

Before translation, such a document would prob-
ably be converted to a more flexible and interop-
erable format that is ubiquitous in the translation
industry, XLIFF, which is also an XML standard.

Nevertheless, inline XML elements will remain
in the source segments and in theory could actu-
ally be sent to a machine translation system. But in
practice, standard machine translation systems are
unable to properly deal with markup and delegate
markup handling to downstream applications like
computer-assisted translation (CAT) tools. For in-
stance, the machine translation framework Moses
(Koehn et al., 2007) does not have a standard so-
lution for markup handling.

Using a standard, phrase-based SMT system
trained with Moses, the translation of markup
breaks as early as during tokenization. Standard
tokenization is not aware of XML markup and will
tear apart XML element tags:

Ich bitte Sie , sich zu einer
Schweigeminute zu < b > erheben <
/ b > .

No subsequent step during translation will be able
to undo the damage and since the XML standard
enforces strict rules, the output is very likely a
malformed XML fragment. But even if tokeniza-
tion were aware of XML markup (we provide
an implementation of markup-aware tokenization)
another problem remains: XML markup does not
need to be translated at all since it has clear-cut,
language-independent semantics and a statistical
system should not be trusted to copy the markup
to the target segment unchanged.

So, if a machine translation system is given
a source segment that contains inline markup, it
should be able to detect the markup and not treat it
as text. But simply stripping the markup from the
source segment is not satisfactory. If, for instance,
a translation system would offer

36

Please rise, then, for this
minute’s silence.

as a translation, we argue that part of the informa-
tion present in the source segment (the formatting
encoded in the markup tags and) was
“lost in translation”.

From the point of view of translators, losing
the markup during translation has inconvenient
consequences. In many translation projects, au-
tomatic pre-translation of the source segments
is an obligatory step and human translators, in-
stead of translating from scratch, will post-edit the
pre-translations. There is reason to believe that
wrongly translated markup has an impact on trans-
lator productivity (OBrien, 2011).

Tezcan and Vandeghinste (2011, 56) argue that
an MT system should handle XML markup cor-
rectly to avoid inefficient translation workflows.
In the same vein, Joanis et al. (2013, 74) say that
“post-editing SMT output without the formatting
information found in the source may represent a
serious loss of productivity”. Parra and Arcedillo
(2015, 142) state “that inline tags have a big im-
pact on productivity, a fact which is not reflected
in any of the known metrics and which has not yet
received much attention in research”.

We agree with this assessment and would like
to work towards the goal of implementing markup
handling in standard machine translation frame-
works. Several solutions have been put forward,
but there is no consensus as to which strategy
should be employed in standard use cases. Stud-
ies that compare different approaches are currently
lacking.

In order to facilitate those comparisons, we have
implemented different markup handling strategies
in the same machine translation framework. We
have then carried out experiments to gauge the
usefulness of each markup strategy, which we will
describe in the remainder of this paper.

2 Related Work

Known methods to handle markup in ma-
chine translation belong to one of two general
paradigms:

• reinsertion: markup is stripped from seg-
ments prior to training and translation, and
reinserted after translation.

• masking: markup is not removed entirely,

but replaced with a placeholder (a “mask”)
before training and translation. After transla-
tion, the original content is restored.

Both methods ensure that the actual markup is hid-
den during training and decoding. In the case of
our introductory example that includes two XML
element tags and :

Ich bitte Sie, sich zu einer
Schweigeminute zu erheben.

reinsertion would remove markup from the seg-
ment alltogether:

Ich bitte Sie, sich zu einer
Schweigeminute zu erheben.

while masking would replace the tags with place-
holders (appearance of mask token may vary):

Ich bitte Sie, sich zu einer
Schweigeminute zu MASK erheben
MASK .

Du et al. (2010) present three methods to pro-
cess TMX markup in an SMT system. The first
two methods simply vary the behaviour of the
tokenizer with respect to XML markup. The
third method, “markup transformation”, removes
markup before training and translation – and thus
is a reinsertion strategy. After translation, the
markup is restored with the help of phrase seg-
mentation reported by the decoder. They report
that XML-aware tokenization yielded the best re-
sults, albeit by very small margins.

