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Preface

In recent years, a torrent of Computational Intelligence (CI) applications with an outstanding autonomous
degree in their behaviour has been successfully developed (e.g., fuzzy controllers, neural networks, ge-
netic algorithms, etc). These systems can operate without human intervention and achieve unbeatable
results; however, at the same time and as a result of this success, their complexity has been dramatically
increased. Thus, for the typical user, these systems become black boxes and he or she has to blindly trust
in them.

Given this context, the problem of explainability arises. Its main goal can be described as trans-
forming these black-box systems into glass-box ones, where the end user can understand the reasons that
support the system’s decisions. For instance, when an expert system in medicine advises a patient to take
a particular drug for treating his disease, he or she needs to know why these are the right drugs for his or
her disease.

During the last two years several workshops has been organised around the topic of explainability in
computational systems, mainly in Artificial Intelligence (known as Explainable Artificial Intelligence -
XAI). Mostly of them have been focused on machine learning, one of the current hot topics in AI, and
how these techniques can produce more explainable models. In the case of CI, this issue is already in its
agenda from some time ago and has been addressed by the studies in interpretability, which main goal is
to keep the inner structure of the CI systems as clear as possible both for engineers and users. Thus, for
that reason, in the Workshop on Explainable Computational Intelligence (XCI), we focus on other two
challenges typical in explainability studies: explanation interface and psychology of explanation.

Explanation interface is directly related with the techniques to generate effective explanations for
human users. Therefore, the use of natural language, as the main tool for human communication, per-
fectly suits to this aim. Holding the XCI during the International Natural Language Generation (INLG)
brings us the chance of tackling this hurdle from a multidisciplinary perspective and put the grounds for
a new collaboration space between both communities.

Psychology of explanation points out, precisely, to the necessity of a computational theory of ex-
planation. Currently, there is a gap between the machine logic, which underlies this type of systems,
and human logic and, consequently, building a bridge between them is a necessary step to make them
more explainable and understandable. In CI, a computational theory of perceptions has been developed
and successfully applied, and, for that reason, the experience gathered by the researchers in this field
will provide some relevant clues for the development of the aforementioned computational theory of
explanation.

In this first edition of the XCI, we have received seven submissions of short papers and four of them
appear in this volume. In addition, we have an invited talk by Dr. Jose M. Alsonso (University of
Santiago de Compostela), who has a broad experience in the topic of interpretability in CI systems.

We would like to thank the Program Committee members who reviewed the papers and helped to
improve the overall quality of the workshop. We also thank the General Chairs and Workshop Chairs of
INLG Conference the given us the chance to organise this workshop. Last, a word of thanks goes to our
invited speaker, Dr. Jose M. Alonso.

August 31, 2017
Dundee (Scotland)

Martı́n Pereira-Fariña
Chris Reed

Co-Organizers of XCI 2017
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Invited talk

eXplainable Computational Intelligence: paving
the way from Smart to Cognitive Cities

Jose M. Alonso
josemaria.alonso.moral@usc.es

Centro de Investigación en Tecnoloxı́as da Informacı́on (CiTIUS)
Universidade de Santiago de Compostela

Abstract

In the era of the Internet of Things, there has been a huge effort connecting all kind of devices to Internet.
Accordingly, in modern cities, everything is connected to Internet. Thus, human beings face two

main challenges:

• to extract valuable knowledge from the given Big Data (Data Scientists are more and more de-
manded by companies);

• to become part of the equation, i.e., to become active actors in the Internet of Things (in our daily
life).

Researchers and developers have already created more and more intelligent devices which populate the
so-called smart cities.

Moreover, nowadays the focus is set on knowledge representation and how to enhance human-
machine interaction, i.e., it is time to address the effective interaction between intelligent systems and
citizens with the aim of passing from Smart to Cognitive Cities. Non-expert users, i.e., users without
a strong background on Artificial Intelligence (AI), require a new generation of eXplainable AI (XAI)
systems. They are expected to naturally interact with humans, thus providing comprehensible explana-
tions of decisions automatically made. In this talk, we sketch how certain Computational Intelligence
(CI) techniques, namely interpretable fuzzy systems, are ready to play a key role in the development of
XCI systems, i.e., CI-based XAI systems.
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Two Challenges for CI Trustworthiness and How to Address Them

Kevin Baum and Maximilian A. Köhl and Eva Schmidt
Saarland University, Department of Philosophy

k.baum@mx.uni-saarland.de and mail@koehlma.de and eva.schmidt@mx.uni-saarland.de

Abstract

We argue that, to be trustworthy, Computa-
tional Intelligence (CI) has to do what it is
entrusted to do for permissible reasons and
to be able to give rationalizing explanations
of its behavior which are accurate and gras-
pable. We support this claim by drawing par-
allels with trustworthy human persons, and we
show what difference this makes in a hypo-
thetical CI hiring system. Finally, we point out
two challenges for trustworthy CI and sketch
a mechanism which could be used to gener-
ate sufficiently accurate as well as graspable
rationalizing explanations for CI behavior.

1 Trustworthiness in Humans

For a human person to be trustworthy, she not only
has to be competent at the action or decision we trust
her with, but also to be appropriately motivated so to
act or to decide (McLeod, 2015). To take an example
from Kant (1997), the honest merchant who never
cheats his customers because he worries about his
reputation is someone his customers can rely on to
be honest. He isn’t trustworthy, however, for he is
motivated by self-interest, not by goodwill or moral
considerations. The trustworthy person is someone
who has a disposition to act in a way that warrants
our trust in her, for she does what we entrusted her
to do for the right reasons.

Importantly, to maintain another’s reasonable
trust, a person has to be able to explain the motives
of her actions. Imagine that you break a promise
to help your friend move. This might cause her to
stop trusting you—but you may avoid this result if

you explain to her that you were committed to help-
ing, but that you had to take your father to the hos-
pital. Note that this explanation only adds to your
trustworthiness if it is not a made-up excuse, but an
accurate account of why you didn’t do as promised,
i.e., an account of your actual reasons.

2 Lessons for Trustworthy CI

These considerations make the following opera-
tionalization plausible: A CI system is fully trust-
worthy if and only if it (1) generally does compe-
tently what it is entrusted to do, (2) it does so for
permissible reasons, (3) it is able to explain its ac-
tions1 by reference to the reasons for which it acted,
and (4) its explanations are accurate. Here, we will
focus on conditions (2) to (4).

2.1 Rationalizing Explanations
What kind of explanation is sufficient to make trust-
ing a CI system reasonable? To support our claims
that we need explanations that appeal to reasons for
which the system acted as it did (or rationalizing ex-
planations), take the example of an automated hiring
system used by a bank. Imagine that it ranks a young
black woman at the bottom of the list of applicants.
What would it take for her to reasonably trust that
the system’s decision was fair?

Clearly, an explanation in terms of a subsymbolic
execution protocol2 leading up to the decision—
though it may be a true causal explanation—is

1Decisions are included under actions in this paper.
2Depending on the implementation of the subsymbolic CI

system, we can obtain protocols of different forms. For in-
stance, for a neural network we can obtain a protocol in terms
of a description of all neurons and a trace of all signals.

