
Proceedings of the First Workshop on Subword and Character Level Models in NLP, pages 148–153,
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics.

Sub-character Neural Language Modelling in Japanese

Viet Nguyen Julian Brooke Timothy Baldwin
School of Computing and Information Systems

The University of Melbourne

vn@student.unimelb.edu.au, jabrooke@unimelb.edu.au, tb@ldwin.net

Abstract

In East Asian languages such as
Japanese and Chinese, the semantics
of a character are (somewhat) reflected
in its sub-character elements. This pa-
per examines the effect of using sub-
characters for language modeling in
Japanese. This is achieved by decom-
posing characters according to a range
of character decomposition datasets,
and training a neural language model
over variously decomposed character
representations. Our results indicate
that language modelling can be im-
proved through the inclusion of sub-
characters, though this result depends
on a good choice of decomposition
dataset and the appropriate granular-
ity of decomposition.

1 Introduction
The Japanese language makes use of

Chinese-derived ideographs (“kanji”) which
contain sub-character elements (“bushu”) that
to varying degrees reflect the semantics of the
character. For example, the character 鯨 (ku-
jira “whale”) consists of two sub-characters:
⿂ (sakana “fish”) and京 (kyou “capital city”).
Similarly, the character 鮃 (hirame “floun-
der”) consists of the sub-characters⿂ (sakana
“fish”) and 平 (hira “something broad and
flat”). Here, the sub-character ⿂ (sakana
“fish”) is a semantically significant element
which appears in characters relating to marine
life. Current Japanese language models do not
capture sub-character information, and hence
lack the ability to capture such generalisations.

A key limitation of word-based language
modelling is the tendency to produce poor esti-

mations for rare or OOV (out-of-vocabulary)
words, and character-based language models
have been shown to solve some of the sparsity
problem in English by modeling how words
are constructed (Graves, 2013). We take
inspiration from this work, but observe for
Japanese that since the kanji portion of the
Japanese writing system contains thousands
rather than dozens of characters, a character-
based language model will still be susceptible
to sparsity. Given that a large number of
Japanese characters can be decomposed into
sub-characters, we examine the question of
whether sub-character language models can
achieve similar gains in language model qual-
ity to character language models in English.

In this paper we train sub-character lan-
guage models for Japanese based on decom-
positions available in several existing kanji
datasets. Our results suggest that decompos-
ing characters is of value, but that the results
are sensitive to the nature and granularity of
the decomposition.

2 Kanji Datasets

In order to investigate the usefulness of sub-
character decomposition for language models,
we need some way of deriving these bushu from
kanji. Here, we consider four kanji datasets
that provide decompositions for kanji char-
acters: GlyphWiki, IDS, KanjiVG, and
KRADFILE. An example kanji decomposi-
tion under the four datasets is provided in Fig-
ure 1.

2.1 GlyphWiki
GlyphWiki1 is a community-driven wiki

that stores information about kanji characters
1http://glyphwiki.org

148



賂

⾙

⽬

各

⼝
(a) GlyphWiki

賂

⾙

⽬ ⼋

各

⼡ ⼝
(b) IDS

賂

⾙

⽬

各

⼡ ⼝
(c) KanjiVG

賂

⾙ ⽬ ハ ⼝ ⼡
(d) KRADFILE

Figure 1: A visualisation of a full decomposition of the character 賂 (mainai “bribe”) according
to the four kanji datasets.

such as their decompositions into bushu, and
their usage as bushu in other kanji. Decompo-
sition information in GlyphWiki is collected
by user contribution.

2.2 IDS
IDS2 is based on an open source project

which uses character processing methods to
create descriptions of character components
(Morioka and Wittern, 2002). The decomposi-
tions in IDS are generated automatically, us-
ing character topic maps to draw associations
between kanji and their constituent elements.