Zhechev and van Genabith (2010) are the first
to describe a masking strategy. They are aware
that “letting any MT system deal with these tags
in a probabilistic manner can easily result in ill-
formed, mis-translated and/or out-of-order meta-
tags in the translation” (ibid.). To avoid this prob-
lem, they replaced XML tags with IDs that act as
a placeholder for the actual markup. All IDs were
unique on a global level, i.e. throughout the whole
corpus. Since markup handling is not the primary
goal of this paper, they do not evaluate their ap-
proach in any way.

Hudı́k and Ruopp (2011) further develop the
idea of removing the markup before training and
translation alltogether. They see their work as
a follow-up to Du et al. (2010), trying to im-
prove their reinsertion method. They improved
the method in the sense that they solved problems

37

related to reordering and provide an algorithm that
reinserts markup into translated segments on the
basis of word alignment instead of phrase segmen-
tation. Intuitively, reinsertion that uses word align-
ment will be more precise since reinsertion us-
ing phrase segmentation can only insert at phrase
boundaries, but no experimental results are pre-
sented.

Tezcan and Vandeghinste (2011) experiment
with several variants of masking. Mainly, what is
varied is the specificity of the mask tokens. Mask
tokens can be unique identifiers for stretches of
markup (resulting in a high number of different
mask tokens) or can be more generic (in the ex-
treme case, one single mask token). The main out-
come of their experiments is that according to au-
tomatic metrics of translation quality, a masking
method that assigns masks based on the XML ele-
ment name performed best.

Finally, Joanis et al. (2013) describe a rein-
sertion strategy that uses both phrase segmenta-
tion and word alignment to decide where markup
tags should be reinserted. They performed a “mini
evaluation” of their approach, manually annotat-
ing roughly 1500 segments. The results showed
that “most tags are placed correctly” (ibid., 79),
because 93 % of TMX tags and 90 % of XLIFF
tags were perfect according to the human annota-
tors.

The authors themselves identify an important
limitation of their work, namely that they “do not
carry out an experimental comparison between the
[masking] and [reinsertion] approaches, though
this would certainly be a worthwile next step”
(ibid., 74). Such an evaluation would indeed be
advisable, and the goal of the current work is ex-
actly that: providing reimplementations of differ-
ent approaches and comparing them to each other
in controlled experiments.

3 Data

For our experiments, we have used two data sets
with parallel text in German and English:

• XLIFF: a real-world collection of XLIFF
documents in which inline markup occurs
naturally

• Euromarkup: a large set of synthetic exam-
ples we ourselves have created by inserting
inline markup into the Europarl corpus2

English German
Number of segments 427k 425k
Number of tokens 3.5m 3m
Segments with markup 98k 97k

Table 1: Descriptive statistics of the XLIFF data
set, markup tags count as 1 token

English German
Number of segments 1.7m 1.7m
Number of tokens 52m 50m
Segments with markup 893k 893k

Table 2: Descriptive statistics of the Euromarkup
data set, markup tags count as 1 token

The documents in the XLIFF data set are so-
called “introductory checklists” used for parame-
terization of banking software, similar to software
manuals, so the texts are from a very technical do-
main and were actually post-edited by translators.
But although the data set is a real use case and typ-
ical of machine translation and industry settings,
its suitability for markup handling is questionable.

After performing initial experiments with the
XLIFF data set, it became clear that handling the
markup in this data is relatively easy: segments are
short (8 tokens on average), which means that the
translation and additional information like word
alignment will be accurate, and there is little re-
ordering that could involve markup tags. In short,
there are few hard problems for markup handling
methods to tackle in the XLIFF data.

In order to discriminate better between the
methods, we introduce a second data set, Euro-
markup, a blend of Europarl (Koehn, 2005) and
markup tags. Because it is a synthetic data set
that we built ourselves, it has the following de-
sired properties: longer segments (more than 20
tokens on average) and a lot of reordering. We
have introduced markup in a way that is consistent
with word alignment and ensured that half of the
markup was inserted where reordering takes place.

Tables 1 and 2 show the size of both data sets
and, importantly, how much markup they contain.
Markup is abundant in both sets and in this respect,
both are suitable for testing markup handling ap-
proaches.

2An implementation of an algorithm that inserts random
inline markup into parallel, word-aligned data is available
upon request.

38

Figure 1: Overview of implemented strategies to process markup

4 Methods

We have implemented five different methods of
handling markup in the same machine translation
framework, mtrain. All methods are described
in Section 4.1. Section 4.2 explains the experi-
mental setup and how the results were evaluated.

