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Abstract

The basic concept in Neural Machine
Translation (NMT) is to train a large Neu-
ral Network that maximizes the transla-
tion performance on a given parallel cor-
pus. NMT is then using a simple left-to-
right beam-search decoder to generate new
translations that approximately maximize
the trained conditional probability. The
current beam search strategy generates the
target sentence word by word from left-to-
right while keeping a fixed amount of ac-
tive candidates at each time step. First, this
simple search is less adaptive as it also ex-
pands candidates whose scores are much
worse than the current best. Secondly, it
does not expand hypotheses if they are not
within the best scoring candidates, even
if their scores are close to the best one.
The latter one can be avoided by increas-
ing the beam size until no performance im-
provement can be observed. While you
can reach better performance, this has the
drawback of a slower decoding speed. In
this paper, we concentrate on speeding
up the decoder by applying a more flexi-
ble beam search strategy whose candidate
size may vary at each time step depend-
ing on the candidate scores. We speed
up the original decoder by up to 43% for
the two language pairs German→English
and Chinese→English without losing any
translation quality.

1 Introduction

Due to the fact that Neural Machine Translation
(NMT) is reaching comparable or even better per-
formance compared to the traditional statistical
machine translation (SMT) models (Jean et al.,

2015; Luong et al., 2015), it has become very pop-
ular in the recent years (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Bahdanau et al.,
2014). With the recent success of NMT, attention
has shifted towards making it more practical. One
of the challenges is the search strategy for extract-
ing the best translation for a given source sentence.
In NMT, new sentences are translated by a simple
beam search decoder that finds a translation that
approximately maximizes the conditional proba-
bility of a trained NMT model. The beam search
strategy generates the translation word by word
from left-to-right while keeping a fixed number
(beam) of active candidates at each time step. By
increasing the beam size, the translation perfor-
mance can increase at the expense of significantly
reducing the decoder speed. Typically, there is
a saturation point at which the translation qual-
ity does not improve any more by further increas-
ing the beam. The motivation of this work is two
folded. First, we prune the search graph, thus,
speed up the decoding process without losing any
translation quality. Secondly, we observed that the
best scoring candidates often share the same his-
tory and often come from the same partial hypoth-
esis. We limit the amount of candidates coming
from the same partial hypothesis to introduce more
diversity without reducing the decoding speed by
just using a higher beam.

2 Related Work

The original beam search for sequence to se-
quence models has been introduced and described
by (Graves, 2012; Boulanger-Lewandowski et al.,
2013) and by (Sutskever et al., 2014) for neural
machine translation. (Hu et al., 2015; Mi et al.,
2016) improved the beam search with a constraint
softmax function which only considered a lim-
ited word set of translation candidates to reduce
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the computation complexity. This has the advan-
tage that they normalize only a small set of candi-
dates and thus improve the decoding speed. (Wu
et al., 2016) only consider tokens that have local
scores that are not more than beamsize below the
best token during their search. Further, the au-
thors prune all partial hypotheses whose score are
beamsize lower than the best final hypothesis (if
one has already been generated). In this work, we
investigate different absolute and relative pruning
schemes which have successfully been applied in
statistical machine translation for e.g. phrase table
pruning (Zens et al., 2012).

3 Original Beam Search

The original beam-search strategy finds a transla-
tion that approximately maximizes the conditional
probability given by a specific model. It builds
the translation from left-to-right and keeps a fixed
number (beam) of translation candidates with the
highest log-probability at each time step. For each
end-of-sequence symbol that is selected among
the highest scoring candidates the beam is reduced
by one and the translation is stored into a final can-
didate list. When the beam is zero, it stops the
search and picks the translation with the highest
log-probability (normalized by the number of tar-
get words) out of the final candidate list.

4 Search Strategies

In this section, we describe the different strategies
we experimented with. In all our extensions, we
first reduce the candidate list to the current beam
size and apply on top of this one or several of the
following pruning schemes.