In Figure 1b we see that IDS provides a
more detailed breakdown than GlyphWiki,
including two bushu that are not found in
GlyphWiki. At the first level of decompo-
sition, though, they are identical.

2.3 KanjiVG
KanjiVG3 is a collection of images that

provides information about kanji and their
decompositions. Decomposition information
for KanjiVG is derived from the analysis of
strokes used to write kanji characters (Apel
and Quint, 2004). Although KanjiVG does
allow for the decomposition of characters down

2https://github.com/cjkvi/cjkvi-ids
3http://kanjivg.tagaini.net/

to the stroke level, we exclude all strokes in
this research as we do not consider strokes to
reflect semantic meaning.

Note in Figure 1c that the decomposition
is different to IDS, because KanjiVG spec-
ifies that the bottom elements of the bushu
character ⾙ (kai “shell”) are strokes rather
than bushu, meaning they are excluded from
decomposition.

2.4 KRADFILE
KRADFILE4 represents a flat decompo-

sition of kanji into their constituent bushu.
One key aspect of KRADFILE that differs
from the other datasets is the use of a rela-
tively limited set of bushu. Additionally, un-
like the other datasets, KRADFILE does not
list bushu in an order consistent with their ap-
pearance in the kanji. Furthermore, KRAD-
FILE provides a single exhaustive decompo-
sition for all kanji characters and their bushu.
Because of this, we consider KRADFILE to
have only a single, indivisible layer of decom-
position.

2.5 Dataset Comparison
Table 1 shows descriptive statistics for the

four datasets and their decompositions.
4http://users.monash.edu/~jwb/kradinf.html

149



GlyphWiki IDS KanjiVG KRADFILE

Characters 18761 20970 6744 12156
Unique bushu 2834 3104 1327 254

Average bushu per kanji 1.9 2.1 2.2 4.5
Average branching factor 1.5 2.1 1.9 4.5

Average depth 2.7 3.1 2.9 1.0

Table 1: Statistics for the four kanji datasets

The Characters row of the table describes
the total number of characters in each dataset
that have a decomposition. KanjiVG con-
tains a much smaller number of kanji than the
other two datasets, although note that in mod-
ern Japanese, kanji is generally restricted to
2,136 jouyou kanji (Bond and Baldwin, 2016).
All four datasets have full coverage over our
corpus.

Unique bushu describes the number of char-
acters that have been used as bushu. In gen-
eral, if a kanji character is found in the de-
composition of another kanji character, then
it is counted as a bushu. While most of the
datasets use thousands of bushu, KRADFILE
is notable in that it uses a much smaller bushu
set. With respect to Average bushu per kanji,
there is strong similarity between Glyph-
Wiki, IDS and KanjiVG, but KRADFILE
produces almost double the number of bushu
because the decompositions are exhaustive.

Average branching factor describes the av-
erage number of bushu found through exhaus-
tively decomposing over every kanji and its
bushu (an example of exhaustive decomposi-
tion — which we call “deep decomposition”
— can be seen in Figure 2). Because KRAD-
FILE provides a single layer of decomposition
that is complete and indivisible, we cannot de-
compose each bushu any further. Therefore,
KRADFILE has an average depth of 1.

3 Experimental Setup

For our experiments, we use version 1.5 of
the NAIST text corpus (Iida et al., 2007),
a collection of Japanese newspaper articles
which is widely used in Japanese NLP research
(Imamura et al., 2009; Sasano and Kurohashi,
2011). The corpus consists of roughly 1.7 mil-
lion character tokens, of which roughly 42%
are kanji. To build and test our models we

use 5-fold cross-validation.
Our language models are standard neural

network models, implemented in Tensorflow;
they consist of a embedding layer, with em-
beddings for each character (including kanji,
bushu, and other elements of the Japanese
writing systems) which are learned during
training, a standard unidirectional LSTM
(Sundermeyer et al., 2012), and a layer which
maps the output of the LSTM to a vector rep-
resenting the probability of the next charac-
ter; the hidden (embedding) size of the LSTM
for our experiments is 128. We train the lan-
guage model by minimizing the cross-entropy
between the output probabilities and the one-
hot vector corresponding to the correct an-
swer, using the Adam optimizer with a batch
size of 128 and a learning rate of 0.002.