4.1 Implementation of markup handling
methods

Inspired by previous work, we have designed five
different ways to treat markup in machine transla-
tion (see Figure 1 for an overview). In mtrain,
two variants of masking are available:

• identity masking: before training and trans-
lation, markup is replaced by mask tokens
that are unique within the segment. After
translation, the original content can be re-
stored without any additional information.

• alignment masking: before training and
translation, markup is replaced by mask to-
kens that are identical to each other. After
translation, word alignment is used to guide
the unmasking process.

In all masking approaches, the mapping between
the mask tokens and the original markup content
must be held in memory until after translation.
Stretches of markup are identified by means of a
regular expression. Therefore, masking is actu-
ally not limited to markup, but is implemented as
a general method to mask any string that can be
described by a regular expression.

On the other hand, there are three implementa-
tions of reinsertion that roughly work as follows:

• segmentation reinsertion: before training
and translation, markup is removed com-

pletely from the segments. After transla-
tion, the original markup is reinserted into the
translation using phrase segmentation.

• alignment reinsertion: identical to segmen-
tation reinsertion, except that word alignment
is used instead of phrase segmentation.

• hybrid reinsertion: both phrase segmenta-
tion and word alignment are used for reinser-
tion, together with a set of rules. A reimple-
mentation of Joanis et al. (2013).

All strategies assume ideal conditions. Masking
methods assume that the translation did not ne-
cessitate any reordering of mask tokens (this as-
sumption is specific to identity masking) and that
the decoder did not omit any mask tokens. Meth-
ods that rely on word alignment (alignment mask-
ing, alignment reinsertion and hybrid reinsertion)
assume ideal, maximally informative word align-
ment. Methods that rely on phrase segmentation
(segmentation reinsertion and hybrid reinsertion)
assume that markup only occurs at the boundaries
of phrases and that phrase segmentation is avail-
able in the first place.

In practice, these assumptions do not always
hold. For instance, reordering may take place or
the word alignment might be inaccurate and for
those cases, the framework offers flexibility. If
the placement of a markup tag is uncertain, any
method can be instructed to insert the tag anyway
at the end of the segment (aggressive behaviour)
or not to introduce this markup tag at all (conser-
vative behaviour).

An important difference between masking and
reinsertion methods is the nature of the training
data: if a masking method is used, then the training

39

data will contain mask tokens and the system de-
rived from the data will know about mask tokens.
If a reinsertion method is used, the training data
will not contain any markup. In this regard, rein-
sertion is more flexible since it can be used with
any machine translation system.

4.2 Experiments

We compare the overall performance of all 5 im-
plemented markup handling strategies by training
a series of SMT systems. The systems are identi-
cal except for their method of markup handling.

What all systems have in common is the data
sets, preprocessing (except for markup handling),
model training and translation parameters. We
have randomly divided the data sets into training
(roughly 400k segments for XLIFF data, roughly
1.7m for Euromarkup data), tuning (2000 seg-
ments) and testing (1000 segments) sets that were
fixed for all systems, the direction of translation is
always from German to English.

We train a fairly standard, phrase-based SMT
system with Moses: a maximum phrase length of
7, a 5-gram KenLM language model with mod-
ified Kneser-Ney smoothing, lexicalized reorder-
ing model, standard Moses recasing and standard
tokenization. Word alignment and symmetriza-
tion is performed by fast align and atools
(Dyer et al., 2013). The phrase and reordering ta-
ble are compressed with the cmph library. The
weights of the model are tuned with MERT (Och,
2003).

For all of the five implemented strategies, such
a system was trained, varying only the markup
handling. Since our framework allows more fine-
grained control over the algorithms, we have used
the following settings: if there is uncertainty about
where a markup tag should be placed, it must still
be inserted into the translation at the very end. The
translation of mask tokens is not enforced (“forced
decoding”), instead the decision is left to the de-
coder.

In addition to the five systems above, we have
trained the following baseline system:

• strip: markup is stripped entirely from the
training, tuning and evaluation corpus.

in order to have an estimate of the overall qual-
ity of machine translation when no markup is in-
volved.

Finally, we have measured the outcome of our
experiments automatically and manually. Auto-
matic metrics should never be used to evaluate the
performance of markup handling methods, and we
have employed them only to answer a preliminary
question: do mask tokens in the training data have
an impact on the overall quality of machine trans-
lation? It is unclear whether mask tokens affect
negatively the overall output of the system and if
that were the case, developers should refrain from
using masking to handle markup.