1
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beside the point, for it can’t help her determine
whether the decision was fair/morally permissible.
Rather, what is needed is a rationalizing explanation
of the system’s decision (Davidson, 1963), which
makes the decision rationally intelligible. Ratio-
nalizing explanations appeal to the goals that the
system pursues—sorting the applicants in order of
qualification—and the information that it used to
determine how to achieve its goals—e.g. the appli-
cants’ prior work experience. Taken together, expla-
nations that appeal to the system’s goals and infor-
mation, i.e., to the reasons for which it acted, may
increase its trustworthiness. In the example, if the
system’s explanation of its decision includes the in-
formation that the young black woman lacked the
requisite work experience, she will be able to un-
derstand what motivated it and that its decision was
indeed permissible.

2.2 Accurate and Permissible Explanations

Moreover, CI systems need to give accurate ratio-
nalizing explanations to be trustworthy. A system
that gives an ‘explanation’ distinct from what actu-
ally drove its decision is not deserving of our trust.

Imagine that the automated hiring system ex-
cluded the young black woman not because she
lacked relevant work experience, but because it is bi-
ased against people of color (Caliskan et al., 2017).
If the system explains its decision by giving reasons
that were causally irrelevant to the decision but make
it appear permissible, there is a reason for the appli-
cant to reduce her trust in it. By contrast, if an ac-
curate explanation of what led up to its decision is
provided in terms of its mistaken informational state
that people of color are less qualified for the job (its
bias), this will have less negative impact on the ma-
chine’s trustworthiness. If we can trust that a system
accurately explains its actions, we have no reason
to believe that it is ‘covering up’ its impermissible
decisions or actions.3

So, accurate rationalizing explanations may be
given for actions that are impermissible and still
make them intelligible to the persons affected.
That there were certain reasons for which the sys-

3An accurate explanation that reveals that the system’s ac-
tion is impermissible may also allow us to reduce its negative
impact on us. Further, accurate explanations enable the sys-
tem’s engineers to improve it.

tem acted doesn’t mean these were good reasons.
Whether a CI system’s action is permissible hinges
on whether the reasons for which it was performed
were permissible. To determine whether the action
was permissible or not, a person then needs an accu-
rate explanation of what motivated it.

We can distinguish moral (im)permissibility from
practical (im)permissibility. A reason for which a
CI system acted is morally permissible just in case
it violates no moral requirements. It is practically
permissible to the extent that actions motivated by
it contribute to achieving what the CI system was
designed to achieve.

2.3 Graspable Explanations

Further, we need CI systems to give explanations we
can grasp. Assume that a system has identified a
property which makes an applicant who has it the
perfect employee. Its concept of the property—call
it ‘blagh’—is beyond our understanding. The CI
system might accurately rationalize its decision by
pointing out that the top applicant has blagh. Unfor-
tunately, even so, we are unable to understand it, as
we do not possess the concept blagh.4

2.4 Three Dimensions of Explanations

Following the insights from 2.1, 2.2 and 2.3, we
can, aside from the kind of an explanation—merely
causal vs. rationalizing—, identify the following di-
mensions of an explanation:

Accuracy: An explanation of an action is accurate
if and only if it appeals to what actually led to
the action. A rationalizing explanation is accu-
rate if and only if it appeals to the goals and
information that actually led to the action.5

Permissibility: An explanation is permissible if
and only if the action so explained violates no
moral or practical requirement. Practical re-
quirements are given by the purposes for which
a CI system is designed.6

4Cf. (Armstrong et al., 2012) and (Weinberger, 2017).
5As this goes to show, rationalizing explanations are a

species of causal explanation.
6We have to leave to one side difficulties arising from the

fact that the same action can be described in different ways. See
(Anscombe, 1962). Putting these in, we get: An explanation E
is permissible iff the action explained by it under a description
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Graspability: An explanation is graspable for some
person P if and only if the explanation makes
use only of concepts P can grasp.

To be ideally trustworthy, a CI system needs to
provide us with a rationalizing explanation which is
accurate, graspable, and permissible.

3 Two Challenges for CI Trustworthiness

But how do we connect this result to the actual work-
ings of CI systems? We use an example of a sim-
ple mechanism that sorts integers to illustrate two
challenges in designing trustworthy CI systems. Let
sort be an arbitrary but correct sorting mechanism
for lists of integers. For instance, an invocation of
sort on input [3, 5, 0] gives output [0, 3, 5].

How can we explain this output? Rationalizing
explanations appeal to the goals that the system pur-
sues and the information that it used to determine
how to achieve them. A goal can be understood in
terms of a specification of desired outputs, given an
input. Here is a specification for sort using the stan-
dard model of integers: The successor of each inte-
ger within the output list, if present, is greater-equal
than its predecessor and the output list contains the
same integers as the input list.

3.1 The Permissibility-Accuracy Challenge
The need for goals and information raises the
Permissibility-Accuracy Challenge for CI trustwor-
thiness. We can give a high-level description of the
goal to be set for the system: ‘Choose the best ap-
plicant!’. But—unlike in the case of the sort—we
don’t know what exactly our high-level description
means in terms of an input/output specification. By
training the system we hope that it develops its own
conception of the characteristics of a good applicant.
This is what makes CI systems so powerful, but also
what makes them problematic. For we cannot be
sure whether a system is trained with our intended
goals. Nor can we know for certain what informa-
tion guides its action, so we cannot be sure whether
its actual goals and information are permissible. To
achieve trustworthiness for CI systems, then, we
need to gain access to the actual goals and the infor-
mation, or at least to know whether they really are

matching the explanation violates no moral or practical require-
ment.

permissible. As argued in Sect. 2.2, for establish-
ing trust, it is insufficient to have some permissible
explanation of the decision in question that doesn’t
reflect the actual decision-making process.

3.2 The Graspability-Accuracy Challenge

Next, it should be possible to infer from a protocol
of the internal processing of the system to the infor-
mation used by it to achieve its goal. In case of a
classical sorting algorithm, the protocol consists of
the individual symbolic steps executed.

By contrast, subsymbolic protocols of the internal
processing of CI systems are not protocols of sym-
bolic steps executed within the system, correspond-
ing to, for instance, concepts of integer comparison
or arithmetic. Rather, they provide accurate merely
causal explanations, but are useless for providing ra-
tionalizing explanations. For we cannot make much
sense of information presented in such monolithic
form. This constitutes the second challenge for CI
trustworthiness: We need to be able to extract or in-
fer the information which determined the result, but
also the system’s actual goals, in terms of concepts
we can grasp. As before, trustworthiness requires
more than just some graspable though made-up ex-
planation.

4 How to Meet the Challenges

To achieve CI trustworthiness, we need to tackle the
two challenges: acquire rationalizing explanations
which are both accurate—particularly with respect
to their permissibility status—and graspable. In the
following we will sketch, in a ‘black box’ kind of
way, a mechanism that could be used to generate
such explanations for CI behavior.

Formally, an accurate rationalizing explanation E
consists of a set of goals G and the information
which is used to determine how to achieve these
goals Λ, i.e., E := 〈G,Λ〉. Furthermore E appeals
to a model ME which provides the concepts used
within the explanation.7 Moreover, let C denote
some CI system, trained with some data D, result-
ing in an internal inaccessible model M and goals
G. Let OI be the output generated by C on some

7Think of the model as including the general information
about the world the system possesses, which is coached in the
concepts possessed by the system.

3



input I . E explains OI with respect to I if and only
if it makes the output rationally intelligible.