Relative Threshold Pruning. The relative
threshold pruning method discards those
candidates that are far worse than the best
active candidate. Given a pruning threshold
rp and an active candidate list C, a candidate
cand ∈ C is discarded if:

score(cand) ≤ rp ∗max
c∈C
{score(c)} (1)

Absolute Threshold Pruning. Instead of taking
the relative difference of the scores into ac-
count, we just discard those candidates that
are worse by a specific threshold than the best
active candidate. Given a pruning threshold
ap and an active candidate list C, a candidate

cand ∈ C is discarded if:

score(cand) ≤ max
c∈C
{score(c)} − ap (2)

Relative Local Threshold Pruning. In this prun-
ing approach, we only consider the score
scorew of the last generated word and not
the total score which also include the scores
of the previously generated words. Given a
pruning threshold rpl and an active candidate
list C, a candidate cand ∈ C is discarded if:

scorew(cand) ≤ rpl ∗max
c∈C
{scorew(c)}

(3)
Maximum Candidates per Node We observed

that at each time step during the decoding
process, most of the partial hypotheses share
the same predecessor words. To introduce
more diversity, we allow only a fixed number
of candidates with the same history at each
time step. Given a maximum candidate
threshold mc and an active candidate list C,
a candidate cand ∈ C is discarded if already
mc better scoring partial hyps with the same
history are in the candidate list.

5 Experiments

For the German→English translation task, we
train an NMT system based on the WMT 2016
training data (Bojar et al., 2016) (3.9M paral-
lel sentences). For the Chinese→English experi-
ments, we use an NMT system trained on 11 mil-
lion sentences from the BOLT project.

In all our experiments, we use our in-house
attention-based NMT implementation which is
similar to (Bahdanau et al., 2014). For
German→English, we use sub-word units ex-
tracted by byte pair encoding (Sennrich et al.,
2015) instead of words which shrinks the vocabu-
lary to 40k sub-word symbols for both source and
target. For Chinese→English, we limit our vocab-
ularies to be the top 300K most frequent words
for both source and target language. Words not in
these vocabularies are converted into an unknown
token. During translation, we use the alignments
(from the attention mechanism) to replace the un-
known tokens either with potential targets (ob-
tained from an IBM Model-1 trained on the paral-
lel data) or with the source word itself (if no target
was found) (Mi et al., 2016). We use an embed-
ding dimension of 620 and fix the RNN GRU lay-
ers to be of 1000 cells each. For the training proce-
dure, we use SGD (Bishop, 1995) to update model
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Figure 1: German→English: Original beam-
search strategy with different beam sizes on new-
stest2014.
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Figure 2: German→English: Different values of
relative pruning measured on newstest2014.

parameters with a mini-batch size of 64. The train-
ing data is shuffled after each epoch.

We measure the decoding speed by two num-
bers. First, we compare the actual speed relative
to the same setup without any pruning. Secondly,
we measure the average fan out per time step. For
each time step, the fan out is defined as the num-
ber of candidates we expand. Fan out has an up-
per bound of the size of the beam, but can be de-
creased either due to early stopping (we reduce
the beam every time we predict a end-of-sentence
symbol) or by the proposed pruning schemes. For
each pruning technique, we run the experiments
with different pruning thresholds and chose the
largest threshold that did not degrade the transla-
tion performance based on a selection set.

In Figure 1, you can see the German→English
translation performance and the average fan out
per sentence for different beam sizes. Based
on this experiment, we decided to run our prun-
ing experiments for beam size 5 and 14. The

German→English results can be found in Table 1.
By using the combination of all pruning tech-
niques, we can speed up the decoding process by
13% for beam size 5 and by 43% for beam size
14 without any drop in performance. The rela-
tive pruning technique is the best working one for
beam size 5 whereas the absolute pruning tech-
nique works best for a beam size 14. In Figure 2
the decoding speed with different relative prun-
ing threshold for beam size 5 are illustrated. Set-
ting the threshold higher than 0.6 hurts the trans-
lation performance. A nice side effect is that it has
become possible to decode without any fix beam
size when we apply pruning. Nevertheless, the de-
coding speed drops while the translation perfor-
mance did not change. Further, we looked at the
number of search errors introduced by our prun-
ing schemes (number of times we prune the best
scoring hypothesis). 5% of the sentences change
due to search errors for beam size 5 and 9% of the
sentences change for beam size 14 when using all
four pruning techniques together.