We measure the effect of mask tokens by com-
paring the machine-translated test set with the hu-
man reference after removing markup on both
sides. Then, the MultEval tool is used (Clark
et al., 2011) to report BLEU (Papineni et al.,
2002), METEOR (Lavie and Agarwal, 2007),
TER (Snover et al., 2006) and length scores.

While the automatic evaluation translates all
of the 1000 segments in the test set, the man-
ual evaluation only looks at the segments where
both the source and target reference have tags in
them. Markup tags were inspected manually and
assigned one of the following categories (inspired
by Joanis et al., 2013):

• good: correct markup is present, correctly
placed,

• reasonable: correct markup is present, but
needs to be moved,

• wrong: markup is broken or not present at
all,

• garbage-in: the decoder output is unintelligi-
ble and there is no proper place for markup.

In general, it is always preferable to transfer
markup tags to the target segment, even if the
correct position cannot be determined. From the
point of view of the post-editor, it is more efficient
to move a markup tag instead of going back to
the source segment. Therefore, markup tags that
are in the wrong place are described as “reason-
able”. In theory, there are scenarios where markup
tags should be dropped entirely (because all to-
kens related to them have no translation) but in
the vast majority of cases, missing markup tags are
“wrong”.

In this manual evaluation we will focus on eval-
uating the markup handling, not the performance

40

XLIFF Euromarkup
BLEU METEOR TER Length BLEU METEOR TER Length

strip 60.5 46.3 26.6 93.9 32.4 34.2 52.4 98.7

IM 61.0 46.7 26.4 94.3 30.9 33.9 53.8 99.3
AM 60.4 46.3 26.9 94.2 31.4 34.0 54.1 99.8
SR 60.5 46.4 26.8 94.9 32.6 34.5 52.1 98.7
AR 60.5 46.4 26.9 94.9 32.3 34.6 52.1 98.7
HR 60.4 46.3 26.8 94.8 32.2 34.5 52.5 99.0

Table 3: Automatic evaluation of the overall performance of markup handling methods, after markup was
removed completely. The metrics reported are BLEU (higher is better), METEOR (higher is better) and
TER (lower is better). IM = identity masking, AM = alignment masking, SR = segmentation reinsertion,
AR = alignment reinsertion, HR = hybrid reinsertion.

of the systems in general. For each data set, we
decided to look at a maximum of 200 parallel
segments from the test set that contain markup.
In the XLIFF test set, only 176 segments con-
tain markup, so all of them were evaluated, which
amounts to a total of 658 tags.

In the Euromarkup test set, we annotated the
first 200 segments that contain markup, and they
contain 584 tags in total. We only look at the low-
ercased, tokenized version of the translation out-
put, after processing the reference accordingly.

5 Results

The automatic evaluation in Table 3 shows the
overall performance of systems on “normal” text,
that is, after markup was stripped from both the
machine-translated hypothesis and the human ref-
erence. All systems trained on XLIFF data have
a performance comparable to the baseline system
that did not see any markup at all (“strip”). For in-
stance, the BLEU scores range from 60.4 to 61.0.
The systems that use a variant of reinsertion and
the “strip” system are expected to produce ex-
actly the same translation since they are trained
on the same data, but non-deterministic tuning has
caused slight fluctuations in all scores.

For the XLIFF data set, both masking systems
perform as good as the baseline system. But in
general, the scores for this data set are high and it
is clear that the data set is easy to translate. For
the Euromarkup data, the behaviour of the reinser-
tion methods does not change since they are still
very close to the baseline. However, using this
synthetic data set, masking indeed decreases the
overall quality of machine translation in terms of
BLEU scores.

Moving on to the manual evaluation, Table 4
shows that for the XLIFF data set, identity mask-
ing clearly performs best, because it places cor-
rectly 658 out of 658 tags. Alignment masking and
alignment reinsertion are not too far behind, both
have led to 4 cases of “reasonable” tags (tags are
present but in the wrong place). Hybrid reinser-
tion could not determine the correct position for
markup in 34 cases. Even segmentation reinser-
tion placed markup correctly in 582 out of 658
cases. Using XLIFF data, no tags were omitted
(“wrong”) and the decoder never produced unus-
able output (“garbage-in”).