To obtain an accurate and graspable rationalizing
explanation E (or something close enough) we pro-
pose the following mechanism:

First, we need to build a Confabulator. Given
solely an input/output series, it constructs explana-
tory hypotheses, i.e., candidate goals GC and corre-
sponding candidate explanations EC := 〈GC ,ΛC〉
appealing to a candidate model MC which is gras-
pable, i.e., contains only concepts we can grasp,
which makes EC graspable as well.8 The result-
ing candidate explanations ignore the inaccessible
actual internal model M and the actual goals G. For
instance, for sort, we can obtain candidate explana-
tions E1 and E2 based on the standard model of in-
tegers MN and a candidate goal, which is in this case
the specification S, given above:

E1 : 〈S, 0 < 3; 3 < 5〉 E2 : 〈S, 0 < 3; 5 > 3〉

The Confabulator’s candidate explanations have a
serious shortcoming: If they are accurate at all, this
is pure luck. How do we know whether MN and the
relations of greater-than and less-than play any role
in the actual decision making process? Say the can-
didate are constructed based on a series of input lists
already sorted in reverse order—if so, the mecha-
nism could equally well have the goal of reversing
lists instead of sorting them. Typically, for actual
CI systems, we don’t even have any specification at
hand and, thus, don’t know the goals. The same goes
for the automated hiring system. Here, the Confab-
ulator need to guess—or learn—the goals.

Generally, there can be multiple, mutually exclu-
sive candidate explanations which explain the same
input/output series by appeal to different goals and
models, where only some of these candidate expla-
nations are permissible. We call this phenomenon
explanatory underdetermination. This can be a se-
vere problem, e.g., there may be multiple candidate
explanations of the applicant ranking, of which only
some are permissible, and at the same time we are
unable to verify the system directly, for we lack a
specification.

8The Confabulator may consist of human experts, of some
additional system with or without access to the system under
consideration, or be part of the CI system itself.

Figure 1: The configuration and interplay of a CI system with

Extractor, Confabulator and Matchmaker.

This is where the second part of our proposed
mechanism comes in: The Extractor. It extracts
the Actual Explanation of the CI system’s action
which is probably not graspable, but can presum-
ably be given, e.g., as a subsymbolic execution pro-
tocol preceding the action. The Actual Explanation
may be of the wrong kind—merely causal instead of
rationalizing—, but, from it, it should in principle be
possible to extract or infer the reasons for which the
system acted.

As a third part of the proposed mechanism,
we then add a Matchmaker, a mechanism which
matches the Extractor’s ungraspable accurate expla-
nation with the Confabulator’s graspable, at best
luckily accurate candidate explanations, and which
then outputs a Best Explanation as the explanation
of the CI system’s decision. In so doing, the Match-
maker accords to the following principles:

(Im)permissibility Preservation: The Best Expla-
nation is permissible if and only if the Actual
Explanation is permissible.

Explanatory Equivalence: The Best Explanation
is explanatory equivalent to the Actual Expla-
nation: Any output that can be explained, on
the basis of the Actual Explanation and in the
light of a given input, is explainable by the Best
Explanation in the light of the same input.

What allows for the possibility of the Matchmaker
is that there is explanatory underdetermination. See-
ing as there can be more than one explanation of the
same action, we can try to move from an ungras-
pable actual and thus accurate explanation to a corre-
sponding graspable explanation which preserves the
permissibility status of the actual explanation. By

4



additionally requiring Explanatory Equivalence, we
get accuracy—or something close enough.9

5 Conclusion

We have argued that for trustworthiness, CI systems
have to do more than ‘just their job’: they have to
do what they are entrusted to do for permissible rea-
sons and to give rationalizing explanations of their
behavior which are accurate and graspable. We sup-
ported this claim by drawing parallels with trustwor-
thy human persons, and by applying our claims to a
hypothetical CI hiring system. We then presented
two challenges for designing trustworthy CI sys-
tems. Finally, we sketched a mechanism consisting
of three components—a Confabulator, an Extractor
and a Matchmaker—which could be used to gener-
ate sufficiently accurate and graspable rationalizing
Best Explanations for CI behavior.10

This may not be the only architecture to over-
come the fundamental challenges of trustworthy CI
design. Difficult obstacles along the way to building
our proposed mechanism are to be expected.11 How-
ever, we believe that trying out concrete and feasi-
ble proposals for building explainable CI systems is
essential to making any progress in this area at all.
So, designing the three components of our proposed
mechanism should be high on the research agenda
of those interested in explainable CI.
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Abstract

We present a simple, broad coverage method
for clarifying the meaning of sentences with
coordination ambiguities, a frequent cause
of parse errors. For each of the two most
likely parses involving a coordination ambigu-
ity, we produce a disambiguating paraphrase
that splits the sentence in two, with one con-
junct appearing in each half, so that the span
of each conjunct becomes clearer. In a val-
idation study, we show that the method en-
ables meaning judgments to be crowd-sourced
with good reliability, achieving 83% accuracy
at 80% coverage.

1 Introduction

In principle, intelligent systems should be capable
of explaining how they have interpreted unrestricted
natural language sentences. Although some early di-
alogue systems such as SHRDLU (Winograd, 1973)
could ask questions to clarify the meaning of certain
structurally ambiguous sentences, little work has
been done to date on the task of generating questions
to clarify structural ambiguities in a broad coverage
setting. Recently, Duan et al. (2016) have shown that
generating unambiguous paraphrases from compet-
ing parses of structurally ambiguous sentences can
serve as a useful method for asking to clarify their
intended meaning; in particular, they showed that
their method enables crowd-sourced meaning judg-
ments to be collected in order to improve parser ac-
curacy in new domains. Duan et al.’s study cov-
ered most of the major sources of common parser
errors identified by Kummerfeld et al. (2012), with

the exception of ambiguities involving the correct
spans of conjuncts in coordinated phrases (unless
they involve modifier attachment ambiguities). Also
closely related is He et al.’s (2016) work on generat-
ing questions to identify semantic roles, though their
work does not address coordination span ambigui-
ties either.

In this paper, we present a novel method for gen-
erating disambiguating paraphrases for sentences
with ambiguities involving two coordinated ele-
ments where the sentence is split in two, with one
conjunct appearing in each half, so that the span of
each conjunct becomes clearer. In a validation study,
we show that the method enables meaning judg-
ments to be crowd-sourced with good reliability.
Following an error analysis that highlights problem-
atic cases, we conclude with a discussion of ways in
which the method could be improved.

2 Disambiguation Method

At a high level, our method for generating disam-
biguating paraphrases for sentences with coordina-
tion ambiguities is as follows:

1. Parse the sentence and determine whether
the most likely parse (henceforth the ‘top’
parse) has a coordinated phrase with two con-
juncts/disjuncts, recording its span in words.

2. Examine the subsequent parses in the n-best
list (in order) to determine whether the parse
(henceforth the ‘next’ parse) has a coordinated
phrase with a different span.

