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Abstract

Language models for agglutinative lan-
guages have always been hindered in past
due to myriad of agglutinations possible
to any given word through various af-
fixes. We propose a method to diminish the
problem of out-of-vocabulary words by in-
troducing an embedding derived from syl-
lables and morphemes which leverages the
agglutinative property. Our model outper-
forms character-level embedding in per-
plexity by 16.87 with 9.50M parameters.
Proposed method achieves state of the art
performance over existing input prediction
methods in terms of Key Stroke Saving
and has been commercialized.

1 Introduction

Recurrent neural networks (RNNs) exhibit dy-
namic temporal behavior which makes them ideal
architectures to model sequential data. In recent
times, RNNs have shown state of the art perfor-
mance on tasks of language modeling (RNN-LM),
beating the statistical modeling techniques by a
huge margin (Mikolov et al., 2010; Lin et al.,
2015; Kim et al., 2016; Miyamoto and Cho, 2016).
RNN-LMs model the probability distribution over
the words in vocabulary conditioned on a given in-
put context. The sizes of these networks are pri-
marily dependent on their vocabulary size.

Since agglutinative languages, such as Korean,
Japanese, and Turkish, have a huge number of
words in the vocabulary, it is considerably hard
to train word-level RNN-LM. Korean is aggluti-
native in its morphology; words mainly contain
different morphemes to determine the meaning of
the word hence increasing the vocabulary size for
language model training. A given word in Korean
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could have similar meaning with more than 10
variations in the suffix as shown in Table 1.

Various language modeling methods that rely
on character or morpheme like segmentation of
words have been developed (Ciloglu et al., 2004;
Cui et al., 2014; Kim et al., 2016; Mikolov et al.,
2012; Zheng et al., 2013; Ling et al., 2015). (Chen
et al., 2015b) explored the idea of joint train-
ing for character and word embedding. Morpheme
based segmentation has been explored in both
Large Vocabulary Continuous Speech Recognition
(LVCSR) tasks for Egyptian Arabic (Mousa et al.,
2013) and German newspaper corpus (Cotterell
and Schütze, 2015). (Sennrich et al., 2015) used
subword units to perform machine translation for
rare words.

Morpheme distribution has a relatively smaller
frequency tail as compared to the word distribu-
tion from vocabulary, hence avoids over-fitting for
tail units. However, even with morpheme segmen-
tation the percentage of out-of-vocabulary (OOV)
words is significantly high in Korean. Character
embedding in Korean is unfeasible as the con-
text of the word is not sufficiently captured by
the long sequence which composes the word. We
select as features syllable-level embedding which
has shorter sequence length and morpheme-level
embedding to capture the semantics of the word.

We deploy our model for input word predic-
tion on mobile devices. To achieve desirable per-
formance we are required to create a model that
has as small as possible memory and CPU foot-
print without compromising its performance. We
use differentiated softmax (Chen et al., 2015a) for
the output layer. This method uses more param-
eters for the words that are frequent and less for
the ones that occur rarely. We achieve better per-
formance than existing approaches in terms of Key
Stroke Savings (KSS) (Fowler et al., 2015) and our
approach has been commercialized.
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Word Morpheme English
그가 그 +가 he
그는 그 +는 he
그에게 그 +에게 to him
그도 그 +도 him(he) also
그를 그 +를 him
그의 그 +의 his

Table 1: Example of variation of a base word ‘그
(He)’. It can have more than 10 variation forms
according to its postposition.

2 Proposed Method

Following sections propose a model for agglutina-
tive language. In Section 2.1 we discuss the ba-
sic architecture of the model as detailed in Fig-
ure 1, followed by Section 2.2 that describes our
embeddings. In Section 2.3 we propose an adapta-
tion of differentiated softmax to reduce the num-
ber of model parameters and improve computation
speed.

2.1 Language Model
Overall architecture of our language model con-
sists of a) embedding layer, b) hidden layer, c)
softmax layer. Embedding comprises of syllable-
level and morpheme-level embedding as described
in Section 2.2. We combine both embedding fea-
tures and pass them through a highway network
(Srivastava et al., 2015) which act as an input to
the hidden layers. We use a single layer of LSTM
as hidden units with architecture similar to the
non-regularized LSTM model by (Zaremba et al.,
2014). The hidden state of the LSTM unit is affine-
transformed by the softmax function, which is a
probability distribution over all the words in the
output vocabulary.

2.2 Syllable & Morphological Embedding
We propose syllable-level embedding that attenu-
ates OOV problem. (Santos and Zadrozny, 2014;
Kim et al., 2016) proposed character aware neural
networks using convolution filters to create char-
acter embedding for words. We use convolution
neural network (CNN) based embedding method
to get syllable-level embedding for words. We
use 150 filters that consider uni, bi, tri and quad
syllable-grams to create a feature representation
for the word. This is followed by max-pooling to
concatenate the features from each class of filters
resulting in a syllable embedding representation

Highway Network

Syllable + Morpheme Embedding

Embedding layer

Softmax Layer

Di!erenciated Softmax

Hidden Layer

Figure 1: Overview of the proposed method. T and
C are the transform gate and carry gate of the high-
way network respectively

for the word. Figure 2 in the left half shows an ex-
ample sentence embedded using the syllable-level
embedding.

