
Proceedings of the 15th Meeting on the Mathematics of Language, pages 88–99,
London, UK, July 13–14, 2017. c©2017 Association for Computational Linguistics

DAG Automata for Meaning Representation

Frank Drewes
Umeå University, Sweden
drewes@cs.umu.se

Abstract

Languages of directed acyclic graphs
(DAGs) are of interest in Natural Lan-
guage Processing because they can be
used to capture the structure of seman-
tic graphs like those of Abstract Mean-
ing Representation. This paper gives an
overview of recent results on a family
of automata recognizing such DAG lan-
guages.

1 Introduction

This paper attempts to survey, motivate, and ex-
plain recent work on automata that recognize sets
of directed acyclic graphs (DAGs). These au-
tomata are called DAG automata and the lan-
guages they recognize regular DAG languages.
While DAG automata are of interest in various ar-
eas of computer science, different application ar-
eas place different requirements on what consti-
tutes a good model of such automata. Here we
are interested in DAG automata that are suitable
for capturing the structure of semantic graphs in
Natural Language Processing, and in particular
meaning representations such as Abstract Mean-
ing Representation (AMR).

AMR was introduced by Banarescu et al. (2013)
as a domain-independent graph notation for the
semantics of meanings in natural language, and
since then a quickly growing AMR bank for
English has been built.1 The purpose of such
graphbanks is to enable research towards domain-
independent semantic language processing, thus
mirroring the advances in syntactic processing that
have been made during the past 20 years thanks to
the existence of large syntactic treebanks.

AMR serves a similar purpose in the realm of
semantic representation as the well-known con-

1See http://amr.isi.edu.

stituent tree does for syntactic representation. For
the latter, we have a great variety of well-studied
formal models for capturing the structure of cor-
rect representations, distinguishing them from
faulty ones, and efficiently processing these for-
mal objects. One of the simplest and at the same
time most useful models is the finite-state tree au-
tomaton or, equivalently, the regular tree grammar
(see Gécseg and Steinby (1984, 1997) and Drewes
(2006, Appendix A)). Simplicity, though resulting
in limited expressive power, is an is an asset in
this context. It is to their simplicity that finite-state
tree automata owe their usefulness. One of the ad-
vantages of the model is that it can easily be ex-
tended by weights (Fülöp and Vogler, 2009), then
associating with every tree a value that indicates
how “good” or perhaps probable the tree is. Such
weighted automata are especially useful in Natu-
ral Language Processing where one rarely finds
a clear dividing line between correct and wrong
representations, and where one furthermore has to
find ways to resolve ambiguities.

An AMR2 is usually not a tree but a DAG such
as the (somewhat simplified and abstracted) AMR
in Figure 1. Its vertices are mostly PropBank con-
cepts (Kingsbury and Palmer, 2002) connected by
edges which are labelled by role labels, intuitively
supplying the concepts with their semantic argu-
ments. Readers familiar with dependency trees
probably notice the similarity, but also the differ-
ence: if several concepts share a semantic argu-
ment the latter is still represented only once, being
pointed to by several edges. This is what turns
AMRs into DAGs, thus calling for formal mod-
els that allow to specify DAG languages or even
weighted DAG languages. Unsurprisingly, it turns

2We use the abbreviation AMR to refer to the general con-
cept of Abstract Meaning Representation as defined by Ba-
narescu et al. (2013), but also to refer to individual graphs
that follow the AMR specification.

88

and

say

and

recommendwant

content

experienceI

askthink −
think

thing

she

we

location

op1

op2

op3

ARG1

ARG0

ARG2

op1 op2

ARG0

ARG2

ARG1

ARG0

ARG1

ARG1

polarity ARG0

ARG0

ARG2

ARG1

ARG2

ARG1

ARG0
ARG2

ARG0

location

Figure 1: An AMR from the AMR Bank: “I asked her what she thought about where we’d be and she said
she doesn’t want to think about that, and that I should be happy about the experiences we’ve had (which
I am).” The PropBank frame names (the vertex labels) have been simplified for the sake of readability.
They can be found in Chiang et al. (2016), which also uses this example. As a side note, one may note
that the AMR does not specify whether her saying was the answer to my asking, the other way around,
or the two were independent. This, however, would contribute to a discussion about the limits of AMR
rather than about formal automata models for AMR.

out that the greater complexity and expressivity
of DAGs makes it all too easy to develop natural
types of DAG automata that are surprisingly pow-
erful, thus lacking the simplicity that is the great
advantage of finite-state tree automata.

The amount of research that has been devoted
to DAG automata models that extend finite-state
tree automata to the realm of DAGs is rather lim-
ited. Moreover, researchers have come up with
various different models that, owing to different
intended areas of application, work on different
types of DAGs and exhibit different properties.
Most appear to be more powerful than what ap-
pears to be reasonable from a linguistic point of
view, thus making the model more complex than

desirable. One of the potential problems that
comes with greater complexity is computational
inefficiency, another one is that such models, when
being trained, are prone to overfitting.

2 What Is a “Good” Automaton Model
for Meaning Representation?

Let us have a look at a few aspects that come
to mind when thinking about an appropriate au-
tomaton model for meaning representation such as
AMR.