3. If such ‘top’ and ‘next’ parses are found, gen-
erate paraphrases by

6
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(w1 / do [mood=dcl tense=pres]
:Arg0 (w0 / they)
:Arg1 (w2 / have

:Arg0 w0
:Arg1 (w5 / selection [num=sg]

:Det (w3 / a)
:Mod (w4 / good)
:Mod (w6 / of

:Arg1 (w8 / and
:First (w7 / fabric

[det=nil num=sg])
:Next (w9 / notion

[det=nil num=pl]))))))

(a) Semantic dependency graph of ‘top’ parse
(w1 / do [mood=dcl tense=pres]
:Arg0 (w0 / they)
:Arg1 (w2 / have

:Arg0 w0
:Arg1 (w8 / and

:First (w5 / selection [num=sg]
:Det (w3 / a)
:Mod (w4 / good)
:Mod (w6 / of

:Arg1 (w7 / fabric
[det=nil num=sg])))

:Next (w9 / notion [det=nil num=pl]))))

(b) Semantic dependency graph of ‘next’ parse

Figure 1: Most likely parses for (1)

(a) copying the words up to and including the
first conjunct, followed by the words fol-
lowing the coordinated phrase;

(b) copying any sentence-final punctuation,
then starting a new sentence by copying
the conjunction; and

(c) again copying the words up to the first
conjunct, then copying the second con-
junct, again followed by the words follow-
ing the coordinated phrase.

To illustrate, consider (1) below, a sentence from the
English Web Treebank,1 a corpus which is primar-
ily out-of-domain for parsers trained on the original
Penn Treebank. This sentence has a coordination
ambiguity between a good selection of [[fabric] and
[notions]] and [[a good selection of fabric] and [no-
tions]], which is not (conventionally) analyzed as a
modifier attachment ambiguity.2

(1) They do have a good selection of fabric and
notions.
a. They do have a good selection of fab-

ric. And they do have a good selection
1https://catalog.ldc.upenn.edu/

ldc2012t13
2Note that sentences with ambiguities involving post-

modifiers are dealt with symmetrically.

Figure 2: Sample survey question

of notions.
b. They do have a good selection of fabric.

And they do have notions.

The disambiguating paraphrase for the former, ‘top’
parse (correct according to the English Web Tree-
bank) appears in (1-a), and the one for the latter,
‘next’ parse appears in (1-b), with underlining to
highlight the differences between them.

To parse sentences, we use the Berkeley parser
(Petrov et al., 2006) trained on OpenCCG3 deriva-
tions (White, 2006; White et al., 2007; Boxwell and
White, 2008) extracted from the CCGbank (Hock-
enmaier and Steedman, 2007). Derivations yield
semantic dependency graphs represented using Hy-
brid Logic Dependency Semantics; the dependency
graphs for (1) appear in Figure 1 using AMR-style
notation (Banarescu et al., 2013). As shown in the
figure, the :First and :Next relations can be
used to identify coordinated phrases, and word iden-
tifiers allow spans to be extracted from subtrees.4

3 Crowd-Sourcing Judgments

We used Amazon Mechanical Turk (AMT) to
crowd-source meaning judgments using our method
of paraphrasing coordination ambiguities. Work-
ers were given no training and very simple instruc-
tions, namely to select the paraphrase that is closer

3http://openccg.sourceforge.net/
4Note that the conjunct spans can be accurately obtained

even for shared argument coordination, e.g. VP-coordination
or right node raising. Also note that as an alternative to the
simple, surface-level algorithm employed here, we could have
made changes to the dependency graphs and used OpenCCG to
realize the modified graphs back as two sentences, which could
avoid occasional errors with subject-verb agreement; the advan-
tage of the present method is that it ensures that no undesired
changes are made elsewhere in the sentence, as can happen with
a broad coverage surface realizer.
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Accuracy
Coverage Majority MACE

All w/ Excl. All Filtered
25% 1.00 - 1.00 1.00
35% - 0.98 0.97 1.00
50% 0.93 - 0.89 0.91
60% - 0.88 0.87 0.90
80% - - 0.83 0.84
100% 0.75 0.75 0.74 -

Table 1: Coverage vs. accuracy highlights using ma-
jority vote (majority, strong majority, near unanim-
ity) and MACE with all workers; majority vote with
poorly performing workers excluded; and MACE
with ‘neither’ responses filtered out

in meaning to the original sentence, even it does not
mean exactly the same thing, or ‘neither’ if neither
sentence is closer in meaning. A screen shot show-
ing a survey question appears in Figure 2.

For our validation experiment, we generated para-
phrases for 172 items taken from the development
section of the English Web Treebank. From these
172 items, twelve that were relatively short and clear
were selected to be control items. The items were
randomly distributed across eight surveys, with each
survey containing 28 items, of which eight were
control items, with four items per page.

We sought five workers to complete each survey.
Workers were required to have a US IP address, be
native speakers of English, and have achieved Mas-
ters status on AMT. Workers were told that they
needed to get 75% of the control items correct.
For five of the eight surveys, one worker failed to
achieve 75% correct on the control items, so we
sought an additional worker for each of these. All
workers were paid $2 per survey, including the ones
who failed to reach 75% on the control items, as they
did not appear to be answering randomly. Each sur-
vey took 10-15 minutes to complete.

4 Results

4.1 Coverage vs. Accuracy

We measured the accuracy of the crowd-sourced
judgments against our own expert judgments at var-
ious coverage levels. The results appear in Table 1
and Figure 3. Unlike the crowd-sourced judgments,
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Figure 3: Coverage vs. accuracy using majority
vote (majority, strong majority, near unanimity) and
MACE across various confidence levels

our expert judgments were based on examining the
‘top’ and ‘next’ parses to see which one (if any) was
more correct, consulting the structure annotated in
the English Web Treebank in cases with any doubt.

One way to aggregate crowd-sourced judgments
across multiple annotators is to simply take the ma-
jority judgment, breaking ties randomly. In this
case, a consensus judgment is obtained for all items,
so coverage is 100%. As shown in the table, accu-
racy at this coverage level is 75%, much higher than
the chance level of 33.3%. A trade-off between cov-
erage and accuracy can also be obtained by requiring
a super-majority: for a strong majority, we required
at least 75% agreement, and for (near) unanimity, we
required at least 90% agreement. When all annota-
tors are included—even those who performed poorly
on the control items—requiring a strong majority re-
duces coverage to only 50%, but accuracy goes up
to 93%; with the poorly performing annotators ex-
cluded, there are more strong majority cases, with
60% coverage, but accuracy is relatively lower, at
88%. Requiring (near) unanimity reduces coverage
further, but raises accuracy to near 100%.

As an alternative to using majority judgments,
MACE5 (Hovy et al., 2013) can be used to make
consensus predictions by weighting annotator judg-
ments by their competence, where competence is
estimated using expectation maximization. These
consensus predictions can be assigned a confidence
value according not only to agreement but also to
estimated annotator competence. We ran MACE
with thresholds to retain only the 5%, 10%, 15%,

5Multi-Annotator Competence Estimation
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Error type Count
preceding modifier scope ambiguity 14
following modifier scope ambiguity 4
apposition 4
miscellaneous 8
‘neither’ cases 14
total errors 44

Table 2: Distribution of errors

. . . 100% of the items with the highest model confi-
dence, as shown in the figure; with MACE, it made
little difference whether poorly performing annota-
tors were excluded, so we only show the results with
all annotators here. The accuracy of the MACE-
derived consensus judgments was no better than
with the majority judgments, but MACE did make
it possible to identify a sweet spot where coverage
is still high at 80% while accuracy is substantially
higher at 83% than in the full-coverage case. Finally,
the table and figure also show the coverage and accu-
racy when items where ‘neither’ was the consensus
judgment are excluded, as these would be unhelpful
for parser adaptation: here, a slightly higher accu-
racy of 84% is attained at the 80% coverage level.