Figure 3 highlights the difference between vari-
ous embedding and the features they capture. The
syllable embedding is used along with a morpho-
logical embedding to provide richer features for
the word. The majority of words (95%) in Korean
has at most three morphological units. Each word
can be broken into start, middle, and end unit. We
embed each morphological unit by concatenating
to create a joint embedding for the word. Advan-
tage of morphological embedding over syllable is
all the sub-units have an abstract value in the lan-
guage and this creates representation for words re-
lying on the usage of these morphemes. Both mor-
phological and syllable embeddings are concate-
nated and fed through a highway network (Srivas-
tava et al., 2015) to get a refined representation for
the word as shown in the embedding layer for Fig-
ure 1.

2.3 Differentiated Softmax

The output layer models a probability distribution
over words in vocabulary conditioned on the given
context. There is a trade-off between required
memory and computational cost which determines
the level of prediction. To generate a complete
word, using morpheme-level predictions requires
beam search which is expensive as compared to
word-level predictions. Using beam search to pre-
dict the word greedily does not adhere to the com-
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max

Morpheme Level

그 / 는   학생 / 이다 
Pronoun / Postposition   Noun / Verb

<

학생 <0> 이다

<Start> <Middle> <End>

Syllable Level

[geu] / [neun]   [hak] / [saeng] / [i] / [da]

그 / 는   학 / 생 / 이 / 다 

학 생 이 다

<

<w> </w>

max

Figure 2: Proposed embedding method for agglu-
tinative languages. We take an input word as syl-
lable and morpheme level, embed them separately
and concatenate them to make an entire embed-
ding.

putational requirements set forth for mobile de-
vices. Thus, we have to choose word-level outputs
although it requires having a vocabulary of over
0.2M words to cover 95% of the functional word
forms. Computing a probability distribution func-
tion for 0.2M classes is computational intensive
and overshoots the required run-time and the al-
located memory to store the model parameters.

Therefore, the softmax weight matrix,
Wsoftmax, needs to be compressed as it is
contributing to huge model parameters. We
initially propose to choose an appropriate rank
for the Wsoftmax in the following approximation
problem; Wsoftmax = WA ×WB , where WA and
WB have ranks less than r. We extend the idea of
low rank matrix factorization in (Sainath et al.,
2013) by further clustering words into groups and
allowing a different low rank r′ for each cluster.
The words with high frequency are given a rank,
r1, such that r1 ≥ r2 where r2 is the low rank
for the words with low frequency. The core idea
being, words with higher frequency have much
richer representation in higher dimensional space,
whereas words with low frequency cannot utilize
the higher dimensional space well.

We observe that 87% of the words appear in the
tail of the distribution by the frequency of occur-
rence. We provide a higher rank to the top 2.5%
words and much lower rank to the bottom 87%.
This different treatment reduces the number of pa-

Word

Character

Syllable

Morpheme

“그는 학생이다.”

그는  학생이다 <

<

그 / 는   학 / 생 / 이 / 다 
[geu] / [neun]   [hak] / [saeng] / [i] / [da]

<

그 / 는   학생 / 이다 
Pronoun / Postposition   Noun / Verb

<

“He is a student”

He is  a student< < <

H / e   i / s   a   s / t / u / d / e / n / t< < <

He   is   a   stu / dent
[hi]   [Iz]   [ ]   [stu:] / [dnt]

e

< < <

He   is   a   student
Pronoun   Verb   Indefinite article   Noun

< < <

Figure 3: Comparison of various embedding lev-
els. In case of Korean, syllable can be used as a
basic unit of sequence to solve OOV with shorter
sequence length compare to character level. Also,
morpheme level is effective to make the size of vo-
cabulary smaller.

rameters and leads to better modeling.

3 Experiment Results

3.1 Setup

We apply our method to web crawled dataset con-
sisting on news, blogs, QA. Our dataset consists
of over 100M words and over 10M sentences. For
morpheme-level segmentation, we use lexical an-
alyzer and for syallable-level we just syllabify the
dataset. We empirically test our model and its in-
put vocabulary size is around 20K morphemes and
3K syllables. The embedding size for morpheme is
52 and that for syllable is 15. We use one highway
layer to combine the embeddings from syllable
and morpheme. Our hidden layer consists of 500
LSTM units. The differentiated softmax outputs
the model’s distribution over the 0.2M words in
the output vocabulary with top 5K (by frequency)
getting a representation dimension (low rank in
Wsoftmax) of 152, next 20K use a representation
dimension of 52 and the rest 175K get a repre-
sentation dimension of 12. All the compared mod-
els have word level outputs and use differentiated
softmax.