The Chinese→English translation results can be
found in Table 2. We can speed up the decoding
process by 10% for beam size 5 and by 24% for
beam size 14 without loss in translation quality. In
addition, we measured the number of search errors
introduced by pruning the search. Only 4% of the
sentences change for beam size 5, whereas 22% of
the sentences change for beam size 14.

6 Conclusion

The original beam search decoder used in Neu-
ral Machine Translation is very simple. It gen-
erated translations from left-to-right while look-
ing at a fix number (beam) of candidates from the
last time step only. By setting the beam size large
enough, we ensure that the best translation per-
formance can be reached with the drawback that
many candidates whose scores are far away from
the best are also explored. In this paper, we in-
troduced several pruning techniques which prune
candidates whose scores are far away from the best
one. By applying a combination of absolute and
relative pruning schemes, we speed up the decoder
by up to 43% without losing any translation qual-
ity. Putting more diversity into the decoder did not
improve the translation quality.
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pruning beam speed avg fan out tot fan out newstest2014 newstest2015
size up per sent per sent BLEU TER BLEU TER

no pruning 1 - 1.00 25 25.5 56.8 26.1 55.4
no pruning 5 - 4.54 122 27.3 54.6 27.4 53.7
rp=0.6 5 6% 3.71 109 27.3 54.7 27.3 53.8
ap=2.5 5 5% 4.11 116 27.3 54.6 27.4 53.7
rpl=0.02 5 5% 4.25 118 27.3 54.7 27.4 53.8
mc=3 5 0% 4.54 126 27.4 54.6 27.5 53.8
rp=0.6,ap=2.5,rpl=0.02,mc=3 5 13% 3.64 101 27.3 54.6 27.3 53.8
no pruning 14 - 12.19 363 27.6 54.3 27.6 53.5
rp=0.3 14 10% 10.38 315 27.6 54.3 27.6 53.4
ap=2.5 14 29% 9.49 279 27.6 54.3 27.6 53.5
rpl=0.3 14 24% 10.27 306 27.6 54.4 27.7 53.4
mc=3 14 1% 12.21 347 27.6 54.4 27.7 53.4
rp=0.3,ap=2.5,rpl=0.3,mc=3 14 43% 8.44 260 27.6 54.5 27.6 53.4
rp=0.3,ap=2.5,rpl=0.3,mc=3 - - 28.46 979 27.6 54.4 27.6 53.3

Table 1: Results German→English: relative pruning(rp), absolute pruning(ap), relative local pruning(rpl)
and maximum candidates per node(mc). Average fan out is the average number of candidates we keep at
each time step during decoding.

pruning beam speed avg fan out tot fan out MT08 nw MT08 wb
size up per sent per sent BLEU TER BLEU TER

no pruning 1 - 1.00 29 27.3 61.7 26.0 60.3
no pruning 5 - 4.36 137 34.4 57.3 30.6 58.2
rp=0.2 5 1% 4.32 134 34.4 57.3 30.6 58.2
ap=5 5 4% 4.26 132 34.3 57.3 30.6 58.2
rpl=0.01 5 1% 4.35 135 34.4 57.5 30.6 58.3
mc=3 5 0% 4.37 139 34.4 57.4 30.7 58.2
rp=0.2,ap=5,rpl=0.01,mc=3 5 10% 3.92 121 34.3 57.3 30.6 58.2
no pruning 14 - 11.96 376 35.3 57.1 31.2 57.8
rp=0.2 14 3% 11.62 362 35.2 57.2 31.2 57.8
ap=2.5 14 14% 10.15 321 35.2 56.9 31.1 57.9
rpl=0.3 14 10% 10.93 334 35.3 57.2 31.1 57.9
mc=3 14 0% 11.98 378 35.3 56.9 31.1 57.8
rp=0.2,ap=2.5,rpl=0.3,mc=3 14 24% 8.62 306 35.3 56.9 31.1 57.8
rp=0.2,ap=2.5,rpl=0.3,mc=3 - - 38.76 1411 35.2 57.3 31.1 57.9

Table 2: Results Chinese→English: relative pruning(rp), absolute pruning(ap), relative local pruning(rpl)
and maximum candidates per node(mc).
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