Using Euromarkup, the “harder” data set, shifts
the picture: hybrid reinsertion performs best on
this data set as it placed correctly 437 out of
584 tags. Another 133 were in the wrong place,
but all output segments were still well-formed
and markup was not broken. Alignment mask-
ing and alignment reinsertion still work reason-
ably well, transferring markup correctly in 412
and 415 cases, respectively. Identity masking on
the other hand is now well behind, and segmenta-
tion reinsertion performed worst, as expected.

Another striking result is that both masking
methods lead to a number of “wrong” tags, i.e.
tags that make the whole segment a malformed
XML fragment. Malformed content is likely to
cause problems, depending on the application that
processes the translation output. Finally, the sys-
tems trained on Euromarkup data also produced a
few cases where the decoder output is unintelligi-
ble (i.e. not even a human annotator could have
placed markup correctly).

In summary, identity masking solved the task
of markup handling perfectly given a corpus of

41

XLIFF (tags in total: 658) Euromarkup (tags in total: 584)
good reasonable wrong garbage-in good reasonable wrong garbage-in

IM 658 0 0 0 372 167 29 16
AM 654 4 0 0 412 123 39 10
SR 582 76 0 0 252 318 0 14
AR 654 4 0 0 415 148 7 14
HR 624 34 0 0 437 133 0 14

Table 4: Manual evaluation of the performance of markup handling methods, by tags. IM = identity
masking, AM = alignment masking, SR = segmentation reinsertion, AR = alignment reinsertion, HR =
hybrid reinsertion.

short and relatively monotone segments. In that
case, both alignment masking and alignment rein-
sertion are viable alternatives. However, the sec-
ond, synthetic data set with longer segments and
“harder” markup emphasizes better the differences
between the methods. Hybrid reinsertion has out-
performed all other methods on the second data
set. Alignment reinsertion and alignment masking
are still viable, but identity masking struggled with
the second data set.

6 Discussion

In Section 6.1, we discuss whether masking meth-
ods for markup handling have merit. Section 6.2
discusses the performance of all reinsertion meth-
ods.

6.1 Masking methods
Mask tokens in the training data can lead to a
decrease in overall translation quality and thus
“make the translation itself worse” (Joanis et al.,
2013, 78). More concretely, Table 3 shows that
on the Euromarkup data set, masking systems
perform worse (e.g. BLEU score of around 31)
than the baseline and the reinsertion systems (e.g.
BLEU score of around 32). One possible explana-
tion is that mask tokens in the training data poten-
tially dilute the phrase statistics derived from that
corpus. In the training data, a segment like

i am delighted to hear that

can be interrupted by mask tokens in arbitrary
ways:

i am MASK delighted MASK
MASK to hear MASK that

MASK i MASK am delighted
MASK to hear that MASK

But at translation time, the same phrase can con-
tain masks in different places:

i am MASK MASK delighted to
MASK hear MASK that

and since this sequence of words is unseen, the
segment will be broken up into smaller phrases,
despite the fact that the underlying phrase i
am delighted to hear that is actually
known to the system and could be translated as a
single phrase.

This does not hold in general, since we only
observed this effect in synthetic data and there-
fore, this finding does not invalidate masking as
a whole. Still, we would only want to tolerate
such a degradation in overall translation quality
if it comes with superior markup handling perfor-
mance.

Identity masking worked well on the XLIFF
data set, but not on the Euromarkup data. The
method is very lean because it does not rely on any
kind of auxiliary information (such as phrase seg-
mentation or word alignment), but also it is unable
to cope with any amount of reordering on a funda-
mental level. Unique IDs are assigned to markup
tags according to their position in the segment go-
ing from left to right, and therefore, reordering is
not modelled at all. This means that if translation
involves reordering of markup tags, identity mask-
ing will fail (see Table 5 for an example).

The reordering problem is overcome by align-
ment masking, where reordering is explicitly mod-
elled and word alignment is used as a proxy. Han-
dling the markup present in the XLIFF data set did
not cause any difficulty for alignment masking and
word alignment was sufficient to solve the prob-
lem in all but 4 cases. On the Euromarkup data,
alignment masking proved to be robust and still
placed correctly most tags. Using word alignment

42

source segment Leider <i/> war <g/> dies von kurzer Dauer.
target reference sadly , it <i/> was <g/> short @-@ lived .

identity masking unfortunately , <i/> this <g/> was a short time .
alignment masking unfortunately , this <i/> was <g/> a short time .
segmentation reinsertion <i/> <g/> unfortunately , this was a short time .