4.2 Error Analysis

The distribution of errors using MACE at the 100%
coverage level appears in Table 2. Out of 172 items,
the annotator consensus differed from our judgment
in 44 cases. Most of the errors were related to ei-
ther modification or apposition. The miscellaneous
errors were ones that only occurred once. There
were also 7 items where neither parse was more cor-
rect, and 7 where the annotator consensus was erro-
neously ‘neither’, typically because parse errors led
to hard-to-understand paraphrases.

Of the 30 remaining (non-‘neither’) errors,
roughly half involved preceding modifiers with am-
biguous scope. Although our paraphrasing method
handles preceding modifiers within noun phrases
reasonably well, adverbial scope proved more dif-
ficult to disambiguate. For example, consider (2):

(2) So go and get dancing!!!!!!!!!!!!!!!!!!!!!!!!!.
a. So go![...]. And so get dancing![...].
b. So go![...]. And get dancing![...].

Although without context, it is somewhat difficult
to tell whether the scope of the discourse connec-
tive so applies to both imperative clauses or only the
first, our crowd sourced annotators overwhelmingly
preferred the paraphrase (3-b) of the ‘next’ parse,
contrary to the English Web Treebank. One possi-
ble reason is that here, repeating so in (3-a) is quite
awkward. Additionally, although so is only in the
first sentence of paraphrase (3-b), it is easy to inter-
pret it as also modifying the second clause.

Of the remaining errors, paraphrases from appos-
itive constructions such as (3) stood out, as these do
not have a straightforwardly distributive interpreta-
tion. Likewise, there were a couple errors involving
collective readings for conjoined noun phrases.

(3) Shuttle veteran and longtime NASA execu-
tive Fred Gregory is temporarily at the helm
of the 18,000-person agency.
a. Shuttle veteran is temporarily at the

helm of the 18,000-person agency. And
long time NASA executive Fred Gre-
gory is temporarily at the helm of the
18,000-person agency.

b. Shuttle veteran is temporarily at the
helm of the 18,000-person agency. And
shuttle long time NASA executive Fred
Gregory is temporarily at he helm of the
18,000-person agency.

5 Discussion

Our validation study has shown that our simple,
broad coverage method for clarifying the meaning
of sentences with coordination ambiguities enables
meaning judgments to be crowd-sourced with good
reliability, far above chance and at a level that can
be expected to pay off for parser domain adaptation.
Since the method is so simple, it should be possible
to adapt to a variety of parsing frameworks.

Not surprisingly, an error analysis revealed that
sentences whose interpretations are not straightfor-
wardly distributive are problematic for our method,
indicating that a more sophisticated way to han-
dle such sentences is required. Less obviously, ad-
verbial pre-modifiers turned out to work relatively
poorly, suggesting that Duan et al.’s (2016) method
for disambiguating these represents a better option.
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Abstract 

Explanations of solutions produced by reasoning 
systems in ever growing complexity become in-
creasingly interesting, which is particularly chal-
lenging in view of fundamental differences betw-
een human and machine representation and prob-
lem-solving methods. In this paper, we formulate 
requirements for conceptual representations that 
are adequate for producing human-oriented expla-
nations, and we discuss how some reasoning me-
chanisms can serve them or can possibly be adapt-
ed to do so. This examination is intended to state 
in what ways reasoning systems can potentially 
support explanation generation, and where techno-
logy-justified limitations have to be accepted.

1 Introduction 

Explanations justifying or questioning results pro-
duced by intelligent systems were always of interest, 
but this issue was rarely addressed in depth. Simple 
attempts with expert systems, although being one 
of the most explanation-friendly reasoning tech-
niques, produced unexpectedly poor results, mainly 
because of insufficient understanding of impacts of 
human expectations and inference capabilities in 
discourse. This situation motivated the ambitious 
approach to Explainable Expert Systems (EES) 
(Swartout, Smoliar, 1997). The idea is to treat 
explanation not as an „afterthought“ but to foresee 
possible extra demands of explanations by incor-
porating suitable „built-ins“ within the reasoning 
process. While this strategy turned out to be suc-
cessful for expert systems, it hardly looks pro-
mising for many other categories of reasoning sys-
tems where the discrepancy to human-like reason-
ing is considerably more pronounced.

An intellectual challenge has been mastered  re-
cently by a system that has beaten the human 
champion of Go in a match (Silver et al. 2016). 
The system applied deep neural network learning 
and searching on the basis of enormously large 

amount of data, that is, millions of games. While 
this is sufficient to outperform top level players in 
the purely performance-oriented task of a match, 
the system, similar to chess programs, cannot docu-
ment its behavior in human-relevant terms, because 
it does not have an explicit representation of most  
domain-relevant concepts, which form the basis for 
human-adequate explanations.  

Motivated by this gap between machine and 
human representation concepts, we formulate requi-
rements for conceptual representations that are ade-
quate for producing human-oriented explanations, 
and we discuss how some prominent reasoning me-
chanisms can serve them or can possibly be adapted 
to do so. Reasoning techniques referred to include 
rule-based representations, constraint-systems, deci-
sion trees, Bayesian networks and neural networks. 

This paper is organized as follows. We first inve-
stigate what is required for producing explanations 
that are likely to be meaningful and useful to hu-
mans, and we formulate a set of complementary 
requirements. Then we examine some major reas-
oning techniques from the perspective of how they 
can serve explanation-motivated requirements, and 
if there is a gap, how it can possibly be narrowed. 
We also briefly address issues of natural-language 
presentation. Finally, we discuss the state-of affairs 
and expected future developments.

2 Requirements for Explanations
In this section, we discuss what is needed to provide 
representations from which human-adequate expla-
nations can reasonably be generated with linguistic 
techniques. We focus on representations here 
because most linguistic presentation techniques 
needed to map these representations onto text are  
suitable for several genres of text. In addition, we 
devote a short section to specificities of expla-
nations, such as the role of implicit conveyance of 
information, towards the end of the paper.  
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2.1   Categories for Explanations

Explanations may come in a variety of forms serv-
ing in part quite complementary purposes, mostly 
depending on the task at hand: this may be some 
proof of evidence for a solution, investigating  con-
stellations that may qualify for a solution, inquiring 
rationals for classification or decision preferences. 
We distinguish five categories of explanations:

1. Exposition of the lines of reasoning
This kind of explanations addresses the adequate 
presentation of an inference chain, more general 
a tree or graph of inferences, be it in the context 
of a theorem prover, an expert system, or an ar-
gumentation framework. The purpose is to in-
crease confidence in results obtained by a system, 
which may be by verifying the overall course of 
solution, or by referring to essential ingredients.

2. Hypothetical inquiries
This kind of explanation is typically revelant for 
situations in which expectations or user beliefs 
are not met by solutions proposed by a system. 
Users may have interest in some specific constel-
lation which turned out to be inferior or unac-
ceptable, may be due to some small detail, or it 
may simply be unexplored. It is desirable for this 
kind of explanation to focus on essential reasons.

3. Justification for categorization
This kind of explanation refers to the ingredients 
that have contributed to a taxonomic decision. 
As with the previous category, focusing on essen-
tial factors rather than on completeness is of im-
portance here; thereby, possible reasons for mis-
conceptons may be met, which may have moti-
vated the explanatory request.