2.1 Types of DAGs
A typical meaning representation, such as the one
in Figure 1 carries labels on both vertices and

89

edges. However, as an edge labelled a may easily
be replaced by a sequence of two unlabelled edges
with a vertex labelled a in between, one may pre-
fer to view edge labels as “syntactic sugar” which,
in the name of simplicity, can be removed from the
core formalism.

As in the case of tree languages, DAG lan-
guages may be of bounded or unbounded vertex
degree (usually called ranked and unranked in the
context of tree languages). In principle, there is
no bound on the number of incoming or outgo-
ing edges of vertices in meaning representations
because an arbitrary number of optional modifiers
may be attached to a concept, and there may be
any number of references to a vertex (cf. the ‘she’
vertex in Figure 1). Thus, the vertex degree is only
bounded by the length of the sentence represented,
and even this is only true as long as representations
of single sentences are considered. In the future,
one may very well want to consider AMRs that
represent an entire text. However, it is certainly
meaningful to study DAG languages of bounded
degree as an important base case, especially if the
two can be linked in some way. Such a link will
be discussed in Section 7.

Another question is whether there should be an
order on the incoming and outgoing edges of a ver-
tex. Standard edge labels such as arg0, arg1,
etc seem to indicate an order on outgoing edges.
However, there can also be other labels, such as
polarity and location in Figure 1, and in-
coming edges are not naturally equipped with an
order in the first place. This indicates that mean-
ing representations should be viewed as unordered
DAGs. On the other hand, as an order only adds
expressiveness without affecting the formal prop-
erties of the resulting model very much, one may
wish to study both possibilities, especially as long
as DAG languages of bounded degree are consid-
ered. One reason why the ordered case is of inter-
est is that it can more readily be related to the case
of regular tree languages (which consist of ordered
trees). Another one is that the notion of determin-
ism is rather meaningless in the unordered case.

One may consider DAGs with multiple roots
or DAGs which are required to have a unique
root.3 As discussed by Chiang et al. (2016) AMRs
should preferably be viewed as multiply-rooted
DAGs because their standard representation turns
them into singly-rooted graphs only by introduc-

3We call a vertex a root if it has no incoming edges.

ing cycles. Moreover, ensuring single-rootedness
often requires the addition of a topmost ‘and’ ver-
tex. This may become awkward later on if several
related sentences shall be viewed as a collection of
statements to be represented in a single DAG. As
will be discussed below, there are also good formal
reasons for not imposing the single-root require-
ment (and not providing DAG automata with this
ability either).

In the literature one also finds DAG automata
that work on planar DAGs obeying additional
structural conditions (Kamimura and Slutzki,
1981), and finite-state tree automata applied to
trees with maximal sharing, meaning that isomor-
phic subtrees are represented only once and can
thus be processed only once even in the nonde-
terministic case (Charatonik, 1999; Anantharaman
et al., 2005). Meaning representations are often
non-planar once they get sufficiently complex, and
may contain isomorphic substructures that repre-
sent distinct instances of otherwise identical con-
cepts and relations.

Several other types of DAG automata are briefly
discussed by Chiang et al. (2016). Together
with (Quernheim and Knight, 2012; Blum and
Drewes, 2016, 2017; Drewes, 2017), the latter rep-
resents the line of research discussed in this pa-
per. Despite a rather different formal presenta-
tion, its DAG automata are closely related to those
by Priese (2007), except for the fact that the latter
includes a concept of initial and final states, and
can thus in particular restrict the number of roots
of accepted DAGs. The importance of this distinc-
tion will be discussed in Section 4.

2.2 Expressive Power vs Algorithmic and
Language Theoretic Properties

As the expressive power of formal models in-
creases, their algorithmic and language theoretic
properties become less favourable. As mentioned
initially, for meaning representations expressive
power appears to be less important than simplic-
ity and good computational properties. In prac-
tice, (weighted) DAG automata will have to be
learned from and trained on large semantic graph-
banks. For this to be feasible, DAG automata must
be implemented as efficiently as possible, it must
be possible to check their behaviour, and good clo-
sure properties may be required as well.

What makes it reasonable to look for a compar-
atively weak type of DAG automaton is that mean-

90

ing representations, viewed as DAG languages,
seem to be relatively simple. One aspect that can
be used as an indicator of sufficient simplicity is
the complexity of the path languages of recog-
nizable DAG languages. Given a DAG language
(with labels only on the vertices, say), its path lan-
guage consists of all strings obtained by reading
the symbols on root-to-leaf paths in the DAGs of
the language. It seems linguistically reasonable
to assume that, for DAG languages formalizing
meaning representations such as AMR, these path
languages are regular. Hence, DAG automata that
give rise to non-regular path languages are suspi-
ciously powerful from the point of view of mean-
ing representation and should be avoided in favour
of simpler ones.

3 DAG Languages of Bounded Degree

Let us now give a formal definitions of DAGs and,
afterwards, DAG automata on DAGs of bounded
vertex degree.

3.1 DAGs
Let Σ be a (finite) alphabet of vertex labels. A
directed graph over Σ is a tuple G = (V,E,
lab, src, tar) consisting of

• finite sets V and E of vertices and edges,

• mappings src, tar : E → V associating with
each edge e ∈ E a source src(e) and a target
tar(e), and

• a mapping lab : V → Σ that assigns a label
lab(v) to every vertex v ∈ V .

For every vertex v we let IN (v) = tar−1(v) and
OUT (v) = src−1(v) denote its sets of incoming
and outgoing edges.