Table 5: Examples of markup handling that show 1) the inability of identity masking to deal properly
with markup that needs reordering and 2) that segmentation reinsertion can only insert markup at phrase
boundaries.

enables the unmasking algorithm to track reorder-
ing, at the cost of depending on word alignment.

Both identity masking and alignment masking
have led to a number of cases where the placement
of tags resulted in the whole segment being mal-
formed XML. On the one hand, this is because the
default behaviour of the algorithms is to insert tags
at the very end of the segment if the correct place
cannot be determined. If, for instance, an opening
element tag is placed at the very end in this man-
ner, the whole segment will be malformed. On
the other hand, both masking methods do not un-
derstand the notion of tag pairs (pairs of opening
and closing tags) – which is necessary to guarantee
that the output will be well-formed XML.

A clear advantage of masking is that it is not
limited to markup at all: anything that can be de-
scribed with a regular expression can be masked
and unmasked in our framework3. In this respect,
masking methods are more versatile than reinser-
tion methods and for certain use cases, this might
outweigh the limitations we have mentioned.

6.2 Reinsertion methods

Looking at the results on the XLIFF data, seg-
mentation reinsertion cannot be said to have failed
the task of reinserting markup. Quite on the con-
trary, it is remarkable that segmentation reinser-
tion could act on the markup in such a precise way,
given that phrase segmentation is imprecise to be-
gin with: it can only insert tags at phrase bound-
aries, which is bound to lead to errors (see Table 5
for an example). A further analysis of the XLIFF
data revealed that markup is frequently present at
the very beginning and very end of segments. If
there is no reordering, markup at the beginning
and end of segments can always be inserted in the
right place by segmentation reinsertion, regardless
of phrase boundaries.

3Incidentally, this is also the explanation for why masking
methods do not insert tags in pairs: most strings that can be
masked do not come in pairs.

Still, segmentation reinsertion is very limited
and the results on the Euromarkup data set confirm
that it leads to a very high number of misplaced
(“reasonable”) tags: 318 out of 584 tags were not
placed correctly. In fact, segmentation reinsertion
is downright paradoxical: it works better if phrases
are short, while longer phrases typically lead to
better translations, and by extension, segmentation
reinsertion works well if the machine translation
system is feeble. If word alignment is available,
there is probably no reason to implement or use
segmentation reinsertion at all.

The performance of alignment reinsertion is
very similar to alignment masking, which is not
surprising, given that they make use of the same
additional information from the decoder. On the
XLIFF data set, alignment reinsertion solves the
problem almost perfectly, all scores are identical
to alignment masking. On the Euromarkup data
set, the number of correctly placed tags (“good”
tags) is very similar, but alignment masking is
prone to break markup structures, while alignment
reinsertion is not. The alignment reinsertion algo-
rithm generally keeps together pairs of tags and
actively avoids placements that would break the
markup, yet not breaking the markup is not a hard
requirement in our implementation.

Turning to the most promising strategy, hybrid
reinsertion coped well with both data sets. On
the XLIFF data, it placed correctly 624 out of
658 markup tags, but more importantly, it out-
performed all other methods on the Euromarkup
data. A possible explanation for its superior per-
formance is that, as a hybrid method, it can over-
come deficiencies in phrase segmentation with
word alignment and vice versa. Similar to the
other reinsertion methods, hybrid reinsertion also
models pairs of tags explicitly and ensures the
well-formedness of the segment.

In addition, our experiments very likely un-
derestimate the method presented in Joanis et al.
(2013) since there, “some care is taken to preserve

43

the source order when multiple tags end up be-
tween the same two target language words” (ibid.,
78). Our implementation does not guarantee the
order of adjacent tags.

The strength of reinsertion in general is that it
can be used with any machine translation system,
while masking must be used together with a sys-
tem trained on mask tokens. If masked segments
are given to a system that did not see mask to-
kens during training, the results are quite unpre-
dictable. In the case of phrase-based SMT sys-
tems, this would likely lead to all mask tokens be-
ing moved to the end of the segment, because lan-
guage models prefer grouping together unknown
words (Fishel and Sennrich, 2014).