4. Decision preferences
This kind of explanation refers to a comparison 
between properties of an entity in question and 
its closest competitors in the decision, or some 
explicitly mentioned candidates. In terms of 
what is to be compared, a combination of the 
previous and the following category may apply. 

5. Issues of calculation
This component of explanation focuses on im-
pacts of quantitative properties and their depen-
dencies on the issue to be explained. A detailed 
exposition of all calculations is of minor import-
ance – simple ranges of numbers are preferable, 
including justification where they come from.

There are larger and richer catalogs of categories, 
but we think that we have captured the most prin-
cipled ones. One important category missing are 
meta-explanations, about problem-solving strate-
gies and their application, but this is a weakness of 
virtually all systems, since they do not have expli-
cit representations of how they are working.

2.2 Properties of Human-Adequate Explanations

In order for representations to be suitable for expla-
nations we think some criteria are indispensible:

1 Focused content
For an explanation to be useful, its content must 
be to the point of the purpose of the explanatory 
request. It is of little help if the content is some-
how related to what is expected as an explana-
tion. If the reasoning mechanism does not enable 
building an adequate response specification, we 
feel it is better to provide partial or incomplete 
information or evidence that may be not optimal. 

2 Vocabulary used
The content provided should be expressed in 
terms the audience is familiar with. By this requi-
rement, we do not mean a difference between 
expert and novice terminology, which can be 
bridged by natural language generation techniques, 
at least to some degree. The requirement address-
es those cases where the problem-solving tech-
nique used by machines is fundamentally different 
from human approaches – human domain con-
cepts are not used and may not easily be identifi-
able if at all within the machines' approach.

3 Granularity
The content of an explanation should be express-
ed in an adequate level of detail. If it is too 
detailed, an overall explanation may be longish 
and perceived as boring, and may even get incom-
prehensible. If it does not contain enough details, 
it may not be of use due to limited information. 

3 Examining Explanation Potentials for 
Problem-Solving Techniques

In this section, we discuss to what extent the criteria 
elaborated in the previous subsection can be met by 
some major reasoning techniques, and we discuss 
measures to increase coverage and quality.

3.1 Systems with Rule-like Representations
This category comprises expert systems, automated 
theorem provers, and argumentation frameworks. 
These systems can serve the content of explana-
tions for exposition of the lines of reasoning rather 
well. Similarly, the vocabulary and level of granu-
larity is widely in accordance with human reasoning, 
except to automated theorem provers. They almost 
exclusively operate on the detailed resolution 
calculus, where the connection to the originally spe-
cified mathematical axioms, which constitute the 
basic vocabulary in this domain, gets widely lost. 
Fortunately, there are automated transformation 
procedures which can lift the proof representation 
to the more abstract assertion level (Huang, 1994). 
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An exception are cognitively involved inference 
patterns, such as modus tollens and disjunction eli-
mination – several of these are composed into an 
assertion level step – a decomposition into natural 
deduction level steps is advisable (Horacek 1998, 
1999, 2007). Some domain rules in expert systems 
may be associated with annotations that express 
their justification, much in the style of EES. 
Explanations on a higher level of granularity, such 
as as proof sketches and proof ideas are essentially 
unexplored. Skeletons of proofs plans may be adap-
ted for this purpose, but such approaches are rare.

3.2 Constraint Systems
For this category of systems, the suitability for ex-
planations appears to be rather good, at first sight. 
For typical applications, constraints themselves are 
expressed on a level corresponding to human views, 
so that vocabulary and granularity can be expected 
to be on a suitable level. May be, there are higher-
level conceptions which correspond to a set or 
some composition of several constraints, so that 
addressing the more abstract view requires some 
transformation process to take place, possibly on 
demand by a specific explanatory request. Potential 
problems with explanations become only clearer 
when explanatory requests and information pro-
duced by the problem-solving techniques are put in 
relation to one another. Requests for justifying a 
solution are not of major interest for constraint 
systems; the simple explanation is just a message 
indicating that all constraints are fulfilled for the 
solution proposed. More informative messages 
would selectively list those constraints which are 
barely fulfilled, for constraints which involve a 
numerical comparison. In addition, a meta-expla-
nation about the portion of the search space ex-
plored and the degree to which optimality is appro-
ached may be suitable, in case the system is set up 
in a way so that search is stopped when a solution 
with satisfactory quality is foumd. However, des-
cribing the search space in terms of which portions 
are still unexplored may be quite demanding.
 Another category of explanations suitable for 
problems addressed by constraints systems are 
hypothetical inquiries. In a design problem, several 
inquiries may refer to partial constellations which 
the designer might expect or prefer to be part of a 
solution, but the system results show different com-
binations. In an explanation the reasons might be 
some violated set of constraints, but this informa-
tion might not necessarily be complete or best. For 
excluding some combination of values from being a 
solution, a single constraint responsible for that is 
sufficient – in the search, every effort is made to 
exclude as much as possible on as little information 
as available. Hence, in order to obtain a more com-

plete and focused view, checking and evaluating 
additional constraints for explanatory purposes only 
might prove suitable. An extreme approach for this 
purpose is described in (Horacek, 1992), which at-
tempts to establishes dominances among sets of 
constraints, much in the style of Berliner (1979, 
1982), but it requires full exploration of the search 
space. Altogether, explanations for constraint sys-
tems appear reasonably doable, but the content qua-
lity may not always be as desirable, and additional 
computation effort is required to address this issue.

3.3 Decision Trees
This problem-solving method  is mostly suitable for 
obtaining categorizations or preferences between 
choices of some sort. Similar to constraint systems, 
(good) reasons for a possibly unexpected catego-
rization, thus, a hypothetical solution are typical of 
interest. Conversely,  major reasons for the catego-
rization obtained are much more sensible here than 
a similar explanatory request in the conext of con-
straint systems. Structurally, the content of an ex-
planation for a hypothetical solution is a descrip-
tion of the expressions of one of the choice points 
where the path to the category inquired is missed. 
Conversely, a complete description addressing a 
request for the categorization obtained comprises 
the expressions associated with all choice points on 
the path to that categorization. More focused ex-
planations may choose a suitable one among the 
choice points in the first case and they may be 
selective in concentrating on conceptually more 
important ones in the second case.

In contrast to the previous two system catego-
ries, presenting the content of explanations may 
prove to be problematic here, since the expressions 
associated with the choice points may be quite 
complex, typically not corresponding to domain 
concepts meaningful to humans, since the overall 
tree structure is motivated by the goal of obtained a 
mostly balanced tree. Consequently, there is a seri-
ous problem in the vocabulary discrepancy between 
the components of decision trees and human do-
main conceptions. We are aware of only a single at-
tempt to bridge this gap: in the domain of elemen-
tary chess pawn endings (king plus pawn versus 
king), decision trees were built to discriminate won 
from drawn positions (Michalski, Negri 1977). The 
tree learned on the basis of the board data only was 
compact, but its form was felt obscure by human 
players. When the building of choice point was 
biased by some force to use domain concepts, such 
as pawn square, king opposition, etc., the tree learn-
ed was structurally less optimal, but much better un-
derstandable to humans in terms of the discrimina-
tions made. This is a good example for explanations 
being a built-in, though in a different way as in EES.

13



--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

  Reasoning method           Weakness Measures
Rules Granularity Transformations
Constraints Content, in part Extra searching
Decision trees Vocabulary Biasing vocabulary
Bayesian networks Role of numbers Quantitative versions
Neural networks. Content (+others) Sensitivity analysis

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

Table 1. Reasoning methods, their weak points in 
explanation, some measures against. 