A path from u to v is an alternating se-
quence v0e1 · · · vk−1ekvk of vertices and edges
such that v0 = u, vk = v, and {vi−1, vi} =
{src(ei), tar(ei)} for all i ∈ {1, . . . , k}. The path
is empty if k = 0, directed if vi−1 = src(ei) for all
i ∈ {1, . . . , k}, and a (simple) cycle if v1, . . . , vk
are pairwise distinct and u = v. G is acyclic, a
DAG for short, if it does not contain any nonempty
directed cycle.

3.2 DAG Automata
Given a finite set Q, let us denote the set of all fi-
nite multisets over Q by M(Q). In other words,
M(Q) is the set of all functions M : Q → N. A

DAG automaton is a triple A = (Σ, Q,R) consist-
ing of

• an alphabet Σ,

• a finite set Q of states, and

• a finite set R of rules I σ−→ O, where I,O ∈
M(Q) and σ ∈ Σ.

A run of A on a DAG D = (V,E, lab, src, tar)
is a mapping ρ : E → Q. For a set E′ =
{e1, . . . , en} of edges in E, we let ρ(E′) de-
note the multiset {ρ(e1), . . . , ρ(en)}. (Formally,
ρ(E′)(q) = |{i ∈ {1, . . . , n} | ρ(ei) = q}| is
the number of times q occurs in ρ(e1), . . . , ρ(en).)
The run ρ is accepting if it is locally consistent
with the rules in R, i.e., if

ρ(IN (v))
lab(v)−−−→ ρ(OUT (v))

is in R for every vertex v ∈ V . Naturally, a
DAG D is accepted by A if there exists an ac-
cepting run of A on D. The DAG language ac-
cepted by A is the set L(A) of all connected and
nonempty DAGs accepted by A. Following Blum
and Drewes (2017) we shall in the following call
DAG languages of the form L(A) regular DAG
languages.

The fact that we restrict L(A) to connected and
nonempty DAGs deserves a brief reflexion. By the
definition of acceptance, a DAG is accepted by A
if and only if each of its connected components
is accepted individually. Hence the set of all ac-
cepted DAGs is uniquely determined by L(A). In
contrast to L(A) it is never empty (it always con-
tains the empty DAG, which is the disjoint union
of zero DAGs in L(A)), and it is finite if and only
if L(A) is empty. This shows that L(A) is a much
more meaningful object of study. In particular,
with this definition of L(A) it becomes sensible
to ask whether emptiness and finiteness are decid-
able properties.

3.3 Variants

As discussed above, one may sometimes pre-
fer to work with ordered DAGs instead of
the unordered variant defined above. In that
case, a DAG is conveniently defined to be a
tuple (V,E, IN ,OUT , lab), where IN (v) and
OUT (v) are sequences of edges, and the compo-
nents I and O of a rule I σ−→ O are sequences
rather than multisets of states. Similarly to the

91

definition above, a run ρ would be accepting if

ρ(IN (v))
lab(v)−−−→ ρ(OUT (v)) is in R for every

vertex v ∈ V , with ρ being extended to a function
from sequences of edges to sequences of states in
the canonical way.

For a semiring S, a weighted DAG automaton
with weights in S is obtained by turning R into a
function that assigns a weight in S to every poten-
tial rule in such a way that all but a finite number
of rules are assigned the weight zero. This works
in both the ordered and the unordered case. The
weight of a run on a DAG D is then the product
of the weights of the rules applied at the individ-
ual vertices, and the weight of D is the sum of the
weights of all runs on D. As usual, unweighted
DAG automata are obtained as a special case by
choosing the Boolean semiring as S and represent-
ing the setR of rules by its characteristic function.

3.4 Example
As a simple but instructive example, let Σ =
{a, b, �} and Q = {p, p′, q, q′} with the following
rules (where ε denotes the empty sequence):

ε
a−→ pp′, p a−→ pp′,
p′ �−→ q′

pq′ b−→ q, qq′ b−→ q,

pq′ b−→ ε, qq′ b−→ ε.

A run on one of the DAGs accepted by this DAG
automaton is shown in Figure 2. Note that the sec-
ond outgoing edge of every a is assigned the state
p′, which then becomes a q′ by passing through �,
and every b requires an incoming q′. It follows that
all accepted DAGs have equal numbers of as and
bs. In the DAG of Figure 2 this makes sure that the
path not containing any � (i.e., the one obtained by
intersection with the regular language a∗b∗) is of
the form anbn.

4 What a Difference a Root Makes

The preceding example seems to show that the
DAG automata discussed here are more powerful
than intended, as the path language of L(A) ap-
pears to be non-regular. In fact, path languages
even seem to exceed the context-free languages as
it is easy to add further letters in the same way,
thus obtaining paths like anbncndn. However, this
is true only if L(A) is restricted to DAGs with a
unique root. As there is no way for A to ensure
this, we can take a second accepted DAG, add it

a

�a

�

a

�b

b

b

p

p

p

q

q

p′

p′

p′ q′

q′

q′

Figure 2: A run of the DAG automaton in Sec-
tion 3.4; for better visual clarity edges carrying
states p′ and q′ are drawn in blue and red, respec-
tively.

a

�

b

p

p′

q′

Figure 3: Another run of the DAG automaton in
Section 3.4

disjointly to the one in Figure 2, and then connect
the two by swapping the targets of two edges with
the same state. This swapping operation turns out
to be a powerful tool for proofs as it, by the defini-
tion of accepting runs, preserves acceptance. For
example, by using the DAG in Figure 3 as the sec-
ond component on can construct the accepting run
in Figure 4 on a DAG that contains the paths a3b
and ab3.