In addition to the four kanji datasets, we
consider two kinds of decomposition: shallow
and deep. Shallow decomposition refers to us-
ing only the first layer of decomposition of a
kanji character, whereas deep expansion refers
to an exhaustive decomposition of the kanji
and all of its bushu. We use these two meth-
ods to explore whether semantic information is
reflected in deeper levels of decomposition. In
general, we aim to compare the performance of
a language model based on the way kanji are
decomposed and the depth of their decompo-
sitions.

Figure 2 includes examples of both shal-
low and deep decompositions, for kanji includ-
ing 賂 (mainai “bribe”) from Figure 1b. De-
composition is done in a left-to-right in-order
traversal.

It is possible for multiple kanji to share
the same bushu. For example, according to
KanjiVG, the characters 由 (yoshi “cause/
reason”), 甲 (kou “carapace/shell”), and 申
(saru “monkey”) are decomposed into ⽥ (ta

150



Unmodified: 彼は賂を取った。
Shallow: ⼻⽪ 彼 は ⾙各 賂 を ⽿⼜ 取 った。
Deep: ⺅⼻ ⽪ 彼 は ⽬⾙ ⼡⼝各 賂 を ⽿⼜ 取 った。

Figure 2: Examples of shallow and deep decomposition using KanjiVG, with original characters
highlighted in red. Boxes denote characters that have been decomposed.

k Baseline
GlyphWiki IDS KanjiVG

KRADFILE
Shallow Deep Shallow Deep Shallow Deep

1 77.76 34.31 40.68 37.11 47.75 40.04 47.04 160.94
2 38.17 33.34 37.52 33.75 48.54 35.91 45.20 89.17
3 59.41 39.72 49.02 44.73 63.69 45.95 57.79 99.79
4 70.40 50.70 61.68 50.79 62.00 50.79 64.68 125.67
5 60.05 50.83 52.65 52.12 68.58 53.03 71.00 155.00

Average 61.16 41.78 48.31 43.70 58.11 44.74 57.14 126.11

Table 2: Language model perplexity based on the different decompositions

“rice field”) and ⼁ (tatebou “vertical line”).
Because of this, using just the decomposition
of a character can actually lead to a loss of
information. Thus, we postpend all decompo-
sition sequences with the original kanji char-
acter to preserve the mapping of bushu to its
original kanji.

We evaluate based on perplexity, normal-
izing the product of the probability of the
(sub-)characters in our test set by the char-
acter length of the corpus (lower perplexity is
better). Because decomposing characters af-
fects the superficial length of the corpus, how-
ever, we note that in the cases of decomposi-
tion we are normalizing using the original (un-
decomposed) corpus length in all cases, and
not the decomposed token length. This re-
flects the fact that by adding decompositions
of a character we are not really adding new
text to the corpus. Both regular and decom-
posed language models in fact predict exactly
the original contents of the corpus, but for
the decomposed models the uncertainty asso-
ciated with each kanji is distributed among the
predictions of its bushu (and the postpended
kanji), and can be retrieved simply by multi-
plying all the individual probabilities together.

4 Results
Table 2 shows the perplexity for each of the

sub-character language models, for the two

possible decomposition depths, as compared
to a baseline where no decomposition occurs.
We report perplexity for each fold of our 5-fold
cross-validation, as well as the average.

First, we note that while most of the sub-
character language models showed some im-
provement over the undecomposed baseline,
KRADFILE performed substantially worse,
with a mean perplexity score almost twice as
high as that of the baseline. One potential
problem with KRADFILE is that it provides
only deep, exhaustive decompostions. Other
limitations of using KRADFILE for language
modelling are the lack of order in how bushu
are arranged, and the fact that the bushu are
limited to a specific set of characters. We can
conclude that it is not a useful dataset for this
purpose.