Put another way, the decision to use masking
as the markup handling method must be made
at training time, reinsertion can be introduced at
translation time. In both cases, the nature of the
decoder is another limiting factor: systems that
cannot report phrase segmentation make it impos-
sible to use segmentation reinsertion, but also rule
out the best-performing method, hybrid reinser-
tion. Word alignment, however, can be supplied
by an additional tool in case the decoder is unable
to report this information. This means that meth-
ods relying on word alignment are broadly appli-
cable across machine translation paradigms.

7 Conclusion

We have presented work on handling markup in
statistical machine translation. In our experiments
we have compared the usefulness of five differ-
ent markup handling strategies. The main find-
ings are: hybrid reinsertion outperformed all other
methods and was found to cope best with the
markup in a synthetic data set. Alignment mask-
ing and alignment reinsertion also placed correctly
two out of three tags and should be regarded as vi-
able alternatives.

However, alignment masking led to more cases
of malformed XML and masking methods can
only be used with systems that are trained with
mask tokens. For new projects that have to de-
cide on a method to handle markup we therefore
recommend to use hybrid reinsertion (if phrase
segmentation is available) or alignment reinsertion
(otherwise).

In recent years, neural approaches have dom-
inated the field of machine translation and it is
therefore worth considering whether our results

carry over to neural machine translation systems.
Encoder-decoder networks with attention (Bah-
danau et al., 2014), a popular architecture for
translation, do not report phrase segmentation of
course, which rules out both segmentation rein-
sertion and hybrid reinsertion. On the other hand,
alignment information can still be derived from at-
tention weights.

Future work could investigate whether align-
ment masking or alignment reinsertion are fea-
sible in the context of neural machine transla-
tion. But neural networks also lend themselves to
more innovative experiments: anecdotal evidence
suggests that character-level recurrent neural net-
works (Hochreiter and Schmidhuber, 1997) are ca-
pable of generating well-formed markup4. This is
a remarkable achievement and to our knowledge,
this property of neural networks has never been in-
vestigated in earnest.

Also, our implementations currently do not
properly model two important aspects of the data:
whitespace inside and outside of XML elements is
not handled properly and our algorithms never re-
gard dropping tags from the translation as a correct
action. Addressing those two shortcomings would
also be a worthwhile continuation of our work.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments and suggestions.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Jonathan H Clark, Chris Dyer, Alon Lavie, and Noah A
Smith. 2011. Better hypothesis testing for statistical
machine translation: Controlling for optimizer insta-
bility. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies: short papers-Volume
2. Association for Computational Linguistics, pages
176–181.

Jinhua Du, Johann Roturier, and Andy Way. 2010.
TMX markup: a challenge when adapting smt to
the localisation environment. In EAMT - 14th An-
nual Conference of the European Association for
Machine Translation. European Association for Ma-
chine Translation.
4See http://karpathy.github.io/2015/05/

21/rnn-effectiveness/.

44

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of ibm model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Atlanta, Georgia, pages 644–648.
http://www.aclweb.org/anthology/N13-1073.

Mark Fishel and Rico Sennrich. 2014. Handling tech-
nical OOVs in SMT. In Proceedings of The Seven-
teenth Annual Conference of the European Associ-
ation for Machine Translation (EAMT). pages 159–
162.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Tomáš Hudı́k and Achim Ruopp. 2011. The integration
of Moses into localization industry. In 15th Annual
Conference of the EAMT . pages 47–53.

Eric Joanis, Darlene Stewart, Samuel Larkin, and
Roland Kuhn. 2013. Transferring markup tags in
statistical machine translation: A two-stream ap-
proach. In Sharon O’Brien, Michel Simard, and Lu-
cia Specia, editors, Proceedings of MT Summit XIV
Workshop on Post-editing Technology and Practice.
pages 73–81.

Philipp Koehn. 2005. Europarl: A parallel corpus
for statistical machine translation. In Proceedings
of MT Summit. volume 5, pages 79–86. http://mt-
archive.info/MTS-2005-Koehn.pdf.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Chris-
tine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst.
2007. Moses: Open source toolkit for statisti-
cal machine translation. In Proceedings of the
45th Annual Meeting of the ACL on Interactive
Poster and Demonstration Sessions. pages 177–180.
http://www.aclweb.org/anthology/P07-2045.pdf.