Thus, if we letLu(A) denote the set of all DAGs
in L(A) having exactly one root, then the path
language of Lu(A) may indeed be non-context-
free. In contrast, it can be shown that the path
language of L(A) is regular for every DAG au-
tomaton A. In fact, we can unfold a DAG D =
(V,E, lab, src, tar) into a set of trees over Σ, as
follows. For a vertex v ∈ V with lab(v) = σ

92

a

�

b

pp′

q′

a

�a

�

a

�b

b

b

p

p

p

q

q

p′

p′

p′ q′

q′

q′

Figure 4: A possible combination of the runs in
Figures 2 and 3

and OUT (v) = {e1, . . . , ek}, let unfoldD(v) be
the tree whose root is labelled σ and whose di-
rect subtrees are the trees unfoldD(tar(ei)) for
i = 1, . . . , k. Note that this works for ordered
DAGs as well as for unordered ones. In the former
case OUT (v) = e1 · · · ek is a sequence of edges
rather than a set and the direct subtrees are ordered
accordingly.

Now the unfolding unfold(D) of D yields the
set of all trees unfoldD(v) such that v is a root
of D, and the unfolding of a DAG language L
is given by

⋃
D∈L unfold(D). Pretending for

the moment that we work in the ordered setting,
one can then use edge swapping to show that
unfold(L(A)) is a regular tree language, mainly
by turning every rule p1 · · · pm σ−→ q1 · · · qn into
the set of rules pi → σ(q1, . . . , qn), obtaining a
regular tree grammar. (An initial nonterminal S
must be added, with all rules S → σ(q1, . . . , qn)
for which A contains the rule ε σ−→ q1 · · · qn.)

However, for this argument to work properly
one first has to remove useless rules from A be-
cause otherwise the regular tree grammar may
generate trees that are unfoldings of DAGs not in
L(A). Useless rules can be detected by a tech-
nique that also allows us to decide whether L(A)
is empty. The key observation is that A can be
seen as a Petri net whose places are the states of
A. Every rule I σ−→ O corresponds to a Petri net
transition that consumes tokens from the places in

I and produces tokens on the places in O. Again,
this works in both the ordered and the unordered
case as the Petri net is oblivious to an order on
its places. Deciding the emptiness of L(A) boils
down to the question whether the Petri net has a
zero cycle, meaning that it can take the empty con-
figuration back to itself. This is because a run
can be viewed as a top-down process that starts
with the empty DAG. It then creates a root ac-
cording to a rule, thus creating some outgoing
“dangling” edges with states assigned to them.
Then the process continues by applying rules, al-
ways taking some of the still unprocessed dangling
edges, making them the incoming edges of a ver-
tex and producing new dangling edges with as-
signed states (unless the vertex created is a leaf).
Finally, all dangling edges (and thus “unused”
states) must have vanished, corresponding to the
null configuration of the Petri net.

Petri nets with a zero cycle are also said to be
structurally cyclic. Deciding this property is a
special case of the Petri net reachability problem
which can be solved in polynomial time (Drewes
and Leroux, 2015). Consequently, emptiness of
regular DAG languages can be decided in polyno-
mial time as well. Moreover, the result in (Drewes
and Leroux, 2015) is obtained by presenting a
polynomial-time algorithm that computes the set
of all transitions of the Petri net that occur in zero
cycles. Since these transitions are exactly the use-
ful rules of A, the algorithm detects the latter.

With these pieces, especially the removal of
useless rules, in place it can furthermore be shown
that the finiteness problem is solvable in polyno-
mial time as well. On the other hand, consider-
ing Lu(A) instead of L(A), detection of useless
rules, emptiness, and finiteness all become as hard
as general Petri net reachability. Though this prob-
lem is decidable as well (Mayr, 1984; Kosaraju,
1982), no primitive recursive upper bound on its
complexity is known.

In summary:

1. The unfolding of a regular DAG language
(of ordered DAGs) yields a regular tree lan-
guage; in particular, since the path language
of a regular DAG language obviously coin-
cides with the path language of its unfolding,
it is a regular string language. In contrast,
the path language of Lu(A) is not necessarily
context-free. Furthermore, the latter shows
that the unfolding of Lu(A) is not necessar-

93

ily a context-free tree language.

2. There is a polynomial algorithm that detects
the useless rules of a DAG automaton A.
However, one should be aware that some of
the remaining rules may be useless for gen-
erating DAGs in Lu(A). Detecting those re-
quires to solve the general Petri net reacha-
bility problem, which may very well be one
of the hardest decidable problems there is.

3. Similarly, the emptiness and finiteness prob-
lems can be solved in polynomial time for
L(A), but solving the same problems for
Lu(A) again requires to solve the general
Petri net reachability problem.

These results are especially interesting in the
light of the fact that most notions of DAG au-
tomata known from the literature can simulate the
DAG automata discussed here and are, in addition,
able to restrict the number of roots to one.