3.2 Comparison of embedding methods

We randomly select 10% of our crawled data
(10M words, 1M sentences) to compare embed-
ding methods as shown in Table 2. We test char-
acter, syllable, morpheme and word-level embed-
dings. The word-level embedding has the highest
number of parameters but has the worst perfor-
mance. As expected breaking words into their sub-
forms improves the language model. However, our
experiment reaches its peak performance when we
use syllable level embeddings. To improve the per-
formance even further we propose using syllable
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Embedding Param. Perplexity Vocab.
Word 15.72M 327.17 200K
Morph 6.61M 283.54 20K
Character 8.66M 235.52 40
Syl 8.71M 231.30 3K
Syl + Morph 9.50M 218.65 23K

Table 2: Results of different embedding meth-
ods. Param. : Total model paramerters, Vocab: In-
put vocabulary size, Syl : Syllable, Morph: Mor-
pheme.

and morpheme which outperforms all the other ap-
proaches in terms of perplexity.

3.3 Performance evaluation

Proposed method shows the best performance
compared to other solutions in terms of Key Stroke
Savings (KSS) as shown in Table 3. KSS is a per-
centage of key strokes not pressed compared to a
vanilla keyboard which does not have any predic-
tion or completion capabilities. Every user typed
characters using the predictions of the language
model counts as key stroke saving. The dataset1

used to evaluate KSS was manually curated to
mimic user keyboard usage patterns.

The results in Table 3 for other commercialized
solutions are manually evaluated due to lack of ac-
cess to their language model. We use three evalu-
ators from inspection group to cross-validate the
results and remove human errors. Each evaluator
performed the test independently for all the other
solutions to reach a consensus. We try to minimize
user personalization in predictions by creating a
new user profile while evaluating KSS.

The proposed method shows 37.62% in terms
of KSS and outperforms compared solutions. We
have achieved more than 13% improvement over
the best score among existing solutions which is
33.20% in KSS. If the user inputs a word with
our solution, we require on an average 62.38% of
the word prefix to recommend the intended word,
while other solutions need 66.80% of the same.
Figure 4 shows an example of word prediction
across different solutions. In this example, the pre-
dictions from other solutions are same irrespective

1The dataset consists of 67 sentences (825 words,
7,531 characters) which are collection of formal
and informal utterances from various sources. It is
available at https://github.com/meinwerk/
SyllableLevelLanguageModel

Developer KSS(%)
Proposed 37.62
Swiftkey 33.20
Apple 31.90
Samsung 31.40

Table 3: Performance comparison of proposed
method and other commercialized keyboard solu-
tions by various developers.

Context A

Proposed

Apple

SwiftKey

Samsung

Context B

Proposed

Apple

SwiftKey

Samsung

(rain heavily)

(too much rice)

Figure 4: Example of comparison with other com-
mercialized solutions. Predicted words for the
Context A (rain heavily) and Context B (too much
rice). Other solutions make same prediction re-
gardless of the context (only consider the last two
words of context).

of the context, while the proposed method treats
them differently with appropriate predictions.

4 Conclusion

We have proposed a practical method for modeling
agglutinative languages, in this case Korean. We
use syllable and morpheme embeddings to tackle
large portion of OOV problem owing to practical
limit of vocabulary size and word-level prediction
with differentiated softmax to compress size of
model to a form factor making it amenable to run-
ning smoothly on mobile device. Our model has
9.50M parameters and achieves better perplexity
than character-level embedding by 16.87. Our pro-
posed method outperforms the existing commer-
cialized keyboards in terms of key stroke savings
and has been commercialized. Our commercial-
ized solution combines above model with n-gram
statistics to model user behavior thus supporting
personalization.

95



References
Welin Chen, David Grangier, and Michael Auli. 2015a.

Strategies for training large vocabulary neural lan-
guage models. arXiv preprint arXiv:1512.04906 .

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun,
and Huanbo Luan. 2015b. Joint learning of charac-
ter and word embeddings. In Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence.

T Ciloglu, M Comez, and S Sahin. 2004. Language
modelling for turkish as an agglutinative language.
In Signal Processing and Communications Appli-
cations Conference, 2004. Proceedings of the IEEE
12th. IEEE, pages 461–462.

Ryan Cotterell and Hinrich Schütze. 2015. Morpho-
logical word-embeddings. In HLT-NAACL. pages
1287–1292.

Qing Cui, Bin Gao, Jiang Bian, Siyu Qiu, and Tie-Yan
Liu. 2014. Learning effective word embedding us-
ing morphological word similarity. arXiv preprint
arXiv:1407.1687 .

Andrew Fowler, Kurt Partridge, Ciprian Chelba, Xiao-
jun Bi, Tom Ouyang, and Shumin Zhai. 2015. Ef-
fects of language modeling and its personalization
on touchscreen typing performance. In Proceedings
of the 33rd Annual ACM Conference on Human Fac-
tors in Computing Systems. ACM, pages 649–658.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

Rui Lin, Shujie Liu, Muyun Yang, Mu Li, Ming Zhou,
and Sheng Li. 2015. Hierarchical recurrent neural
network for document modeling. In EMNLP. pages
899–907.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W
Black, and Isabel Trancoso. 2015. Finding function
in form: Compositional character models for open
vocabulary word representation. arXiv preprint
arXiv:1508.02096 .

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
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