3.4   Bayesian Networks

In this category of systems, explanations may add-
ress generic or individual requests to the network. 
Generic requests concern the topology of the net-
work, which comprises dependencies, justifications, 
and probabilities, possibly extended by annotations 
in the style of EES (e.g., giving sources or other de-
tails about the probabilities). Altogether, this is a 
presentation task pretty much on the lines of docu-
menting rules, augmented by references to and des-
criptions of probabilities. Individual requests can be 
dealt with in more details. As far as the dependency 
of events is concerned, this amounts to a compo-
sition of rules, possibly in a tree. The extra com-
ponent is the reference to and documentation of 
the probabilities associated with events and coocur-
rences of events. Merely listing the numerical data 
and the results of calculations is not difficult, but in 
some cases at least, there may be a better voca-
bulary in terms of qualitative assessments, as ap-
proximations. Such an approach has been under-
taken in the context of argumentative presenta-
tions in natural language (Carenini, Moore, 2006), 
where the natural language descriptions were pre-
ferred by users to the precise graphical displays. 

3.5 Neural Networks
This is clearly the most explanation-resistant tech-
nique described in this section. Its performance-ori-
ented strength loses in explanation-related terms, 
since the important intermediate levels are not 
anywhere near a conceptual interpretation. Thus, 
the mathematical aspect is dominating, so that the 
architectural inspiration by the human brain some-
how stops half way - the network learns how to 
perform, but does not produce explicit conceptions 
in the resulting representation. Consequently, there 
is virtually nothing that provides a basis for an ex-
planation, only input and output data being on a 
level accessible to humans. Some more options are 
available for networks with a specific topology, 
such as gated networks (Zhao et al. 2017), where 
activations at intermediate levels can be visualized; 
but this techniques is probably suitable for a specific 
set of tasks only. What is remaining would be re-
runs with similar related data, to find out essential 

differences on some experimental basis. In addition, 
value differences between alternative output items 
could be used to refer to close competitors, e.g., 
near misses. However, how to orchestrate a reason-
able set of recomputations effectively is ambitious.

A summmary of the reasoning techniques dis-
cussed, in terms of major weaknesses and meaures to 
potentially overcome them is given in Table 1 

4 Presentation Methods
Explanation presentation needs good sentence plan-
ning, including aggregation (Di Eugenio et al. 2005), 
and argumentation organization (Carenini, Moore, 
2006). In addition, having a good command of ex-
plicitness and implicitness in presentation is of great 
importance in this genre (Horacek 1998, 2007), 
even more prominently in varions versions of the 
Digital Aristotle (Porter, 2007). Note that delibera-
tely leaving portions of the content specification 
implicit is fundamentally different from selectivity 
in building content specifications: the latter means 
that they are not to be conveyed to the user, where-
as the former is justified by the expectation that the 
audience is able to infer the content left implicit.

By and large, constellatons for leaving parts of 
content specification implicit are fairly well under-
stood at a local level, such as the preference of mo-
dus brevis to fully exposed modus ponens presenta-
tions, straightforward taxonomic and action infer-
ences, and expansion of known and mastered defi-
nitions. However, orchestrating the combination of 
several such constellations in a contextually ade-
quate manner is still a widely unanswered question.

5 Conclusion and Discussion

In this paper, we have advocated in favor of neces-
sary properties of representations that are suitable 
for specifics of explanations: the content, the voca-
bulary, and the level of granularity. We have 
discussed how these requirements are met or not met 
by some prominent reasoning mechanisms, We also 
have referred to measures already addressed and we 
have sketched some more ways to overcome exist-
ing discrepancies. Measures range from built-in 
methods to extra computations invoked by explana-
tory requests; they include transformation and en-
hancement of representations, and extra computa-
tions for parts not contributing to a solution.

Approaches to explanation require capabilities in 
several fields, such as automated theorem proving 
and NLP, which few researchers can cover. Never-
theless, increasing success and use of reasoning faci-
lities will require a better documentation of their ca-
pabilities, especially for users who are sceptical 
towards machine-generated problem solutions.
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Abstract

Computational processes are increasingly
more powerful and complex but also more dif-
ficult to understand by humans. Considering
that Natural Language is a suitable tool for
describing human perceptions, building self-
explanatory computational systems ready to
communicate with humans in Natural Lan-
guage becomes a hot challenge. Based on
ideas taken from Cognitive Science, we pro-
pose a novel model to facilitate achieving this
goal. We consider the computer as a metaphor
of the mind and we use references from Phi-
losophy, Neurology, Linguistics, Anthropol-
ogy and Sociology to provide a structure of
different components that allow coping with
the complexity of generating linguistic de-
scriptions about computational processes. We
illustrate the use of this model with several ex-
amples.

1 Introduction

Currently, computational systems allow accessing
huge amounts of data about the phenomena in their
environment. Nevertheless, users and engineers de-
mand tools to reduce the size and complexity of
these data into more friendly tractable dimensions.
We, human beings, use Natural Language for de-
scribing our perceptions and also for construing our
experience (Halliday and Matthiessen, 1999).

Indeed, nowadays, computers can use Natural
Language to generate linguistic descriptions of the
complex phenomena in their environment. The
new challenge (Gunning, 2016) is to build self-
explanatory computational systems, i.e., computa-

tional systems able to describe linguistically their
own functioning.

There are several related research lines dealing
with Argument Technology (Walton et al., 2008),
Natural Language Generation (Reiter and Dale,
2000) and more specifically with Linguistic De-
scription of Data (Ramos-Soto et al., 2016). More-
over, we have already proved the benefits of us-
ing Natural Language for building explainable fuzzy
systems (Alonso et al., 2017).

When we deal with describing computational pro-
cesses, we need a way of representing the mean-
ing of the related linguistic descriptions, i.e., a way
of organizing and coping with their complexity that
would make them easier to understand.

The work presented in this paper contributes to a
long term research project, the so-called Linguistic
Description of Complex Phenomena (Trivino and
Sugeno, 2013). The main contribution of this pa-
per is a systemic model of the process performed
by human beings and computers as Data Processing
Systems (DPS) for producing new information from
input data. We propose to use this model to orga-
nize the meaning of linguistic descriptions about the
different components of computational processes.

This is a general model including few processes
associated with specific families of linguistic expres-
sions. The model deals with a classification of the
main DPS activities and the more adequate linguis-
tic expressions to describe them. Here, we present
only a brief description of the model components
but hopefully enough to provide the reader with an
insight about the possibilities of the idea.

In Section 2 we present some preliminary con-
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cepts which are required to understand the proposal
drawn in Section 3. Section 4 provides some illustra-
tive examples. Finally, conclusions and future work
are sketched in Section 5.

2 Several Concepts from Cognitive Science

One of the main premises of Cognitive Science as-
serts that the computer can be considered a metaphor
of the mind (Gardner, 1987). This metaphor can be
used in both directions, the computer to create an
idea of how the mind works but also we can use our
knowledge about the mind to organize linguistic de-
scriptions about how computers work. With this last
regard we recall several ideas from disciplines be-
longing to Cognitive Science.

From Philosophy, according with Popper, the uni-
verse where humans beings live can be divided into
three worlds (Popper and Eccles, 1977):

• The world of the physical objects (W1).