5 Further Properties of Regular DAG
Languages

5.1 Closure under Set Theoretic Operations

Unsurprisingly, the class of regular DAG lan-
guages turns out to be closed under union and
intersection, using the standard constructions.
Slightly less obvious is the fact that that it is not
closed under complementation or set difference.
Consider the language L of all connected non-
empty DAGs over {a, b} in which every vertex
is either a root of out-degree 2 or a leaf of in-
degree 2. Thus, the elements of L are simple undi-
rected cycles. Clearly, L is regular, and so is the
subset containing only the DAGs over {a}. Their
difference Lb = L \ L′ is the set of all DAGs in L
containing at least one b. Now, assuming that Lb is
regular and fixing a DAG automaton that accepts
it, consider a run on a DAG D ∈ Lb. If D is large
enough, it contains two edges with the same state
that can be swapped in such a way that the result-
ing DAG D′ falls apart into two components. As
D′ is still accepted, each of its components is in
Lb. However, if we choose D in such a way that it
contains only one b, then only one component of
D′ can contain that b, a contradiction.

5.2 Pumping

Swapping edges also yields two pumping lem-
mata. Both work by iterated application of the

swapping operation. Given a DAG D, two edges
e, e′ of D, and some n ≥ 0, let D(e ./ e′)n de-
note the DAG obtained from n + 1 isomorphic
copies D0, . . . , Dn of D by swapping the copy
of e′ in Di−1 with the copy of e in Di, for all
i ∈ {1, . . . , n}. (As before, swapping two edges f
and f ′ means that tar(f) and tar(f ′) become the
targets of f ′ and f , respectively.)

Pumping Property 1 For every DAG automa-
ton A there is a constant c such that every DAG
D ∈ L(A) with at least c edges contains edges
e, e′ such that

(1) A accepts D(e ./ e′)n for all n ≥ 0 and

(2) each D(e ./ e′)n contains a connected com-
ponent of size ≥ n.

The construction used to prove this property
(Blum and Drewes, 2017) actually creates con-
nected components in (b) that grow at a constant
rate, which means that regular DAG languages ex-
hibit a linear growth property: if we sort the DAGs
in a given regular DAG language by size (number
of vertices, say), then there is a global constant d
such that the sizes of two consecutive DAGs differ
by at most d.

Pumping Property 2 If a regular DAG language
L contains a DAG D that has an undirected cycle,
then D contains an edge e such that D(e ./ e)n ∈
L for all n ≥ 0.

The property follows from the simple fact that
swapping an edge e on a cycle in one copy of D
with its counterpart in a second copy of D creates
a connected DAG. This property entails an inter-
esting consequence, as it is not difficult to show
that {D} is regular for every connected nonempty
DAG D that does not contain a cycle.4 Hence,
by the closedness under union, finite sets of DAGs
that do not contain cycles are regular. Together
with the above property this proves that a finite
set of connected nonempty DAGs is regular if and
only if none of its DAGs contains a cycle.

6 Recognition

One of the most central computational problems
for automata is recognition, also known as the
membership problem: given an object D, in this

4This is a special case of the more general fact that every
regular tree language is a regular DAG language (of ordered
DAGs).

94

∧

∨

∨

xx

x

∨

¬

x

∧

xx

Figure 5: DAG representation of the propositional
formula ((x1 ∧ x2) ∨ ¬x2) ∧ (x3 ∨ (x2 ∨ x1))

case a DAG, is it accepted by the automaton? In
the weighted case, the answer is not yes or no, but
the actual weight of D. Recognition comes in two
flavors, depending on whether the automaton is
part of the input – the uniform recognition prob-
lem – or not – the non-uniform recognition prob-
lem. For linguistic applications the potentially
more difficult uniform version is the more rele-
vant one, which should preferably be efficiently
solvable. Unfortunately, it turns out that even non-
uniform recognition is NP-complete, i.e., there ex-
ist fixed DAG automata whose accepted language
is NP-complete.

6.1 NP-Completeness

An NP-complete regular DAG language is surpris-
ingly easy to construct. Take the regular tree lan-
guage representing propositional formulas over ∧,
∨, ¬, and x, where x denotes an (anonymous) oc-
currence of a propositional variable. Link all oc-
currences of x that represent the same variable by
a linear chain of edges. An example of such a
DAG representation of the propositional formula
((x1 ∧ x2) ∨ ¬x2) ∧ (x3 ∨ (x2 ∨ x1)) is shown
in Figure 5. Now a DAG automaton can verify
that a formula is satisfiable, as follows: use states
t and f representing truth values and rules such as
tt

x−→ t and ff x−→ f , which guess a consistent as-
signment of truth values to all occurrences of the
same variable, and ff ∧−→ f , tf ∧−→ f , ft ∧−→ f ,
tt
∧−→ t, which implement the operators. More-

over, for every rule I σ−→ t there is a rule I σ−→ ε.
Clearly, such an automaton accepts a DAG repre-
senting a propositional formula ϕ in the way de-
scribed above if and only if ϕ is satisfiable.