The best-performing dataset was Glyph-
Wiki, with shallow decomposition. Not only
was this configuration markedly better than
the baseline on average, it also beat ev-
ery other option on every fold of our cross-
validation. The results for KanjiVG and IDS
were similar, but slightly worse. Interestingly,
based on the statistics in Table 1, Glyph-
Wiki is the most conservative of the datasets
in terms of the average number of decomposed
bushu. We also found that the best results
all involved shallow decomposition, which may
reflect the fact that the most semantically-

151



salient bushu tend to appear at the first level
of composition; this result was also consistent
across folds for IDS and KanjiVG. Taken to-
gether, these results indicate that some decom-
position is useful for building Japanese lan-
guage models, but too much decomposition is
not advisable.

5 Related Work

Working at the character level has proven
useful in language modelling in English, as
well as related applications such as build-
ing word representations (Graves, 2013; Ling
et al., 2015). With regards to ideographic
languages, there is work in information re-
trieval that has considered the appropriate
representation for indexing; the focus has typi-
cally been word versus character (Kwok, 1997;
Baldwin, 2009), but Fujii and Croft (1993)
considered (though ultimately rejected) sub-
character based indexing. In terms of in-
vestigations of the usefulness of sub-character
representations for neural network models in
ideographic languages, relevant work includes
recent papers that use sub-character infor-
mation to assist in the training of charac-
ter embeddings for Chinese (Sun et al., 2014;
Li et al., 2015; Yin et al., 2016) or build
sub-character embeddings directly (Shi et al.,
2015), demonstrating that sub-character infor-
mation is useful for representing semantics in
Chinese. However, our work differs not only
in language and task, but also in our use of
decomposition, since the work done in Chi-
nese has primarily focused on a single semanti-
cally relevant sub-character (known as the rad-
ical), despite the fact that other sub-characters
do provide additional semantic information in
some characters.

6 Conclusion and Future Work

In this paper we have explored the idea of
decomposing Japanese kanji to improve lan-
guage modeling using neural network mod-
els. Our results indicate that it is possible
to improve the predictive power of a language
model using decomposition, as measured by
perplexity, but the effectiveness of this does
depend on the properties of the kanji database:
whereas GlyphWiki is a useful resource for
our purpose, KRADFILE is clearly not.

With respect to future work, we have thus
far explored only a subset of the options
with regards to the decomposition and or-
dering of sub-characters, and we would also
like to consider more sophisticated models
which integrate the structure of the kanji in-
stead of flattening it, and applying our sub-
character modeling to other sequential tasks
such as part-of-speech tagging. Given the cor-
respondence between kanji and Chinese char-
acters, a comparison of the two languages
with regards to the usefulness of decomposi-
tion would be worth exploring. We are also in-
terested in performing an intrinsic evaluation
of the character- and bushu-level embeddings
learned through language modelling, e.g. rela-
tive to character-level similarity datasets such
as that of Yencken and Baldwin (2006).

References
Ulrich Apel and Julien Quint. 2004. Building a

graphetic dictionary for Japanese kanji: char-
acter look up based on brush strokes or stroke
groups, and the display of kanji as path data. In
Proceedings of the Workshop on Enhancing and
Using Electronic Dictionaries. Geneva, Switzer-
land, pages 36–39.

Timothy Baldwin. 2009. The hare and the tortoise:
speed and accuracy in translation retrieval. Ma-
chine Translation 23(4):195–240.

Francis Bond and Timothy Baldwin. 2016. In-
troduction to Japanese computational linguis-
tics. In Francis Bond, Timothy Baldwin, Ken-
taro Inui, Shun Ishizaki, Hiroshi Nakagawa, and
Akira Shimazu, editors, Readings in Japanese
Natural Language Processing, CSLI Publica-
tions, Stanford, USA, pages 1–28.