Alon Lavie and Abhaya Agarwal. 2007. METEOR: An
automatic metric for mt evaluation with high levels
of correlation with human judgments. In Proceed-
ings of the Second Workshop on Statistical Machine
Translation. pages 228–231.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the 41st Annual Meeting on Association for Com-
putational Linguistics-Volume 1. pages 160–167.
http://www.aclweb.org/anthology/P03-1021.pdf.

Sharon OBrien. 2011. Towards predicting post-editing
productivity. Machine translation 25(3):197–215.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of

the 40th annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 311–318.

Carla Parra Escartı́n and Manuel Arcedillo. 2015. Ma-
chine translation evaluation made fuzzier: A study
on post-editing productivity and evaluation metrics
in commercial settings. In Proceedings of MT Sum-
mit XV . Association for Machine Translation in the
Americas, pages 131–144.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of Association for Machine Transla-
tion in the Americas. pages 223–231.

Arda Tezcan and Vincent Vandeghinste. 2011. SMT-
CAT integration in a Technical Domain: Handling
XML Markup Using Pre & Post-processing Meth-
ods. Proceedings of EAMT 2011 .

Ventsislav Zhechev and Josef van Genabith. 2010.
Seeding statistical machine translation with
translation memory output through tree-based
structural alignment. In Proceedings of the
4th Workshop on Syntax and Structure in
Statistical Translation. Coling 2010 Organiz-
ing Committee, Beijing, China, pages 43–51.
http://www.aclweb.org/anthology/W10-3806.

Appendix

Listings 1, 2 and 3 show how different compo-
nents of mtrain can be used to pre- and post-
process markup. Although mtrain is a full-
fledged wrapper around the Moses framework, its
markup handling modules can also be used as
standalone components.

Both masking methods are imple-
mented in the module mtrain.prepro
cessing.masking, while three rein-
sertion methods are available in mtrain.
preprocessing.reinsertion.

45

1 >>> from mtrain.preprocessing.masking import Masker
2 >>> masker = Masker(’alignment’)
3 >>> masked_segment = ’Message moi a __email__ ou __xml__ __url__ __xml__’
4 # after translation
5 >>> translated_segment = ’Email me at __email__ or __xml__ __url__ __xml__’
6 >>> mapping = [(’__email__’, ’an@ribute.com’),
7 (’__url__’, ’http://www.statmt.org’),
8 (’__xml__’, ’<a>’), (’__xml__’, ’’)]
9 >>> alignment = {0:[0], 1:[1], 2:[2], 3:[3], 4:[4], 5:[5], 6:[6], 7:[7]}

10 >>> masker.unmask_segment(masked_segment, translated_segment, mapping, alignment)
11 ’Email me at an@ribute.com or <a> http://www.statmt.org ’

Listing 1: A case of successful alignment masking and unmasking. The unmasking step crucially de-
pends on alignment information reported by the decoder. Unmasking succeeds in this case because all
mask tokens are present in the translation and because the alignment is perfect.

1 >>> from mtrain.preprocessing.reinsertion import Reinserter
2 >>> reinserter = Reinserter(’alignment’)
3 >>> source_segment = ’Hello <g id="1" ctype="x-bold;"> World ! </g>’
4 # markup removal, then translation...
5 >>> translated_segment = ’Hallo Welt !’
6 >>> alignment = {0:[0], 1:[1], 2:[2]}
7 >>> reinserter._reinsert_markup_alignment(source_segment, translated_segment,
8 alignment)
9 ’Hallo <g ctype="x-bold;" id="1"> Welt ! </g>’

Listing 2: Alignment reinsertion based on the original source segment that contains markup, the trans-
lated segment and, most importantly, the alignment between the source segment without markup and the
translation.

1 >>> from mtrain.preprocessing.reinsertion import Reinserter
2 >>> reinserter = Reinserter(’hybrid’)
3 >>> source_segment = ’Hello <g id="1" ctype="x-bold;"> World ! </g>’
4 # markup removal, then translation...
5 >>> translated_segment = ’Hallo Welt !’
6 >>> alignment = {0:[0], 1:[1], 2:[2]}
7 >>> segmentation = {(0,1):(0,1), (2,2):(2,2)}
8 >>> reinserter._reinsert_markup_full(source_segment, translated_segment,
9 segmentation, alignment)

10 ’Hallo <g ctype="x-bold;" id="1"> Welt ! </g>’

Listing 3: Hybrid reinsertion given perfect segmentation and alignment.

46