6.2 Recognition

The NP-completeness result above indicates that,
in general, there may be no efficient recognition
algorithms for regular DAG languages. However,
according to statistics reported by Chiang et al.
(2016), DAGs actually arising from real-world
AMRs are usually rather benign. In particular, al-
though the treewidth of AMRs is unbounded in
principle, real-world AMRs seem to have a small
treewidth. Among 20 000 AMRs from the AMR
Bank the maximum treewidth turned out to be 4,
which was reached by only 31 AMRs, and the av-
erage treewidth was 1.55. It thus seems to be a rel-
evant goal to develop recognition algorithms that
work well on DAGs of small treewidth.

Let us recall here that a tree decomposition of
a graph G = (V,E, lab, src, tar) is a tree whose
vertices, called bags here, are labelled with subsets
of V such that

1. the union of all bags is V ,5

2. for each edge e ∈ E there is at least one bag
containing both src(e) and tar(e), and

3. for each vertex v ∈ V the bags containing v
form a connected subgraph of the tree.

The treewidth of G is the smallest width of any of
its tree decompositions, the width of a tree decom-
position being the maximum size of its bags minus
one. (A tree has treewidth 1 because it suffices
to use a bag of size two for each edge e, namely
{src(e), tar(e)}.)

A basic recognition algorithm generalizes the
well-known forward algorithm by Baum (1972).
Intuitively, it works as follows: To describe the
algorithm, let us call a vertex together with its
incident edges a star. For each such star in the
input DAG, the algorithm records a set of candi-
date assignments of states to its edges. The initial
candidate assignments to be recorded are given by
the rules: every rule that could potentially be ap-
plied to the star (i.e., has the right vertex label and
numbers of states in the left- and right-hand side)
yields a candidate assignment to be recorded.

Now, the algorithm repeatedly chooses two
stars s1, s2 that share an edge.6 It contracts the

5For the sake of brevity, we often identify a bag with the
set of vertices it is labelled with.

6To be precise, one also has to cover the case where more
than one edge is shared between s1 and s2, but here we dis-
regard this possibility.

95

edge, merging s1 and s2 into a single (possibly
larger) star s. The candidate assignments to be
recorded in s are obtained as follows: assume that
s1 and s2 have edges e0, . . . , em and f0, . . . , fn,
where e0 = f0 is the one being contracted. Then
s has edges e1, . . . , em, f1, . . . , fn, and for all
candidate assignments p0, . . . , pm and q1, . . . , qn
recorded in s1 and s2 with p0 = q0 the assignment
p1, . . . , pm, q1, . . . , qn is recorded in s. When the
process stops, only one star s is left, which con-
sists of a single vertex with no edges. The DAG is
accepted if s records the empty candidate assign-
ment, and is rejected if it contains no assignment
at all.

With only little modification the algorithm may
be used for weighted DAG automata, then com-
puting the weight of the input DAG. In this case,
each of the recorded candidate assignments is as-
sociated with a weight, which in the initial step is
the weight of the rule in question. When two can-
didate assignments are combined in the process of
merging two stars s1, s2, their weights are mul-
tiplied. If one of the candidate assignments for
the combined star emerges in several ways from
combinations of candidate assignments recorded
in s1, s2, the resulting weights are summed up.

6.3 Efficiency of Recognition
The reader may have observed that the order in
which edges are contracted may strongly affect
the size of stars occurring during the execution of
the algorithm, thus making the algorithm more or
less efficient. Treating every vertex in the way de-
scribed means that we are actually working with
the linegraph LG(D) of D. It is obtained by turn-
ing every edge into a vertex and every vertex v
into a clique on the incident edges of v (which
are now vertices). The optimal contraction order
can be read off an optimal tree decomposition of
LG(D). A closer inspection of these facts (Chi-
ang et al., 2016) revels that the algorithm can be
implemented to run in time

O(|E| · |Q|tw(LG(D))+1),

where tw(G) denotes the treewidth of a graph G.
The exponential dependency on the treewidth of
LG(D) (rather than on the treewidth of D itself)
is bad; as soon as D contains a vertex v of degree
k the treewidth of LG(D) is at least k − 1 since
there must be a bag in the tree decomposition that
covers the entire clique of size k that corresponds
to v.

σ

σ

σ

σ

σ

σ

σ

σ

σ

Figure 6: Binarizing a vertex of in-degree 3 and
out-degree 2

A potential improvement can be achieved by a
method called binarization, which is inspired by
the well-known first-sibling next-child encoding
of trees of unbounded rank by binary trees. The
idea is to replace every vertex by a sub-DAG in
which each vertex has in-degree ≤ 2 and out-
degree ≤ 1 or else in-degree ≤ 1 and out-degree
≤ 2. A simple binarization scheme is illustrated
in Figure 6 for a vertex of in-degree 3 and out-
degree 2. Applying this schema to all vertices in a
given DAG yields a binary DAG, and it is straight-
forward to modify the rules of a given DAG au-
tomaton in such a way that the automaton accepts
the binarized version of the original DAG lan-
guage.

By turning from an input DAG D to its bina-
rized version D′ we have thus reduced the de-
gree of vertices, and hence the size of cliques in
LG(D′), to three. However, this is not enough
in order to increase the efficiency of the algo-
rithm because any fixed binarization such as the
one above may be structurally incompatible with
an optimal tree decomposition of D, thus actually
making tw(D′) and tw(LG(D′)) much larger than
tw(D).

The solution to this dilemma is provided by the
fact that, for every tree decomposition of a graph
G, there is a binary tree decomposition of G (i.e.,
a tree decomposition which is a binary tree) of the
same width. If we, instead of binarizing vertices
according to a fixed scheme, base our binarization

96

on an optimal binary tree decomposition of D, it
can be shown that a better binarization is obtained.