Hideo Fujii and W. Bruce Croft. 1993. A com-
parison of indexing techniques for Japanese text
retrieval. In Proceedings of the 16th Annual
International ACM SIGIR Conference on Re-
search and Development in Information Re-
trieval. Pittsburgh, USA, pages 237–246.

Alex Graves. 2013. Generating sequences with re-
current neural networks. CoRR abs/1308.0850.

Ryu Iida, Mamoru Komachi, Kentaro Inui, and
Yuji Matsumoto. 2007. Annotating a Japanese
text corpus with predicate-argument and coref-
erence relations. In Proceedings of the Linguistic
Annotation Workshop. Prague, Czech Republic,
pages 132–139.

Kenji Imamura, Kuniko Saito, and Tomoko Izumi.
2009. Discriminative approach to predicate-
argument structure analysis with zero-anaphora

152



resolution. In Proceedings of the ACL-IJCNLP
2009 Conference Short Papers. Singapore, pages
85–88.

Kui-Lam Kwok. 1997. Comparing representations
in Chinese information retrieval. In Proceedings
of the 20th Annual International ACM SIGIR
Conference on Research and Development in In-
formation Retrieval. Philadelphia, USA, pages
34–41.

Yanran Li, Wenjie Li, Fei Sun, and Sujian Li. 2015.
Component-enhanced Chinese character embed-
dings. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing. Lisbon, Portugal, pages 829–834.

Wang Ling, Chris Dyer, Alan W Black, Isabel
Trancoso, Ramon Fermandez, Silvio Amir, Luis
Marujo, and Tiago Luis. 2015. Finding func-
tion in form: Compositional character models
for open vocabulary word representation. In
Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing.
Lisbon, Portugal, pages 1520–1530.

Tomohiko Morioka and Christian Wittern. 2002.
Moji Dētabēsu ni Motoduku Moji Object Gijutsu
no Kōchiku. In Proceedings of IPSJ 2002. (in
Japanese).

Ryohei Sasano and Sadao Kurohashi. 2011.
A discriminative approach to Japanese zero
anaphora resolution with large-scale lexicalized
case frames. In Proceedings of the 5th Inter-
national Joint Conference on Natural Language
Processing (IJCNLP 2011). Chiang Mai, Thai-
land, pages 758–766.

Xinlei Shi, Junjie Zhai, Xudong Yang, Zehua Xie,
and Chao Liu. 2015. Radical embedding: Delv-
ing deeper to Chinese radicals. In Proceedings
of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language
Processing. Beijing, China, pages 594–598.

Yaming Sun, Lei Lin, Nan Yang, Zhenzhou Ji, and
Xiaolong Wang. 2014. Radical-enhanced Chi-
nese character embedding. In Proceedings of
the 21st International Conference on Neural In-
formation Processing (ICONIP 2014). Kuching,
Malaysia, pages 279–286.

Martin Sundermeyer, Ralf Schlüter, and Hermann
Ney. 2012. LSTM neural networks for language
modeling. In Proceedings of the 13th Annual
Conference of the International Speech Commu-
nication Association (Interspeech 2012). Port-
land, USA, pages 194–197.

Lars Yencken and Timothy Baldwin. 2006. Mod-
elling the orthographic neighbourhood for
Japanese kanji. In Proceedings of the 21st In-
ternational Conference on the Computer Pro-
cessing of Oriental Languages (ICCPOL 2006).
Singapore, pages 321–332.

Rongchao Yin, Quan Wang, Rui Li, Peng Li,
and Bin Wang. 2016. Multi-granularity Chi-
nese word embedding. In Proceedings of the
2016 Conference on Empirical Methods in Nat-
ural Language Processing. Austin, USA, pages
981–986.

153