• The world of the perceived objects (W2).

• The world of the mental objects (W3).

From Neurology, according with (Damasio,
2003), Natural Evolution has built the hierarchical
control system of the human behavior by aggregat-
ing step by step a series of successive layers:

• The primitive layer, located in the inner part
of the brain, is dedicated to immune responses,
basic reflexes and metabolic regulation.

• Control related with pain and pleasure.

• Control based on drives and motivations.

• Control based on emotions and feelings.

• On the top of this hierarchy of control mecha-
nisms we have the rationality. This is part of
the most evolved behavior control mechanism
that is based on using Natural Language.

From Linguistics, Systemic Functional Linguis-
tics (Halliday and Matthiessen, 1999) provides a
classification of the human activities into four main
types and subtypes:

• Being: (1) Identifying, (2) Ascribing, and (3)
Existing.

• Sensing: (1) Seeing, (2) Feeling, (3) Thinking,
and (4) Wanting.

• Doing: (1) Doing to/with, (2) Happening, and
(3) Behaving.

• Saying: there are no subtypes here.

3 A Linguistic Model of Data Processing
Systems

This section presents the main contribution in this
paper. We apply a systemic approach inspired by
the ideas introduced in Section 2. We have defined
a model which describes the basic components that
both humans and computers see as Data Processing
Systems (DPS). Fig. 1 shows a data flow diagram of
the model. Rectangles correspond to data structures
and ovals represent processes. In the rest of the sec-
tion we describe the main components in the model.
First, Section 3.1 describes the data structures. Sec-
ond, Section 3.2 introduces the processes.

3.1 Data Structures

3.1.1 External Phenomena (W1)
This is the external world that forms the system

environment. Using their sensors, DPS try to obtain
useful data that are needed to perform their goals.
Notice that most of the phenomena in W1 are be-
yond the limits of human/computers perception and
understanding capacities.

We identify two main components in this world:
(1) World of physical objects, and (2) World of cul-
tural objects.

The World of physical objects corresponds with
the first world described by (Popper and Eccles,
1977). Both human body and robot hardware are
part of this world which is only accessed through
physical introspection (proprioceptive sense).

Currently, as a result of the civilization process,
the environment from which DPS perceive relevant
phenomena and they must make their decisions is
not only physical but also cultural. We call this
World of cultural objects. According with Anthro-
pology (Tomasello, 1999) and Sociology (Berger
and Luckmann, 2011) this world is built by hu-
mankind following the Natural Evolution and using
Natural Language.
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Figure 1: Data flow diagram of a linguistic model for Data Processing Systems (DPS).

3.1.2 Experience Without Words (W2)
It takes place in the internal world that is the do-

main of drives, emotions and feelings for humans.
It is made up of internal images without words and
corresponds with the Popper’s second world, i.e., the
world of the perceived objects. In computational
systems, these objects are related to raw data, i.e.,
data that computers capture for driving reactive be-
haviors but that still need to be processed before be-
coming useful information. For example a video
stream or a temporal series of temperatures coming
out from a chemical process.

3.1.3 Experience Expressed in Natural
Language (W3)

This data structure corresponds with the Popper’s
third world. In accordance with Neurology, it is part
of the human consciousness (Damasio, 2010). The
related information is produced in humans by using
the rationality that is supported by the newest part
of the human brain, the neocortex. This is part of
the most evolved behavior control mechanism that is
based on using the Natural Language. On the other
hand, in computers, it is produced by using the high-
est levels of their computational architecture (Triv-
ino et al., 2009).

3.2 Processes

It is noteworthy that the names of these processes
are labels representing a classification (hierarchical
structure) of possible linguistic expressions. During
their application in the model, each specific situation
will be described by using specific linguistic expres-
sions belonging to these categories.

3.2.1 Sensing
This process allows DPS to obtain data about the

External phenomena. Seeing is a specialized func-
tion or sensor (as sight, hearing, smell, taste, or
touch in humans) by which DPS sense (obtain or re-
ceive) external or internal stimuli. It allows creating
images of objects in the surrounding environment.
With Feeling the system translates the information
coming from external phenomena into emotions and
feelings that will influence/condition the related be-
havior. In computers, it is used for reactive con-
trol. In Fig. 1 they correspond with the process W1
→ W2. Thinking and Wanting corresponds with the
feedback W3 → W2. DPS can distinguish between
positively and negatively evaluated information and
modify accordingly the related behavior. With Say-
ing they close an internal control loop.

3.2.2 Doing
In Fig. 1, it corresponds with the process W2 →

W1. It includes the processes of physical acting and
can be described by linguistic expressions like Do-
ing to/with, Happening, and Behaving.

3.2.3 Saying
It is the process of generating linguistic descrip-

tions of images or raw data. In Fig. 1, it corresponds
with the process W2→W3. This is related to the re-
search on Linguistic Descriptions of Complex Phe-
nomena, e.g., (Conde-Clemente et al., 2017).

3.2.4 Being
In Fig. 1, it corresponds with the process W3 →

W1. It can be described by linguistic expressions
like Identifying, Ascribing, and Existing. Using this
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process DPS create new objects and modify the ob-
jects in W1. Note that this is the mechanism used by
DPS to send messages to other DPS.

4 Examples

In this section, with the aim of illustrating how to
apply the model presented in Section 3, we describe
briefly the sequences of processes followed in two
examples of human behavior and in one example of
computational processing.

4.1 Reactive Behavior
Let’s suppose we observe a reactive behavior in a
woman. She shows a typical reactive activity when
the light of the sun is disturbing her to see some-
thing:

• She feels the sun on her eyes (sensing-seeing-
feeling).

• She moves her head looking for the sun posi-
tion (doing-behaving).

• She uses her hand to shadow her eyes (doing-
doing with).

4.2 Deliberative Behavior
Here, the observed subject (a musician) shows a
more sophisticated set of activities that consists of
composing music:

• He listens to a bird through the window
(sensing-seeing).

• He feels certain emotion (sensing-feeling).

• He plays the piano (doing-doing with).

• He expresses this music using the musical no-
tation (saying).

• He publishes a piano score and makes the mu-
sic available to others by creating a new object
in their external world (being-existing).

4.3 Computational System Behavior
A computational system (DPS) monitors the move-
ments of clients into a supermarket:

• It detects a change in the shopping entrance
(Sensing).

• It changes the internal state to “detected new
client” and stores the related image [experience
without words].

• It moves the camera to follow the client (do-
ing).

• It builds a map with different positions and
timestamps (Saying).

• It detects the client is going out (Sensing).

• It sends a linguistic report to the store manager
informing about business details (Being).

5 Conclusions

The presented model is the result of a multidisci-
plinary research and it is part of a long term project
in the research line of Linguistic Descriptions of
Complex Phenomena.

In general, computational processing of data are
complex phenomena. The idea is that computers
use a metaphor to describe their internal processes.
The human user is helped to understand the com-
puter processes by using the same terminology that
the user uses to describe his/her own activities.

We have focused this paper on developing a
model for meaning representation rather than in how
to express this meaning with linguistic expressions
that should be customized for each specific user. The
description presented in this paper provides just a
general insight about the main components of the
model and how they are interrelated. The next step
includes to analyze and to describe in depth the three
data structures and the four processes.

This paper can be useful to researchers by provid-
ing them with a first idea about how to organize the
meaning representation of linguistic descriptions of
computational processes of data.
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