Here is a rough outline of the method. Con-
sider a binary tree decomposition T of D. It can
be shown that we may, without affecting the width
of T , build it in such a way that every edge e of
D is covered by an explicitly assigned leaf bag
of T , these bags being distinct for distinct edges.
By the definition of tree decompositions, the bags
containing a given vertex v of D form a subtree
Tv of T . This tree contains one leaf for each edge
e incident on v. Hence we can binarize D by re-
placing every vertex v by the corresponding Tv,
attaching each of the original incident edges of v
to the corresponding leaf of Tv. Intuitively, using
the subtrees Tv of T to binarize vertices ensures
that the structure of the resulting binary DAG DT

is compatible with the tree decomposition T . This
makes it possible to “refine” T into a tree decom-
position of DT , in this way showing that, if the
width of T is k ≥ 1, then

tw(LG(DT)) ≤ 2(k + 1).

In particular, choosing a tree decomposition T of
width tw(D), we get

tw(LG(DT)) ≤ 2(tw(D) + 1).

As in the case of the specific binarization above,
it is not very difficult to turn the original DAG au-
tomaton A into a DAG automaton A′ that accepts
the language of all binarized DAGs DT such that
D ∈ L(A) and T is a binary tree decomposition
of D. The application of a rule of A to a vertex
v is simulated by rules that read the sub-DAG Tv,
gathering the states on the original incoming and
outgoing edges of v one by one. A disadvantage of
this method is that it increases the number of states
exponentially, but at the same time the inequali-
ties above imply that the exponent tw(LG(D)) is
bounded from above by 2tw(D) + 1. Altogether,
running the recognition algorithm above on the bi-
narized versions of D and A yields a running time
that is exponential in |Q| and tw(D) rather than in
tw(LG(D)). For a detailed discussion as well as
formal constructions and proofs see Chiang et al.
(2016).

7 DAG Languages of Unbounded Degree

Let us briefly discuss the case of unbounded vertex
degree. Regular DAG languages are of bounded

vertex degree simply because the set of rules of
a DAG automaton is finite, and every rule applies
only to vertices with a fixed in- and out-degree.
If we want to change this, we need to represent
an infinite set of rules I σ−→ O in a finite manner.
Similarly to the well-known case of unranked tree
languages, we do this by replacing I andO by reg-
ular expressions over the alphabet of states. How-
ever, unrestricted regular expressions can specify
arbitrary semilinear sets, which seems unreason-
ably powerful from a linguistic perspective: condi-
tions such as “σ has twice as many incoming edges
labelled with state q as it has incoming states la-
belled with state q or q′” lack linguistic motivation
and would thus make the model overly powerful.

Extended DAG automata (Chiang et al., 2016),
therefore, use Ochmański’s c-regular expres-
sion (Ochmański, 1985), which are regular expres-
sions in which the Kleene star is only applied to
subexpressions over a unary alphabet. For ex-
ample, (qq)∗pp∗ + qq∗ is a c-regular expression
that specifies the language of all finite multisets
M ∈ M({p, q}) which either contain an even
number of qs and at least one p, or otherwise at
least one q and no p. (Recall that we are interested
in multisets of states rather than sequences, be-
cause we are dealing with unordered DAGs. In the
ordered case the above c-regular expression would
be interpreted as specifying the set of all nonempty
strings over {p, q} which either consist of an even
number of qs followed by at least one p, or contain
no p at all.)

In the following, we denote the set of multisets
denoted by a c-regular expression α by [[α]]. An
extended DAG automaton is defined like a DAG
automaton, except that its set R of rules now con-
sists of extended rules of the form α

σ−→ β, where
α and β are c-regular expressions over Q. An or-
dinary rule I σ−→ O is an instance of α σ−→ β
if I ∈ [[α]] and O ∈ [[β]]. A run ρ on a DAG
D = (V,E, lab, src, tar) is accepting if, for ev-
ery vertex v ∈ V , ρ(IN (v))

σ−→ ρ(OUT (v)) is an
instance of a rule in R.

7.1 The Weighted Case

Extended DAG automata can be made weighted
by using weighted c-regular expressions in their
rules. The semantics of a weighted c-regular ex-
pression α overQ is a function [[α]] : M(Q)→ S,
where S is the semiring of weights. The weight of

97

an ordinary rule I σ−→ O is
∑

(α
σ−→β)∈R

[[α]] (I) · [[β]] (O),

using the addition and multiplication of S. Now,
every run gets as its weight the product of the
weights of the rule instances applied in it, and ev-
ery input DAG gets as its weight the sum of the
weights of all its runs.

7.2 Transferring Results by Binarization

Every (weighted) c-regular expression has an
equivalent (weighted) finite automaton working
on multisets rather than strings, a so-called m-
automaton. Essentially, such an m-automaton is
an ordinary finite automaton whose behaviour is
invariant under reordering the symbols in the in-
put string (which thus, in effect, is treated as a
multiset). Using such an m-automaton to imple-
ment the rules of an extended DAG automaton, bi-
narization works in essentially the same way as for
non-extended DAG automata. In other words, for
every extended DAG automaton A there is a bi-
nary DAG automaton A′ such that L(A′) is the set
of all binarized representations of DAGs in L(A),
and similarly for the weighted case.

It follows immediately that emptiness and
finiteness are decidable, and that the recognition
algorithm for DAG automata can be used to imple-
ment recognition for extended DAG automata, all
with essentially the same running times as in the
non-extended case.7 Even without the use of bina-
rization it is clear that the second pumping prop-
erty of Section 5.2 holds for extended DAG au-
tomata as well, since runs are still invariant under
edge swapping. The first pumping property, how-
ever, does not carry over because its proof relies
on the fact that, in the case of DAGs of bounded
degree, large DAGs contain long simple paths on
which states must eventually repeat. This is not
true anymore for DAGs of unbounded degree.

Acknowledgments

I thank everyone who contributed to the work on
DAG automata either directly or by discussing
ideas and providing opinions at various occasions.

7Naturally, here the input size must include the m-
automata that implement the c-regular expressions appearing
in the rules. These m-automata may, however, be compiled
into a single one to reduce the input size by representing com-
mon parts only once.

In particular, this includes Johannes Blum, David
Chiang, Daniel Gildea, Adam Lopez, Giorgio
Satta, the members of the research group Foun-
dations of Language Processing at Umeå Univer-
sity, and the participants of the 2014 Johns Hop-
kins summer workshop in Prague and the Dagstuhl
Seminars 15122 and 17142.

References
Siva Anantharaman, Paliath Narendran, and Michaël

Rusinowitch. 2005. Closure properties and decision
problems of DAG automata. Information Process-
ing Letters 94:231–240.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proc. 7th Linguistic Annotation
Workshop, ACL 2013 Workshop.

Leonard E. Baum. 1972. An inequality and associ-
ated maximization technique in statistical estimation
for probabilistic functions of Markov processes. In
Oved Shisha, editor, Inequalities III: Proceedings of
the Third Symposium on Inequalities. pages 1–8.

Johannes Blum and Frank Drewes. 2016. Properties of
regular DAG languages. In A.H. Dediu, J. Janoušek,
C. Martı́n-Vide, and B. Truthe, editors, Proc. 10th
Intl. Conf. on Language and Automata Theory and
Applications. volume 9618 of Lecture Notes in Com-
puter Science, pages 427–438.

Johannes Blum and Frank Drewes. 2017. Language
theoretic properties of regular DAG languages. Sub-
mitted.

Witold Charatonik. 1999. Automata on DAG repre-
sentations of finite trees. Research Report MPI-
I-1999-2-001, Max-Planck-Institut für Informatik,
Saarbrücken.

David Chiang, Frank Drewes, Daniel Gildea, Adam
Lopez, and Giorgio Satta. 2016. Weighted DAG au-
tomata for semantic graphs. Submitted.

Frank Drewes. 2006. Grammatical Picture Genera-
tion – A Tree-Based Approach. Texts in Theoretical
Computer Science. An EATCS Series. Springer.

Frank Drewes. 2017. On DAG languages and DAG
transducers. Bulletin of the European Association
for Theoretical Computer Science 121:142–163.

Frank Drewes and Jérôme Leroux. 2015. Structurally
cyclic Petri nets. Logical Methods in Computer Sci-
ence 11(4:15).

Zoltán Fülöp and Heiko Vogler. 2009. Weighted tree
automata and tree transducers. In Werner Kuich,

98

Manfred Droste, and Heiko Vogler, editors, Hand-
book of Weighted Automata, Springer, chapter 9,
pages 313–403.

Ferenc Gécseg and Magnus Steinby. 1984. Tree Au-
tomata. Akadémiai Kiadó, Budapest. Online
version available under https://arxiv.org/
abs/1509.06233.

Ferenc Gécseg and Magnus Steinby. 1997. Tree lan-
guages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages. Vol. 3: Beyond
Words, Springer, chapter 1, pages 1–68.

Tsutomu Kamimura and Giora Slutzki. 1981. Parallel
and two-way automata on directed ordered acyclic
graphs. Information and Control 49:10–51.

Paul Kingsbury and Martha Palmer. 2002. From tree-
bank to propbank. In Proc. 3rd Intl. Conf. on Lan-
guage Resources and Evaluation (LREC 2002).

S. Rao Kosaraju. 1982. Decidability of reachability
in vector addition systems (preliminary version). In
Proceedings of the Fourteenth Annual ACM Sympo-
sium on Theory of Computing. pages 267–281.

Ernst W. Mayr. 1984. An algorithm for the general
Petri net reachability problem. SIAM J. Comput.
13:441–460.

Edward Ochmański. 1985. Regular behaviour of con-
current systems. Bulletin of the European Associa-
tion for Theoretical Computer Science 27:56–67.

Lutz Priese. 2007. Finite automata on unranked and
unordered DAGs. In T. Harju, J. Karhumäki, and
A. Lepistö, editors, Proc. 11th Intl. Conf. on Devel-
opments in Language Theory (DLT 2007), volume
4588 of Lecture Notes in Computer Science, pages
346–360.

Daniel Quernheim and Kevin Knight. 2012. Towards
probabilistic acceptors and transducers for feature
structures. In Proc. 6th Workshop on Syntax, Seman-
tics and Structure in Statistical Translation. Associ-
ation for Computational Linguistics, pages 76–85.

99

